二次函数计算题.doc
二次函数计算
D C B FE A二次函数计算题1、已知一次函数y =ax +b 的图象上有两点A 、B ,它们的横坐标分别是3,-1,若二次函数y =31x 2的图象经过A 、B 两点.(1)请求出一次函数的表达式;(2)设二次函数的顶点为C ,求△ABC 的面积.2、已知:如图,在Rt△ABC 中,∠C =90°,BC =4,AC =8,点D 在斜边AB 上, 分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF ,设DE =x ,DF =y .(1)用含y 的代数式表示AE . (2)求y 与x 之间的函数关系式,并求出x 的取值范围.(3)设四边形DECF 的面积为S ,求出S 的最大值.3、某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图4所示,其拱形图形为抛物线的一部分,栅栏的跨径AB 间,按相同的间距0.2米用5根立柱加固,拱高OC 为0.6米.(1) 以O 为原点,OC 所在的直线为y 轴建立平面直角坐标系,请根据以上的数据,求出抛物线y =ax 2的解析式;(2)计算一段栅栏所需立柱的总长度(精确到0.1米).4、如图,点P 是抛物线y=x 2上在第一象限内的一个点,点A 的坐标是(3,0),(1)令点P 的坐标为(x,y ),求OPA 的面积s 与y 的关系式;(2)S 是y 的什么函数?(3)s 是x 的什么函数?5、已知二次函数y=ax 2+bx +c 的图象开口向上,且经过(0,-1)和(3,5)两点,图象的顶点到x 轴的距离等于3,求这个函数的表达式。
6、已知直线y=-x +2与x 轴交于A 点,与y 轴交于B 点,一抛物线经过A 、B 两点且其对称轴为x =2,求(1)这条抛物线的解析式; (2)这条抛物线的顶点坐标;(3)这条抛物线与x 轴和y 轴的交点及原点为顶点坐标的三角形的面积。
图47、.如图所示,某村修一水渠,横断面是等腰梯形,底角为120,两腰与下底的和为4米,当水渠深(x)为何值时,横断面积(S)最大,最大面积是多少?8.如图所示,正方形ABCD的边长为4,P是边BC上一点,QP⊥AP交DC于Q,问当点P在何位置时,△ADQ的面积最小?并求这个最小面积。
二次函数单元测试题及答案
二次函数单元测试题及答案1. 选择题(每题2分)1. 下列函数中,属于二次函数的是:A. y = 3x + 2B. y = x^2 + 3x - 2C. y = √xD. y = |x|答案:B2. 二次函数y = 2x^2 + 3x - 4的图像开口方向是:A. 向上开口B. 向下开口答案:A3. 函数y = -x^2 + 5x + 3的顶点坐标是:A. (3, 8)B. (-3, 2)C. (5, 8)D. (-5, 3)答案:A4. 函数y = x^2 - 4x + 4的轴对称线方程为:A. x = 2B. x = 4C. x = -2D. x = -4答案:A5. 函数y = x^2 + 6x + 9的值域是:A. (-∞, 9)B. [9, +∞)C. (-∞, 0)D. [0, +∞)答案:B2. 填空题(每题3分)1. 二次函数y = -2x^2 + 4x - 1的判别式为_______。
答案:402. 函数y = x^2 + bx + c的顶点坐标是(-2, 1),则b和c的值分别为_______。
答案:b = 4,c = -33. 函数y = 3x^2 - 6x + k的图像与x轴有两个交点,则k的值为_______。
答案:k > 04. 函数y = -x^2 - 4x + m的轴对称线方程为x = 2,则m的值为_______。
答案:m = 35. 函数y = ax^2 + bx + 2的值域是(-∞, 1],则a和b的关系是_______。
答案:a < 0,b > 03. 计算题(每题5分)1. 求二次函数y = -3x^2 + 6x + 9的顶点坐标和对称轴方程。
解答:首先,二次函数的顶点坐标可以通过公式 h = -b/2a 和 k = f(h) 来求得。
其中,h 表示对称轴的横坐标,k 表示顶点的纵坐标。
对于给定的函数 y = -3x^2 + 6x + 9,我们可以得到 a = -3,b = 6,c = 9。
初中二次函数计算题专项训练和答案解析
初中二次函数计算题专项训练及答案姓名:___________班级:________考号:_______ 1、如下图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.(1)求的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求与之间的函数关系式,并写出自变量的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.2、如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(-1,0),以AB的中点P为圆心,AB为直径作⊙P与轴的正半轴交于点C。
(1)求经过A、B、C三点的抛物线对应的函数表达式。
(2)设M为(1)中抛物线的顶点,求直线MC对应的函数表达式。
(3)试说明直线MC与⊙P的位置关系,并证明你的结论。
3、已知;函数是关于的二次函数,求:(1)满足条件m的值。
