人教版八下数学第十八章达标测试卷
人教版数学八年级下册:第十八章检测卷(附答案)
20.(8 分)如图,E 是▱ ABCD 的边 AD 的中点,连接 CE 并延长交 BA 的延长线于点 F.若 CD=6,求 BF 的长. 解析:∵E 是▱ ABCD 的边 AD 的中点, ∴AE=DE.(2 分) ∵四边形 ABCD 是平行四边形, ∴AB=CD=6,AB∥CD. ∴∠F=∠DCE.(4 分)
24.(10 分)如图,在▱ ABCD 中,对角线 AC,BD 交于点 O,过点 B 作 BE⊥CD 于点 E,延长 CD 到 点 F,使 DF=CE,连接 AF. (1)求证:四边形 ABEF 是矩形; (1)证明:在▱ ABCD 中, AD∥BC,且 AD=BC, ∴∠ADF=∠BCE.
在△ADF 和△BCE 中, AD=BC, ∠ADF=∠BCE, DF=CE, ∴△ADF≌△BCE(SAS).(3 分) ∴AF=BE,∠AFD=∠BEC=90°. ∴AF∥BE. ∴四边形 ABEF 是矩形.(5 分)
(2)求 DM 的长. (2)解:∵△ADB≌△ADE, ∴AE=AB=12, ∴EC=AC-AE=8. ∵M 是 BC 的中点,BD=DE, ∴DM=1EC=4.(10 分)
2
23.(10 分)如图,P 是正方形 ABCD 对角线 BD 上 一点,PE⊥DC,PF⊥BC,点 E,F 分别是垂足. (1)求证:AP=PC;
3.如图,点 P 是菱形 ABCD 对角线 BD 上一点, PE⊥AB 于点 E,若∠BPE=60°,则∠ADC 的度数 为( A ) A.60° B.65° C.70° D.75°
4.如图,在 Rt△ABC 中,∠ACB=90°,点 H、E、 F 分别是边 AB、BC、CA 的中点.若 EF+CH=8, 则 CH 的长为( B ) A.3 B.4 C.5 D.6
【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)
【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为( ) A.100° B.160° C.80° D.60°2.【2022·广东】如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=( )A.14B.12C.1 D.2(第2题) (第4题) (第5题) (第8题) 3.【2022·河北】依据所标数据,下列一定为平行四边形的是( )4.【教材P44例2改编】【2021·恩施州】如图,在▱ABCD中,AB=13,AD=5,AC ⊥BC,则▱ABCD的面积为( )A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB =60°,AB=5,则BD的长为( )A.20 B.15 C.10 D.56.【2021·河南】关于菱形的性质,以下说法不正确...的是( )A.四条边相等 B.对角线相等C.对角线互相垂直 D.是轴对称图形7.下列命题中,是真命题的为( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.16 C.8 3 D.89.【2022·青岛】如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.62B. 6 C.2 2 D.2 3(第9题) (第10题) (第11题) (第13题)10.【教材P68复习题T13拓展】【2022·恩施州】如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.【2021·益阳】如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC =BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题) (第15题) (第16题) (第17题) 15.【2022·哈尔滨】如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB 上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.【2022·苏州】如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分)19.【2022·桂林】如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF =DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.【2021·郴州】如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD是平行四边形.21.【教材P55练习T2改编】【2021·长沙】如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【2021·十堰】如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.【2022·北京八中模拟】在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC =10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t 秒(t>0).。
人教版初二数学下册《第十八章单元试卷》(详尽答案版)
人教版初二数学下册 第十八章检测题 第十六章检测题参考答案一、选择题 1.下列说法中,错误的是( )A .两点之间,线段最短B .150°的补角是50°C .全等三角形的对应边相等D .平行四边形的对边互相平行2.如图18-22所示,将▱ABCD 折叠,使顶点D 恰落在AB 边上的点M 处,折痕为AN ,那么对于结论①MN ∥BC ,②MN=AM ,下列说法正确的是( )A .①②都对B .①②都错C .①对②错D .①错②对图18-22 3.如图18-23所示,菱形ABCD 的周长是16,∠A=60°,则对角线BD 的长度为( )A .2B .2错误!未找到引用源。
C .4D .4错误!未找到引用源。
图18-23 4.如图18-24所示,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以点A 和点B 为圆心,大于错误!未找到引用源。
AB 的长为半径画弧,两弧相交于点C ,D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形图18-245.新农村建设使农村住宅旧貌变新颜.如图18-25所示为一农村住宅侧面截图,屋坡AF,AG分别架在墙体的点B,C处,且AB=AC,四边形BDEC为矩形.若测得∠FAG=110°,则∠FBD=()A.35°B.40°C.55°D.70°图18-256.下列说法中正确的是()A.对角线互相垂直且相等的四边形是正方形B.有两边和一角对应相等的两个三角形全等C.两条对角线相等的平行四边形是矩形D.两边相等的平行四边形是菱形7.如图18-26所示,▱ABCD的对角线交于点O,且AB=4,△OCD的周长为27,则▱ABCD的两条对角线的和是()A.15B.28C.54D.46图18-268.(2013·扬州)如图18-27所示,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°图18-279.如图18-28所示,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB,BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.错误!未找到引用源。
人教版八年级数学下册第十八章测试卷及答案
人教版八年级数学下册第十八章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.下面的性质中,平行四边形不一定具有的是( )A.对角互补 B.邻角互补C.对角相等 D.对边相等2.如图,D,E分别是△ABC的边AB,AC上的点,且AD=DB,AE=EC.若DE=4,则BC的长为( )A.2 B.4 C.6 D.83. 如图,在菱形ABCD中,下列结论错误的是( )A.AC=BD B.AC⊥BD C.AB=AD D.∠1=∠24. 如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为( )A.4 cm B.5 cm C.D.8 cm5.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是( )A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD6.如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,且DE=3BE,则AE的长为( )A.2 B..3 D.7.如图,四边形ABCD 的两条对角线相交于点O,且互相平分.添加下列条件后,不能判定四边形ABCD为菱形的是( )A.AC⊥BD B.AB=ADC.AC=BD D.∠ABD=∠CBD8.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是( )A.67.5° B.22.5° C.30° D.45°9.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD==2,则四边形OCED的面积为( )A..4 C..810. 如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD= PM时,t=4或6二.填空题(共8小题,每小题3分,共24分)11.在四边形ABCD中,AB=DC,请添加一个条件,使四边形ABCD成为平行四边形,你所添加的条件为__________.12. .如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在第________象限.14.如图,E,F是正方形ABCD的对角线AC上的两点,若AC=8,AE=CF=2,则四边形BEDF的周长是________.15.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF.若CE =1 cm,则BF=__________cm.16.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加______________条件,才能保证四边形EFGH是矩形.17.如果一个平行四边形的一个内角的平分线分它的一边为1:2两部分,那么称这样的平行四边形为"协调平行四边形",称该边为"协调边".当协调边为6时,这个平行四边形的周长为________.18.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,…,以此类推,第n个正方形的面积为________.三.解答题(共7小题, 66分)19.(8分) 如图,在▱ABCD中,E为AD延长线上的一点,F为CB延长线上的一点,且DE=BF,连接AF,CE.求证:四边形AFCE是平行四边形.20.(8分) 如图,在▱ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H.求证AG=CH.21.(8分) 如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.22.(8分) 在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.(10分)如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证△ADE≌△ABF;(2)求△AEF的面积.24.(10分)如图,在正方形ABCD中,点E,F分别在BC和CD上,且BE=DF,连接EF.(1)求证:AE=AF;(2)过点E作EM∥AF,过点F作FM∥AE,求证:四边形AEMF是菱形.25.(14分)如图,在矩形ABCD中,AB=3,BC=4.点M,N在对角线AC上,且AM=CN,E,F分别是AD,BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.参考答案1-5ADAAB 6-10CCBAD11. AB ∥DC(答案不唯一)_12. 3013. 三15.(216.AC ⊥BD(答案不唯一) 17. 16或2018. 2n -1 19.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC,AD =BC,∴AE ∥CF. 又∵DE =BF,∴AD +DE =BC +BF,即AE =CF,∴四边形AFCE 是平行四边形20.证明:∵四边形ABCD 是平行四边形,∴AD =BC,AD ∥BC,∠A =∠C.∴∠F =∠E.∵BE =DF,∴AD +DF =CB+BE,即AF =CE.在△AGF 和△CHE 中, {∠A =∠CAF =CE ∠F =∠E ∴△AGF ≌△CHE(ASA).∴AG =CH.21. 证明:(1)∵BF =DE,∴BF -EF =DE -EF,即BE =DF.(2)∵四边形ABCD 为平行四边形,∴AB =CD,且AB ∥CD.∴∠ABE =∠CDF.在△ABE 和△CDF 中, {AB =CD∠ABE =∠CDF BE =DF∴△ABE ≌△CDF(SAS).22. 证明:(1)∵四边形ABCD 是正方形,∴AB =AD,∠B =∠D =90°.又∵BE =DF,∴Rt△ABE≌Rt△ADF(SAS),∴AE =AF(2)∵EM ∥AF,FM ∥AE,∴四边形AEMF 是平行四边形.又由(1)知AE =AF,∴▱AEMF 是菱形23. (1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB,∠D =∠B =90°.∵E,F 分别为DC,BC 的中点,∴DE =12DC,BF =12BC.∴DE =BF.在△ADE 和△ABF 中, {AD =AB∠D =∠B DE =BF ∴△ADE ≌△ABF(SAS).(2)解:由题易知△ABF,△ADE,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.24. (1)证明:∵AF ∥BC,∴∠AFE =∠DBE.∵E 是AD 的中点,∴AE =DE.在△AFE 和△DBE 中, {∠AFE =∠DBE∠FEA =∠BED AE =DE ∴△AFE ≌△DBE(AAS).∴AF =BD.∵AD 是BC 边上的中线,∴DC =BD.∴AF =DC.(2)解:四边形ADCF 是菱形.证明:由(1)得AF =DC,又∵AF ∥BC,∴四边形ADCF 是平行四边形.∵AC ⊥AB,AD是斜边BC 上的中线,∴AD =12BC =DC.∴四边形ADCF 是菱形.25.解:(1)∵四边形ABCD 是矩形,∴AB ∥CD,AB =CD,∴∠MAB =∠NCD.在△ABM 和△CDN 中,{AB =CD∠MAB =∠NCDAM =CN ∴△ABM ≌△CDN(SAS)(2)如图,连接EF,交AC 于点O.∵四边形ABCD 是矩形,∴AD =BC,∠ABC =90°,∵AB =3,BC =4,∴AC =5,∵E,F 分别是AD,BC 的中点,∴AE =BF =CF,∴四边形ABFE 是矩形,∴EF =AB =3.在△AEO 和△CFO 中,{∠EOA =∠FOC∠EAO =∠FCO AE =CF ∴△AEO ≌△CFO(AAS),∴EO =FO,AO =CO,∴O 为EF,AC 中点.∵∠EGF =90°,OG =12EF =32,∴AG =AO -OG =1或AG =AO +OG =4,∴AG 的长为1或4。
人教版数学八年级下册第十八单元测试试卷(含答案)(1)
人教版数学8年级下册第18单元·时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为( )A.100°B.160°C.80°D.60°2.(3分)如图,点O为矩形ABCD的对角线AC的中点,OP∥AB交BC于点P,连接OD,若OP=3,AD=8,则OD的长为( )A.3B.4C.5D.63.(3分)如图,在矩形ABCD中,AC、BD交于点O,E为BC边上一点,若BC=8,BO =5,EC=3,则OE的长为( )A.B.4C D.34.(3分)菱形具有而矩形不一定具有的性质是( )A.对角线相等B.对角线互相垂直C.对角相等D.对边平行5.(3分)如图,在矩形ABCD中,AB=3,AD=4,对角线AC、BD相交于点O,点P是AD上一动点(不与A、D重合),过点P作AC和BD的垂线,垂足分别为E、F,则PE+PF 的值是( )A .125B .65C .35D .36.(3分)如图,将正方形ABCD 剪去4个全等的直角三角形(图中阴影部分),得到边长为c 的四边形EFGH .下列等式成立的是( )A .a +b =cB .c 2=(a +b )2﹣4abC .c 2=(a +b )(a ﹣b )D .a 2+b 2=c 27.(3分)菱形ABCD 如图所示,对角线AC 、BD 相交于点O ,若BD =6,菱形ABCD 面积等于24,且点E 为AD 的中点,则线段OE 的长为( )A .2B .2.5C .4D .58.(3分)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC ,若AB =3,AC =8,则BD 的长是( )A .8B .9C .10D .129.(3分)如图,菱形ABCD 的对角线AC 和BD 相交于点O ,AC =8,BD =12,E 是OB 的中点,P 是CD 的中点,连接PE ,则线段PE 的长为( )A .BC .D 10.(3分)如图,点H ,F 分别在菱形ABCD 的边AD ,BC 上,点E ,G 分别在BA ,DC 的延长线上,且AE =AH =CG =CF .连结EH ,EF ,GF ,GH ,若菱形ABCD 和四边形EFGH 的面积相等,则AH AD的值为( )A .12BCD .1二.填空题(共6小题,满分18分,每小题3分)11.(3分)在▱ABCD 中,AB =5,AD =3,AC ⊥BC ,则BD 的长为 .12.(3分)如图,E 为正方形ABCD 的边AB 上一动点,过E 作EF ∥BC 交AC 于点F ,G 为DE 的中点,连接FG ,AB =4,则FG 的最小值是 .13.(3分)已知一个菱形的两条对角线长分别为16cm 和30cm ,则这个菱形的高为 .14.(3分)如图,在平行四边形ABCD 中,过对角线AC 中点O 作直线分别交BC ,AD 于点E ,F ,只需添加一个条件即可证明四边形AECF 是矩形,这个条件可以是 (写出一个即可).15.(3分)如图,过△ABC 的边AB ,AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高.延长HA 交EG 于点I .若S △AEG =7,则S △AEI = .16.(3分)如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =35°,则∠OBC 的大小为 度.三.解答题(共10小题,满分72分)17.(5分)如图,已知ABCD 是正方形,点E 是BC 的中点,连接AE ,过B 作BO ⊥AE 于O ,延长BO 交CD 于F .求证:F 是CD 的中点.18.(5分)如图所示,已知四边形ABCD 是平行四边形,AD =3,CD =5,若AF ,BE 分别是∠DAB ,∠CBA 的平分线.求EF 的长.19.(5分)如图,已知四边形ABCD是平行四边形,对角线AC与BD交于点O,若M、N 是BD上两点,且BM=DN,AC=2MO.求证:四边形AMCN是矩形.20.(7分)如图、在菱形ABCD中,对角线AC,BD相交于点O.过点D作对角线BD的垂线交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若AC=8,BD=6,求△CDE的周长.21.(8分)如图,正方形ABCD中,点E是BC边上一点,点F是BA延长线上一点,AF=CE,连接EF,交AD于点K,过点D作DH⊥EF,垂足为点H,延长DH交BF于点G,连接HC,HB.(1)求证:HD=12 EF;(2)若DK•HC=HE的长.22.(8分)如图所示,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:四边形OCEB是矩形;(2)如果设AC=12,BD=16,求OE的长.23.(8分)如图,矩形ABCD,延长CD至点E,使DE=CD,连接AC,AE,过点C作CF ∥AE交AD的延长线于点F,连接EF.(1)求证:四边形ACFE是菱形;(2)连接BE交AD于点G.当AB=1,∠ACB=30°时,求BG的长.24.(8分)如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB 交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC=AB的长.25.(8分)如图,在△ABC中,D是AC边上一点,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)如果BD是△ABC的角平分线,求证:四边形BEDF是菱形.(2)如果BD是△ABC的中线且AC=2BD,请判断四边形BEDF的形状并说明理由.26.(10分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB 交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.参考答案1.A;2.C;3.C;4.B;5.A;6.D;7.B;8.C;9.A;10.D;11.1213.24017cm;14.∠AEC=90°(答案不唯一);15.3.5;16.55;17.证明:∵点E是BC的中点,∴BE=EC,∵BO⊥AE,∴∠AEB+∠FBC=90°=∠AEB+∠BAE,∴∠BAE=∠FBC,在△ABE和△BCF中,∠BAE=∠CBFAB=BC∠ABE=∠BCF,∴△ABE≌△BCF(ASA),∴CF=BE=12BC=12CD,∴点F是CD的中点.18.解:∵AB∥CD,∴∠DFA=∠FAB,∵AF、BE分别是∠DAB,∠CBA的平分线,∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DA=DF,同理得出CE=CB,∴DF=EC,∵AD=3,∴DF=3,同理:CE=3,∵AB=DC=5∴EF=DF+EC﹣DC=2BC﹣DC=3+3﹣5=1.19.证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵MO=NO,∴MN=2MO,∵AC=2MO,∴MN=AC,∴四边形AMCN是矩形.20.(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∵DE⊥BD,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=12AC=4,DO=12BD=3,AC⊥BD,∴∠AOD=90°,∴CD=AD=5,由(1)得:四边形ACDE是平行四边形,∴CE=AD=5,DE=AC=12,∴△CDE的周长=AD+AE+DE=5+5+8=18.21.(1)证明:∵四边形ABCD为正方形,∴CD=AD,∠DCE=∠DAF=90°,∵CE=AF,∴△DCE≌△DAF(SAS);∴DE=DF,∠CDE=∠ADF,∴∠FDE=∠ADF+∠ADE=∠CDE+∠ADE=∠ADC=90°,∴△DFE为等腰直角三角形,∵DH⊥EF,∴点H是EF的中点,∴DH=12 EF;(2)解:∵四边形ABCD为正方形,∴CD=CB,∵点H是EF的中点,∠ABC=90°,∴HB=12 EF,∴DH=HB,又∵CH=CH,∴△DCH≌△BCH(SSS),∴∠DCH=∠BCH=45°,∵△DEF为等腰直角三角形,∴∠DFE=45°,∴∠HCE=∠DFK,∵四边形ABCD为正方形,∴AD∥BC,∴∠DKF=∠HEC,∴△DKF∽△HEC,∴DKHE=DFHC,∴DK•HC=DF•HE,在等腰直角三角形DFH中,DF==,∴DK•HC=DF•HE2=∴HE=2.22.(1)证明:∵CE∥BD,EB∥AC,∴四边形OBEC为平行四边形.∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC为矩形;(2)解:∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,OA=OC=12AC=6,OB=OD=12BD=8,∴∠DOC=90°,CD==10,∵平行四边形OCED为矩形,∴OE=CD=10.23.(1)证明:∵四边形ABCD是矩形,∴∠ADC=90°,∴AF⊥CE,∵CD=DE,∴AE=AC,EF=CF,∴∠EAD=∠CAD,∵AE∥CF,∴∠EAD=∠AFC,∴∠CAD=∠CFA,∴AC=CF,∴AE=EF=AC=CF,∴四边形ACFE是菱形;(2)解:∵四边形ABCD是矩形,∴∠ABC=∠BCE=90°,CD=AB,∵AB=1,DE=CD=1,∵∠ACB=30°,∴AC =2AB =2,∴BC CE =2,∴BE =∵AB =CD =DE ,∠BAG =∠EDG =90°,在△ABG 和△DEG 中,∠BAG =∠EDG =90°∠BGA =∠DGE AB =DE,∴△ABG ≌△DEG (AAS ),∴BG =EG ,∴BG =12BE 24.(1)证明:∵AB ∥CE ,∴∠CAD =∠ACE ,∠ADE =∠CED .∵F 是AC 中点,∴AF =CF .在△AFD 与△CFE 中,∠CAD =∠ACE∠ADE =∠CED AF =CF.∴△AFD ≌△CFE (AAS ),∴DF =EF ,∴四边形ADCE 是平行四边形;(2)解:过点C 作CG ⊥AB 于点G .在△ACG 中,∠AGC =90°,AC CAG =45°,∴由勾股定理得CG =AG =1.在△BCG 中,∠BGC =90°,∠B =30°,CG =1,∴BC =2,∴BG =∴AB=AG+BG=.25.(1)证明:∵DE∥BC,DF∥AB,∴四边形BEDF是平行四边形,∵DE∥BC,∴∠EDB=∠DBF,∵BD平分∠ABC,∴∠ABD=∠DBF,∴∠ABD=∠EDB,∴DE=BE,∴平行四边形BEDF是菱形;(2)解:四边形BEDF是矩形,理由如下:∵DE∥BC,DF∥AB,∴四边形BEDF是平行四边形,∵BD是△ABC的中线,∴AD=CD=12 AC,∵AC=2BD,∴AD=CD=BD,∴∠BAC=∠ABD,∠BCA=∠CBD,∵∠BAC+∠ABD+∠BCA+∠CBD=180°,即2∠ABD+2∠CBD=180°,∴∠ABD+∠CBD=90°,即∠ABC=90°,∴平行四边形BEDF是矩形.26.(1)证明:如图1,∵AM是△ABC的中线,D与M重合,∴DC=BD,∵DE∥AB,∴∠EDC=∠B,∵CE∥AM,即CE∥AD,∴∠ECD=∠ADB,在△ECD和△ADB中,∠EDC=∠BDC=BD,∠ECD=∠ADB∴△ECD≌△ADB(ASA),∴DE=AB,∴四边形ABDE是平行四边形.(2)成立,理由如下:如图2,过点M作MG∥AB交CG于点G,∵DE∥AB,∴MG∥DE,∵CE∥AM,∴四边形DEGM是平行四边形,∴MG=DE,由(1)得MG=AB,∴DE=AB,∴四边形ABDE是平行四边形.。
