钢的淬透性的测定
钢的淬透性测定
1、学会用端淬法测定钢的淬透性; 2、比较碳钢(45)与合金钢(40Cr)的淬透性; 3、了解淬透性曲线的应用。
1
【实验概述】
1、淬透性与淬硬性 钢的淬透性——钢在淬火时获得M的能力。 钢的淬硬性——钢淬火后所能达到的最高硬度。
2、影响淬透性的因素 主要是钢的化学成分(合金元素含量),其次是奥氏体化温度、保温时间等。
8
【实验注意事项】
1、试样从盒中取出到开始喷水之间的时间应不超过5 s。 2、磨制试样过程中应注意用水冷却,避免发生回火现象。 3、测量的硬度压痕应沿所磨平面的中心线分布。
9
【实验报告撰写】
1、统一使用实验报告纸撰写实验报告,要求写出实验名称、 实验目的、实验材料、实验设备等。
2、实验数据处理
(1)用表格列出两种试样距离顶端各点的硬度(硬度-距离表) (2)根据上表绘制两种试样硬度-距离曲线图(横坐标为距离d、
不同截面的钢淬火时淬硬层深度的变化 (D0为心部为50%M的最大直径)
在相同冷却条件下,Do越大,钢的淬透性越好。
4
(3)端淬法—— GB/T 225-2006 ❖淬透性表示方法:
J HRC- d
J——表示端淬实验法 d——测试点至水冷端的距离(mm) HRC——测试点处的硬度值
例如:
J 42- 5
即表示:距水冷端5mm处 试样硬度值为42HRC
5
淬透性曲线
半M与碳含量
6
【实验设备及材料】
箱式炉 4台
端淬机 1台 台式砂轮机 2台 洛氏硬度计 4台
实验材料 —— 45钢和40Cr标准端淬试样
7
【实验内容及步骤】
4~5人一组,领取一根试样(45或40Cr),进行端淬。
钢的淬透性末端淬火试验
钢的耐热性评价
耐热性评价
末端淬火试验还可以用于评价钢的耐热性,即在高温下保持钢的性能的能力。耐热性对于在高温环境下工作的部 件非常重要。
耐热性影响因素
钢的耐热性受到合金元素、微观组织和热处理工艺的影响。了解这些因素有助于优化钢的性能,提高其在高温环 境下的稳定性和持久性。
对实际应用的指导意义
材料选择
淬火过程中的温度、时间和冷却速度等工艺参数 对淬透性有显著影响,通过优化这些参数,可以 提高钢的淬透性能。
05
试验结论
钢的淬透性评估
淬透性评估
通过末端淬火试验,可以评估钢的淬 透性,即钢在淬火过程中获得淬硬层 的深度。淬透性取决于钢的化学成分、 温度、冷却速度等因素。
影响因素
钢的淬透性受到多种因素的影响,如 合金元素、碳含量、热处理工艺等。 这些因素对钢的硬度和抗疲劳性能有 显著影响。
在比较不同钢种的淬透性时,应综合考虑其化学成分、纯 净度、显微组织等因素,以及其在不同温度和冷却速率下 的组织转变和相变行为。
02
试验原理
淬火原理
01
淬火是将钢加热至奥氏体化后迅 速冷却,使钢转变为马氏体或贝 氏体组织的热处理工艺。
02
通过淬火,可以提高钢的硬度和 耐磨性,同时使钢获得所需的机 械性能。
对试验数据进行整理、分析和处理,计算 淬透性指标,如Jominy淬透性值、KocksZimmerman曲线等,以评估钢的淬透性。
04
试验结果分析
淬透性曲线分析
淬透性曲线
淬透性曲线是描述钢在不同温度 和时间下淬火后硬度的变化曲线, 通过分析曲线可以了解钢的淬透 性能。
淬透性指标
淬透性指标包括临界淬火速率、 淬火温度范围等,这些指标可以 用来评估钢的淬透性能。
钢的淬透性测定
实验设备:箱式电阻炉、末端淬火设备、洛氏硬度试验机。
实验步骤:
1、将待测的一定钢号的试样,加热到奥氏体化温度(860℃),保温30分钟;
2、由炉中取出,在5秒内迅速放入淬火的试验装置,试样的淬火端被喷水冷
却15分钟;
3、试样冷却后,取出,在试样两侧各磨去0.2~0.5mm,得到互相平行的沿纵 向的两个狭长的平行平面。在其中的一个平面上,从淬火端开始,每隔 1.5mm测一次硬度(HRC),并做出淬透性曲线(HRC-X关系曲线)。
四、注意事项