(2)m为何值时,抛物线有最底点?求出这个最底点的坐标,这时为何值时y随的增大而增大?(3)m为何值时,抛物线有最大值?最大值是多少?这时为何值时,y随的增大而减小.4、如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.(1)求∠DAB的度数及A、D、C三点的坐标;(2)求过A、D、C三点的抛物线的解析式及其对称轴L.(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)5、如图,在平面直角坐标系中,抛物线=-++经过A(0,-4)、B(,0)、C(,0)三点,且-=5.(1)求、的值;(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形B P O H是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.6、已知:如图,抛物线与轴交于点,点,与直线相交于点,点,直线与轴交于点.(1)写出直线的解析式.(2)求的面积.(3)若点在线段上以每秒1个单位长度的速度从向运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从向运动.设运动时间为秒,请写出的面积与的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?7、王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中(m)是球的飞行高度,(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请写出抛物线的开口方向、顶点坐标、对称轴.(2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.8、已知二次函数中,函数与自变量的部分对应值如下表:(1)求该二次函数的关系式;(2)当为何值时,有最小值,最小值是多少?(3)若,两点都在该函数的图象上,试比较与的大小.9、一家电脑公司推出一款新型电脑,投放市场以来3个月的利润情况如图所示,该图可以近似看作为抛物线的一部分,请结合图象,解答以下问题:(1)求该抛物线对应的二次函数解析式。
二次函数中的面积计算问题(包含铅垂高)
(D)二次函数中的面积计算问题【典型例子】例如,如图所示,二次函数2y x bx c =++图像x 在A 和B 两点(A 在B 的左边)与y 轴相交,在C 点与轴相交,顶点为M ,MAB ∆为直角三角形,图像的对称轴是一条直线2-=x ,该点P 是两点之间抛物线上的移动点,A C ,则PAC ∆面积的最大值为(C )A.274 B. 112C 。
278D.3 二次函数中常见的面积问题类型:1.选择填空的简单应用2.不规则三角形的面积用S=3.使用4.使用相似的三角形5.使用分割法将不规则图形转为规则图形例 1如图 1 所示,已知正方形ABCD 的边长为 1 , E , F , G , H 为每边的点, AE=BF=CG=DH ,设面积为小s 正方形EFGH 为, AE 为x , 那么about s 的x 函数图大致为 (乙)示例 2.回答以下问题:如图1所示,抛物线的顶点坐标为C 点( 1,4 ),与x 轴相交于A 点( 3 , 0),与y 轴相交于B 点。
抛物线和直线AB 的解析公式;(2)求△ CA AB 和S △ CAB 的垂直高度CD ;(3)假设点P 是抛物线上(第一象限)上的一个移动点,是否存在点P ,使得S △ PA B = 89S △ CA B ,如果存在,求点P 的坐标;如果不存在,请解释原因。
思想分析这个问题是二次函数中的常见面积问题。
该方法不是唯一的。
可以使用截补法,但是有点麻烦。
如图第10题xyABCOM图1B铅垂高水平宽ha图2A xC Oy ABD 112所示,我们可以画出一种计算三角形面积的新方法:ah S ABC 21=∆即三角形的面积等于水平宽度与前导垂直乘积的一半。
掌握了这个公式之后,思路就直截了当,过程也比较简单,计算量也相对少了很多。
答: (1)据已知,抛物线的解析公式可以设为y 1 = a ( x - 1 ) 2+ 4 ( a ≠ 0 ) 。
将A (3, 0)代入解析表达式,得到a = - 1 ,∴抛物线的解析公式为y 1 = - ( x - 1 ) 2+ 4,即y 1 = - x 2+2 x +3。
初三数学二次函数的练习题
初三数学二次函数的练习题1. 求解方程:2x² - 5x + 3 = 0解:首先,我们可以使用求根公式来求解二次方程:x = (-b ± √(b² - 4ac)) / (2a)根据给定方程,我们可以将其对应的a、b和c的值代入计算:a = 2b = -5c = 3将这些值代入求根公式:x = (-(-5) ± √((-5)² - 4(2)(3))) / (2(2))x = (5 ± √(25 - 24)) / 4x = (5 ± √1) / 4x₁ = (5 + 1) / 4 = 6 / 4 = 1.5x₂ = (5 - 1) / 4 = 4 / 4 = 1所以,方程2x² - 5x + 3 = 0的解为 x₁ = 1.5 和 x₂ = 1。
2. 求解方程:3x² + 7x - 2 = 0解:同样地,我们使用求根公式求解二次方程:a = 3b = 7c = -2将这些值代入求根公式:x = (-7 ± √(7² - 4(3)(-2))) / (2(3))x = (-7 ± √(49 + 24)) / 6x = (-7 ± √73) / 6这里的根数是无理数,所以我们保留根的精确形式:x₁ = (-7 + √73) / 6x₂ = (-7 - √73) / 6所以,方程3x² + 7x - 2 = 0的解为 x₁ = (-7 + √73) / 6 和 x₂ = (-7 -√73) / 6。
3. 求二次函数y = x² - 4x + 3的顶点坐标和对称轴方程。
解:二次函数的顶点坐标可以通过求x轴对称的线(x = -b / 2a)来找到,对称轴方程为x = -b / 2a。
对于给定的二次函数 y = x² - 4x + 3,我们可以计算出a、b和c的值:a = 1b = -4c = 3顶点坐标为(x, y),其中x = -b / 2a = -(-4) / (2*1) = 4 / 2 = 2。