人教版八年级数学下册第十八章测试题(附答案)
人教版八年级数学下册第十八章测试题(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、选择题AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.OA=OC,OB=OD B.AD∥BC,AB∥DCC.AB=DC,AD=BC D.AB∥DC,AD=BC2.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD•AE=EF•CG;一定正确的结论有()A.1个 B.2个 C.3个 D.4个3.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75° B.65° C.55° D.50°4.如果四边形内的一个点到四条边的距离相等,那么这个四边形一定有()A.一组邻边相等 B.一组对边平行 C.两组对边分别相等 D.两组对边的和相等5.长方形的一条对角线的长为10cm,一边长为6cm,它的面积是()A.60cm2 B.64cm2 C.24cm2 D.48cm26.已知▱ABCD的周长为32,AB=4,则BC=()A.4 B.12 C.24 D.287.在□ABCD中,对角线AC、BD相交于O,下列说法一定正确的是()A.AC=BD B. AC⊥BD C.AO=DO D.AO=CO8.如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为()A. 1 B.3C. 2 D.59.如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC ⊥BD ②∠BAD=90° ③AB=BC ④AC=BD A .①③ B .②③ C .③④ D .①②③10.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB=45°,则折叠后重叠部分的面积为( )A .32cm 2 B .3 cm 2 C .2 cm 2 D .22 cm 211.如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为点G ,连接CG ,下列说法:①AG>GE ;②AE=BF;③点G 运动的路径长为π;④CG 的最小值5﹣1.其中正确的说法有( )个.A .4B .3C .2D .112.已知▱ABCD 的周长为32,AB=4,则BC=( ) A 、4 B 、12 C 、24 D 、28评卷人 得分二、填空题13.如图,把一张矩形纸片ABCD 沿对角线BD 折叠,使C 点落在C',且BC'与AD 交于E 点,若,40=∠ABE 则=∠ADB °14.如图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将△ADE 沿AE 对折至△AFE ,延长EF 交BC 于点G ,连接AG ,则BG= .15.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是 .16.如图,在菱形ABCD中,点A在x轴上,点B的坐标为(4,1),点D的坐标为(0,1),则点C的坐标为________。
人教版八年级数学下册第十八章-平行四边形章节测评试题(含答案解析)
人教版八年级数学下册第十八章-平行四边形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA C的坐标为()A.,1)B.(1,1)C.(1D.,1)2、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是()A.5 B.6 C.8 D.103、如图,已知P 是AOB ∠平分线上的一点,60AOB ︒∠=,PD OA ⊥,M 是OP 的中点,4cm DM =,如果C 是OB 上一个动点,则PC 的最小值为( )A .8cmB .5cmC .4cmD .2cm4、顺次连接矩形各边中点得到的四边形是( )A .平行四边形B .矩形C .菱形D .正方形5、如图所示,公路AC 、BC 互相垂直,点M 为公路AB 的中点,为测量湖泊两侧C 、M 两点间的距离,若测得AB 的长为6km ,则M 、C 两点间的距离为( )A .2.5kmB .4.5kmC .5kmD .3km6、如图,已知四边形ABCD 和四边形BCEF 均为平行四边形,∠D =60°,连接AF ,并延长交BE 于点P ,若AP ⊥BE ,AB =3,BC =2,AF =1,则BE 的长为( )A .5B .C .D .7、如图,在菱形ABCD中,AB=5,AC=8,过点B作BE⊥CD于点E,则BE的长为()A.125B.245C.6 D.4858、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,BC AC⊥于点C.已知16AC=,6BC=.点B到原点的最大距离为()A.22 B.18 C.14 D.109、如图,已知在正方形ABCD中,10AB BC CD AD====厘米,90A B C D∠=∠=∠=∠=︒,点E在边AB 上,且4AE=厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使BPE与CQP全等时,则t的值为()A.2 B.2或1.5 C.2.5 D.2.5或210、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为()A .46.5cmB .22.5cmC .23.25cmD .以上都不对第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在直角三角形ABC 中,∠B =90°,点D 是AC 边上的一点,连接BD ,把△CBD 沿着BD 翻折,点C 落在AB 边上的点E 处,得到△EBD ,连接CE 交BD 于点F ,BG 为△EBD 的中线.若BC =4,△EBG 的面积为3,则CD 的长为____________2、如图,在▱ABCD 中,BC =3,CD =4,点E 是CD 边上的中点,将△BCE 沿BE 翻折得△BGE ,连接AE ,A 、G 、E 在同一直线上,则AG =______,点G 到AB 的距离为______.3、如图,在ABC 中,2AB AC ==,90BAC ∠=︒,M ,N 为BC 上的两个动点,且MN AM AN +的最小值是________.4、一个三角形三边长之比为4∶5∶6,三边中点连线组成的三角形的周长为30cm ,则原三角形最大边长为_________cm .5、如图,在长方形ABCD 中,9DC =.在DC 上找一点E ,沿直线AE 把AED 折叠,使D 点恰好落在BC上,设这一点为F,若ABF的面积是54,则FCE△的面积=______________.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10.2、如图,在Rt△ABC中,∠ACB=90°.(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形.3、如图:在Rt ABC中,90∠=,点O为AB的中点,点P为直线BC上的动点(不与点A︒ACB︒∠=,30∆,连接BQ.B,C重合),连接OC,OP,以OP为边在OC的上方作等边OPQ(1)OBC是________三角形;=;(2)如图1,当点P在边BC上时,运用(1)中的结论证明CP BQ(3)如图2,当点P在CB的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由.4、如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.5、已知:如图,30∠=︒,45B∠=︒,AD是BC上的高线,CE是AB边上的中线,DG CE于G.ACDAB=,求线段AC的长;(1)若6(2)求证:CG EG.---------参考答案-----------一、单选题1、B【解析】【分析】作CD⊥x轴,根据菱形的性质得到OC=OA Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.【详解】:作CD⊥x轴于点D,则∠CDO=90°,∵四边形OABC是菱形,OA∴OC=OA又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B.【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.2、A【解析】【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:5AB=,故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.3、C【解析】【分析】根据题意由角平分线先得到OPD △是含有30角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP ,DP 的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC 的最小值.【详解】解:∵点P 是∠AOB 平分线上的一点,60AOB ∠=︒, ∴1302AOP AOB ∠=∠=︒,∵PD ⊥OA ,M 是OP 的中点,4cm DM =∴28cm OP DM ==, ∴14cm 2PD OP ==∵点C 是OB 上一个动点∴当PC OB ⊥时,PC 的值最小,∵OP 平分∠AOB ,PD ⊥OA ,PC OB ⊥∴PC 最小值4cm PD ==,故选C .【点睛】本题主要考查了角平分线的性质、含有30角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.4、C【解析】【分析】如图,矩形ABCD 中,利用三角形的中位线的性质证明111,,,,222EF BD EF BD GH BD GH BD FG AC ∥∥,再证明四边形ABCD 是平行四边形,再证明,EF FG 从而可得结论.【详解】解:如图,矩形ABCD 中,,AC BD ∴=,,,E F G H 分别为四边的中点,111,,,,222EF BD EF BD GH BD GH BD FG AC ∥∥, ,,EF GH EF GH ∥∴ 四边形ABCD 是平行四边形,11,,,22AC BD EF BD FG AC === ,EF FG ∴= ∴ 四边形EFGH 是菱形.故选C .【点睛】本题考查的是矩形的性质,菱形的判定,三角形的中位线的性质,熟练的运用三角形的中位线的性质解决中点四边形问题是解本题的关键.5、D【解析】【详解】根据直角三角形斜边上的中线性质得出CM =12AB ,即可求出CM .【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M为AB的中点,AB,∴CM=12∵AB=6km,∴CM=3km,即M,C两点间的距离为3km,故选:D.【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.6、D【解析】【分析】过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,先证∠DHC=90º,再证四边形ADEF是平行四边形,最后利用勾股定理得出结果.【详解】过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,∵四边形ABCD是平行四边形,AB=3,∠ADC=60º,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60º,∵DH⊥BC,∴∠DHC =90º,∴∠ADC +∠CDH =90°,∴∠CDH =30°,在Rt △DCH 中,CH =12CD =32,DH ,∴222223(2)192BD BH DH =+=++=, ∵四边形BCEF 是平行四边形,∴AD =BC =EF ,AD ∥EF ,∴四边形ADEF 是平行四边形,∴AF ∥DE ,AF =DE =1,∵AF ⊥BE ,∴DE ⊥BE ,∴22219118BE BD DE =-=-=, ∴BE =故选D .【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题.7、B【解析】【分析】根据菱形的性质求得BD 的长,进而根据菱形的面积等于12AC BD CD BE ⋅=⋅,即可求得BE 的长【详解】解:如图,设,AC BD 的交点为O ,四边形ABCD 是菱形AC BD ∴⊥,142AO CO AC ===,DO BO =,5CD AB == 在Rt AOB 中,5AB =,4AO =3BO ∴26BD BO ∴== 菱形的面积等于12AC BD CD BE ⋅=⋅1168242255AC BD BE CD ⋅⨯∴==⨯= 故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得BD 的长是解题的关键.8、B【解析】【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CE12=AC=8,∵BC⊥AC,BC=6,∴BE=10,若点O,E,B不在一条直线上,则OB<OE+BE=18.若点O,E,B在一条直线上,则OB=OE+BE=18,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9、D【解析】【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.解:当2a =,即点Q 的运动速度与点P 的运动速度都是2厘米/秒,若△BPE ≌△CQP ,则BP =CQ ,BE =CP ,∵AB =BC =10厘米,AE =4厘米,∴BE =CP =6厘米,∴BP =10-6=4厘米,∴运动时间t =4÷2=2(秒);当2a ≠,即点Q 的运动速度与点P 的运动速度不相等,∴BP ≠CQ ,∵∠B =∠C =90°,∴要使△BPE 与△OQP 全等,只要BP =PC =5厘米,CQ =BE =6厘米,即可.∴点P ,Q 运动的时间t =252 2.5BP ÷=÷=(秒).综上t 的值为2.5或2.故选:D .【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.10、C【解析】【分析】如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线,则14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==,即可得到△DEF 的周长==12cm DE DF EF ++,由此即可求出其他四个新三角形的周长,最后求和即可.解:如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线, ∴14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==, ∴△DEF 的周长==12cm DE DF EF ++,同理可得:△GHI 的周长==6cm HI HG GI ++,∴第三次作中位线得到的三角形周长为3cm ,∴第四次作中位线得到的三角形周长为1.5cm∴第三次作中位线得到的三角形周长为0.75cm∴这五个新三角形的周长之和为1263 1.50.75=23.25cm ++++,故选C .【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.二、填空题1【解析】【分析】由折叠的性质可得,BD CE ⊥,4BE BC ==,12CF CE =,由勾股定理可得,CE =得,26BCD BDE BEG S S S ===△△△,求得CF 的长度,即可求解.【详解】解:由折叠的性质可得,BD CE ⊥,4BE BC ==,12CF CE =,BCD BDE △≌△ ∴BCE 为等腰直角三角形,F 为CE 的中点,BCD BDE SS = ∴12BF CF EF CE ===由勾股定理可得,CE∴12BF CF EF CE ====∵BG 为△EBD 的中线,△EBG 的面积为3∴26BCD BDE BEG S S S ===△△△162BCD S BD CF =⨯=△,解得BD =∴DF BD BF =-=由勾股定理得:CD =【点睛】此题考查了折叠的性质,勾股定理以及直角三角形的性质,解题的关键是灵活利用相关性质进行求解.2、【解析】【分析】根据折叠性质和平行四边形的性质可以证明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的长,进而可得GF的值.【详解】解:如图,GF⊥AB于点F,∵点E是CD边上的中点,∴CE=DE=2,由折叠可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在▱ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,AGB DBAG AED BG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于点F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根据勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=118,∴GF2=AG2-AF2=4-12164=13564,∴GF,故答案为2.【点睛】本题考查了折叠的性质、平行四边形的性质、勾股定理等知识,证明△ABG≌△EAD是解题的关键.3【解析】【分析】过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,三点D、M、A′共线时,AM AN最小为A′D的长,利用勾股定理求A′D的长度即可解决问题.【详解】解:过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN 是平行四边形,∴MD =AN ,AD =MN ,作点A 关于BC 的对称点A ′,连接A A ′交BC 于点O ,连接A ′M , 则AM =A ′M ,∴AM +AN =A ′M +DM ,∴三点D 、M 、A ′共线时,A ′M +DM 最小为A ′D 的长, ∵AD //BC ,AO ⊥BC ,∴∠DA A '=90°,∵2AB AC ==,90BAC ∠=︒,,∴BC=BO=CO =AO ,∴AA '=在Rt△AD A '中,由勾股定理得:A 'D =∴AM AN +【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.4、24【解析】【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可.【详解】∵ 如图,H、I、J分别为BC,AC,AB的中点∴12HI AB=,12IJ BC=,12HJ AC=又∵30HI IJ HJ++=∴60AB BC AC++=∵AB:AC:BC=4:5:6,即BC边最长∴660=244+5+6BC=⨯故填24.【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.5、6【解析】【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.【详解】解:∵四边形ABCD是矩形∴AB=CD=9,BC=AD∵12•AB•BF=54,∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,15AF=.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.设DE=x,则CE=9-x,EF=DE=x.则x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面积=1122CF CE⨯⨯=×4×3=6.【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.三、解答题1、(1)见解析;(2)见解析;(3)见解析【分析】(1)如图,AB =4,BC =3,5AC =,利用勾股定理逆定理即可得到△ABC 是直角三角形;(2)如图,AB =AC =BC ==△ABC 是直角三角形;(3)如图,AB BC CD AD =====AC =222AC AB BC =+,∠ABC =90°,即可得到四边形ABCD 是正方形,10ABCD SAB BC =⋅=.【详解】解:(1)如图所示,AB =4,BC =3,5AC =,∴222AC AB BC =+,∴△ABC 是直角三角形;(2)如图所示,AB ==AC =BC =∴222AC AB BC =+,∴△ABC 是直角三角形;(3)如图所示,AB BC CD AD ==== AC =∴222AC AB BC =+,∴∠ABC =90°,∴四边形ABCD 是正方形,∴10ABCDS AB BC =⋅=.