1. 按要求对淬火试验装置进行调整,必须严格、认真;
2. 要检查试样的表面质量,必须时,应进行处理;
3. 试样两侧磨出的平面应平行,并在测硬度前,应划线定好测
硬度的位置,力求准确;
4. 取试样放入淬火装置时,动作要迅速,但要注意安全。
五、实验报告要求
1. 说明本次实验目的; 2. 简述末端淬火法的试验原理和方法; 3. 绘制淬透性曲线; 4. 说明影响钢的淬透性的因素与淬透性的实际意义。
三、实验内容
末端淬火
规定试样尺寸,长100mm,直径 25mm,并带有“台阶”,直径30mm, 台高3mm。 淬火在特定的试验装置上进行如图 1,在试验之前应进行调整,使水柱的 自由喷出高度为65mm,水的温度为 20-30℃,试样放入试验装置时,冷却 端与喷嘴距离为12.5 mm。
图1 末端淬透性实验示意图
本实验的测定方法是将标准试样加热到淬火温度,然后 在试样末端喷水进行淬火,因此沿试样长度方向各点冷却
速度不同,从而获得不同的组织和硬度。
淬透层的深度大小受到钢的淬透性、淬火介质的冷却能
力、工件的体积,工件的表面状态等所影响,所以测定钢
的淬透性时,要将淬火介质、工件的尺寸等都规定下来, 才能通过淬透层深度以确定钢的淬透性。
钢的淬透性测试
1
一、实验目的
• 掌握端淬试验方法 • 比较合金元素对钢的淬透性影响。
可编辑ppt
2
二、设备和材料
• 加热炉、热电偶炉温指示仪表 • 端淬机 • 硬度计 • 砂轮机 • 实验材料 40# 40Cr
可编辑ppt
3
3-5
28-
30
13
100
Φ25
12.5
Φ12. 自由水柱高度
• 2.将试样迅速的自炉内取出放在端淬机上,喷水冷却,试样面上不得溅上水。从 炉内取出到喷水时间不超过5秒,冷却10分钟后投入水中。
• 3.将试样相隔180℃位置上磨出两平行面,磨削深度为0.2—0.5mm,磨面不准有 发蓝现象。
• 4在磨面中心线上由末端起每隔1.5mm打洛氏硬度。
• 5以硬度(HRC)为纵坐标,以距淬火末端距离为横坐标绘制淬透性曲线。
点,可以同不同直径的钢件在不同介质中的冷却情况对应比较,因此可以方便的 利用端淬曲线与有关的表格,求出各种钢在不同淬火介质中的临界直径,同时可 推测不同直径钢件在不同介质中淬火后沿横截面组织硬度分布。
• 以4人为一组,其中每两人做一个试样
• 1.将试样按工艺规定加热保温时间30分,端部要保护防止脱碳。
• 6利用端淬曲线确定钢材临界直径,首先根据端淬线上硬度变化最显著处,求出 水冷端半马氏体距离,利用图3根据冷却状态找出相应的淬火直径
• 7绘制Φ100mm截面上硬度分析(υ形硬度曲线)利用图3对一定直径工作截面不 同位置所对应距水冷端距离在端淬曲线上找出相应硬度值,将硬度值与工作截面 不同位置绘在一起即表示截面硬度分布的U形曲线,并确定淬透深度。
可编辑ppt
5
HRC
60
50
结构钢的淬透性曲线测定
结构钢的淬透性曲线测定(3学时)一、实验目的1、学会用末端淬火法测定钢的淬透性曲线。
2、学会确定钢的“临界淬透直径”的方法。
二、实验内容:1、概述:钢的淬透性是指钢在淬火时所能得到的淬硬层深度大小的能力,淬硬层是指有钢的表面至半马氏体区的深度。
它决定了钢淬火后,从表面到心部硬度的分布情况。
它是钢的一种热处理工艺性能,它已成为机械设计时合理的选择钢材和生产上正确制定热处理工艺的主要依据之一。
半马氏体区的深度取决于钢的含碳量,图5—1为不同含碳量的碳钢的半马氏体的硬度。
由图可知半马氏体区的深度随含碳量的增加而有规律性的提高。
按国家标准规定淬透性的测定方法有以下两种:1)、碳素工具钢淬透性试验法(GB227—63);按断口状态评定淬透性的一种方法2)、结构钢末端淬透性试验法(GB225—63)。
适用于碳素及一般合金结构钢。
本实验为结构钢末端淬透性试验。
图5—1 图5—2 图5—3(1)、碳素工具钢淬透性试验法(GB227—63);按断口状态评定淬透性的一种方法,(2)、结构钢末端淬透性试验法(GB225—63)。