二次函数的性质计算练习题
二次函数的性质计算练习题一、单项选择题1. 若二次函数y = ax^2 + bx + c 的抛物线开口朝上,且a > 0,则(A) a > 0 且 b > 0(B) a > 0 且 b < 0(C) a < 0 且 b > 0(D) a < 0 且 b < 02. 已知二次函数y = 2x^2 + bx + 6 的图像与x轴相交于两个点,且顶点坐标为(2, -2),则b的值为(A) 4(B) -4(C) 6(D) -63. 已知二次函数y = x^2 + kx + 16 的图像与x轴相交于两个点,且顶点位于第三象限,若该二次函数对称轴方程为x = -2,则k的值为(A) 4(B) -4(C) 2(D) -24. 二次函数y = ax^2 + bx + c 的零点为x = -3 和x = 2,且该函数经过点(1, 6),则a, b, c的值分别为(A) a = 1, b = -5, c = 6(B) a = 1, b = 5, c = -6(C) a = -1, b = 5, c = 6(D) a = -1, b = -5, c = -65. 若二次函数y = ax^2 + bx + 3 在x = 4处取得极值,则a, b的值分别为(A) a = 1, b = 10(B) a = -1, b = 10(C) a = -1, b = -10(D) a = 1, b = -10二、计算题1. 求解二次方程x^2 - 4x + 4 = 0 的解,并判断其性质。
2. 已知二次函数y = ax^2 - 2ax + 3 在x = 1处取得极值-1,请求a的值。
3. 求二次函数y = -2x^2 + 4x - 2 的顶点坐标、对称轴方程以及与x 轴的交点坐标。
4. 若二次函数y = -2x^2 + bx + 6 的抛物线与x轴相交于两个点,则b的取值范围是多少?5. 二次函数y = ax^2 + 4x + 2 在x = -1处的函数值等于-1,并求该二次函数的零点。
数学上册综合算式专项练习题二次函数计算练习
数学上册综合算式专项练习题二次函数计算练习(本文为题目所示的专项练习题的解答,按照数学试题的格式进行排版。
)综合算式专项练习题二次函数计算练习1. 已知函数 y = ax² + bx + c,其中a ≠ 0,求函数的顶点坐标。
解析:顶点坐标为 ( h,k ),根据二次函数的顶点公式可得:h = -b / (2a)k = f ( h ) = a( h )² + b( h ) + c2. 已知二次函数的顶点坐标为 ( 2,-4 ),且过点 ( 1,-6 ),求该二次函数的解析式。
解析:设二次函数的解析式为 y = ax² + bx + c由已知条件可得:( 2,-4 ) 为函数的顶点,即满足: -4 = a( 2 )² + b( 2 ) + c( 1,-6 )在函数上,即满足: -6 = a( 1 )² + b( 1 ) + c解以上两个方程组,得到 a,b,c 的值,代入解析式即可得到函数的表达式。
3. 已知函数 y = x² - x - 2,求函数的对称轴方程及顶点坐标。
解析:对称轴方程为 x = h,其中 h 为对称轴的横坐标。
根据二次函数的顶点公式可得: h = -b / (2a)代入函数 y = x² - x - 2,求得对称轴方程为 x = 1/2。
根据对称轴方程可得顶点的横坐标为 1/2。
将对称轴方程 x = 1/2 代入函数 y = x² - x - 2,求得顶点坐标为 (1/2, -9/4)。
4. 求函数 y = x² + 2x - 3 的判别式和根的情况。
解析:设函数 y = x² + 2x - 3 的判别式为Δ。
根据二次函数的判别式公式可得:Δ = b² - 4ac代入函数 y = x² + 2x - 3,求得判别式Δ = 16。
根据判别式Δ 的情况,可得函数 y = x² + 2x - 3 的根的情况如下: - 当Δ > 0 时,方程有两个不相等的实根。
求二次函数的最值 练习题
求二次函数的最值练习题求二次函数的最值练习题二次函数是数学中的重要概念之一,它的图像呈现出一条开口向上或向下的抛物线。
而求解二次函数的最值,是我们在解决实际问题中经常遇到的一种情况。
本文将通过一些练习题,帮助读者更好地理解和掌握求解二次函数的最值的方法。
练习题一:已知二次函数 f(x) = 2x^2 - 4x + 1,求该函数的最小值。
解答:要求二次函数的最小值,我们可以通过找到抛物线的顶点来实现。
二次函数的顶点坐标可以通过公式 x = -b/2a 和 y = f(-b/2a) 来求得。
对于给定的函数 f(x) = 2x^2 - 4x + 1,我们可以通过计算得到 a = 2,b = -4,c = 1。
将这些值代入公式中,我们可以得到 x = -(-4)/(2*2) = 1,y = f(1) =2*1^2 - 4*1 + 1 = -1。
因此,该函数的最小值为 -1。
练习题二:已知二次函数 g(x) = -3x^2 + 6x - 2,求该函数的最大值。
解答:求解二次函数的最大值的方法与求解最小值的方法类似。
我们同样可以通过找到抛物线的顶点来实现。
对于给定的函数 g(x) = -3x^2 + 6x - 2,我们可以通过计算得到 a = -3,b = 6,c = -2。
将这些值代入公式中,我们可以得到 x = -6/(2*(-3)) = 1,y = g(1) = -3*1^2 + 6*1 - 2 = 1。
因此,该函数的最大值为 1。
练习题三:已知二次函数 h(x) = x^2 + 4x - 3,求该函数的最值所对应的 x 值和 y 值。
解答:对于给定的函数 h(x) = x^2 + 4x - 3,我们同样可以通过计算得到 a = 1,b = 4,c = -3。