【点睛】 本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键.2、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明CED ∠与EDF ∠都是90︒,最后加上90ACB ∠=︒,即可证明结论.【详解】(1)答案如下图所示:分别以A 、B 两点为圆心,以大于2AB 长为半径画弧,连接弧的交点的直线即为垂直平分线l ,其与AB 的交点为D ,以点D 为圆心,适当长为半径画弧,分别交DA 于点M ,交CD 于点N ,交BD 于点T ,然后分别以点M ,N 为圆心,大于2MN 为半径画弧,连接两弧交点与D 点的连线交AC 于点E ,同理分别以点T ,N 为圆心,大于2TN 为半径画弧,连接两弧交点与D 点的连线交BC 于点F . (2)证明:D 点是AB 与其垂直平分线l 的交点,D ∴点是AB 的中点,CD ∴是Rt △ABC 上的斜边的中线,2AB CD AD ∴==, DE 、DF 分别是∠ADC ,∠BDC 的角平分线,12CDE ADE ADC ∴∠=∠=∠,12CDF CDB ∠=∠,EDF CDE CDF ∠=∠+∠,11190222EDF ADC CDB ADB ∴∠=∠+∠=∠=︒ , CD AD CDE ADE DE DE =⎧⎪∠=∠⎨⎪=⎩, ()CDE ADE SAS ∴∆∆≌,1902CED AED AEC ∴∠=∠=∠=︒, 在四边形CEDF 中,90ACB CED EDF ∠=∠=∠=︒,∴四边形CEDF 是矩形.【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.3、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明12BC OC OB AB ===,即可证明△OBC 是等边三角形; (2)先证明COP BOQ ∠=∠,即可利用SAS 证明COP BOQ ≌,得到CP BQ =;(3)先证明COP BOQ ∠=∠,即可利用SAS 证明COP BOQ ≌,得到CP BQ =.【详解】(1)∵∠ACB =90°,∠A =30°,O 是AB 的中点, ∴12BC OC OB AB ===, ∴△OBC 是等边三角形,故答案为:等边;(2)由(1)可知,OB OC =,60BOC ∠=︒, OPQ 是等边三角形,OP OQ ∴=,60POQ ∠=︒,60COP BOP BOQ ∴∠=︒-∠=∠,即COP BOQ ∠=∠,在COP 和BOQ △中OC OB COP BOQ OP OQ =⎧⎪∠=∠⎨⎪=⎩, ()COP BOQ SAS ∴≌,CP BQ ∴=;(3)成立,CP BQ =证明:由(1)可知,OB OC =,60BOC ∠=︒, OPQ 是等边三角形,OP OQ ∴=,60POQ ∠=︒,60COP BOP BOQ ∴∠=︒+∠=∠,即COP BOQ ∠=∠,在COP 和BOQ △中OC OB COP BOQ OP OQ =⎧⎪∠=∠⎨⎪=⎩, ()COP BOQ SAS ∴≌,CP BQ ∴=.【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键.4、(1)见解析;(2)正方形ABCD的面积为2a【分析】(1)由等边三角形的性质得EO⊥AC,即BD⊥AC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD是正方形,即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,∵△ACE是等边三角形,∴EO⊥AC(三线合一),即BD⊥AC,∴▱ABCD是菱形;(2)解:∵△ACE是等边三角形,∴∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵▱ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD 是正方形,∴正方形ABCD 的面积=AB 2=a 2.【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD 为菱形是解题的关键.5、(1)(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD =3,根据等腰直角三角形,得到CD =AD =3,根据勾股定理,得到AC 的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE =DC ,根据等腰三角形三线合一性质,证明即可.【详解】(1)AD BC ⊥90ADB ADC ∴∠=∠=︒30B ∠=︒,6AB =132AD AB ∴== 45ACD ∠=︒45CAD ∴∠=︒3AD CD ∴==AC ∴=(2)连接DE90ADB ∠=︒,AE BE =12ED AB ∴=, 12AD AB =,AD CD =, ED CD ∴=,GD EC ⊥,EG CG ∴=.【点睛】 本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.。
人教版数学八年级下册第18章平行四边形达标检测卷4份含答案
人教版数学八年级下册第18章平行四边形达标检测卷4份第18章单元测试(1)班级姓名成绩一、选择题(3′×10=30′)1.下列性质中,平行四边形具有而非平行四边形不具有的是().A.内角和为360° B.外角和为360° C.不确定性 D.对角相等2.□ ABCD中,∠A=55°,则∠B、∠C的度数分别是().A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.下列正确结论的个数是().①平行四边形内角和为360°;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是().A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm 5.在□ABCD中,AB+BC=11cm,∠B=30°,S ABCD=15cm2,则AB与BC的值可能是().A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm 6.在下列定理中,没有逆定理的是().A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;D.角平分线上的点到这个角两边的距离相等.7.下列说法中正确的是().A.每个命题都有逆命题 B.每个定理都有逆定理C.真命题的逆命题是真命题 D.假命题的逆命题是假命题8.一个三角形三个内角之比为1:2:1,其相对应三边之比为().A.1:2:1 B.1:1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有()个. A.2 B.3 C.4 D.510.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=•14,•AC=19,则MN的长为().A.2 B.2.5 C.3 D.3.5二、填空题(3′×10=30′)11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.12.已知平行四边形的周长为20cm,一条对角线把它分成两个三角形,•周长都是18cm,则这条对角线长是_________cm.13.在□ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,•若□ABCD•的周长为38cm,△ABD的周长比□ABCD的周长少10cm,则□ABCD的一组邻边长分别为______.14.在□ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.若∠F=65°,则□ABCD的各内角度数分别为_________.15.平行四边形两邻边的长分别为20cm,16cm,两条长边的距离是8cm,•则两条短边的距离是_____cm.16.如果一个命题的题设和结论分别是另一个命题的______和_______,•那么这两个命题是互为逆命题.17.命题“两直线平行,同旁内角互补”的逆命题是_________.18.在直角三角形中,已知两边的长分别是4和3,则第三边的长是________.19.直角三角形两直角边的长分别为8和10,则斜边上的高为________,斜边被高分成两部分的长分别是__________.20.△ABC的两边分别为5,12,另一边c为奇数,且a+b+•c•是3•的倍数,•则c•应为________,此三角形为________三角形.三、解答题(6′×10=60′)21.如右图所示,在□ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF=3cm,CE=2cm,求ABCD的周长.22.如图所示,在□ABCD 中,E 、F 是对角线BD 上的两点,且BE=DF.求证:(1)AE=CF ;(2)AE ∥CF .23.如图所示,□ABCD 的周长是,AB 的长是DE ⊥AB 于E ,DF ⊥CB 交CB•的延长线于点F ,DE 的长是3,求(1)∠C 的大小;(2)DF 的长.24.如图所示,□ABCD 中,AQ 、BN 、CN 、DQ 分别是∠DAB 、∠ABC 、∠BCD 、•∠CDA 的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:•推理过程中要用到“平行四边形”和“角平分线”这两个条件).FCDAEB25.已知△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16(n>4).求证:∠C=90°.26.如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S =60,•求∠C的度数.△ABE27.已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,•求三条中位线的长.28.如图所示,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.29.如图所示,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,•CD•⊥MN于D,F为BC中点,当MN经过△ABC的内部时,求证:(1)FE=FD;(2)当△ABC继续旋转,•使MN不经过△ABC内部时,其他条件不变,上述结论是否成立呢?30.如图所示,E是□ABCD的边AB延长线上一点,DE交BC于F,求证:S△ABF=S .△EFC答案:一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C二、11.3cm 4cm 12.8 13.9cm和10cm 14.50°,130°,50°,130°• •15.10 16.结论题设 17.同旁内角互补,两直线平行18.5..13 直角三、21.□ABCD的周长为20cm 22.略24.略23.(1)∠C=45°(2)DF=225.•略 26.∠C=90° 27.三条中位线的长为:12cm;20cm;24cm 28.提示:连结BD,取BD•的中点G,连结MG,NG29.(1)略(2)结论仍成立.提示:过F作FG⊥MN于G 30.略第18章单元测试(2)班级姓名成绩一、选择题(3′×10=30′)1.下列判断四边形是平行四边形的是().A.两组角相等的四边形; B.对角线平分的四边形; C.一组对边相等,一组对角相等的四边形; D.两组对边分别相等的四边形2.根据下列条件,能作出平行四边形的是().A.两组对边长分别是3cm和7cm;B.相邻两边的边长分别是2cm和4cm,一条对角线长是7cm;C.一条边长为6cm,另一条对角线长为10cm,一条边长为8cm;D.一条边长为7cm,两条对角线长为6cm和8cm3.如图1所示,在□ABCD中,EF∥GH∥AB,MN∥BC,则图中的平行四边形的个数为(• ).A.12个 B.16个 C.14个 D.18个(1) (2) (3) 4.已知下列四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形.•其中能判断是平行四边形的命题个数为().A.1个 B.2个 C.3个 D.4个5.以不共线的三点为平行四边形的其中三个顶点作平行四边形,•一共可作平行四边形的个数是().A.2个 B.3个 C.4个 D.5个6.平行四边形的一边为32,则它的两条对角线长不可能是().A.20和40 B.30和50 C.40和50 D.20和607.如图2所示,EF过□ABCD对角线的交点O,分别交AD于E,交BC于点F,若OE=5,四边形CDEF的周长为25,则□ABCD的周长为().A.20 B.30 C.40 D.508.在□ABCD中,∠A:∠B:∠C:∠D的值可以是().A.1:2:3:4 B.1:3:4:2 C.1:1:2:2 D.3:4:3:49.已知O为□ABCD对角线的交点,且△AOB的周长为1,则□ABCD的面积为() A.1 B.2 C.3 D.410.已知O为□ABCD对角线的交点,且△AOB的周长比△BOC的周长多23,则CD-AD•的值为().A.23B.32C.2 D.3二、填空题(3′×10=30′)11.□ABCD中,∠A:∠B=7:2,则∠C=______.12.如图3所示,在□ABCD中,CM⊥AD于M,CN⊥AB于N,若∠B=50°,则∠MCN=_____.13.若平行四边形的周长为40cm,对角线AC、BD•相交于点O,•△BOC•的周长比△AOB的周长大2cm,则AB=________.14.若平行四边形的周长为56cm,相邻两边的长度比为3:4,则四边形的四边长分别为_____________.15.如果□ABCD和□ABEF有公共边AB,那么四边形DCEF是_________.16.四边形ABCD中,∠ADC=∠ABC,要判断这个四边形是平行四边形,•只需判断出__________即可,根据是________________.17.已知一个四边形的边长依次分别为a,b,c,d,且a2+b2+c2+d2=2ac+2bd,•则此四边形为___________.18.过平行四边形对角线的交点,且与一组边平行的直线将平行四边形分成的两个四边形________平行四边形.(填“是”或“不是”)19.四边形ABCD中,AC、BD交于点O,且OA=OC,OB=•OD,•∠ABC=•80•°,•则∠ADC=_____.20.已知:四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,•需要增加条件________.(只需填写一个你认为正确的即可)三、解答题(共60′)21.(6′)如右图所示,在□ABCD中,AE、CF分别是∠DAB、∠BCD的平分线,求证:四边形AFCE是平行四边形.22.(6′)如右图所示,O为等边△ABC内任意一点,OD∥BC,OE∥AC,OF∥AB,•并且D、E、F分别在AB、BC、AC上,求证:OD+OE+OF=BC.23.(8′)如下图所示,已知平行四边形ABCD的周长是36cm,由钝角顶点D向AB、•BC引两条高DE、DF,且,cm,求平行四边形ABCD的面积.24.(8′)如下图所示,□ABCD中,AE⊥BC,AF⊥DC,垂足分别为E、F,∠ADC=•60•°,BE=2,CF=1,连结DE,求△DEC的面积.25.(8′)求证:顺次连结四边形各边中点所得的四边形是平行四边形.26.(8′)如右图所示,△ABC中,CD是△ABC的角平分线,AE⊥CD于E,F为AC的中点,试问EF∥BC吗?为什么?27.(8′)已知□ABCD中,E、F分别是BC、CD的中点,AE、AF分别交BD于M、N.求证:BM=MN=ND.28.(8′)已知如下图所示,在□ABCD中,∠A=60°,E、F分别是AB、CD•的中点,•且AB=2AD.(1)求证:EF:(2)试判断EF与BD的位置关系?答案:一、1.D 2.A 3.D 4.C 5.B 6.A 7.B 8.D 9.D 10.A二、11.140° 12.50° 13.9cm 14.12cm,16cm,12cm,16cm 15.•平行四边形16.∠BAD=∠BCD 两组对角分别相等,则四边形是平行四边形 17.•平行四边形 •18.是 19.80° 20.AB∥DC三、21.略 22.略 23.2 24..提示:连结AC 26.略27.略28.(1)提示:连结DE (2)EF⊥BD第18章单元测试(3)一、选择题.(每小题4分,共32分)1.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.102.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°第2题图第3题图3.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5C.2.5D.2.84. 下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.如图,CD是△ABC的中线,点E,F分别是AC、DC的中点,EF=2,则BD=()A.2B.3C.4D.6第5题图第6题图第7题第8题6.如图所示,将□ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对7.如图所示,在正方形ABCD中,点E、F分别在CD,BC上,且BF=CE,连接BE,AF相交于点G,则下列结论不正确的是()A.BE=AFB.∠DAF=∠BECC.∠AFB+∠BEC=90°D.AG⊥BE8. 如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO,若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE ∶S△BCM=2∶3.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题.(每小题4分,共32分)9.如图,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F= .第9题图第10题图10.如图所示,在R t△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件时,四边形DECF是正方形.(要求:①不再添加任何辅助线;②只填一个符合要求的条件)11.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=8,BC=10,则EF的长为 .第11题图第12题图12. 如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是 .13.已知一个平行四边形的一条对角线将其分为两个全等的等腰直角三角形,且这条对角线的长为6,则另一条对角线的长为 .14. 如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为 cm.15.如图,已知点P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接PA、EF.则线段PA与EF之间的大小关系是 .第15题图第16题图16.如图,E是正方形ABCD的边CD的中点,AE的垂直平分线分别交AE、BC于H、G,若CG=7,BC=8,则GH等于 .三、解答题.(共56分)17.(8分)如图所示,一根长2.5m的木棍(AB)斜靠在与地面(OM)垂直的墙(ON)上,此时OB的距离为0.7m,设木棍的中点为P.若木棍顶端A沿墙下滑,且底端B沿地面向右滑行.(1)如果木棍的顶端A沿墙下滑0.4 m,那么木棍的底端B向外移动了多少距离?(2)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.18.(8分)如图,在正方形ABCD中,对角线AC,BD相交于点O,E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.19.(8分)如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得到△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.20.(8分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=21cm,点P从点A出发沿AD边向D以1cm/s的速度运动,点Q从点C出发沿CB边向B以2cm/s的速度运动,如果P、Q分别从A、C同时出发,设运动时间为t s.求:(1)当t为何值时,四边形ABQP为矩形?(2)当t为何值时,四边形PQCD为平行四边形?21.(12分)(2016·湖北十堰)如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.22.(12分)如图①,菱形ABCD对角线AC,BD的交点O是四边形EFGH 对角线FH的中点,四个顶点A,B,C,D分别在四边形EFGH的边EF,FG,GH,HE 上.(1)求证:四边形EFGH是平行四边形;(2)如图②,若四边形EFGH是矩形,当AC与FH重合时,已知ACBD=2,且菱形ABCD的面积是20,求矩形EFGH的长与宽.答案第十八章达标检测卷一、选择题(每题3分,共30分)1.如图,▱ABCD中,AC=3 cm,BD=5 cm,则边AD的长可以是() A.3 cm B.4 cm C.5 cm D.6 cm2.如图,D,E分别是△ABC的边AB,AC上的点,且AD=DB,AE=EC.若DE =4,则BC的长为()A.2 B.4 C.6 D.83.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则▱ABCD的周长是()A.20 cm B.21 cm C.22 cm D.23 cm4.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为()A.12 B.18 C.24 D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC =90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形?()A.①②B.①③C.①④D.④⑤8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.3 2-49.如图,在菱形ABCD中,AB=2,∠A=120°,P,Q,K分别为线段BC,CD,BD上的任意一点,则P K+Q K的最小值为()A.1 B. 3 C.2 D.3+110.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.若第一个矩形的面积为1,则第n个矩形的面积为()A.14 B.14n-1C.14n D.14n+1二、填空题(每题3分,共30分)11.如图,在▱OABC中,点O为坐标原点,点A的坐标为(3,0),点B的坐标为(4,2),则点C的坐标为__________.12.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠AED等于________.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC:∠EDA=1:2,且AC=10,则EC的长度是________.15.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是线段AO,BO的中点.若AC+BD=30 cm,△OAB的周长为23 cm,则EF的长为__________.16.如图,在▱ABCD中,点E为BC边上一点(不与端点重合),若AB=AE,且AE平分∠DAB,则有下列结论:①∠B=60°;②AC=BC;③∠AED=∠ACD;④△ABC≌△EAD.其中正确的是__________(在横线上填所有正确结论的序号).17.如图,在菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C′处,得到经过点D的折痕DE.则∠DEC的大小为________.18.菱形ABCD在平面直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 020 s 时,点P的坐标为__________.19.