1.1基本计数原理学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1 基本计数原理
班级: 姓名: 使用时间: 2019.12 编写:苗桂玲、王亚洁初审:于彦春终审:梁晓辉学习目标
1、理解分类加法计数原理与分步乘法计数原理;
2、会利用两个原理分析和解决一些简单的应用问题;
学习过程
探究点一、分类加法计数原理
问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有1班, 汽车有3班,轮船有2班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
问题2:用一个大写的英文字母或一个阿拉伯数字给北京部分景点编号,总共能够编出多少种不同的号码?
分类计数原理做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法。那么完成这件事共有种不同的方法。
例1. 一个三层书架的上层放有5本不同的数学书,中间放有3本不同的语文书,下层放有2本不同的英语书: 从书架上任取一本书,有多少种不同的取法?
跟踪练习:有一项活动,需在3名老师、8名男生和5名女生中选人参加.若只需1人参加,有多少种不同选法?
探究点二、分步加法计数原理
问题3. 由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C 村,共有多少种不同的走法?
问题4. 某中学的阅览室有50本不同的科技书,80本不同的文艺书。王华同学想借1本科技书和1本文艺书,共有多少种不同的借法?
分步计数原理做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有
种不同的方法。
例2. 一个三层书架的上层放有5本不同的数学书,中间放有3本不同的语文书,下层放有2本不同的英语书: 从书架上任取三本书,其中数学书、语文书、英语书各一本,有多少种不同的取法?
跟踪练习:一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两袋子里各取一个球,不同取法的种数为( )
A.182B.14C.48D.91
例3. 我们把壹元硬币有国徽的一面叫做正面,有币值的一面叫做反面.现依次抛出5枚壹
元硬币,按照抛出顺序得到一个由5个“正”或“反”组成的序列,如“正、反、反、反、正”问:一共可以得到多少个不同的这样的序列?
跟踪练习:从一个小组的6名学生中产生一名组长,一名学生代表,在下列条件下各有多少种不同的选法?(1)不允许兼职(2)允许兼职
探究点三、两个计数原理综合应用
(一)组数问题
例4. 用0,1,2,3,4这五个数字可以组成多少个无重复数字的:
(1)银行存折的四位密码?
(2)四位数?
(3)四位奇数?
跟踪练习:课本P6练习B2
(二)涂色问题
例5. 如图,要给地图A,B,C,D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?
跟踪练习:如图,用5种不同颜色给图中的A,B,C,D四个区域涂色, 规定一个区域只涂一种颜色, 相邻区域必须涂不同的颜色, 不同的涂色方案有多少种?
A B
C D
当堂训练
1、从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为()
A.13种B.16种C.24种D.48种
2、一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两袋子里各取一个球,不同取法的种数为()
A.182B.14C.48D.91
3、有不同颜色的四件上衣与不同颜色的三条长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数是________.
4、有一项活动,需在3名老师、8名男生和5名女生中选人参加.
(1)若只需1人参加,有多少种不同选法?
(2)若需老师、男生、女生各一人参加,有多少种不同的选法?