将这些值代入公式中,我们可以得到 x = -4/(2*1) = -2,y = h(-2) = (-2)^2 + 4*(-2) - 3 = -7。
九年级数学二次函数测试题含答案(精选5套)
九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
九年级数学 二次函数(巩固篇)(专项练习)Word版含解析
专题2.3 二次函数(巩固篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.3 二次函数(巩固篇)(专项练习) 一、单选题知识点一、二次函数的判断1.下列函数:①2y x =-,①3y x=,①2y x ,①234y x x =++,y 是x 的反比例函数的个数有( ). A .1个B .2个C .3个D .4个2.下列函数中,二次函数是( ) A .y =﹣4x +5B .y =x (2x ﹣3)C .y =ax 2+bx +cD .21y x =3.设y =y 1﹣y 2,y 1与x 成正比例,y 2与x 2成正比例,则y 与x 的函数关系是( ) A .正比例函数 B .一次函数 C .二次函数D .以上均不正确4.若用(1)、(2)、(3)、(4)四幅图分别表示变量之间的关系,将下面的(a )、(b )、(c )、(d )对应的图象排序( )(1) (2) (3) (4) (a )面积为定值的矩形(矩形的相邻两边长的关系) (b )运动员推出去的铅球(铅球的高度与时间的关系)(c )一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系)(d )某人从A 地到B 地后,停留一段时间,然后按原速返回(离开A 地的距离与时间的关系)A .(3)(4)(1)(2)B .(3)(2)(1)(4)C .(4)(3)(1)(2)D .(3)(4)(2)(1)知识点二、根据二次函数定义求参数5.若函数y =(a ﹣1)x 2+2x +a 2﹣1是二次函数,则( ) A .a ≠1B .a ≠﹣1C .a =1D .a =±16.已知函数y =ax 2+bx +c ,其中a ,b ,c 可在0,1,2,3,4五个数中取值,则不同的二次函数的个数共有( ) A .125个B .100个C .48个D .10个7.如果函数22(2)27m y m x x -=-+-是二次函数,则m 的取值范围是( ) A .2m =±B .2m =C .m =﹣2D .m 为全体实数8.若y=(m +1)265m m x --是二次函数,则m= ( )A .-1B .7C .-1或7D .以上都不对知识点三、列二次函数解析式9.下列实际问题中,可以看作二次函数模型的有( )①正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数b 与这个人的年龄a 之间的关系为b =0.8(220-a );①圆锥的高为h ,它的体积V 与底面半径r 之间的关系为V =13πr 2h (h 为定值);①物体自由下落时,下落高度h 与下落时间t 之间的关系为h =12gt 2(g 为定值); ①导线的电阻为R ,当导线中有电流通过时,单位时间所产生的热量Q 与电流I 之间的关系为Q =RI 2(R 为定值). A .1个B .2个C .3个D .4个10.用一根长60cm 的铁丝围成一个矩形,那么矩形的面积2()y cm 与它的一边长()x cm 之间的函数关系式为( ) A .230(030)y x x x =-<< B .230(030)y x x x =-+< C .230(030)y x x x =-+<<D .230(030)y x x x =-+<11.二次函数2y ax c =+的图象与22y x =的图象形状相同,开口方向相反,且经过点()1,1,则该二次函数的解析式为( ) A .221y x =-B .223y x =+C .221y x =--D .223y x =-+12.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x 元,则可卖出(350-10x )件商品,那么商品所赚钱y 元与售价x 元的函数关系为( )A .2105607350y x x =--+B .2105607350y x x =-+-C .210350y x x =-+D .2103507350y x x =-+-二、填空题知识点一、二次函数的判断 13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 14.下列各式:()()()()2222212;2;;;12;2(1)2;2122y x y x y y y x x y x y x x x x x=+====-+=-+=+--;其中y 是x 的二次函数的有________(只填序号)15.下列函数中属于一次函数的是_____,属于反比例函数的是______,属于二次函数的是______A. y =x(x +1)B. xy =1C. y =2x 2-2(x +1)2D. y =16.二次函数y =3x 2+5的二次项系数是_____,一次项系数是_____. 知识点二、根据二次函数定义求参数17.已知函数y =(2﹣k )x 2+kx +1是二次函数,则k 满足__. 18.若y =(m +1)x 2+mx ﹣1是关于x 的二次函数,则m 满足_____. 19.函数()21m y m x =++是关于x 的二次函数,则m=___ 20.若函数()2262mm y m x --=+是二次函数,则m =________.知识点三、列二次函数解析式21.矩形周长等于40,设矩形的一边长为x ,那么矩形面积S 与边长x 之间的函数关系式为____.22.在①ABC 中,已知BC 边长为x(x>0),BC 边上的高比它的2倍多1,则三角形的面积y 与x 之间的关系为__________.23.