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.20.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为____________________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,在▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD,AB于点E,F.求证AE=CF.22.如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证△ADE≌△ABF;(2)求△AEF的面积.23.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交AB于点G,交CB的延长线于点F,连接AF,BE.(1)求证△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.24.如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD,AC,BC 于点E,O,F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4, BC=8,求菱形AECF的周长.25.如图,在平行四边形ABCD中,AB=3 cm,BC=5 cm,∠B=60°,G是CD 的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形.(2)①当四边形CEDF是矩形时,求AE的长;②当四边形CEDF是菱形时,求AE的长.26.如图,在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,EF,FD之间的数量关系,并证明.答案一、1.A 2.D 3.C 4.C5.D 点拨:运用三角形的中位线定理和矩形的性质解答.6.C 点拨:根据题意易知△COF 的面积与△AOE 的面积相等,阴影部分的面积为矩形面积的四分之一.7.C8.C 点拨:由题易得∠ABD =∠ADB =45°,再求出∠DAE 的度数.根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,进而在等腰直角三角形中利用勾股定理求出EF 的长.9.B10.B 点拨:第一个矩形的面积为1,易知第二个矩形的面积为14,第三个矩形的面积是116……故第n 个矩形的面积为14n -1. 二、11.(1,2) 12.30 13.65° 14.2.515.4 cm16.①③④ 点拨:∵四边形ABCD 为平行四边形,∴AB ∥CD ,AD =BC ,AD ∥BC .∴∠DAE =∠AEB .∵AE 平分∠DAB ,∴∠DAE =∠BAE .∴∠BAE =∠AEB .∴AB =BE .又AB =AE ,∴AB =AE =BE .∴△ABE 为等边三角形.∴∠B =∠BAE =60°.∴∠B =∠DAE .∵∠BAC =∠BAE +∠EAC =60°+∠EAC >∠B ,∴BC >AC .在△ABC 和△EAD 中,⎩⎨⎧AB =EA ,∠ABC =∠EAD ,BC =AD ,∴△ABC ≌△EAD (SAS ).∴∠BAC=∠AED.∵AB∥CD,∴∠BAC=∠ACD.∴∠AED=∠ACD.故正确的是①③④.17.75°点拨:如图,连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形.由P为AB的中点,利用等腰三角形三线合一的性质得到∠ADP=30°.由题意易得∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出∠DEC=75°.18.(0,3)19.16点拨:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°.又∵BD⊥DE,点F是BE的中点,DF=4,∴BF=DF=EF=4.∴CF=BF-BC=4-y.在Rt△DCF中,DC2+CF2=DF2,即x2+(4-y)2=42=16,∴x2+(y-4)2=16.20.25或52或652三、21.证明:∵四边形ABCD为平行四边形,∴AD=BC,∠D=∠B,∠BAD=∠BCD.又∵AE平分∠BAD,CF平分∠BCD,∴∠DAE=12∠BAD,∠BCF=12∠BCD.∴∠DAE=∠BCF.在△DAE和△BCF中,⎩⎨⎧∠D =∠B ,DA =BC ,∠DAE =∠BCF ,∴△DAE ≌△BCF (ASA ).∴AE =CF .22.(1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB ,∠D =∠B =90°.∵E ,F 分别为DC ,BC 的中点,∴DE =12DC ,BF =12BC .∴DE =BF .在△ADE 和△ABF 中,⎩⎨⎧AD =AB ,∠D =∠B ,DE =BF ,∴△ADE ≌△ABF (SAS ).(2)解:由题易知△ABF ,△ADE ,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.23.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠AEG =∠BFG .∵EF 垂直平分AB ,∴EF ⊥AB ,AG =BG .在△AGE 和△BGF 中,⎩⎨⎧∠AEG =∠BFG ,∠AGE =∠BGF ,AG =BG ,∴△AGE ≌△BGF (AAS ).(2)解:四边形AFBE 是菱形.理由如下:∵△AGE ≌△BGF ,∴AE =BF .∵AD ∥BC ,∴四边形AFBE 是平行四边形.又∵EF ⊥AB ,∴四边形AFBE 是菱形.24.(1)证明:∵EF 是AC 的垂直平分线,∴AO =OC ,∠AOE =∠COF =90°.∵四边形ABCD 是矩形,∴AD ∥BC .∴∠EAO =∠FCO .在△AEO 和△CFO 中,⎩⎨⎧∠EAO =∠FCO ,AO =CO ,∠AOE =∠COF ,∴△AEO ≌△CFO (ASA ).∴OE =OF .∵OA =OC ,∴四边形AECF 是平行四边形.又∵EF ⊥AC ,∴四边形AECF 是菱形.(2)解:设AF =x .∵EF 是AC 的垂直平分线,∴AF =CF =x ,∴BF =8-x .在Rt △ABF 中,由勾股定理得:AB 2+BF 2=AF 2,即42+(8-x )2=x 2,解得x =5.∴AF =5.∴菱形AECF 的周长为20.25.(1)证明:∵四边形ABCD 是平行四边形,∴CF ∥ED .∴∠FCG =∠EDG .∵G 是CD 的中点,∴CG =DG .在△FCG 和△EDG 中,⎩⎨⎧∠FCG =∠EDG ,CG =DG ,∠CGF =∠DGE ,∴△FCG ≌△EDG (ASA ).∴FG =EG .∵CG =DG ,∴四边形CEDF 是平行四边形.(2)解:①∵四边形ABCD 是平行四边形,∴∠CDA =∠B =60°,DC =AB =3 cm ,BC =AD =5 cm .∵四边形CEDF 是矩形,∴∠CED =90°.在Rt △CED 中,易得ED =12CD =1.5 cm ,∴AE =AD -ED =3.5(cm).故当四边形CEDF 是矩形时,AE =3.5 cm.②若四边形CEDF 是菱形,则CE =ED .由①可知∠CDA =60°,∴△CED 是等边三角形.∴DE =CD =3 cm.∴AE =AD -DE =5-3=2(cm).故当四边形CEDF 是菱形时,AE =2 cm.点拨:在判定三角形全等时,关键是选择恰当的判定条件,有时还需添加适当的辅助线构造全等三角形.同时全等三角形也为平行四边形、矩形、菱形的判定构筑了重要的平台和保障.26.解:(1)如图①所示.(2)如图②,连接AE.∵点E是点B关于直线AP的对称点,∴∠P AE=∠P AB=20°,AE=AB.∵四边形ABCD是正方形,∴AE=AB=AD,∠BAD=90°.∴∠AED=∠ADE,∠EAD=∠DAB+∠BAP+∠P AE=130°.∴∠ADF=180°-130°2=25°.(3)EF2+FD2=2AB2.证明:如图③,连接AE,BF,BD,由轴对称和正方形的性质可得EF=BF,AE =AB=AD,易得∠ABF=∠AEF=∠ADF,又∵∠BAD=90°,∴∠ABF+∠FBD+∠ADB=90°.∴∠ADF+∠ADB+∠FBD=90°.∴∠BFD=90°.在Rt△BFD中,由勾股定理得BF2+FD2=BD2;在Rt△ABD中,由勾股定理得BD2=AB2+AD2=2AB2,∴EF2+FD2=2AB2.。
人教版数学八年级下册第18章平行四边形单元试卷4份含答案
人教版数学八年级下册第18章平行四边形单元试卷4份第十八章卷(1)一、选择题1.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等D.邻角互补2.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有()A.1个B.2个C.3个D.4个3.能判定一个四边形是菱形的条件是()A.对角线相等且互相垂直B.对角线相等且互相平分C.对角线互相垂直D.对角线互相垂直平分4.正方形、菱形、矩形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分一组对角5.若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形6.下列说法中,不正确的是()A.有三个角是直角的四边形是矩形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形7.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°二、填空题8.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=,DC=cm.9.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.10.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.11.如图,△ABC中,EF是它的中位线,M、N分别是EB、CF的中点,若BC=8cm,那么EF=cm,MN=cm.12.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的边长为cm和cm.13.在▱ABCD中,若添加一个条件,则四边形ABCD是矩形;若添加一个条件,则四边形ABCD是菱形.14.如图,在等腰梯形ABCD中,AD∥BC,AD=6cm,BC=8cm,∠B=60°,则AB =cm.三、解答题15.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.16.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.17.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.18.如图:已知在△ABC中,AB=AC,D为BC上任意一点,DE∥AC交AB于E,DF∥AB交AC于F,求证:DE+DF=AC.19.如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.答案1.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等D.邻角互补【考点】矩形的性质;菱形的性质.【专题】选择题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A 不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选B.【点评】考查菱形和矩形的基本性质.2.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有()A.1个B.2个C.3个D.4个【考点】平行四边形的判定.【专题】选择题.【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.按照平行四边形的判定方法进行判断即可.【解答】解:①符合平行四边形的定义,故①正确;②两组对边分别相等,符合平行四边形的判定条件,故②正确;③由一组对边平行且相等,符合平行四边形的判定条件,故③正确;④对角线互相平分的四边形是平行四边形,故④错误;所以正确的结论有三个:①②③,故选C.【点评】本题考查了平行四边形的判定,熟练掌握平行四边形的定义和判定方法是解答此类题目的关键.3.能判定一个四边形是菱形的条件是()A.对角线相等且互相垂直B.对角线相等且互相平分C.对角线互相垂直D.对角线互相垂直平分【考点】菱形的判定.【专题】选择题.【分析】根据菱形的判定方法:对角线互相垂直平分来判断即可.【解答】解:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.只有D能判定为是菱形,故选D.【点评】本题考查菱形对角线互相垂直平分的判定.4.正方形、菱形、矩形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分一组对角【考点】正方形的性质;菱形的性质;矩形的性质.【专题】选择题.【分析】根据正方形、菱形、矩形对角线的性质,分析求解即可求得答案.【解答】解:∵正方形的对角线互相平分,互相垂直,相等且平分一组对角,菱形的对角线互相平分,互相垂直且平分一组对角,矩形的对角线互相平分且相等,∴正方形、菱形、矩形都具有的性质是:对角线互相平分.故选B.【点评】此题考查了正方形、菱形、矩形的性质.此题比较简单,注意熟记正方形、菱形、矩形对角线的性质是解此题的关键.5.若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形【考点】矩形的判定;三角形中位线定理.【专题】选择题.【分析】此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】解:已知:如图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD;故选B.【点评】本题主要利用了矩形的性质和三角形中位线定理来求解.6.下列说法中,不正确的是()A.有三个角是直角的四边形是矩形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形【考点】矩形的判定;菱形的判定;正方形的判定.【分析】根据各四边形的性质对各个选项进行分析从而得出最后答案.【解答】解:A、正确,有三个角是直角的四边形是矩形是矩形的判定定理;B、错误,对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形;C、正确,对角线互相垂直的矩形是正方形;D、正确,对角线互相垂直的平行四边形是菱形.故选B.【点评】考查了对四边形性质与判定的综合运用,特殊四边形之间的相互关系是考查重点.7.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°【考点】矩形的性质;三角形内角和定理.【专题】选择题.【分析】本题首先根据∠ADE:∠EDC=3:2可推出∠ADE以及∠EDC的度数,然后求出△ODC各角的度数便可求出∠BDE.【解答】解:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°﹣36°=54°,根据矩形的性质可得∠DOC=180°﹣2×54°=72°所以∠BDE=180°﹣∠DOC﹣∠DEO=18°故选B.【点评】本题考查的是三角形内角和定理以及矩形的性质,难度一般.8.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=,DC=cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质:平行四边形的对边相等且平行,即可求得.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=30cm,∴∠A+∠B=180°,∵∠A=50°,∴∠B=130°.故答案为130°,30.【点评】此题考查了平行四边形的性质:平行四边形的对边相等且平行.解题时注意数形结合思想的应用.9.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.【考点】平行四边形的性质.【专题】填空题.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC 的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.【解答】解:如图∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=4cm,BC=6cm.∵AB=CD,∴CD=4cm故答案为:4.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.10.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.【考点】菱形的性质.【专题】填空题.【分析】根据菱形的性质利用勾股定理可求得菱形的边长,根据面积公式可求得菱形的面积.【解答】解:菱形的两条对角线分别是6cm,8cm,得到两条对角线相交所构成的直角三角形的两直角边是×6=3cm和×8=4cm,那么它的斜边即菱形的边长=5cm,面积为6×8×=24cm2.故答案为5,24.【点评】本题考查的是菱形的性质以及其面积的计算方法的运用.11.如图,△ABC中,EF是它的中位线,M、N分别是EB、CF的中点,若BC=8cm,那么EF=cm,MN=cm.【考点】三角形中位线定理;梯形中位线定理.【专题】填空题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出EF的长,再利用梯形的中位线等于两底和的一半求出MN的长度.【解答】解:∵EF是△ABC的中位线,BC=8cm,∴EF=BC=×8=4cm,∵M、N分别是EB、CF的中点,∴MN=(EF+BC)=(4+8)=6cm.故答案为4,6.【点评】本题主要利用三角形的中位线定理和梯形的中位线定理求解,熟练掌握定理是解题的关键.12.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的边长为cm和cm.【考点】矩形的性质.【专题】填空题.【分析】根据矩形的性质得出∠ABC=90°,AB=DC,AD=BC,AC=BD,AC=2AO=2CO,BD=2BO=2DO,求出AO=BO=4cm,得出△AOB是等边三角形,推出AB=AO=4cm,在Rt△ABC中,由勾股定理求出BC即可.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,AB=DC,AD=BC,AC=BD,AC=2AO=2CO,BD=2BO=2DO,∵AC=BD=8cm,∴AO=BO=4cm,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=4cm,在Rt△ABC中,由勾股定理得:BC===4,即矩形的边长是4cm,4cm,4cm,4cm,故答案为:4;4.【点评】本题考查了矩形性质,等边三角形的性质和判定,勾股定理的应用,注意:矩形的对角线互相平分且相等.13.在▱ABCD中,若添加一个条件,则四边形ABCD是矩形;若添加一个条件,则四边形ABCD是菱形.【考点】矩形的判定;平行四边形的性质;菱形的判定.【专题】填空题.【分析】根据矩形是对角线相等的平行四边形,菱形是邻边相等的平行四边形可得.【解答】解:在▱ABCD中,若添加一个条件AC=BD,则四边形ABCD是矩形;若添加一个条件AB=BC,则四边形ABCD是菱形.故答案为:AC=BD;AB=BC.【点评】本题主要考查的是矩形和菱形的判定定理.但需要注意的是本题的知识点是关于平行四边形、矩形、菱形之间的关系.14.如图,在等腰梯形ABCD中,AD∥BC,AD=6cm,BC=8cm,∠B=60°,则AB= cm.【考点】平行四边形的判定.【专题】填空题.【分析】过A作AE∥DC,可得到平行四边形AECD,从而可求得BE的长,由已知可得到△ABE是等边三角形,此时再求AB就不难求得了.【解答】解:等腰梯形ABCD中,AD∥BC,作AE∥DC,则四边形AECD是平行四边形,因而AB=AE,CE=AD,再由∠B=60°得到△ABE是等边三角形,AE=2cm,AB=2cm.【点评】此题考查平行四边形的判定及梯形中常见的辅助线的作法.15.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】解答题.【分析】由平行四边形的性质得AD=CB,∠DAE=∠BCF,再由已知条件,可得△ADE≌△CBF,进而得出结论.【解答】证明:在平行四边形ABCD中,则AD=CB,∠DAE=∠BCF,又AE=CF,∴△ADE≌△CBF(SAS),∴DE=BF.【点评】本题主要考查平行四边形的性质及全等三角形的判定问题,应熟练掌握.16.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.【考点】菱形的性质.【专题】解答题.【分析】(1)由在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm,可求得△ABO是含30°角的直角三角形,AB=2cm,继而求得AC与BD的长;(2)由菱形的面积等于其对角线积的一半,即可求得答案.【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC与∠BAD的度数比为1:2,∴∠ABC=×180°=60°,∴∠ABO=∠ABC=30°,∵菱形ABCD的周长是8cm.∴AB=2cm,∴OA=AB=1cm,∴OB==,∴AC=2OA=2cm,BD=2OB=2cm;(2)S菱形ABCD=AC•BD=×2×2=2(cm2).【点评】此题考查了菱形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.17.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.【考点】矩形的性质.【专题】解答题.【分析】(1)AE⊥BD,∠1+∠ABD=∠ADB+∠ABD,得出∠ACB=∠ADB=∠2=∠1=30°,可知△AOB为等边三角形,继而求出∠BOC的度数;(2)由(1)知,△DOC≌△AOB,OD=OC=CD=OB,继而求出△DOC的周长.【解答】解:(1)∵四边形ABCD为矩形,AE⊥BD,∴∠1+∠ABD=∠ADB+∠ABD=∠2+∠ABD=90°,∴∠ACB=∠ADB=∠2=∠1=30°,又AO=BO,∴△AOB为等边三角形,∴∠BOC=120°;(2)由(1)知,△DOC≌△AOB,∴△DOC为等边三角形,∴OD=OC=CD=OB=6,∴△DOC的周长=3×6=18.【点评】本题考查矩形的性质,难度适中,解题关键是根据矩形的性质求出∠1=∠2=∠ACB=30°.18.如图:已知在△ABC中,AB=AC,D为BC上任意一点,DE∥AC交AB于E,DF∥AB交AC于F,求证:DE+DF=AC.【考点】平行四边形的判定与性质;等腰三角形的性质.【专题】解答题.【分析】由题意可得四边形AEDF是平行四边形,得DE=AF再由等腰三角形的性质及平行线可得DF=CF,进而可求出其结论.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF,又AB=AC,∴∠B=∠C,∵DF∥AB,∴∠CDF=∠B,∴∠CDF=∠C,∴DF=CF,∴AC=AF+FC=DE+DF.【点评】本题主要考查平行四边形的判定及性质以及等腰三角形的性质问题,能够熟练求解.19.如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.【考点】菱形的性质;平行四边形的判定与性质.【专题】解答题.【分析】由菱形的性质可证AC⊥BD,又已知EF⊥AC,所以AG=BG,GE=BD,AD∥BC,可证四边形EDBF为平行四边形,可证GE=GF,即证结论.