适用于碳素及一般合金结构钢。
本实验为结构钢末端淬透性试验。
2、末端淬透性实验法:末端淬透性试验通常用于测定碳素结构钢及一般合金结构钢的淬透性供实验用的试样,在标准中已作了规定,其尺寸与加工精度如图5—2所示:试样放在控温准确的电炉中加热,淬火加热温度应与该钢种标准技术条件中规定的淬火温度为准,保温时间为30分钟。
加热试样自炉内取出至水淬开始时间不得超过5秒钟淬火时试样应放在特殊支架上冷却,如图5—3所示。
试样支架必须保证在淬火过程水柱垂直向上喷射在试样末中心部位,试样顶端至喷水口距离为12.5毫米,喷水口直径为12.5毫米,在淬火过程中注意不能让水溅到试样侧面。
为了保证冷却条件一致,必须事先调整好水柱的自由高度65±10毫米,支架上有水应事先擦干,淬火过程中水压要稳定,水淬时间不得少于10分钟。
淬透性与淬硬性(精)
• 2.淬硬性
——钢在正常淬火条件下,淬火形成的马氏体所能达到的最高硬度。 ◇ 淬硬性取决于马氏体的含碳量,含碳量越高,碳的过饱和度就越大, 硬度越高。
1 、钢的淬透性
• 淬透性是指钢在淬火时获得淬硬层深度的能力。其大小 是用规定条件下淬硬层深度来表示。
淬硬层深度是指由工件表 面到半马氏体区(50%M +
(2)淬透性与实际淬透层深度的关系
• 同一材料的淬硬层深度与工件尺寸、冷却介质有关。工件尺寸小、 介质冷却能力强,淬硬层深。 • 淬透性与工件尺寸、冷却介质无关。它只用于不同材料之间的比较, 是通过尺寸、冷却介质相同时的淬硬层深度来确定的。
(3)淬透性和淬硬性的关系
【想一想】①能否说同一钢种水淬的淬硬性一定比油淬大?能否说水淬的 淬透性比油淬好?②能否说直径小的45钢X-件较直径大的淬透性好(二 者长度一样)?为什么?淬硬性与实际淬透深度呢?
②在油淬“表面”栏的35mm处引垂线,与端淬曲线分别交于 48HRC和58HRC。这表明直径为35mm的40Cr钢棒料油淬后,表面硬 度为48HRC~58HRC,可满足表面硬度>45HRC的要求。故该工件可 选用40Cr钢。
45钢与45Cr钢的淬透性曲线
45钢
40Cr钢
2) 预测工件淬火后硬度分布
碳化物形成元素只有溶入奥氏体才可起增大淬透性的作用,若存在于碳 化物中则反而起降低淬透性的作用。 (2)奥氏体晶粒度和成分均匀程度同样加热条件下,奥氏体晶粒越大,成 分越均匀,则过冷奥氏体越稳定,故淬透性越好。
(3)未溶第二相的影响钢中未溶碳化物、氮化物等与奥氏体的交界处是珠 光体、贝氏体择优形核地点,可促进珠光体、贝氏体形核,降低过冷奥 氏体的稳定性,故降低淬透性;此外,未溶碳、氮化物还会阻碍奥氏体 晶粒长大,也对淬透性有降低作用。 此外,形变和应力场等对钢的淬透性也有影响。
钢的淬透性测定
实验钢的淬透性测定一:定义:钢的淬透性——指钢材被淬透的能力,或者说钢的淬透性是指表征钢材淬火时获得马氏体的能力的特性。
应该注意,钢的淬透性与可硬性两个概念的区别。
淬透性系指淬火时获得马氏体难易程度。
它主要和钢的过冷奥氏体的稳定性有关,或者说与钢的临界淬火冷却速度有关,可硬性指淬成马氏体可能得到的硬度,因此它主要和钢中含碳量有关。
二:淬透性影响因素1:钢的化学成分:a):当加热温度低于Acm点时,含C量低于1%以下,随含碳量增加,临界冷却速度下降,淬透性提高,含C量高于1%时,则相反,当加热温度高于Ac3或Acm时,则随含碳量增加,临界冷却速度下降。
b):合金元素除Ti,Zr,和Co外所有元素提高淬透性。
2:奥氏体晶粒度:奥氏体晶粒尺寸增大,淬透性提高。
3:奥氏体化温度:提高奥氏体化温度,不仅使奥氏体晶粒粗大,促使碳化物及其它非金属夹杂物流入,并使奥氏体成分均匀化,提高过冷奥氏体稳定性,从而提高淬透性。
4:第二相及其分布:奥氏体中未溶的非金属夹杂物和碳化物的存在以及其大小和分布,影响过冷奥氏体的稳定性,从而影响淬透性。