正方形边长为2,若边长增加x ,那么面积增加y ,则y 与x 的函数关系式是______. 24.用一根长为10m 的木条,做一个长方形的窗框,若长为xm ,则该窗户的面积y (m 2)与x (m )之间的函数表达式为_____. 三、解答题25.已知函数y=-(m+2)2-2m x (m 为常数),求当m 为何值时:(1)y 是x 的一次函数?(2)y 是x 的二次函数?并求出此时纵坐标为-8的点的坐标.26.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一条矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带BC 边长为xm ,绿化带的面积为ym2 , 求y 与x 之间的函数关系式,并写出自变量x的取值范围.27.如图2 - 4所示,长方形ABCD的长为5 cm,宽为4 cm,如果将它的长和宽都减去x(cm),那么它剩下的小长方形AB′C′D′的面积为y(cm2).(1)写出y与x的函数关系式;(2)上述函数是什么函数?(3)自变量x的取值范围是什么?28.某商场销售一批名牌衬衫,每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经市场调查发现,如果每件衬衫每降价1元,商场每天可多售出2件.()1如果每件衬衫降价5元,商场每天赢利多少元?()2如果商场每天要赢利1200元,且尽可能让顾客得到实惠,每件衬衫应降价多少元?()3用配方法说明,每件衬衫降价多少元时,商场每天赢利最多,最多是多少元?参考答案:1.A【分析】根据反比例函数、一次函数、二次函数的性质,对各个选项逐个分析,即可得到答案.【详解】2y x =-是一次函数,故选项①不符合题意;3y x=是反比例函数,故选项①符合题意; 2y x 是二次函数,故选项①不符合题意;234y x x =++是二次函数,故选项①不符合题意;①y 是x 的反比例函数的个数有:1个 故选:A .【点睛】本题考查了反比例函数、二次函数、一次函数的知识;解题的关键是熟练掌握反比例函数、二次函数、一次函数的定义,从而完成求解. 2.B【分析】根据二次函数的定义判断即可.【详解】A 、y =﹣4x+5是一次函数,故选项A 不合题意; B 、y =x (2x ﹣3)是二次函数,故选项B 符合题意;C 、当a =0时,y =ax 2+bx+c 不是二次函数,故选项C 不合题意;D 、21y x =不是二次函数,故选项D 不合题意. 故选:B .【点睛】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键. 3.C【分析】设y 1=k 1x ,y 2=k 2x 2,根据y =y 1﹣y 2得到y =k 1x ﹣k 2x 2,由此得到答案. 【详解】解:设y 1=k 1x ,y 2=k 2x 2, 则y =k 1x ﹣k 2x 2,所以y 是关于x 的二次函数, 故选:C .【点睛】此题考查列函数关系式,正确理解正比例函数的定义是解题的关键. 4.A【分析】根据每个类别的数量关系,判断函数图象的变化规律,选择正确结论.【详解】解:根据题意分析可得:(a )面积为定值的矩形,其相邻两边长的关系为反比例关系,对应图象为(3); (b )运动员推出去的铅球,铅球的高度随时间先增大再减小,对应图象为(4); (c )一个弹簧不挂重物到逐渐挂重物,弹簧长度随所挂重物质量增大而增大;对应图象为(1);(d )某人从A 地到B 地后,停留一段时间,然后按原速返回,对应图象为(2). 故选:A .【点睛】本题考查了函数图象,主要利用了反比例函数图象,抛物线,一次函数图象,分析得到各小题中的函数关系是解题的关键. 5.A【分析】利用二次函数定义进行解答即可. 【详解】解:由题意得:a ﹣1≠0, 解得:a ≠1, 故选:A .【点睛】本题主要考查了二次函数的定义,准确计算是解题的关键. 6.B【分析】根据二次函数的定义得到0a ≠,依据a 、b 、c 的选法通过计算即可得到答案 【详解】由题意0a ≠, ①a 有四种选法:1、2、3、4,①b 和c 都有五种选法:0、1、2、3、4, ①共有455⨯⨯=100种, 故选:B【点睛】此题考查二次函数的定义2(0)y ax bx c a =++≠,有理数的乘法运算,根据题意得到a 、b 、c 的选法是解题的关键. 7.C【分析】根据二次函数定义可得m -2≠0,222m -=,再解即可. 【详解】解:由题意得:m -2≠0,222m -=, 解得:m=-2, 故选:C .【点睛】此题主要考查了二次函数定义,关键是掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.8.B【分析】令x的指数为2,系数不为0,列出方程与不等式解答即可.【详解】由题意得:m2-6m-5=2;且m+1≠0;解得m=7或-1;m≠-1,①m=7,故选:B.【点睛】利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为0.9.C【详解】形如y=ax2+bx+c(a、b、c是常数且a≠0)的函数是二次函数,由二次函数的定义可得①①①是二次函数,故选C.10.C【分析】由矩形另一边长为周长的一半减去已知边长求得另一边的长,进一步根据矩形的面积等于相邻两边长的积列出关系式即可.【详解】由题意得:矩形的另一边长=60÷2-x=30-x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30-x)=-x2+30x(0<x<30).故选:C.【点睛】此题考查根据实际问题列二次函数关系式,掌握矩形的边长与所给周长与另一边长的关系是解题的关键.11.D【分析】根据二次函数y=ax2+c的图象与y=2x2的图象形状相同,开口方向相反,得到a=−2,然后把点(1,1)代入y=−2x2+c求出对应的c的值,从而可得到抛物线解析式.