【解答】证明:连接BD,AF,BE,在菱形ABCD中,AC⊥BD∵EF⊥AC,∴EF∥BD,又ED∥FB,∴四边形EDBF是平行四边形,DE=BF,∵E为AD的中点,∴AE=ED,∴AE=BF,又AE∥BF,∴四边形AEBF为平行四边形,即AB与EF互相平分.【点评】本题是简单的推理证明题,主要考查菱形的性质,同时综合利用平行四边形的判定方法及中位线的性质.第十八章卷(2)一、选择题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形2.下列命题中正确的是()A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形3.如图,某花木场有一块等腰梯形ABCD的空地,其各边的中点分别是E、F、G、H,测得对角线AC=10m,现想利用篱笆围成四边形EFGH场地,则需篱笆得总长度是()A.40 m B.30 m C.20 m D.10 m4.在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=10,BD=6,则该梯形的面积是()A.30B.15C.D.605.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP 的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定6.已知一个直角梯形,一腰长为6,这腰与一底所成的角为30°,那么另一腰的长是()A.1.5B.3C.6D.97.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()A.B.C.D.8.用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是()A.①②③B.①④⑤C.①②⑤D.②⑤⑥二、填空题9.如图,在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=度.10.如图,点E、F在▱ABCD的对角线BD上,要使四边形AECF是平行四边形,还需添加一个条件.(只需写出一个结论,不必考虑所有情况).11.如图所示,工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.(2)摆放成如图②的四边形,则这时窗框的形状是,根据的数学道理是.(3)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是,根据的数学道理是.12.如图,菱形ABCD中,AC=2,BD=5,P是AC上一动点(P不与A、C重合),PE∥BC交AB于E,PF∥CD交AD于F,则图中阴影部分(即多边形BCPFEB)的面积为.13.如图所示,菱形ABCD中,对角线AC,BD相交于点O,若再补充一个条件能使菱形ABCD成为正方形,则这个条件是.(只填一个条件即可,答案不唯一)14.等腰梯形两底之差为12cm,高为6cm,则其锐角底角为度.15.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.三、解答题16.已知:如图,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.求:(1)AB的长;(2)梯形ABCD的面积.17.如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.18.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.19.如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在边BC上,且四边形AEFD是平行四边形.(1)AD与BC有何等量关系,请说明理由;(2)当AB=DC时,求证:平行四边形AEFD是矩形.20.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连接AE、CD.请判断四边形ADCE的形状,说明理由.答案1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【考点】正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.【专题】选择题.【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.2.下列命题中正确的是()A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形【考点】菱形的判定.【专题】选择题.【分析】对角线互相垂直平分的四边形是菱形.【解答】解:根据菱形的判定,知对角线互相垂直平分的四边形是菱形,A、B、C错误,D正确.故选D.【点评】本题考查菱形的判定方法.3.如图,某花木场有一块等腰梯形ABCD的空地,其各边的中点分别是E、F、G、H,测得对角线AC=10m,现想利用篱笆围成四边形EFGH场地,则需篱笆得总长度是()A.40 m B.30 m C.20 m D.10 m【考点】三角形中位线定理.【专题】选择题.【分析】据等腰梯形的性质和三角形的中位线定理有EF=GH=AC,EH=GF=BD,可知四边形EFGH的周长=4EF=2AC,进而可得出四边形EFGH的周长,即需篱笆得总长.【解答】解:如图,连接BD,∵E、F、G、H是等腰梯形ABCD各边中点,∴EF=GH=AC,EH=GF=BD,∵等腰梯形ABCD,∴BD=AC,∴四边形EFGH的周长=4EF=2AC=20m.故选C.【点评】此题主要考查了等腰梯形的性质和三角形中位线定理,得出四边形EFGH的周长与AC 的关系是解题的关键,难度一般.4.在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC=10,BD=6,则该梯形的面积是( )A .30B .15C .D .60【考点】根据边的关系判定平行四边形.【专题】选择题.【分析】根据对角线互相垂直的四边形的面积公式,得该梯形的面积是10×6÷2=30.【解答】解:如图,作DE ∥AC 交BC 延长线于E∵AD ∥BC∴四边形ADEC 为平行四边形∴CE=AD ,∠CDE=∠DCA∵AC ⊥BD ,∴AC ⊥DE ,∴△BDE 为直角三角形,∴S 梯ABCD =S △EBD ,∴S 梯ABCD =DE•BD=AC•BD=10×6÷2=30,故选A .【点评】根据三角形的面积公式可以导出:对角线互相垂直的四边形的面积等于两条对角线乘积的一半.5.如图,已知矩形ABCD 中,R 、P 分别是DC 、BC 上的点,E 、F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定【考点】三角形中位线定理.【专题】选择题.【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【解答】解:连接AR.因为E、F分别是AP、RP的中点,则EF为△APR的中位线,所以EF=AR,为定值.所以线段EF的长不改变.故选C.【点评】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.6.已知一个直角梯形,一腰长为6,这腰与一底所成的角为30°,那么另一腰的长是()A.1.5B.3C.6D.9【考点】根据边的关系判定平行四边形.【专题】选择题.【分析】作梯形的另一高,则得一个矩形和一个30°的直角三角形,根据直角三角形中,30°所对的直角边是斜边的一半,得另一腰是已知腰的,即是3.【解答】解:作DE⊥BC,∵AD∥BC,∴四边形ABED为平行四边形,∴AB=DE,又∠C=30°,∴DE=DC=3.故选B.【点评】注意:直角梯形中常见的辅助线即作另一高.熟练运用30°的直角三角形的性质.7.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()A.B.C.D.【考点】正方形的性质.【专题】选择题.【分析】结合空间思维,分析折叠的过程及打孔的位置,易知展开的形状.【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在平行于斜边的位置上打3个洞,则直角顶点处完好,即原正方形中间无损,且有12个洞.故选D.【点评】本题主要考查学生抽象思维能力,错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.8.用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是()A.①②③B.①④⑤C.①②⑤D.②⑤⑥【考点】菱形的判定;等腰三角形的判定;平行四边形的判定;矩形的判定;正方形的判定;等腰梯形的判定.【专题】选择题.【分析】根据菱形、正方形、梯形、矩形、平行四边形、等腰三角形的性质判断.【解答】解:由于菱形和正方形中都四边相等的特点,而直角三角形中不一定有两边相等,故两个全等的直角三角形不能拼成菱形和正方形;由于等腰梯形有两边不等,故也不能.矩形,平行四边形,等腰三角形可以拼成.如图:故选B.【点评】本题考查了三角形的拼接图形的特点.以及特殊四边形的性质.9.如图,在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=度.【考点】平行四边形的性质.【专题】填空题.【分析】由DB=DC,∠C=70°可以得到∠DBC=∠C=70°,又由AD∥BC推出∠ADB=∠DBC=∠C=70°,而∠AED=90°,由此可以求出∠DAE.【解答】解:∵DB=DC,∠C=70°,∴∠DBC=∠C=70°,∵AD∥BC,AE⊥BD,∴∠ADB=∠DBC=∠C=70°,∠AED=90°,∴∠DAE=90﹣70=20°.故答案为:20°.【点评】主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.10.如图,点E、F在▱ABCD的对角线BD上,要使四边形AECF是平行四边形,还需添加一个条件.(只需写出一个结论,不必考虑所有情况).【考点】平行四边形的判定与性质.【专题】填空题.【分析】使四边形AECF也是平行四边形,则要证四边形的两组对边相等,或两组对边分别平行,可添加条件DF=BE.【解答】解:需要添加的条件可以是:DF=BE.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD,∴∠CBE=∠ADF,在△ADF与△BCE中,,∴△ADF≌△BCE(SAS),∴CE=AF,同理,△ABE≌△CDF,∴CF=AE,∴四边形AECF是平行四边形.【点评】此题主要考查了平行四边形的判定以及矩形的判定方法,此题属于开放题熟练掌握各判定定理是解题的关键.11.如图所示,工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.(2)摆放成如图②的四边形,则这时窗框的形状是,根据的数学道理是.(3)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是,根据的数学道理是.【考点】平行四边形的判定;矩形的判定.【专题】填空题.【分析】此题主要考查平行四边形,矩形的判定问题,掌握其判定定理,即可作答.【解答】解:平行四边形;两组对边分别相等的四边形是平行四边形;矩形;由一个角是直角的平行四边形是矩形.【点评】熟练掌握平行四边形及矩形的判定.12.如图,菱形ABCD中,AC=2,BD=5,P是AC上一动点(P不与A、C重合),PE∥BC交AB于E,PF∥CD交AD于F,则图中阴影部分(即多边形BCPFEB)的面积为.。
人教版数学八年级下册第18章达标检测卷及答案
第十八章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.已知四边形ABCD是平行四边形,下列结论中,错误的是()A.AB=CD B.AC=BDC.当AC⊥BD时,它是菱形D.当∠ABC=90°时,它是矩形2.已知在▱ABCD中,BC-AB=2 cm,BC=4 cm,则▱ABCD的周长是()A.6 cm B.12 cm C.8 cm D.10 cm3.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD =50 cm,当它的一端B着地时,另一端A离地面的高度AC为()A.25 cm B.50 cm C.75 cm D.100 cm(第3题)(第6题)(第8题)(第9题)(第10题)4.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为() A.12 B.18 C.24 D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形?()A.①②B.①③C.①④D.④⑤8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.3 2-49.如图,将边长为2 cm的菱形ABCD沿边AB所在的直线l翻折得到四边形ABEF.若∠DAB=30°,则四边形CDFE的面积为()A.2 cm2B.3 cm2C.4 cm2D.6 cm210.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF =EF,⑤S△CEF=2S△ABE.其中正确结论有()A.2个B.3个C.4个D.5个二、填空题(每题3分,共30分)11.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为________.(第11题)(第12题)(第13题)(第14题)12.如图,在菱形ABCD 中,对角线AC =6,BD =10,则菱形ABCD 的面积为________.13.如图,∠ACB =90°,D 为AB 的中点,连接DC 并延长到E ,使CE =13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F.若AB =6,则BF 的长为________.14.如图,在矩形ABCD 中,对角线AC ,BD 相交于O ,DE ⊥AC 于点E ,∠EDC ∶∠EDA =1∶2,且AC =10,则EC 的长度是________.15.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,如果四边形EFGH 为菱形,那么四边形ABCD 是对角线__________的四边形.(第15题)(第16题)(第18题)(第19题)(第20题)16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P 为AB的中点)所在的直线上的点C′处,得到经过点D的折痕DE.则∠DEC的大小为________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为____________________.18.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→……的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 016秒时,点P的坐标为________.19.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.20.如图,Rt△ABC中,∠ACB=90°,以斜边AB为边向外作正方形ABDE,且正方形的对角线交于点O,连接OC.已知AC=5,OC=62,则另一直角边BC的长为________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于点E,DF⊥BC交BC的延长线于点F.求证:DE=DF.(第21题)22.如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证:△ADE≌△ABF;(2)求△AEF的面积.(第22题)23.如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=213,当四边形BEDF为矩形时,求线段AE的长.(第23题)24.如图,在矩形ABCD中,点E,F分别在边BC,AD上,连接EF,交AC于点O,连接AE,CF.若沿EF折叠矩形ABCD,则点A与点C重合.(1)求证:四边形AECF 为菱形;(2)若AB =4, BC =8,求菱形AECF 的边长; (3)在(2)的条件下求EF 的长.(第24题)25.如图,已知在Rt △ABC 中,∠ACB =90°,现按如下步骤作图: ①分别以A ,C 为圆心,a 为半径(a >12AC)作弧,两弧分别交于M ,N 两点;②过M ,N 两点作直线MN 交AB 于点D ,交AC 于点E ; ③将△ADE 绕点E 顺时针旋转180°,设点D 的对应点为点F. (1)请在图中直接标出点F 并连接CF ; (2)求证:四边形BCFD 是平行四边形; (3)当∠B 为多少度时,四边形BCFD 是菱形?(第25题)26.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠PAB=20°,求∠ADF的度数;(3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.(第26题)答案一、1.B 2.B 3.D 4.C5.D 点拨:运用三角形的中位线定理和矩形的性质解答.6.C 点拨:根据题意易知△COF 的面积与△AOE 的面积相等,阴影部分的面积为矩形面积的四分之一.7.C8.C 点拨:根据正方形的对角线平分一组对角可得∠ABD =∠ADB =45°,再求出∠DAE 的度数.根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,进而在等腰直角三角形中利用勾股定理求出EF 的长.9.C10.C 点拨:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°. ∵△AEF 是等边三角形, ∴AE =EF =AF ,∠EAF =60°. ∴∠BAE +∠DAF =30°.在Rt △ABE 和Rt △ADF 中,⎩⎪⎨⎪⎧AE =AF ,AB =AD ,∴Rt △ABE ≌Rt △ADF(HL ), ∴BE =DF(故①正确). ∠BAE =∠DAF.∴∠DAF +∠DAF =30°,即∠DAF =15°(故②正确). ∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF , 又∵AE =AF ,∴AC 垂直平分EF(故③正确).设EC =x ,由勾股定理,得EF =AE =2x ,∴EG =CG =22x ,∴AG =62x ,∴AC =6x +2x2, ∴AB =BC =3x +x2, ∴BE =3x +x 2-x =3x -x2,∴BE +DF =3x -x ≠2x(故④错误), ∵S △CEF =x 22,S △ABE =3x -x 2·3x +x22=x 24,∴2S △ABE =x 22=S △CEF (故⑤正确).综上所述,正确的有4个.二、11.110° 12.30 13.8 14.2.5 15.相等16.75° 点拨:如图,连接BD ,由菱形的性质及∠A =60°,得到三角形ABD 为等边三角形.由P 为AB 的中点,利用等腰三角形三线合一的性质得到∠ADP =30°.由题意易得∠ADC =120°,∠C =60°,进而求出∠PDC =90°,由折叠的性质得到∠CDE =∠PDE =45°,利用三角形的内角和定理即可求出∠DEC =75°.(第16题)17.25或52或65218.(1,0)19.16 点拨:∵四边形ABCD 是矩形,AB =x ,AD =y ,∴CD =AB =x ,BC =AD =y ,∠BCD =90°.又∵BD ⊥DE ,点F 是BE 的中点,DF =4,∴BF =DF =EF =4,∴CF =4-BC =4-y.在Rt △DCF 中,DC 2+CF 2=DF 2,即x 2+(4-y)2=42=16.∴x 2+(y -4)2=16.20.7 点拨:如图所示,过点O 作OM ⊥CA ,交CA 的延长线于点M ;过点O 作ON ⊥BC 于点N ,易证△OMA ≌△ONB ,CN =OM ,∴OM =ON ,MA =NB. ∴O 点在∠ACB 的平分线上. ∴△OCM 为等腰直角三角形. ∵OC =62,∴CM =OM =6. ∴MA =CM -AC =6-5=1.∴BC =CN +NB =OM +MA =6+1=7. 故答案为7.(第20题)三、21.证明:连接DB.∵四边形ABCD 是菱形,∴BD 平分∠ABC. 又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF.22.(1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB ,∠D =∠B =90°.∵E ,F 分别为DC ,BC 的中点,∴DE =12DC ,BF =12BC ,∴DE =BF.在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB ,∠D =∠B ,DE =BF ,∴△ADE ≌△ABF(SAS ).(2)解:由题知△ABF ,△ADE ,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.23.(1)证明:如图,连接BD ,设BD 交AC 于点O. ∵四边形ABCD 是平行四边形, ∴OB =OD.由BE ∥DF ,得∠BEO =∠DFO.而∠EOB =∠FOD , ∴△BEO ≌△DFO. ∴BE =DF.又BE ∥DF , ∴四边形BEDF 是平行四边形.(第23题)(2)解:∵AB ⊥AC ,AB =4,BC =213,∴AC =6,AO =3. ∴在Rt △BAO 中,BO =AB 2+AO 2=42+32=5. 又∵四边形BEDF 是矩形,∴OE =OB =5.∴点E 在OA 的延长线上,且AE =2.24.(1)证明:由题意可知,OA =OC ,EF ⊥AC.∵AD ∥BC ,∴∠FAC =∠ECA.在△AOF 和△COE 中,⎩⎪⎨⎪⎧∠FAO =∠ECO ,AO =CO ,∠AOF =∠COE ,∴△AOF ≌△COE.∴OF =OE.∵OA =OC ,EF ⊥AC ,∴四边形AECF 为菱形.(2)解:设菱形AECF 的边长为x ,则AE =x ,BE =BC -CE =8-x.在Rt △ABE 中,BE 2+AB 2=AE 2,∴(8-x)2+42=x 2,解得x =5.即菱形AECF 的边长为5.(3)解:在Rt △ABC 中,AC =AB 2+BC 2=42+82=45,∴OA =12AC =2 5. 在Rt △AOE 中,OE =AE 2-AO 2=52-(25)2=5,∴EF =2OE =2 5. 25.(1)解:如图所示.(第25题)(2)证明:连接AF ,DC.∵△CFE 是由△ADE 顺时针旋转180°后得到的,A 与C 是对应点,D 与F 是对应点, ∴AE =CE ,DE =FE.∴四边形ADCF 是平行四边形.∴AD ∥CF.由作图可知MN 垂直平分AC ,又∠ACB =90°,∴MN ∥BC.∴四边形BCFD 是平行四边形.(3)解:当∠B =60°时,四边形BCFD 是菱形.理由如下:∵∠B =60°,∠ACB =90°,∴∠BAC =30°.∴BC =12AB.又易知BD =12AB , ∴DB =CB.∵四边形BCFD 是平行四边形,∴四边形BCFD 是菱形.26.解:(1)如图①所示.(2)如图②,连接AE ,∵点E 是点B 关于直线AP 的对称点,∴∠PAE =∠PAB =20°,AE =AB.∵四边形ABCD 是正方形,∴AE =AB =AD ,∠BAD =90°,∴∠AED =∠ADE ,∠EAD =∠DAB +∠BAP +∠PAE =130°,∴∠ADF =180°-130°2=25°. (3)如图③,连接AE ,BF ,BD ,由轴对称和正方形的性质可得,EF =BF ,AE =AB =AD ,易得∠ABF =∠AEF =∠ADF ,又∵∠BAD =90°.∴∠ABF +∠FBD +∠ADB =90°,∴∠ADF +∠ADB +∠FBD =90°,∴∠BFD =90°.在Rt △BFD 中,由勾股定理得BF 2+FD 2=BD 2.在Rt △ABD 中,由勾股定理得BD 2=AB 2+AD 2=2AB 2,∴EF 2+FD 2=2AB 2.(第26题)。