三:淬透性的实验测定方法有两种方法,一种是临界直径法,另一种是端淬法。
1.临界直径法一组由被测钢制成的不同直径的圆形棒按规定淬火条件(加热温度,冷却介质)进行淬火,然后在中间部位垂直于轴线截断,经磨光,制成粗晶试样后,沿着直径方向瞄定自表面至心部的硬度分布曲线。
发现随着试样直径增加,心的出现暗色易腐蚀区,表面为亮圈,且随着直径的继续增大,暗区愈来愈大,亮圈愈来凶小。
若与硬度分布曲线对应地观察,则该二区的分界线正好是硬度变化最大部位;若观察金相组织,则正好是50%马氏体和非马氏体的混合组织区,愈向外靠近表面,马氏体愈多,向里则马氏体急剧减少。
分界线上的硬度代表马氏体区的硬度,格罗斯曼(Gmssmann)将此硬度称为临界硬度或半马氏体硬度。
亮区就是淬硬层,暗区就是未淬硬层,把未出现暗区的最大试样直径称为淬火临界直径,则其含义为该种钢在该种淬火介质中能够完全淬透的最大直径。
钢的淬透性
(3)钢的淬透性淬透性是钢的主要热处理工艺性能,它对合理选用材料及正确制定热处理工艺,具有十分重要的意义。
1)淬透性的概念淬透性,从组织上讲,是指钢淬火时全部或部分地获得马氏体组织的难易程度;从硬度上讲,是指钢淬火时获得较深淬硬层或中心被淬硬(淬透)的能力。
淬硬层越深,表明钢的淬透性越好。
从理论上讲,淬硬层深度应是工件整个截面上全部淬成马氏体的深度。
但实际上,一般规定从工件表面向里至半马氏体区(马氏体与非马氏体组织各占一半处)的垂直距离作为有效淬硬层深度。
用半马氏体处作淬硬层界限,只要测出截面上半马氏体硬度值的位置,即可确定出淬硬层深图 3-22 工件淬透层深度与冷却速度的关系示意图度。
零件淬火所能获得的淬硬层深度是变化的,随钢的淬透性、零件尺寸和形状以及工艺规范的不同而变化。
实际淬火工作中,如果整个截面都得到马氏体,即表明工件已淬透。
但大的工件经常是表面淬成了马氏体,而心部未得到马氏体,这是因为淬火时,表层冷却速度大于临界冷却速度V而K心部小于V的缘故,如图3-22所示。
K2)注意区分两对易混淆的概念?淬透性与淬硬性的区别淬透性:表明钢淬火时获得马氏体的能力。
过过冷奥氏体越稳定,C曲线越向右移,马氏体临界冷却速度V越小,钢的淬透性越好(越高)。
它主要取决于奥氏体合金含量。
k淬硬性:表示钢淬火后能达到最高硬度的能力。
淬火后硬度越高,淬硬性越好(越高)。
它主要取决于马氏体碳的质量分数,合金元素含量对淬硬性没有显著影响。
所以说,淬透性好的钢,其淬硬性不一定高。
例题1:比较T10 、20CrMnTi 、40Cr 三种钢的淬透性和淬硬性的高低。
请选择: 最高较高最低T10 20CrMnTi 40Cr最低最高较高淬透性最高最低较高淬硬性?淬透性和具体条件下具体零件的淬透层深度的区别在同样奥氏体条件下,同一种钢的淬透性是相同的,但不能说同一种钢水淬与油淬时的有效淬透层深度相同。
钢的淬透层深度与钢的临界冷却速度、工件的截面尺寸和介质的冷却能力有关。
ASTM A255-10确定钢的淬透性的标准检验方法
StandardTest Methodsfor DeterminingHardenability Steell ot
This sdida.d is hi'ed undcr rhc 6xed desisnr(ion A255: rhc nunb{r inncdiar.ly ronowing the desig origin.doprionorinfieceofEyision.they.roflanr.vhion.Anumbcri!t'oEnthesesindicacsrh m ion or capa{!!l. s'plNopr cplilon (.) indicares Ihi: stu'dar.t hat b..t dtpro\rd I.r u'e 6 ot n.i.' aJ kc D.raidcfu .f D.Id\.