【详解】①二次函数y=ax2+c的图象与y=2x2的图象形状相同,开口方向相反,①a=−2,①二次函数是y=−2x2+c,①二次函数y=ax2+c经过点(1,1),①1=−2+c,①c=3,①抛该二次函数的解析式为y=−2x 2+3; 故选D.【点睛】此题考查二次函数的性质,解题关键在于利用待定系数法求解. 12.B【分析】商品所赚钱=每件的利润×卖出件数,把相关数值代入即可求解. 【详解】解:每件的利润为(x -21), ①y =(x -21)(350-10x ) =-10x 2+560x -7350. 故选B .【点睛】本题考查了根据实际问题列二次函数关系式,解决本题的关键是找到总利润的等量关系,注意先求出每件商品的利润. 13.12-2x , 1【分析】函数化简为一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 【详解】①y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项 ①21212y x x =-+ 中,二次项系数为12,一次项是-2x ,常数项是1.故答案是:12; -2x;1.【点睛】考查了二次函数的定义,二次函数的一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 14.①①①【分析】根据二次函数的定义与一般形式即可求解. 【详解】解:y 是x 的二次函数的有①,①,①. 故答案是:①,①,①.【点睛】本题考查了二次函数的定义,一般形式是y=ax 2+bx+c (a≠0,且a ,b ,c 是常数,x 是未知数). 15. C B A【详解】根据题意可知y=x (x+1)=x 2+x ,可由二次函数的定义,可知是二次函数;根据xy=1是反比例关系,所以是反比例函数;而y =2x 2-2(x +1)2= y =2x 2-2(x 2+2x+1)=-4x -2,是一次函数;函数y . 故答案为C 、B 、A. 16. 3 0【分析】根据二次函数的定义解答即可.【详解】二次函数y =3x 2+5的二次项系数是3,一次项系数是0. 故答案是:3;0.【点睛】考查二次函数的定义,是基础题,熟记概念是解题的关键,要注意没有一次项,所以一次项系数看做是0. 17.k ≠2【分析】利用二次函数定义可得2﹣k ≠0,再解不等式即可. 【详解】解:由题意得:2﹣k ≠0, 解得:k ≠2, 故答案为:k ≠2.【点睛】本题主要考查了二次函数的定义,准确分析计算是解题的关键. 18.m ≠﹣1【分析】利用二次函数定义可知m+1≠0,再解不等式即可; 【详解】解:由题意得:m+1≠0, 解得:m≠﹣1, 故答案为:m≠﹣1.【点睛】本题考查了二次函数的定义,正确掌握二次函数的定义是解题的关键; 19.2【分析】根据二次函数的定义可得220m m ⎧=⎪⎨+≠⎪⎩,求解即可.【详解】解:①函数()21my m x =++是关于x 的二次函数,①220m m ⎧=⎪⎨+≠⎪⎩,解得2m =,故答案为:2.【点睛】本题考查二次函数的定义,注意二次项系数不能为0. 20.4【分析】直接利用二次函数的定义进而分析得出答案. 【详解】由题意得:2262m m --=,且20m +≠, 解得:4m =. 故答案为:4.【点睛】本题考查了二次函数的定义,解决问题的关键是明确最高次项的次数为2,且最高次项系数不为0. 21.220S x x =-+【分析】根据矩形的周长、一边长,可得另一边长,根据矩形的面积公式,可得答案. 【详解】解:设矩形的一边长为x 米,另一边长为(20-x )米, ①由矩形的面积公式,得 2(20)20S x x x x =-=-+【点睛】本题考查了函数解析式,利用了矩形的面积公式. 22.y=x 2+12x【分析】根据已知得出三角形的高,进而利用三角形面积公式求出即可. 【详解】①BC 边长为x(x>0),BC 边上的高比它的2倍多1, ①这条边上的高为:2x+1, 根据题意得出:y=12x (2x+1)=x 2+12x . 故答案为y=x 2+12x .【点睛】此题主要考查了根据实际问题列二次函数关系式,根据三角形面积公式得出是解题关键. 23.y=x 2+4x【分析】增加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可. 【详解】新正方形的边长为2x +,原正方形的边长为2. ∴新正方形的面积为2(2)x +,原正方形的面积为4, 22(2)44y x x x ∴=+-=+,故答案为24y x x =+.【点睛】考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.24.y =﹣x 2+5x【分析】直接利用根据实际问题列二次函数解析式关系式,正确表示出长方形的宽是解题关键.【详解】设长为xm ,则宽为(5﹣x )m ,根据题意可得:y =x (5﹣x )=﹣x 2+5x .故答案是:y =﹣x 2+5x .【点睛】考查了根据实际问题列二次函数解析式,正确表示出长方形的宽是解题关键.25.(1)(2) m =2,纵坐标为-8的点的坐标是,-8),(,-8)【分析】(1)根据一次函数的定义求m 的值即可;(2)根据二次函数的定义求得m 的值,从而求得二次函数的解析式,把y =-8代入解析式,求得x 的值,即可得纵坐标为-8的点的坐标.【详解】(1)由y=-(m+2)22m x -(m 为常数),y 是x 的一次函数,得221,20,m m ⎧-=⎨+≠⎩解得 ①当y 是x 的一次函数;(2)由y=-(m+2)22m x -(m 为常数),y 是x 的二次函数,得222,20,m m ⎧-=⎨+≠⎩解得m=2,m=-2(不符合题意的要舍去),当m=2时,y 是x 的二次函数,当y=-8时,-8=-4x 2,解得故纵坐标为-8的点的坐标是-8)和(,-8).