八年级数学下册人教版第十八章平行四边形试卷(含答案)
八年级数学第十八章试卷班级_______________ 姓名___________分数___________一、选择题:(每小题3分,共30分)1、在□ABCD 中,∠A :∠B:∠C:∠D 的值可以是( ) A 、1:2:3:4 B 、1:2:2:1 C 、2:2:1:1 D 、2:1:2:12、菱形和矩形一定都具有的性质是( )A 、对角线相等B 、对角线互相垂直C 、对角线互相平分D 、对角线互相平分且相等3、平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以是( )A.4cm 和6cm B 。
6cm 和8cm C.8cm 和10cm D.10cm 和12cm4、四边形ABCD 的对角线AC 、BD 交于点O,能判定它是正方形的是( )A 、AO =OC ,OB =OD B 、AO =BO =CO =DO ,AC ⊥BD C 、AO =OC ,OB =OD,AC ⊥BD D 、AO =OC =OB =OD 5、给出下列四个命题⑴一组对边平行的四边形是平行四边形⑵一条对角线平分一个内角的平行四边形是菱形 ⑶两条对角线互相垂直的矩形是正方形⑷顺次连接四边形四边中点所得的四边形是平行四边形。
其中正确命题的个数为( )A 、1个B 、2个C 、3个D 、4个6、下列矩形中按虚线剪开后,能拼成平行四边形,又能拼成直角三角形的是( )A BC D7、如图,过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别相交于E 、F 、G 、H 四点,则四边形EFGH 为( ) A 。
平行四边形 B 、矩形 C 、菱形 D. 正方形8、如图,如果□ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A 。
1对 B.2对 C.3对 D 。
4对9、如图,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A 。
S 1 〉 S 2 B.S 1 = S 2C 。
人教版数学八年级下册第十八章测试题含答案
人教版数学八年级下册第十八章测试卷一.选择题(共10小题)1.以三角形的一条中位线和第三边上的中线为对角线的四边形是()A.梯形B.平行四边形C.菱形D.矩形2.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=4m,∠A=30°,则DE等于()A.1m B.2m C.3m D.4m3.若平行四边形的一边长为5,它的两条对角线的长可能是()A.4和3 B.4和8 C.4和6 D.2和124.菱形相邻两角的比为1:2,那么它们的较长对角线与边长的比为()A.2:3 B.C.2:1 D.5.如图,△ABC周长为1,连接△ABC三边中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,以此类推,第2016个三角形的周长为()A.22016B.22017 C.D.6.在Rt△ABC中,∠C=90°,AB=16cm,点D为AB的中点,则CD的长为()A.2cm B.4cm C.6cm D.8cm7.如图,平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD 边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1 次B.2次 C.3次 D.4次8.如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A.变小B.不变C.变大D.无法判断9.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD 的长等于()A.5 B.6 C.7 D.810.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0),B(0,2),C(3,0),D(0,﹣2),则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形二.填空题(共5小题)11.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为.12.已知平行四边形ABCD的周长为44,过点A作AE⊥直线BC于E,作AF⊥直线CD于点F,若AE=5,AF=6,则CE+CF的值为.13.用20cm长的铁丝围成一个平行四边形,使长边比短边长2cm,则它的长边长为,短边长为.14.在直角三角形中,斜边上的中线为3,那么斜边长为.15.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=2,则CD=.三.解答题(共7小题)16.已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.17.在△ABC中,AD=BF,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形.求证:AB=AC.18.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.19.如图,在Rt△ABC中,∠ACB=90°,点E,F分别是边AC,AB的中点,延长BC到点D,使2CD=BC,连接DE.(1)如果AB=10,求DE的长;(2)延长DE交AF于点M,求证:点M是AF的中点.20.△ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.21.如图,∠ACB=∠ADB=90°,M、N分别为AB、CD的中点.求证:MN⊥CD.22.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD 的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.参考答案与试题解析一.选择题(共10小题)1.以三角形的一条中位线和第三边上的中线为对角线的四边形是()A.梯形B.平行四边形C.菱形D.矩形【解答】解:如右图:∵D、E、F分别是三角形的三边的中点∴DF∥AC,EF∥AB∵AE、AD分别在AC、AB上∴DF∥AE,EF∥AD∴四边形是平行四边形.故选B.2.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=4m,∠A=30°,则DE等于()A.1m B.2m C.3m D.4m【解答】解:∵点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,∴点E是AC的中点,∴DE是直角三角形ABC的中位线,根据三角形的中位线定理得:DE=BC,又∵在Rt△ABC中,AB=4m,∠A=30°,∴BC=AB=2m.故DE=BC=1m,故选:A.3.若平行四边形的一边长为5,它的两条对角线的长可能是()A.4和3 B.4和8 C.4和6 D.2和12【解答】解:如图,过点C作CF∥BD,交AB延长线于点F,∴四边形BFCD为平行四边形,∴CF=BD,∴在△AFC中:AC﹣CF<AF<AC+CF,即AC﹣BD<2AB<AC+BD,∵AB=5,∴选项中只有D中的数据能满足此关系:8﹣4=4<5×2<8+4=12,故选B.4.菱形相邻两角的比为1:2,那么它们的较长对角线与边长的比为()A.2:3 B.C.2:1 D.【解答】解:如图在菱形ABCD中,连接AC、BD交于点O,∵∠ADC=2∠DAB,∠ADC+∠DAB=180°,∴∠DAB=60°,∴∠DAO=30°,∠AOD=90°,'设OD=a,则AD=2a,OA=a,∴AC=2OA=2a,∴AC:AD=2a:2a=:1,故选D.5.如图,△ABC周长为1,连接△ABC三边中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,以此类推,第2016个三角形的周长为()A.22016B.22017 C.D.【解答】解:根据三角形中位线定理可得第二个三角形的各边长都等于最大三角形各边的一半,那么第二个三角形的周长=△ABC的周长1×=,第三个三角形的周长为=△ABC的周长×=()2,第2016个三角形的周长═()2015.故选D.6.在Rt△ABC中,∠C=90°,AB=16cm,点D为AB的中点,则CD的长为()A.2cm B.4cm C.6cm D.8cm【解答】解:∵∠C=90°,点D为AB的中点,∴CD=AB=8cm,故选:D.7.如图,平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD 边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1 次B.2次 C.3次 D.4次【解答】解:∵四边形ABCD为平行四边形,∴PD∥BQ.若要以P、D、Q、B四点组成的四边形为平行四边形,则AP=BQ.设运动时间为t.当0<t<时,AP=t,PD=10﹣t,CQ=4t,BQ=10﹣4t,∴10﹣t=10﹣4t,方程无解;当<t<5时,AP=t,PD=10﹣t,BQ=4t﹣10,∴10﹣t=4t﹣10,解得:t=4;当5<t<时,AP=t,PD=10﹣t,CQ=4t﹣20,BQ=30﹣4t,∴10﹣t=30﹣4t,解得:t=;当<t<10时,AP=t,PD=10﹣t,BQ=4t﹣30,∴10﹣t=4t﹣30,解得:t=8.综上所述:当运动时间为4秒、秒或8秒时,以P、D、Q、B四点组成的四边形为平行四边形.故选C.8.如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A.变小B.不变C.变大D.无法判断【解答】解:在木棍滑动的过程中,点P到点O的距离不发生变化,理由是:连接OP,∵∠AOB=90°,P为AB中点,AB=2a,∴OP=AB=a,即在木棍滑动的过程中,点P到点O的距离不发生变化,永远是a;故选B.9.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD 的长等于()A.5 B.6 C.7 D.8【解答】解:∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选D.10.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0),B(0,2),C(3,0),D(0,﹣2),则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形【解答】解:如图所示:∵A(﹣3,0)、B(0,2)、C(3,0)、D(0,﹣2),∴OA=0C,OB=OD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD为菱形,故选:B二.填空题(共5小题)11.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为2.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,,∴△AFG≌△AFC(ASA),∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=2.故答案为:2.12.已知平行四边形ABCD的周长为44,过点A作AE⊥直线BC于E,作AF⊥直线CD于点F,若AE=5,AF=6,则CE+CF的值为2+或22+11..【解答】解:①如图1中,当∠BAD是钝角时,设AB=a,BC=b,∵四边形ABCD是平行四边形,∴AB=CD=a,•BC•AE=•CD•AF,∴6a=5b ①∵a+b=22 ②由①②解得a=10,b=12,在Rt△ABE中,∵∠AEB=90°,AB=10,AE=5,∴BE===5,∴EC=12﹣5,在Rt△ADF中,∵∠AFD=90°.AD=12,AF=6.∴DF===6,∵6>10,∴CF=DF﹣CD=6﹣10,∴CE+CF=EC+CF=2+.②如图2中,当∠BAD是锐角时,由①可知:DF=6,BE=5,∴CF=10+6,CE=12+5,∴CE+CF=22+11.故答案为:2+或22+11.13.用20cm长的铁丝围成一个平行四边形,使长边比短边长2cm,则它的长边长为6cm,短边长为4cm.【解答】解:设平行四边形的两边分别为xcm,(x﹣2)cm,由题意2[x+(x﹣2)]=20,解得x=6,∴平行四边形的两边分别为6cm,4cm,故答案为6cm,4cm.14.在直角三角形中,斜边上的中线为3,那么斜边长为6.【解答】解:∵直角三角形斜边上的中线长为3,∴斜边长是6.故答案为:6.15.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=2,则CD=1.【解答】解:在Rt△ABC中,∵CD是斜边AB上的中线,AB=2,∴CD=AB=1,故答案为1.三.解答题(共7小题)16.已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.【解答】证明:如图,连接BE、DE,∵∠ABC=∠ADC=90°,E是AC的中点,∴BE=DE=AC,∵F是BD的中点,∴EF⊥BD.17.在△ABC中,AD=BF,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形.求证:AB=AC.【解答】证明:∵四边形ADEF是平行四边形,∴AD=EF AD∥EF,∴∠2=∠3,又∵AD=BF,∴BF=EF,∴∠1=∠3,∴∠1=∠2,∴AB=AC.18.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.【解答】证明:连接AF,ED,EF,EF交AD于O.∵AE=DF,AE∥DF.∴四边形AEDF为平行四边形,∴EO=FO,AO=DO,又∵AB=CD,∴AO﹣AB=DO﹣CD,∴BO=CO,又∵EO=FO,∴四边形EBFC是平行四边形.19.如图,在Rt△ABC中,∠ACB=90°,点E,F分别是边AC,AB的中点,延长BC到点D,使2CD=BC,连接DE.(1)如果AB=10,求DE的长;(2)延长DE交AF于点M,求证:点M是AF的中点.【解答】解:(1)连接CF,在Rt△ABC中,F是AB的中点,∴CF=AB=5,∵点E,F分别是边AC,AB的中点,∴EF∥BC,EF=BC,∵2CD=BC,∴EF=CD,EF∥CD,∴四边形EDCF是平行四边形,∴DE=CF=5;(2)如图2,∵四边形EDCF是平行四边形,∴CF∥DM,∵点E是边AC的中点,∴点M是AF的中点.20.△ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.【解答】证明:连接DE,FG,∵BD、CE是△ABC的中线,∴D,E是AB,AC边中点,∴DE∥BC,DE=BC,同理:FG∥BC,FG=BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.21.如图,∠ACB=∠ADB=90°,M、N分别为AB、CD的中点.求证:MN⊥CD.【解答】证明:如图,连接CM、DM,∵∠ACB=∠ADB=90°,M为AB的中点,∴CM=AB,DM=AB,∴CM=DM=AB,∵N为CD的中点,∴MN⊥CD.22.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD 的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.【解答】(1)证明:∵AD是△ABC的中线,∴BD=CD,∵AE∥BC,∴∠AEF=∠DBF,在△AFE和△DFB中,,∴△AFE≌△DFB(AAS),∴AE=BD,∴AE=CD,∵AE∥BC,∴四边形ADCE是平行四边形;(2)图中所有与AE相等的边有:AF、DF、BD、DC.理由:∵四边形ADCE是平行四边形,∴AE=DC,AD∥EC,∵BD=DC,∴AE=BD,∵BE平分∠AEC,∴∠AEF=∠CEF=∠AFE,∴AE=AF,∵△AFE≌△DFB,∴AF=DF,∴AE=AF=DF=CD=BD.。
人教版初中数学八年级下学期第十八章测试卷(含答案)
初中数学人教版八年级下学期第十八章测试卷一、单选题(共6题;共12分)1. ( 2分) 在四边形ABCD中,∠A:∠B:∠C:∠D的比例依次如下,其中能使四边形ABCD是平行四边形的是( )A. 1:2:3:4B. 2:2:3:3C. 2:3:3:2D. 2:3:2:32. ( 2分) 如图,已知△ABC与△CDA关于点O成中心对称,过点O任作直线EF分别交AD,BC于点E,F,则下则结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称.其中正确的个数为()A. 2B. 3C. 4D. 53. ( 2分) 如图,在等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8,且AB∥DE,则△DEC的周长是().A. 3B. 12C. 15D. 194. ( 2分) 如图,矩形A BCD的对角线AC,BD相交于点O,CE//BD,DE//AC.若AC=4,则四边形CODE的周长是( ).A. 4B. 6C. 8D. 105. ( 2分) 如图,菱形ABCD中,边CD的中垂线交对角线BD于点E,交CD于点F,连结AE.若∠ABC=50°,则∠AEB的度数为()A. 30°B. 40°C. 50°D. 60°6. ( 2分) 已知平行四边形ABCD中,对角线AC、BD相交于O.则下列说法准确的是()A. 当OA=OC时,平行四边形ABCD为矩形B. 当AB=AD时,平行四边形ABCD为正方形C. 当∠ABC=90°时,平行四边形ABCD为菱形D. 当AC⊥BD时,平行四边形ABCD为菱形二、填空题(共2题;共2分)7. ( 1分) 在四边形ABCD中,对角线AC,BD相交于点O,若OA=OC,要使四边形ABCD成为平行四边形,则可添加的条件为________(填一个即可)8. ( 1分) 如图,菱形中,对角线AC,BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于________.三、解答题(共1题;共5分)9. ( 5分) 如图,D,E分别是△A BC的边AB,AC的中点,点O是OA BC内部任意一点,连接OB,0C,点G,F分别是OB ,OC的中点,顺次连接点D,G,F,E.求证:四边形DGFE是平行四边形.四、综合题(共3题;共26分)10. ( 6分) 如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是________.11. ( 10分) 如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.12. ( 10分) 如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=2,BC=4,求四边形AECF的面积.答案解析部分一、单选题1.【答案】D【考点】平行四边形的判定【解析】【解答】A、由∠A:∠B:∠C:∠D=1:2:3:4,没有角相等,不能判定四边形是平行四边形,故A 错误;B、由∠A:∠B:∠C:∠D=2:2:3:3,没有角相等,不能判定四边形是平行四边形,故A错误;C、、由∠A:∠B:∠C:∠D=2:2:3:3,虽然有两组角相等,但它们是邻角,不能判定四边形是平行四边形,故C错误;D、、由∠A:∠B:∠C:∠D=2:3:2:3,两组对角分别相等,能判定四边形是平行四边形,故D正确.故选D.【分析】两组对角分别相等的四边形是平行四边形,据此逐一判断即可.2.【答案】D【考点】平行四边形的判定与性质【解析】【解答】△ABC与△CDA关于点O对称,则AB=CD、AD=BC,所以四边形ABCD是平行四边形,因此点O就是▱ABCD的对称中心,则有:(1)点E和点F;B和D是关于中心O的对称点,符合题意;(2)直线BD必经过点O,符合题意;(3)四边形ABCD是中心对称图形,符合题意;(4)四边形DEOC 与四边形BFOA的面积必相等,符合题意;(5)△AOE与△COF成中心对称,符合题意;其中正确的个数为5个,故答案为:D.【分析】由于△ABC与△CDA关于点O对称,那么可得到AB=CD、AD=BC,即四边形ABCD是平行四边形,由于平行四边形是中心对称图形,且对称中心是对角线交点,可根据上述特点对各结论进行判断.3.【答案】C【考点】平行四边形的判定与性质【解析】【解答】∵AD∥BC,AB∥DE,∴ABED是平行四边形,∴DE=CD=AB=6,EB=AD=5,∴EC=8-5=3,则△DEC的周长=DE+DC+EC=6+6+3=15.故答案为:C【分析】根据两组对边分别平行可证四边形ABED是平行四边形,从而可得DE=CD=AB=6,EB=AD=5,继而求出CE的长,利用△DEC的周长=DE+DC+EC计算即可.4.【答案】C【考点】菱形的判定与性质,矩形的性质【解析】【解答】解:∵CE//BD,DE//AC,∴四边形CODE是平行四边形,在矩形A BCD中,AC =4,∴OD=OC=12AC=2,∴四边形CODE是菱形,∴四边形CODE的周长:4OC=8.故选:C.【分析】利用两组对边分别平行可证四边形CODE是平行四边形,根据矩形的性质可得OC=OD=12AC=2,利用一组邻边相等的平行四边形可证四边形CODE是菱形,利用菱形的性质即可求出结论.5.【答案】C【考点】菱形的性质【解析】【解答】如图,连接CE.∵四边形ABCD是菱形,∴AB=BC,∠ABD=∠DBC=12∠ABC=25 °,AB∥CD,∴∠BDC=∠ABD=25 °,∵点E在线段CD的中垂线上,∴EC=ED,∴∠ECD=∠EDC=25 °,∴∠BEC=∠ECD+∠EDC=50°.在△ABE与△CBE中,{AB=CB∠ABE=∠CBEBE=BE,∴△ABE≌△CBE(SAS),∴∠AEB=∠CEB =50 °.故答案为:C.【分析】连接CE.根据菱形的性质以及平行线的性质可得AB=BC,∠ABD=∠DBC,∠BDC=∠ABD=25 °,利用线段中垂线的性质得出EC=ED,那么∠ECD=∠EDC=25 °,点F垂直平分DC∠BEC=∠ECD +∠EDC=50 °.利用SAS证明△ABE≌△CBE,即可得出∠AEB=∠CEB=50 °.6.【答案】D【考点】菱形的判定,矩形的判定,正方形的判定【解析】【解答】∵平行四边形对角线互相平分,∴OA=OC而对角线相等的平行四边形是矩形,∴OA=OC不能判定平行四边形ABCD为矩形,故A错误;∵邻边相等的平行四边形是菱形,∴当AB=AD时,平行四边形ABCD是菱形,故B错误;∵有一个角是直角的平行四边形是矩形∴当∠ABC=90°时,平行四边形ABCD为矩形,故C错误;∵对角线互相垂直的平行四边形是菱形∴当AC⊥BD时,平行四边形ABCD为菱形,故D正确.故答案为:D.【分析】A. 根据平行四边形的性质和对角线相等的平行四边形是矩形进行判断;B. 根据邻边相等的平行四边形是菱形进行判断;C. 根据有一个角是直角的平行四边形是矩形进行判断;D. 根据对角线互相垂直的平行四边形是菱形进行判断.二、填空题7.【答案】答案不唯一如:OB=OD等【考点】平行四边形的判定【解析】【解答】解:条件:OB=OD.∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.故答案为:OB=OD.【分析】根据对角线互相平分的四边形是平行四边形进行解答即可.8.【答案】3.5【考点】直角三角形斜边上的中线,菱形的性质【解析】【解答】∵四边形ABCD是菱形,∴AC⊥BD,AD=1×28=7,4∵E为AD的中点,∴OE=1AD=3.5.2故答案为:3.5.【分析】由于菱形的四边相等,对角线互相垂直,可得AD的长,AC⊥BD,结合E是AD的中点,则由直角三角形斜边的中线等于斜边的一半可知OE的长.三、解答题9.【答案】解:证明:如图,连接OA,∵D、E分别是AB和AC的中点,∴DE∥BC,DE=1BC,2BC,同理GF∥BC,GH=12∴DE∥GF,DE=GF,∴四边形DGFE是平行四边形.【考点】三角形中位线定理,平行四边形的判定【解析】【分析】由三角形的中位线定理可得DE平行等于BC的一半,GF平行等于BC的一半,因此可得DE和GH平行且相等,则四边形DGFE是平行四边形.四、综合题10.【答案】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形(2)50√3【考点】菱形的性质,矩形的判定与性质【解析】【解答】(2)∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF (HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AO=1AC=5,AB=10,BO=5 √3,2∴矩形AEFD的面积=菱形ABCD的面积=1×10×10 √3=50 √3,2故答案为:50 √3.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF (HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.11.【答案】(1)证明:∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)解:如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=1AH=AB.2【考点】正方形的性质【解析】【分析】(1)利用正方形的性质可得∠ADG=∠C=90°,AD=DC,再利用AG⊥DE得DAG+∠ADF 90°=∠CDE+∠ADF,则有∠DAG=∠CDE,从而可证△ADG≌△DCE;(2)延长DE交AB的延长线于H,易得△DCE≌△HBE,利用全等三角形的对应边相等可得DH=DC=AB,然后利用直角三角形斜边上的中线等于是斜边的一半证得BF=1AH=AB,故得证。