No● ma‖ zn9 ufe Au$ten‖ Tem卩 e叼 F CC) z ng tu田
stee|se"es
Orderoo Ca● Contenl maX% F(C)
bon
lbmpef甜 ・
1000 1300 1500 3100 4CO0 4100 4θ00 4400 4500 46oo 47oo 5o00 5100 6100。 8600 8700 8800 9400 θ 700 9800 8100
o25an0under o26b036 |no丨
1700(g25) 1650(θ 00)
170r,(θ 1600(870)25)o来自7仓nd●ve●
1600(B70) 1700(θ 1650 (900) 25)
1s50〈 1550(845)
20CrMnTiH齿轮钢淬透性试验研究
况下宜向下限控制 [6] 。
3.1.5 硼
B 元素虽然是残余元素,但是影响钢的淬透性比较明显。
在其含量很低时也会显著增加钢的淬透性。 这是因为 B 作为
表面活性元素,吸附在奥氏体晶界上,利于形成马氏体,提高淬
透性。 所以 B 含量的控制要尽可能低。
在含碳 0.20%左右的齿轮钢中,硅是铁素体强化的元素,以
固溶状态存在于钢中,但会明显增加材料的冷弯开裂倾向,故
不宜高,否则会对材料的疲劳性能产生不利影响。 铝是强脱氧
元素,具有明显的细化晶粒作用 [2-3] ,鉴于其对淬透性影响较
小,选择适量加入。
3.1.3 锰、铬
锰对淬透性贡献显著,其在低碳钢中对淬透性的影响略高
钢的淬透性。
2.1 试样尺寸
试样尺寸为:直径 25 mm,长度 100 mm 的圆棒状试样。 为
方便淬火时试样的夹持,并快速对中,在试样非淬火端加工出
直径为 30 mm 的凸台。 加工试样如图 1 所示。
1 20CrMnTiH 化学成分要求
20CrMnTiH 系列齿轮钢是目前国内用量最大的一个钢种,本
3.2 20CrMnTiH 齿轮钢窄成分控制
结合以上分析可知,仅仅依据国家标准制定的化学成分配
比一般很难达到理想效果,也无法满足窄淬透性带宽的要求,
需要合理优化各元素的配比。 在确定了各化学元素影响淬透
性大小的基础上,利用专业软件对合金成分配比进行系统分
析,经过一系列的试验、分析,并且不断优化,确定了 20CrMnTiH
2 钢的淬透性及其试验方法
淬透性是指钢在一定条件下淬火时获得淬硬深度的能力。
钢的淬 透 性 可 用 试 验 测 定。 常 用 的 试 验 方 法 为 GB / T225—
钢末端淬透性检验的影响因素
103科学技术Science and technology钢末端淬透性检验的影响因素李长贵,马 娟,海秀英,陆建民,雷国清(西宁特殊钢股份有限公司,青海省冶金产品研究与开发重点实验室),青海 西宁 810005)摘 要:通过试验阐述了影响末端淬透性能试验结果的主要因素以及在测试过程中应注意的问题。
结果表明:热处理工艺、试样表面粗糙度、平行度、化学成分及检验设备都会对试验结果产生影响;在末端淬透性测试时应注意硬度计的校准、试验力的保持时间、试样表面粗糙度、试样平行度等问题。
关键词:淬透性;洛氏硬度;粗糙度中图分类号:TG142.15 文献标识码:A 文章编号:11-5004(2019)08-0103-2收稿日期:2019-08作者简介:李长贵,男,生于1983年,汉族,青海西宁人,本科,助理工程师,研究方向:冶金产品理化检验。
近年来,汽车工业对齿轮钢的质量和性能要求越来越高,许多齿轮生产企业对齿轮钢的技术指标提出了严格要求;淬透性试验方法顶端淬火试验GB/T 225-2006钢淬透性的末端淬火试验方法(Jominy 试验),是一种测定淬透性的简便方法,在许多国家已标准化。
图1是用标准试样经适当奥氏体化后进行顶端淬火的示意图。
顶端淬火时冷却速度由淬火端沿试棒逐渐减小,组织和硬度随之相应地变化,由此得到的硬度变化曲线(图2)称为淬透性曲线。
严格地说,这种曲线只对某一炉次的钢有效;对于某一定钢种来说,由于化学成分的差异(成分波动及偏析)、预先热处理工艺的差异(显微组织上的差异),其淬透性曲线可在相当大的范围内波动,形成一个淬透性带(图3)。
图1 顶端淬火图2 淬透性曲线图3 淬透性带1 热处理工艺对淬透性的影响钢的淬火加热温度主要由钢的化学成分和所要求的淬火组织来确定,一般采用Ac3以上30℃~50℃。
保温的目的使试样透热(即工试样整个截面都达到规定的淬火加热温度),完成加热时的转变过程,获得所需成分的细晶粒奥氏体,在这个前提下,应尽量缩短保温时间,以减少氧化和脱碳。