【点睛】本题考查了一次函数的定义、二次函数的定义,解题关键是掌握一次函数与二次函数的定义.26.y=﹣12x2+20x ,自变量x 的取值范围是0<x≤25.【详解】试题分析:由矩形的性质结合BC 的长度可得出AB 的长度,再根据矩形的面积公式即可找出y 与x 之间的函数关系式.试题解析:①四边形ABCD 为矩形,BC=x①AB=40-2x . 根据题意得:24012022x y BC AB x x x -⎛⎫=⨯==-+ ⎪⎝⎭,因为墙长25米,所以025x <≤. 27.(1) y =x2-9x +20;(2) 二次函数;(3) 0<x <4.【详解】试题分析:(1)根据长方形的面积公式,根据图示求解即可得到函数关系式;(2)通过二次函数的定义可判断;(3)根据x 取值不能大于原方程的长方形的宽进行分析.试题解析:(1)根据长方形的面积公式,得y =(5-x)·(4-x)=x 2-9x +20,所以y 与x 的函数关系式为y =x 2-9x +20.(2)上述函数是二次函数.(3)自变量x 的取值范围是0<x <4.点睛:此题主要考查了根据题意列函数的解析式,熟悉掌握根据题意列函数关系式是解决此题的关键.28.(1)如果每件衬衫降价5元,商场每天赢利1050元;()2每件衬衫应降价20元.()3每件衬衫降价15元时,商场平均每天盈利最多.【分析】总利润=每件利润×销售量.设每天利润为w 元,每件衬衫应降价x 元,据题意可得利润表达式,(1)把x =5代入求得相应的w 的值即可;(2)再求当w =1200时x 的值;(3)根据函数关系式,运用函数的性质求最值.【详解】(1)设每天利润为w 元,每件衬衫降价x 元,根据题意得w =(40−x )(20+2x )=−2x 2+60x +800=−2(x−15)2+1250当x =5时,w =−2(5−15)2+1250=1050(元)答:如果每件衬衫降价5元,商场每天赢利1050元;;()2当w 1200=时,22x 60x 8001200-++=,解之得1x 10=,2x 20=.根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价20元.()3商场每天盈利()()40x 202x -+22(x 15)1250=--+.所以当每件衬衫应降价15元时,商场盈利最多,共1250元.答:每件衬衫降价15元时,商场平均每天盈利最多.【点睛】本题考查了配方法的应用,一元二次方程的应用.根据题意写出利润的表达式是此题的关键.。
二次函数最经典练习题
二次函数最经典练习题1、抛物线y=-(x+2)-3的顶点坐标是().正确答案为(A)(2,-3)。
2、抛物线y x2x1的顶点坐标是(。
)正确答案为(D)(2,-1)。
3、抛物线y=x-2x-3的顶点坐标是不完整的,需要删除。
4、下列二次函数中,图象以直线x= 2为对称轴,且经过点(0,1)的是( )正确答案为(C) y= (x−2)−3.5、将二次函数y x4x5化为y(x h)k的形式,则y.需要删除。
6、二次函数y x2x5有(。
)正确答案为(B) 最小值 5.7、由二次函数y2(x3)21,可知()正确答案为(D) 当x3时,y随x的增大而增大。
二、a、b、c与图象的关系1、如图为抛物线y ax bx c的图像,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是(。
)正确答案为(A) a+b=-1.2、已知抛物线y=ax+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是(。
)正确答案为(A) a>0.3、如图所示的二次函数y ax bx c的图象中,XXX 同学观察得出了下面四条信息:(1)b4ac;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有..正确答案为(B) 3个。
4、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为1,1,下列结论:①ac<;②a+b=0;③4ac-b=4a;④a+b+c<0.其中正确的个数是()正确答案为(C) 3个。
三、列表法、增减性1、下列函数中,当x>0时y值随x值增大而减小的是().需要删除。
1.A。
无需改写。
B。
无需改写。
C。
无需改写。
D。
二次函数y=x^2-2x-3的图象如图所示。
当y<0时,自变量x的取值范围是x<-1或x>3.2.已知二次函数的图象(0≤x≤3)如图所示。
关于该函数在所给自变量取值范围内,下列说法正确的是:B。
二次函数综合试题及答案
二次函数综合试题及答案一、选择题1.下列四个函数中,不是二次函数的是()A. y = 2x^2 + 3x - 1B. y = -x^2 + 5x + 2C. y = 3x + 4D. y = x^2 + 2x - 3答案:C2.若二次函数y = ax^2 + bx + c的图象开口朝上,且在x = -1处有最小值0,则a,b,c的值应满足的关系是()A. a < 0,b < 0,c > 0B. a > 0,b > 0,c < 0C. a > 0,b < 0,c > 0D. a < 0,b > 0,c < 0答案:C3.已知二次函数y = ax^2 + bx + c的图象过点(1, 4),且在x = 2处有最大值5,那么a,b,c的值应满足的关系是()A. a = 1,b = 2,c = 3B. a = -1,b = -2,c = -3C. a = 1,b = -2,c = 3D. a = -1,b = 2,c = -3答案:C二、计算题1.求函数y = 2x^2 - 3x + 1的对称轴和顶点坐标。