人教版数学八年级下册第十八单元测试试卷(含答案)
人教版数学8年级下册第18单元·时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)若菱形的周长为8,高为2,则菱形的面积为( )A.2B.4C.8D.162.(3分)在Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,若CD=4,那么AB的长是( )A.4B.8C.12D.243.(3分)下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是( )A.1:2:3:4B.1:4:2:3C.1:2:2:1D.3:2:3:2 4.(3分)菱形ABCD添上下列的哪个条件,可证明ABCD是正方形( )A.AC=BD B.AB=CD C.BC=CD D.都不正确5.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,则下列结论一定成立的是( )A.∠BAD=60°B.AC=BD C.AB=BC D.OA=2OD 6.(3分)在▱ABCD中,若∠A=38°,则∠C等于( )A.142°B.132°C.38°D.52°7.(3分)相邻边长为a,b的矩形的周长为12,面积为6,则a2b+ab2的值为( )A.72B.36C.24D.8.(3分)正方形具有而矩形不一定有的性质是( )A.对角互补B.四个角相等C.对角线互相垂直D.对角线相等9.(3分)在菱形ABCD中,∠ABC=80°,BA=BE,则∠BAE=( )A.70°B.40°C.75°D.30°10.(3分)如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是( )A.4B.8C.16D.无法计算二.填空题(共5小题,满分15分,每小题3分)11.(3分)如图,在菱形ABCD中,DE⊥AB,DF⊥BC,垂足分别为点E,F.若∠ADE+∠CDF=80°,则∠EDF等于 度.12.(3分)添加一个条件,使矩形ABCD是正方形,这个条件可能是 .13.(3分)如图所示,四边形ABCD为矩形,AE⊥EG,已知∠1=25°,则∠2= 14.(3分)如图,两个正方形边长分别为2、a(a>2),图中阴影部分的面积为 .15.(3分)如图,在▱ABCD中,∠A=125°,则∠1= .三.解答题(共10小题,满分75分)16.(7分)如图,正方形ABCD中,点P,Q分别为CD,AD边上的点,且DQ=CP,连接BQ,AP.求证:BQ⊥AP.17.(7分)已知:▱ABCD中,E、F是对角线BD上两点,连接AE、CF,若∠BAE=∠DCF.求证:AE=CF.18.(7分)如图,点O为▱ABCD的对角线BD的中点,经过点O的直线分别交BA的延长线,DC的延长线于点E,F,求证:AE=CF.19.(7分)如图,在平行四边形ABCD中,∠C=70°,点E为AD上一点,AB=BE,求∠EBC的度数.20.(7分)把一张长方形(对边平行)纸条按如图所示折叠.判断∠1与∠2相等吗?说明理由.21.(7分)如图,正方形ABCD中,点E,F分别在AD,CD上,且BE=AF,连接BE,AF.求证:AE=DF.22.(7分)如图,已知▱ABCD与▱EBFD的顶点A、E、F、C在同一条直线上.求证:AE=CF.23.(8分)如图,▱ABCD的对角线AC与BD相交于点O,AC+BD=24,∠ABC=70°,△ABO的周长是20.(1)求∠ADC的度数;(2)求AB的长.24.(8分)拿出平行四边形的活动框架,对角线是两根橡皮筋.如果把DC沿CB方向平行移动,▱ABCD的边、内角、对角线都随着变化.当平移DC使BC=AB时:(1)▱ABCD四条边的大小有什么关系?结合图形说明理由.(2)对角线AC、BD的位置有什么关系?结合图形说明理由.25.(10分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点M为AD的中点,过点M作MN∥BD交CD延长线于点N.(1)求证:四边形MNDO是平行四边形;(2)请直接写出当四边形ABCD的边AB与BD满足什么关系时,四边形MNDO分别是菱形、矩形、正方形.参考答案1.B;2.B;3.D;4.A;5.C;6.C;7.B;8.C;9.A;10.C;11.50;12.AB=AD(或AC⊥BD答案不唯一);13.115°;14.12a2―a+2;15.55°;16.解:在正方形ABCD中,AB=AD=CD,∠BAD=∠ADC=90°,∵DQ=CP,∴AD﹣DQ=CD﹣CP,∴AQ=DP,∴△ABQ≌△DAP(SAS),∴∠DAP=∠ABQ,∵∠DAP+∠BAP=90°,∴∠ABQ+BAP=90°,∴BQ⊥AP.17.证明∵四边形ABCD为平行四边形∴AB∥CD,AB=CD∴∠ABD=∠CDB∵∠BAE=∠DCF,CD=AB,∠ABD=∠BDC∴△ABE≌△CDF∴AE=CF18.证明:∵四边形ABCD是平行四边形,∴AB∥CD.∴∠E=∠F,∠EBO=∠FDO.又∵OB=OD,∴△EBO≌△FDO.∴BE=DF.又∵AB=CD,即AE=CF.19.解:在平行四边形ABCD中,∠A=∠C=70°,AD∥BC,∵AB=BE,∴∠BEA=∠A=70°,∵AD∥BC,∴∠EBC=∠BEA=70°,故答案为:70°.20.解:∠1=∠2,理由如下:∵四边形ABCD是矩形,∴CF∥BD,∴∠1=∠CBA',∵将长方形折叠,∴∠CBA'=∠2,∴∠1=∠2.21.证明:∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD,又∵BE=AF,在Rt△BAE和Rt△ADF中,BE=AFAB=AD,∴Rt△BAE≌Rt△ADF(HL),∴AE=DF.22.证明:如图,连接BD交AC于点O,∵四边形ABCD与四边形EBFD都是平行四边形,∴AO=CO,EO=FO,即AE=CF.23.解:(1)∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=70°;(2)∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∴AO+BO=12(AC+BD)=12,∴AO+BO+AB=20,∴AB=8.24.解:(1)▱ABCD四条边相等,理由:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴BC=AB,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴▱ABCD四条边相等;(2)对角线AC、BD互相垂直,理由:由(1)得:四边形ABCD是菱形,∴AC⊥BD,∴对角线AC、BD互相垂直.25.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵点M为AD的中点,∴OM是△ACD的中位线,∴OM//CD,即OM//DN,∵MN∥BD,∴四边形MNDO是平行四边形;(2)由(1)知四边形MNDO是平行四边形,若四边形MNDO是菱形,只需OM=OD,而OM=12CD=12AB,OD=12BD,∴AB=BD时,四边形MNDO是菱形;若四边形MNDO是矩形,只需∠MOD=90°,而∠MOD=∠ABD,∴∠ABD=90°时,四边形MNDO是矩形,即AB⊥BD;若四边形MNDO是正方形,需OM=OD,∠MOD=90°,∴AB=BD,AB⊥BD时,四边形MNDO是正方形.。
最新人教版数学八年级下册第十八章测试卷及答案解析
人教版数学八年级下册第十八章测试卷姓名:分数:第十八章卷(3)一、选择题1.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定2.已知一个直角梯形,一腰长为6,这腰与一底所成的角为30°,那么另一腰的长是()A.1.5 B.3 C.6 D.93.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()A.B.C.D.4.在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()A.36°B.108°C.72° D.60°5.如果等边三角形的边长为3,那么连接各边中点所成的三角形的周长为()A.9 B.6 C.3 D.6.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补7.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠D=180°C.∠B+∠A=180°D.∠A+∠D=180°8.如图,已知E,F分别为平行四边形ABCD边AD,AB上的两点,则图形中与△BEC的面积相等的三角形有()A.2个B.3个C.4个D.5个二、填空题9.如图,在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=度.10.如图,点E、F在▱ABCD的对角线BD上,要使四边形AECF是平行四边形,还需添加一个条件.(只需写出一个结论,不必考虑所有情况).11.如图所示,工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.(2)摆放成如图②的四边形,则这时窗框的形状是,根据的数学道理是.(3)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是,根据的数学道理是.12.已知平行四边形ABCD两条对角线的交点坐标是坐标系的原点,点A,B的坐标分别为(﹣1,﹣5),(﹣1,2),则C,D的坐标分别是,.13.已知平行四边形ABCD中,AC,BD交于点O,若AB=6,AC=8,则BD的取值范围是.三、解答题14.如图,已知平行四边形ABCD,用图①,②的两种方法可以将ABCD分成面积相等的四部分.你还能用其他不同的方法(不包括如图①,②的两种方法),将平行四边形ABCD分成面积相等的四部分吗?请画出对应的示意图.15.如图,在平行四边形ABCD中,点E在AB的延长线上,且EC∥BD,求证:BE=AB.16.已知:如图,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.求:(1)AB的长;(2)梯形ABCD的面积.17.如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.18.已知:如图,正方形ABCD中,E为CD边上一点,F为BC边延长线上一点,CE=CF.(1)观察猜想BE和DF的大小关系,并证明你的猜想;(2)若∠BEC=60°,求∠EFD的度数.参考答案1.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定【考点】三角形中位线定理.【专题】选择题.【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【解答】解:连接AR.因为E、F分别是AP、RP的中点,则EF为△APR的中位线,所以EF=AR,为定值.所以线段EF的长不改变.故选C.【点评】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.2.已知一个直角梯形,一腰长为6,这腰与一底所成的角为30°,那么另一腰的长是()A.1.5 B.3 C.6 D.9【考点】根据边的关系判定平行四边形.【专题】选择题.【分析】作梯形的另一高,则得一个矩形和一个30°的直角三角形,根据直角三角形中,30°所对的直角边是斜边的一半,得另一腰是已知腰的,即是3.【解答】解:作DE⊥BC,∵AD∥BC,∴四边形ABED为平行四边形,∴AB=DE,又∠C=30°,∴DE=DC=3.故选B.【点评】注意:直角梯形中常见的辅助线即作另一高.熟练运用30°的直角三角形的性质.3.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()A.B.C.D.【考点】正方形的性质.【专题】选择题.【分析】结合空间思维,分析折叠的过程及打孔的位置,易知展开的形状.【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在平行于斜边的位置上打3个洞,则直角顶点处完好,即原正方形中间无损,且有12个洞.故选D.【点评】本题主要考查学生抽象思维能力,错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.4.在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()A.36°B.108°C.72° D.60°【考点】平行四边形的性质.【专题】选择题.【分析】利用平行四边形的内角和是360度,平行四边形对角相等,则平行四边形的四个角之比为,∠A:∠B:∠C:∠D=2:3:2:3,则∠D的值可求出.【解答】解:在▱ABCD中,∠A:∠B:∠C:∠D=2:3:2:3,设每份比为x,则得到2x+3x+2x+3x=360°,解得x=36°则∠D=108°.故选B.【点评】题考查四边形的内角和定理及平行四边形的性质,平行四边形的对角相等,邻角互补.5.如果等边三角形的边长为3,那么连接各边中点所成的三角形的周长为()A.9 B.6 C.3 D.【考点】三角形中位线定理;等边三角形的性质.【专题】选择题.【分析】等边三角形的边长为3,根据三角形的中位线定理可求出中点三角形的边长,所以中点三角形的周长可求解.【解答】解:连接各边中点所成的线段是等边三角形的中位线,每条中位线的长是,故新成的三角形的周长为×3=.故选D.【点评】本题利用了等边三角形的性质和中位线的性质,三角形的三条中位线把原三角形分成可重合的4个小三角形,因而每个小三角形的周长为原三角形周长的.6.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【考点】矩形的性质;菱形的性质.【专题】选择题.【分析】根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.【点评】此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.7.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠D=180°C.∠B+∠A=180°D.∠A+∠D=180°【考点】平行四边形的判定.【专题】选择题.【分析】四边形ABCD中,已经具备AD∥BC,再根据选项,选择条件,推出AB∥CD即可,只有D选项符合.【解答】解:A、如图1,∵AD∥CB,∴∠A+∠B=180°,如果∠A+∠C=180°,则可得:∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B、如图1,∵AD∥CB,∴∠A+∠B=180°,如果∠B+∠D=180°,则可得:∠A=∠D,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;C、如图1,∵AD∥CB,∴∠A+∠B=180°,再加上条件∠A+∠B=180°,也证不出是四边形ABCD是平行四边形,故此选项错误;D、如图2,∵∠A+∠D=180°,∴AB∥CD,∵AD∥CB,∴四边形ABCD是平行四边形,故此选项正确;故选D.【点评】此题主要考查了平行四边形的判定,判定方法共有五种:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分,5、两组对角分别相等;则四边形是平行四边形.8.如图,已知E,F分别为平行四边形ABCD边AD,AB上的两点,则图形中与△BEC的面积相等的三角形有()A.2个B.3个C.4个D.5个【考点】平行四边形的性质;三角形的面积.【专题】选择题.【分析】与△BEC的面积相等的三角形就是与△BEC等底同高的三角形,根据平行四边形的性质,图中与与△BEC等底同高的三角形有:△BCD,△ADB,又S△DCB=S△DFC,可以得到S△DFC=S△BEC,由此可以得到图形中与△BEC的面积相等的三角形的个数.【解答】解:如图,∵AD ∥CB ,∴△BEC 与△BD 等底同高,∴它们面积相等,又根据平行四边形的性质得△BCD ≌△BAD ,∴图中与与△BEC 等底同高的三角形有:△BCD ,△ADB ,又∵AB ∥CD ,∴S △DCB =S △DFC ,∴S △DFC =S △BEC ,则图形中与△BEC 的面积相等的三角形有3个.故选B .【点评】本题考查了平行四边形的性质,根据平行四边形的性质确定面积相等的三角形的底和高是解决本题的关键.9.如图,在平行四边形ABCD 中,DB=DC ,∠C=70°,AE ⊥BD 于E ,则∠DAE= 度.【考点】平行四边形的性质.【专题】填空题.【分析】由DB=DC ,∠C=70°可以得到∠DBC=∠C=70°,又由AD ∥BC 推出∠ADB=∠DBC=∠C=70°,而∠AED=90°,由此可以求出∠DAE .【解答】解:∵DB=DC ,∠C=70°,∴∠DBC=∠C=70°,∵AD ∥BC ,AE ⊥BD ,∴∠ADB=∠DBC=∠C=70°,∠AED=90°,∴∠DAE=90﹣70=20°.故答案为:20°.【点评】主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.10.如图,点E、F在▱ABCD的对角线BD上,要使四边形AECF是平行四边形,还需添加一个条件.(只需写出一个结论,不必考虑所有情况).【考点】平行四边形的判定与性质.【专题】填空题.【分析】使四边形AECF也是平行四边形,则要证四边形的两组对边相等,或两组对边分别平行,可添加条件DF=BE.【解答】解:需要添加的条件可以是:DF=BE.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD,∴∠CBE=∠ADF,在△ADF与△BCE中,,∴△ADF≌△BCE(SAS),∴CE=AF,同理,△ABE≌△CDF,∴CF=AE,∴四边形AECF是平行四边形.【点评】此题主要考查了平行四边形的判定以及矩形的判定方法,此题属于开放题熟练掌握各判定定理是解题的关键.11.如图所示,工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.(2)摆放成如图②的四边形,则这时窗框的形状是,根据的数学道理是.(3)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是,根据的数学道理是.【考点】平行四边形的判定;矩形的判定.【专题】填空题.【分析】此题主要考查平行四边形,矩形的判定问题,掌握其判定定理,即可作答.【解答】解:平行四边形;两组对边分别相等的四边形是平行四边形;矩形;由一个角是直角的平行四边形是矩形.【点评】熟练掌握平行四边形及矩形的判定.12.已知平行四边形ABCD两条对角线的交点坐标是坐标系的原点,点A,B的坐标分别为(﹣1,﹣5),(﹣1,2),则C,D的坐标分别是,.【考点】坐标与图形性质;平行四边形的性质.【专题】填空题.【分析】已知平行四边形ABCD两条对角线的交点坐标是坐标系的原点,平行四边形ABCD两条对角线相互平分,所以点A与点C、点B与点D关于原点对称,由于已知点A,B的坐标,故可求得C,D的坐标.【解答】解:由题意知:点A与点C、点B与点D关于原点对称,∵点A,B的坐标分别为(﹣1,﹣5),(﹣1,2),∴C,D的坐标分别是(1,5)(1,﹣2).故本题答案为:(1,5)(1,﹣2)【点评】本题考查平行四边形的性质与点的坐标的表示、关于原点对称的点的特征,已知点(a,b),则其关于原点对称的点的坐标为(﹣a,﹣b).13.已知平行四边形ABCD中,AC,BD交于点O,若AB=6,AC=8,则BD的取值范围是.【考点】平行四边形的性质;三角形三边关系.【专题】填空题.【分析】首先要作辅助线,利用平行四边形的性质得CE=BD,BE=CD=AB=6,再利用三角形,两边之和大于第三边,两边之差小于第三边即可求得.【解答】解:如图,过点C作CE∥BD,交AB的延长线于点E,∵四边形ABCD是平行四边形,∴AB∥CD,∴四边形BECD是平行四边形,∴CE=BD,BE=CD=AB=6,∴在△ACE中,AE=2AB=12,AC=8,AE﹣AC<CE<AE+AC,即12﹣8<BD<12+8,∴4<BD<20.故答案为:4<BD<20.【点评】本题通过作辅助线,把AC,AB,BD转化到同一个三角形中,利用平行四边形的性质和三角形中三边关系求解.14.如图,已知平行四边形ABCD,用图①,②的两种方法可以将ABCD分成面积相等的四部分.你还能用其他不同的方法(不包括如图①,②的两种方法),将平行四边形ABCD分成面积相等的四部分吗?请画出对应的示意图.【考点】平行四边形的性质.【专题】解答题.【分析】因为平行四边形是中心对称图形,利用其中心,将两条对角线任意旋转一定的角度即可解决问题.【解答】解:【点评】本题需利用平行四边形的中心对称性解决问题.15.如图,在平行四边形ABCD中,点E在AB的延长线上,且EC∥BD,求证:BE=AB.【考点】平行四边形的判定与性质.【专题】解答题.【分析】可根据两组对边分别平行的四边形是平行四边形证四边形BECD是平行四边形.【解答】证明:∵ABCD是平行四边形,∴AB∥CD,即BE∥CD,又∵EC∥BD,∴四边形BECD是平行四边形.∴BE=CD.∴BE=AB.【点评】此题主要考查平行四边形的判定:两组对边分别平行的四边形是平行四边形.16.已知:如图,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.求:(1)AB的长;(2)梯形ABCD的面积.【考点】矩形的判定定理2.【专题】解答题.【分析】(1)过点D作DE⊥BC于E,根据30°角所对的直角边等于斜边的一半可得DE=CD,再判断△ABH是等腰直角三角形,然后根据等腰直角三角形斜边等于直角边的倍解答;(2)先判定四边形AHED是矩形,根据矩形对边相等求出HE=AD,再求出BC的长,然后根据梯形的面积公式列式进行计算即可得解.【解答】解:(1)如图,过点D作DE⊥BC于E,∵∠C=30°,CD=10cm,∴DE=CD=×10=5cm,过A作AH⊥BC于H,则AH=DE=5cm,∵∠B=45°,∴△ABH是等腰直角三角形,∴AB=AH=5cm;(2)∵AH、DE都是梯形的高线,∴四边形AHED是矩形,∴HE=AD=5cm,又∵BH=AH=5cm,CE===5cm,∴BC=BH+HE+CE=5+5+5=(10+5)cm,∴梯形ABCD的面积=(5+10+5)×5=(+)cm.【点评】本题考查了梯形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,等腰直角三角形的判定与性质,勾股定理的应用,熟记性质并作出辅助线是解题的关键.17.如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.【考点】菱形的性质.【专题】解答题.【分析】在菱形ABCD中,∠A与∠B互补,即∠A+∠B=180°,因为∠A与∠B 的度数比为1:2,就可求出∠A=60°,∠B=120°,根据菱形的性质得到∠BDA=120°×=60°,则△ABD是正三角形,所以BD=AB=48×=12cm,根据勾股定理得到AC的值;然后根据菱形的面积公式求解.【解答】解:(1)连接BD,∵∠A与∠B互补,即∠A+∠B=180°,∠A与∠B的度数比为1:2,∴∠A=60°,∠B=120°.∴∠BDA=120°×=60°.∴△ABD是正三角形.∴BD=AB=48×=12cm.AC=2×=12cm.∴BD=12cm,AC=12cm.(2)S菱形ABCD=×两条对角线的乘积=×12×12=72cm2【点评】本题考查的是菱形的面积求法及菱形性质的综合.18.已知:如图,正方形ABCD中,E为CD边上一点,F为BC边延长线上一点,CE=CF.(1)观察猜想BE和DF的大小关系,并证明你的猜想;(2)若∠BEC=60°,求∠EFD的度数.【考点】正方形的性质;全等三角形的判定与性质.【专题】解答题.【分析】(1)可利用边角边证明BE、DF所在的两个直角三角形全等,进而证明这两条线段相等;(2)由(1)中的全等可得∠DFC=∠BEC=60°,易得∠CFE=45°,相减即可得到所求角的度数.【解答】解:(1)BE=DF.理由如下:如图,∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠DCF=90°,又∵CE=CF,∴△BCE≌△DCF,∴BE=DF;(2)∵△BCE≌△DCF,∠BEC=60°,∴∠DFC=∠BEC=60°,∵∠DCF=90°,CE=CF,∴∠CFE=45°,∴∠EFD=∠DFC﹣∠CFE=15°.【点评】综合考查了正方形的性质及全等三角形的判定与性质.用到的知识点为:考查两条线段的大小关系,一般考虑相等,证明这两条线段所在的三角形的全等是常用的方法.。