ASTM(A255-02)钢的淬透性试验方法
ASTM(A255-02)钢的淬透性试验⽅法钢淬透性的标准试验⽅法ASTM(A255-02)1.范围1.1本规范包括钢淬透性试验⽅法的描述。
这两种试验⽅法包括端淬或Jominy试验或根据化学成分计算钢的淬透性。
1.2 由已知钢种选择决定淬透性的⽅法由供货⽅和客户共同决定。
材料检测报告应注明所⽤的淬透性试验⽅法。
1.3这些试验⽅法中所采⽤的计算⽅法仅适⽤于具有以下化学成分范围的钢:元素范围,%碳0.10-0.70锰0.50-1.65硅0.15-0.60铬最⼤1.35镍最⼤1.50钼最⼤0.551.4淬透性是测量钢在奥⽒体转变点淬⽕深度的⼀种⽅法,见表1。
它是⼀种定量的描述⽅法,测量试样具有标准尺⼨和形状,⽤标准淬⽕⽅法进⾏淬⽕得到淬⽕的深度或宽度。
在端淬试验中,淬⽕深度是从淬⽕端部到某硬度值的距离。
表1 正⽕和奥⽒体转变温度A钢种要求的最⼤碳含量(%)正⽕温度(℃)奥⽒体温度(℃)1000,1300,1500 ≤0.25 925 9253100,4000,4100 0.26-0.36 900 8704300,4400,45004600,4700,50005100,6100B,81008600,8700,88009400,9700,9800≥0.37 870 8452300,2500,3300 ≤0.25 925 8454800,93000.26-0.36 900 815≥0.37 870 8009200 ≥0.5 900 870A 在此表格中温度变化在±6℃以内是允许的。
B 对于6100钢来说正⽕和奥⽒体化温度要⽐此表中⾼30℃。
1.5淬透性值的单位应以英⼨-磅为标准单位,国标单位仅供参考。
1.6本规范没有安全⽅⾯的条款,如果有,应根据应⽤条件⽽定。
本规范的使⽤者应制定安全和健康条例并保证其适⽤性。
2.参考⽂献2.1ASTM标准E018 ⾦属材料洛⽒硬度和表⾯洛⽒硬度试验标准E112 平均晶粒尺⼨的检验⽅法端淬或JOMINY试验3.说明3.1本试验包括⽤端淬或Jominy试验⽅法来测定钢淬透性的试验程序。
《钢的淬透性测试》课件
淬透性测试的基本原理
1
淬透性测试的流程
准备试样 - 加热至临界温度 - 迅速冷却 - 测量硬度和观察组织结构。
2
淬透性测试中的主要仪器设备
如显微镜、淬火装置、硬度计等。
3
淬透性测试中的主要操作步骤
包括试样制备、温度控制、淬火速度控制等。
淬透性测试中的参数
硬度
表征钢材的抗压能力 和形变能力。
强度
代表钢材抵抗外部力 量破坏的能力。
案例1
利用淬透性测试结果对不同牌号 的钢进行分类。
案例2
根据淬透性测试结果选择合适的 钢材加工方法。
案例3
通过改善钢材的淬透性,提高产 品性能。
结论
淬透性测试的重要性和必要性
淬透性测试是评估钢材性能的重要手段,对钢材的应用和发展具有重要意义。
未来淬透性测试的发展趋势
结合多种测试方法,全面评估和预测材料性能的能力将得到进一步提高。
2
钢的性能改进
通过调整淬火工艺,改善钢材的淬透性和性能。
3
钢的加工
根据淬透性测试结果选择合适的加工方法和工艺。
淬透性测试的局限和发展方向
1 淬透性测试的局限
只能评估钢材的淬透性,无法全面反映所有性能指标。
2 淬透性测试的发展方向
结合其他材料测试方法,实现全面评估和预测材料性能。
淬透性测试的应用案例
《钢的淬透性测试》PPT 课件
钢的淬透性测试是探究钢材料硬度、强度、变形和断裂韧性等参数的重要方 法。本课件将带你深入了解淬透性的定义、测试原理、类型、应用及发展方 向。
淬透性的定义和意义
淬透性的定义
淬透性是指钢材料在淬火过程中相变形态和硬度 分布的能力。
淬透性的意义
钢的淬透性测定
钢的淬透性测定实验⼀:钢的淬透性测定实验学时:3实验类型:综合性实验实验要求:必修⼀、实验⽬的(⼀)掌握钢的淬透性的实验⽅法,重点末端淬⽕法。
(⼆)了解化学成分、奥⽒体化温度及晶粒度对钢的淬透性的影响。
⼆、实验内容、实验原理、⽅法和⼿段(⼀)淬透性的概念及其影响因素在实际⽣产中,零件⼀般通过淬⽕得到马⽒体,以提⾼机械性能。
钢的淬透性是指钢经奥⽒体化后在⼀定冷却条件下淬⽕时获得马⽒体组织的能⼒。
常⽤淬透性曲线、淬硬层深度或临界淬透直径来表⽰。
淬透性与淬硬性不同,它是淬硬层深度的尺度⽽不是获得的最⼤的硬度值。
它决定淬⽕后从表⾯到⼼部硬度分布的情况。