【精品】人教版八年级数学下册 第十八章 平行四边形 复习检测题(含答案)【3套】试题
人教版八年级数学下册第十八章平行四边形复习检测题(含答案)一、选择题。
1.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等2.在▱ABCD中,已知AB=(x+1)cm,BC=(x-2)cm,CD=4 cm,则▱ABCD的周长为()A.5 cm B.10 cm C.14 cm D.28 cm3.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.54.如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1 B.2 C. 3 D.1+ 35.正方形的一条对角线长为4,则这个正方形面积是()A.8 B.4 2 C.8 2 D.166.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.167.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH等于()A.245B.125C .5D .48.如图,把矩形纸片ABCD 沿对角线BD 折叠,设重叠部分为△EBD ,则下列说法错误的是( )A .AB =CD B .∠BAE =∠DCEC .EB =ED D .∠ABE 一定等于30°9.如图,在矩形ABCD 中,E ,F 分别是AD ,BC 中点,连接AF ,BE ,CE ,DF 分别交于点M ,N ,四边形EMFN 是( )A .正方形B .菱形C .矩形D .无法确定10.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图1,测得AC =2,当∠B =60°时,如图2,AC =( ) A. 2 B .2 C. 6 D .2 2二、填空题11.如图,在菱形ABCD 中,AC ,BD 相交于点O ,若∠BCO =55°,则∠ADO =____________.12.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为____________.13.如图,矩形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E,AD =8,AB=4,则DE的长为____________.14.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是____________.(写出一个即可)15.如图,正方形ABCO的顶点C,A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是____________.16.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是____________.三、解答题(共52分)17.(10分)如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)请写出图中两对全等的三角形;(2)求证:四边形BCEF是平行四边形.18.(10分)如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=23,求▱ABCD的面积.19.(10分)如图,已知,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.20.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?21.(12分)已知AC是菱形ABCD的对角线,∠BAC=60°,点E是直线BC上的一个动点,连接AE,以AE为边作菱形AEFG,并且使∠EAG=60°,连接CG,当点E在线段BC上时,如图1,易证:AB=CG+CE.(1)当点E在线段BC的延长线上时(如图2),猜想AB,CG,CE之间的关系并证明;(2)当点E在线段CB的延长线上时(如图3),直接写出AB,CG,CE之间的关系.参考答案一、选择题1.C2.B3.D4.A5.A6.A7.A8.D9.B 10.A 二、填空题。
2024年人教版八年级数学下册第十八章单元复习题及答案
A.
B.
C.
D.2
12.[2023·四川宜宾中考]如图,边长为6的正方形ABCD
中,M为对角线BD上的一点,连接AM并延长交CD于点P.
若PM=PC,则AM的长为
(C )
A.3( -1)
B.3(3 -2)
C.6( -1)
16.[2023·湖南怀化中考]如图,P是正方形ABCD的对角线AC上的一
点,PE⊥AD于点E,PE=3.则点P到直线AB的距离为
.
15
16
17
第十八章适应性评估卷
返回题型栏目导航
17.如图,在正方形ABCD外取一点E,连接AE,BE,DE.
过点A作AE的垂线交DE于点P.若AE=AP=1,PB= .
A.应补充:且∠DAC=∠ACB
点A,C分别转到了点C,A处,
B.应补充:且AB=CD
而点B转到了点D处.
C.应补充:且AB∥CD
∵CB=AD,
D.应补充:且AD∥CB
∴四边形ABCD是平行四边形.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
返回题型栏目导航
第十八章适应性评估卷
6.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点,则下列命题是假命
理由:如图所示,连接EB,FD.
根据(1)可知,△DOE≌△BOF,∴ED=BF.
∵ED∥BF,∴四边形EBFD为平行四边形.
∵l⊥BD,即EF⊥BD,∴四边形EBFD为菱形.
人教版八年级数学下册第十八章勾股定理测试【精品4套】
勾股定理测试卷(1)一、选择题(每题2分,共30分)1.观察下列几组数据:(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组A .1 B. 2 C. 3 D. 4 2.下列说法中, 不正确的是 ( )A . 三边长度之比为5:12:13的三角形是直角三角形 B. 三个角的度数之比为1:3:4的三角形是直角三角形 C. 三个角的度数之比为3:4:5的三角形是直角三角形 D. 三边长度之比为3:4:5的三角形是直角三角形3.如图,在水塔O 的东北方向32m 处有一抽水站A ,在水塔的东南方向24m 处有一建筑工地.B ,在AB 间建一条直水管,则水管的长为( ) A .40cm B .45cm C .50cm D .56cm西南北东4.如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30ο夹角,这棵大树在折断前的高度为( )A .10米B .15米C .25米D .30米5.ABC ∆中,90B ο∠=,两直角边7,24AB BC ==,三角形内有一点P 到各边的距离相等,30°则这个距离是( )A .1B .3C .4D .56.已知一直角三角形的木板,三边的平方和为21800cm ,则斜边长为( ). A .80cm B .30cm C .90cm D .120cm.7.若三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( ) A .12 cm B. 10 cm C. 8 cm D. 6 cm 8.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5 B .25 C .7 D .5或79.如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( ) A .12米 B. 13米 C. 14米 D. 15米10.在直角三角形中,斜边与较小直角边的和.差分别为8,2,则较长直角边长为( ) A .5 B .4 C .3 D .211.ABC ∆的三条边长分别是a b c ,,,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 12.如图,正方形网格中的ABC ∆,若小方格边长为1,则ABC ∆是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .以上答案都不对CBA13.如图,小方格都是面积为1的矩形,则图中四边形的面积是 ( ) A .25 B. 12.5 C. 9 D. 8.514.一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是( )A.20cm;B.10cm;C.14cm;D.无法确定.B15.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A.2m; B. 2.5m; C. 2.25m; D. 3m.二、填空题(每空3分,共30分)16.已知,如图中字母B.M分别代表的正方形的面积分别为__________.___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级下册数学第十八章达标测试卷一、选择题(每题3分,共30分)1.如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°(第1题)(第2题)2.如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为()A.12 cm B.9 cm C.6 cm D.3 cm3.下列四组条件中,不能判定四边形ABCD是平行四边形的是() A.AB=DC,AD=BC B.AB∥DC,AD∥BCC.AB∥DC,AD=BC D.AB∥DC,AB=DC4.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为()A.4 cm B.5 cm C.6 cm D.8 cm(第4题)(第5题)(第7题)5.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为一边的正方形ACEF 的周长为()A.14 B.15 C.16 D.176.下列说法中,正确的个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个B.2个C.3个D.4个7.如图,已知在菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4,则该菱形的面积是( ) A .16 3B .16C .8 3D .88.用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是( )9.如图,在矩形ABCD 中,AD =3AB ,点G ,H 分别在AD ,BC 上,连接BG ,DH ,且BG ∥DH ,当AGAD =( )时,四边形BHDG 为菱形. A.45B.35C.49D.38(第9题) (第10题)10.如图,在▱ABCD 中,CD =2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连接EF ,BF ,下列结论:①∠ABC =2∠ABF ;②EF =BF ;③S 四边形DEBC =2S △EFB ;④∠CFE =3∠DEF ,其中正确的结论有( ) A .1个B .2个C .3个D .4个二、填空题(每题3分,共24分)11.如图,▱ABCD 中,AC ,BD 相交于点O ,若AD =6,AC +BD =16,则△BOC的周长为________.(第11题) (第12题) (第14题) (第15题) (第18题) 12.如图,四边形ABCD 是对角线互相垂直的四边形,且OB =OD ,请你添加一个适当的条件____________,使四边形ABCD 成为菱形(只需添加一个即可).13.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在第________象限.14.如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则C点的坐标为________.15.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC到F,使CF=CE,连接DF.若CE=1 cm,则BF=__________.16.矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为________.17.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是__________.18.如图,在边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠F AC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°……按此规律所作的第n个菱形的边长是________.三、解答题(19题8分,20~22题每题10分,其余每题14分,共66分) 19.如图,在▱ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H.求证AG=CH.(第19题)20.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.(第20题)21.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证△ABE≌△CDF.(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.(第21题)22.在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.如图,△ABC中,∠ACB=90°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.(1)试确定四边形ADCE的形状,并说明理由.(2)若AB=16,AC=12,求四边形ADCE的面积.(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.(第23题)24.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图①,在四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,求证:中点四边形EFGH是平行四边形;(2)如图②,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,判断中点四边形EFGH的形状,并说明理由;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明).(第24题)答案一、1.D 2.C 3.C 4.A 5.C 6.B 7.C 8.C9.C 点拨:在矩形ABCD 中,AD =3AB ,设AB =1,则AD =3,由AD ∥BC ,BG ∥DH 得四边形BHDG 为平行四边形.若四边形BHDG 为菱形,则BG =GD ,设BG =GD =x ,则AG =3-x ,在Rt △ABG 中,1+()3-x 2=x 2 ,解得x =53 ,所以AG AD =3-533=49.10.D 点拨:∵在▱ABCD 中,CD =2AD ,F 为DC 的中点.∴CF =12CD =AD=BC ,∴∠CBF =∠CFB ,AB ∥CD .∴∠CBF =∠CFB =∠ABF .∴∠ABC =∠ABF +∠CBF =2∠ABF .故①正确.延长EF ,BC ,相交于点G .容易证明△DEF ≌△CGF ,∴FE =FG .∵BE ⊥AD ,AD ∥BC ,∴∠EBG =90°.根据直角三角形斜边上的中线等于斜边的一半得EF =BF ,②正确.∵BF 是△BEG 的中线,∴S △BEG =2S △BEF ,而S △DEF =S △CGF ,∴S △BEG =S 四边形DEBC,∴S 四边形DEBC =2S △EFB ,故③正确.设∠DEF =x ,∵AD ∥BC ,∴∠DEF =∠G =x .又∵FG =FB ,∴∠G =∠FBG =x .∴∠EFB =2x ,∠CFB =∠CBF =x .∴∠CFE =∠CFB +∠BFE =x +2x =3x =3∠DEF ,故④正确. 二、11.1412.OA =OC (答案不唯一) 13.三 14.(3,4)15.(2+2)cm 点拨:过点E 作EG ⊥BD 于点G .∵BE 平分∠DBC ,∠EGB =∠BCE =90°, ∴EG =EC =1 cm.易知△DEG 为等腰直角三角形,∴DE =2EG =2cm.∴CD =(1+2)cm ,那么BC =(1+2)cm.又∵CF =CE=1 cm,∴BF=(2+2)cm.16. 125点拨:设AC,BD交于点O,连接PO,过D作DG⊥AC于G,由△AOD 的面积=△AOP的面积+△POD的面积,可得PE+PF=DG,易得PE+PF =125.17.30°或150°点拨:分两种情况:(1)如图①,等边三角形ADE在正方形ABCD的内部,则∠CDE=∠CDA-∠ADE=90°-60°=30°.∵CD=AD=DE,∴∠DCE=75°.∴∠ECB=15°.同理,∠EBC=15°.∴∠BEC=150°.(第17题)(2)如图②,等边三角形ADE在正方形ABCD的外部,则∠CDE=∠CDA+∠ADE=90°+60°=150°.∵CD=AD=DE,∴∠CED=15°.同理,∠AEB=15°.∴∠BEC=∠AED-∠CED-∠AEB=60°-15°-15°=30°.18.(3)n-1点拨:连接DB,与AC相交于M.∵四边形ABCD是菱形,∴AD=AB,AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1.∴DM =12. ∴AM =32. ∴AC =3.同理可得AE =3AC =(3)2,AG =3AE =33=(3)3,…,按此规律,所作的第n 个菱形的边长为(3)n -1.三、19.证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∠A =∠C . ∴∠F =∠E . ∵BE =DF ,∴AD +DF =CB +BE ,即AF =CE . 在△AGF 和△CHE 中,⎩⎨⎧∠A =∠C ,AF =CE ,∠F =∠E ,∴△AGF ≌△CHE (ASA). ∴AG =CH .20.(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°. ∴∠BAE +∠AEB =90°. ∵BH ⊥AE , ∴∠BHE =90°. ∴∠AEB +∠EBH =90°. ∴∠BAE =∠EBH . 在△ABE 和△BCF 中,⎩⎨⎧∠BAE =∠CBF ,AB =BC ,∠ABE =∠BCF ,∴△ABE ≌△BCF (ASA). ∴AE =BF .(2)解:由(1)得△ABE ≌△BCF , ∴BE =CF .∵正方形的边长是5,BE =2,∴DF =CD -CF =CD -BE =5-2=3.在Rt △ADF 中,由勾股定理得:AF =AD 2+DF 2=52+32=34. 21.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,OB =OD ,OA =OC . ∴∠ABE =∠CDF .∵点E ,F 分别为OB ,OD 的中点, ∴BE =12OB ,DF =12OD . ∴BE =DF .在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF (SAS).(2)解:当AC =2AB 时,四边形EGCF 是矩形.理由如下: ∵AC =2OA ,AC =2AB , ∴AB =OA . ∵E 是OB 的中点, ∴AG ⊥OB , ∴∠OEG =90°. 同理,CF ⊥OD . ∴AG ∥CF .∵EG =AE ,OA =OC , ∴OE 是△ACG 的中位线. ∴OE ∥CG .∴四边形EGCF 是平行四边形. 又∵∠OEG =90°, ∴四边形EGCF 是矩形. 22.(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE .∵E 是AD 的中点,∴AE =DE .在△AFE 和△DBE 中,⎩⎨⎧∠AFE =∠DBE ,∠FEA =∠BED ,AE =DE ,∴△AFE ≌△DBE (AAS).∴AF =BD .∵AD 是BC 边上的中线,∴DC =BD .∴AF =DC .(2)解:四边形ADCF 是菱形.证明:由(1)得AF =DC ,又AF ∥BC ,∴四边形ADCF 是平行四边形.∵AC ⊥AB ,AD 是斜边BC 上的中线,∴AD =12BC =DC .∴▱ADCF 是菱形.23.解:(1)四边形ADCE 是菱形.理由:∵四边形BCED 为平行四边形,∴CE ∥BD ,CE =BD ,BC ∥DE .∵D 为AB 的中点,∴AD =BD .∴CE ∥AD ,CE =AD .∴四边形ADCE 为平行四边形.又∵BC ∥DF ,∴∠AFD =∠ACB =90°,即AC ⊥DE .∴四边形ADCE 为菱形.(2)在Rt △ABC 中,∵AB =16,AC =12,∴BC =47.而BC =DE ,∴DE =47.∴四边形ADCE 的面积=12AC ·DE =247.(3)当AC =BC 时,四边形ADCE 为正方形.证明:∵AC =BC ,D 为AB 的中点,∴CD ⊥AB ,即∠ADC =90°. ∴菱形ADCE 为正方形.24.(1)证明:如图①,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD .∴EH ∥FG ,EH =FG . ∴中点四边形EFGH 是平行四边形.(2)解:中点四边形EFGH 是菱形.理由:如图②,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD , 即∠BPD =∠APC .在△APC 和△BPD 中,⎩⎨⎧P A =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD (SAS).∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD . ∴EF =FG .又由(1)中结论知中点四边形EFGH 是平行四边形,∴中点四边形EFGH 是菱形.(3)解:中点四边形EFGH 是正方形.(第24题)。