⼀般规定“由钢的表⾯⾄内部马⽒体占50%(其余的50%为珠光体类型组织)的组织处的距离”为淬硬层深度。
淬硬层越深,就表明该钢的淬透性越好。
如果淬硬层尝试达到⼼部,则表明该钢全部淬透。
影响淬透性的因素很多,最主要的是钢的化学成分,其次为奥⽒体化温度、晶粒度等等。
钢的淬透性与过冷奥⽒体稳定性有密切的关系。
当奥⽒体向珠光体转变的速度越慢,也就是等温转变开始曲线越向右移,钢的淬透性越⼤,反之就越⼩,可见影响淬透性的因素与影响奥⽒体等温转变的因素是相同的。
溶⼊奥⽒体的⼤多数合⾦元素除Co以外,都增加过冷奥⽒体的稳定性,使曲线右移,降低临界冷却速度,提⾼钢的淬透性。
钢中含碳量对临界冷却速度的影响为:亚共析钢随含碳量的增加,临界冷却速度降低,淬透性增加;过共析钢随含碳量的增加,临界冷却速度增⾼,淬透性下降。
含碳量超过1.2%~1.3%时,淬透性明显降低。
(⼆)淬透性的测定⽅法淬透性的测定可以⼤致分为计算法和实验法两类。
⽬前使⽤的⽅法还是实验法,它主要是通过测定标准试样来评价钢的淬透性。
具体的试验⽅法有多种,现将其中通常采⽤的四种⽅法概述如下。
1、断⼝检验法根据GB227—63《炭素⼯具钢淬透性试验法》(低合⾦⼯具钢也可参照此标准)的规定,在退⽕钢棒截⾯中部截取2~3个试样,⽅形试样的横截⾯尺⼨为20mm×20mm(±0.2),圆形截⾯为φ22~33mm,长度为100±5mm,试样中间⼀侧开⼀个深度为3~5mm的V形槽,以利于淬⽕后打断观察断⼝。
钢的淬透性测定
五 、基本概念
1. 钢的淬透性 在规定条件下,钢在淬火时获得马氏
体组织深度的能力。一般规定从表面到50% 非马氏体深度的距离作为淬硬层深度。
2. 钢的淬硬性 钢在理想条件下淬火成马氏体后所达
到的最高硬度。
3. 钢的淬透性与淬硬性两个概念的区别。
钢的淬透性——主要取决于钢的属性。 钢的淬硬性——主要取决于M中的含碳量。
心部 表面
A1
温度 冷速V
V临
K
V心
MS
V表 V临
时间
工件截面上不同冷却速度
非马氏体区
马氏体区
淬硬区与未淬硬区示意图
工件淬硬层与冷却速度的关系
淬透性差
淬透性好
硬度HRC
0 直径
0 直径
两种钢的淬透性
(注:料直径相同,在相同淬火介质中淬火)
KU 临界淬火直径——圆棒试样在某介质中淬火时所能得到的最大淬透直径(即心部被淬成半马氏体的最大直径),用Do表示。
2. 处试样硬度值为30 ~ 35HRC 规定试样尺寸为20×20×100mm,也可采用Φ22~23×100mm试样。 一、淬透性的测定及表示方法
2.
在相同冷却条件下,Do越大,钢的淬透性越好。
侧面上刻一个3~5mm的刻槽。
淬火温度为760℃、800℃及840℃。加热保
温15~20分后,淬入10—30℃水中,淬火后用手
锤将其折断。
断口上“脆断区”的深度“h”即为其淬透
层。
100
20
50
二、淬透性对力学性能的影响
切削刀具,必须淬透。
钢在理想条件下淬火成马氏体后所达
将试样圆柱表面相对180°的两边在砂轮机上各磨去0. 钢件淬硬层深度随其截面尺寸↑ 而 ↓。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
端淬试验机测定钢淬透性的方法
一、试验要求
1.了解测定淬透性的一般方法;
2.熟悉并利用端淬试验法测定钢的淬透性;
3.建立淬透性的概念及对热处理工艺的作用。
二、试验原理
钢的淬透性是表示钢获得马氏体的能力,是钢本身所固有的属性。
淬透性与淬硬性是两个概念,淬硬性是钢的表面由于马氏体转变所能得到最大硬度,它与钢的含碳量有关。
在生产实践中人们通常把工件表面到半马氏体组织区域的深度作为淬透层深度。
钢的淬透性与淬火临界冷却速度有着密切的关系,而淬火临界冷却速度的大小又取决于钢的过冷奥氏体的稳定性,因此,凡是影响过冷奥氏体稳定性的诸因素,都会影响钢的淬透性。
淬透性的大小对钢材热处理的机械性能有很大的影响。
如果工件被淬透了,则表里的组织和性能均匀一致,能充分发挥钢的机械性能的潜力,如工件未淬透,则表面的组织和性能存在差异,经回火后的屈服强度和冲击韧性较低。
造成这种差别的重要原因在于:在淬火时,中心未淬透部分形成了非马氏体组织,回火后仍保持其片状组织特性;而在表面获得马氏体的部分,经回火后为粒状碳化物分布在铁素体基体上的混合组织,综合性能较好。
由上所述,淬透性的大小对钢材的合理选用及热处理工艺的正确制定都是十分重要的。
目前,测定钢的淬透性方法很多,常用的方法有两种:
三、淬透性的测定
1.断口法:
从淬透层和未淬透层的宏观断口观察,可以较明显的分成两部分,淬透层呈暗黑色。
从硬度分布来看,因为碳钢的半马氏体区的硬度与碳含量有关(合金钢的半马氏体硬度一般比碳钢略高一些)见表1
不同含碳量半马氏体区硬度表一
含碳量%半马氏体区硬度HRC 含碳量%半马氏体区硬度HRC
0.1 0.2 0.3 0.4 0.5 —
32
35
39
44
0.6
0.7
0.8
0.9
1.0
47
51
53
54
—
在同样尺寸同样冷却条件下,通过硬度测定,可以测出不同钢由表层至至中心的硬度分布情况,比较它们截面上硬度分布曲线,就可以知道它们淬透层的深度及淬透性的好坏,图1为φ50毫米的40Cr钢与40#钢水淬后的截面硬度分布曲线。
图1φ50毫米的40Cr钢与40钢水淬后截面硬度分布曲线
2、端淬试验
将欲测定淬透性的钢做成标准尺寸(φ25×100)的试样,将其加热到奥氏体化后,迅速放到端淬试验的设备上,如图2,以水喷射试样的下端,试样逐渐冷却。
采用端淬试验法测定钢的淬透性,通常适用于碳素钢及一般合金钢,并已标准化。
图2 端淬试验示意图
试样用料坯在车取试样前,应先经正火处理,要用时,试样截取制备根据GB225-2006规定进行。
试验方法:试样应在温度准确的箱式电炉中加热,加热炉内应有保护气氛或将试样放入钢管与钢板焊成的圆筒内加热,如图3所示。
图3 试样装入钢筒内的剖面图
试验时圆筒部铺以少量石墨粉和生铁屑,亦可以将试样垂直放入铺有石墨板(粉)或生铁屑有盖的铁盒内,以防止试样表面氧化脱碳。
试样加热至钢的端淬温度后,保温30分钟后,取出进行末端淬火。
试样自炉内取出至水淬开始时间不得超过5秒钟。
水淬试样应处于静止的空气中,水淬时间应大于10分钟。
端淬温度应从该钢种标准技术条件中对该钢号所规定的淬火温度为准。
淬火用的试样支架应保证在淬火过程中,试样的轴线对准喷水口的中心线。
试样末端至喷水口的距离为12.5毫米,喷水口的直径为12.5毫米。
试验前调节水门,使水柱由喷水口向上冒出的自由高度为65±5毫米。
调节完毕后试样支架有水应擦干,淬火时水压应固定,使喷出的水柱高度稳定不变。
试样淬火后圆柱表面在相对180。
的两边磨去0.2~0.5毫米的深度,以获得两相互平行的平面。
磨制的过程中试样不应发生回火现象。
然后每隔1.5毫米测一次硬度HRC。
当硬度底于半马氏体硬度,硬度下降趋于平衡时,可每隔3毫米测量一次,直至离末端需要的位置为止。
以硬度值(HRC)作纵坐标,以距末端淬火的距离(毫米)作横坐标,按互相平行的平面上各点所测得的硬度平均值和其相对应的距淬火末端距离绘制淬透性曲线。
见下面淬透性
记录图4。
端淬法测定淬透性通常不以临界直径表示,而以半马氏体区至末端距离表示。
图4 淬透性记录图表40Cr
钢材的淬透性值以J(HRC/d)表示,d——表示距淬火末端距离HRC为该处测得的硬度值。
必要时可采用较小尺寸或其它形状试样作淬透性试验,表2所列为国家标准尺寸推荐采用的试样。
应该指出端淬试样法对高淬透性钢和低淬透性钢均不适用,对高淬透性钢和低淬透性钢另有专门的测定方法。
此外碳素工具钢淬透性的试验方法另有国家标准GB227-63。
表二推荐采用的小尺寸试样
试样
保温时间
(分)喷水口直径(mm)
自由水柱高度
(mm)
喷水口至试样
端面间的距离
(mm)
直径(mm)头部直径
(mm)
长度
(mm)
20 25 100 30 12.5 65±5 12.5
12 17 100 15 6 100±5 10
四、试验用材料
1、45#钢和40Cr钢φ25×100毫米端淬试样
2、电阻箱式电炉
3、端淬试验机
4、钢筒、石墨粉或生铁屑
5、洛氏硬度计
五、试验报告要求:
1、试验数据整理,将实验结果列表
2、按试验数据作出:45#,40Cr钢端淬曲线图
3、比较45#钢和40Cr钢淬透性,并讨论合金元素的影响
4、在试验中遇到什么问题,怎样解决的?
碳钢及合金钢的M和半M组织的硬度与含G的关系
含G% M硬度HRC 碳钢半M硬度HRC 合金钢半M硬度
0.1 20—30 ——
0.2 39—46 32 32—37
0.3 49—55 35 35—40
0.4 54—60 39 39—44
0.5 58—62 44 44—49
0.6 61—64 47 47—52
0.7 62—66 51 51—56
0.8 63—67 53 53—58
0.9 64—67 54 54—59
1.0 65—67 ——。