解答:对称轴的公式为x = -b / (2a),代入a = 2,b = -3,得x = 3/4。
将x = 3/4代入原方程得y = 2(3/4)^2 - 3(3/4) + 1 = 1/8。
所以对称轴为x = 3/4,顶点坐标为(3/4, 1/8)。
2.求函数y = x^2 + 4x - 5的零点。
解答:函数的零点即为方程x^2 + 4x - 5 = 0的解。
使用求根公式,得x = (-4 ± √(4^2 - 4 * 1 * -5)) / (2 * 1)= (-4 ± √(16 + 20)) / 2= (-4 ± √36) / 2= (-4 ± 6) / 2解得x1 = -5,x2 = 1。
所以函数的零点为-5和1。
二次函数常用公式、结论及训练.doc
初中函数问题涉及到的常用公式或结论及其训练一、 常用公式或结论(1)横线段的长 = x 大-x 小 =x 右-x 左 =横标之差的绝对值(用于情况不明)。
纵线段的长 = y 大-y 小=y 上-y 下 = 纵标之差的绝对值(用于情况不明)。
(2)点轴距离:点P (x 0 ,y 0)到X 轴的距离为0y ,到Y 轴的距离为o x 。
(3)两点间的距离公式:若A (x 1,y 1),B(x 2,y 2), 则 AB=221212()()x x y y -+- (4)点到直线的距离:点P (x 0 ,y 0)到直线Ax+By+C=0 (其中常数A,B,C 最好化为整系数,也方便计算)的距离为:0022Ax By Cd A B++=+(5)中点坐标公式:若A(x 1,y 1),B (x 2,y 2),则线段AB 的中点坐标为(1212,22x x y y ++)(6)直线的斜率公式:若A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),则直线AB 的斜率为:1212=AB y y k x x --,(x 1≠x 2) (7)两直线平行的结论:已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2①若l 1//l 2,则k 1=k 2;②若k 1=k 2,且b 1 ≠b 2,则 l 1//l 2。
(8)两直线垂直的结论:已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2 ①若l 1┴l 2,则k 1•k 2 =-1;②若k 1•k 2 =-1,则l 1┴l 2(9)直线与抛物线(或双曲线)截得的弦长公式:【初高中数学重要衔接内容之一,设而不求的思想】直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )截得的弦长公式是:AB=2121x x k -•+=2122124)(1x x x x k -+•+证明如下:设直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )交于A (x 1, y 1), B (x 2, y 2)两点,由两点间的距离公式可得:AB=221221)()(y y x x -+-,因为A (x 1, y 1),B (x 2, y 2)两点是直线y=kx+n 与抛物线抛物线y=ax 2+bx+c (或双曲线y=m/x )的交点,所以 A (x 1, y 1),B (x 2, y 2)两点也在直线y=kx+n 上,∴y 1=kx 1+n, y 2=kx 2+n, ∴y 1-y 2=(kx 1+n )—(kx 2+n )=kx 1-kx 2=k (x 1-x 2), ∴AB=2212221)()(x x k x x -+-=2212))(1(x x k -+=2121x x k -•+=2122124)(1x x x x k -+•+而x 1, x 2显然是直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )组成方程组后,消去y (用代入法)所得到的那个一元二次方程的两根,从而运用韦达定理x 1+x 2 , x 1•x 2可轻松求出,进而直线与抛物线(或双曲线)截得的弦长就很容易计算或表示出来。
初三下二次函数练习题及答案
初三下二次函数练习题及答案一、选择题1.下面哪一个函数是二次函数?A. y = 3x + 1B. y = x² + 2x + 1C. y = 4^xD. y = √x2.二次函数y = ax² + bx + c图象是抛物线,开口向上的条件是:A. a > 0B. a < 0C. b > 0D. b < 03.已知二次函数y = x² - 4x + 3的顶点为(2,-1),则a、b、c的值分别为:A. a = 1,b = -4,c = -1B. a = 1,b = 4,c = -3C. a = 1,b = -4,c = 3D. a = 1,b = -2,c = -3二、计算题1.已知二次函数y = x² - 3x + 2,求该函数的顶点坐标和对称轴的方程式。
解答:顶点的横坐标为x = -b/2a,所以 x = -(-3)/(2*1) = 3/2。
将x = 3/2代入原函数可得y = (3/2)² - 3*(3/2) + 2 = -1/4。
所以,该二次函数的顶点坐标为(3/2, -1/4)。
对称轴的方程式为x = 3/2。
2.已知二次函数y = 2x² - 4x + 1,求该函数的零点。
解答:函数的零点即为使得y = 0的x的值。
将y = 0代入原函数可得2x² - 4x + 1 = 0。
使用求根公式可解得x = (4 ± √(16 - 4*2*1))/(2*2) = (4 ± √8)/4 = (1 ± √2)/2。
所以,该二次函数的零点为x = (1 + √2)/2和x = (1 - √2)/2。
三、应用题1.小明将一长方形花坛围起来,其中一边贴着墙,另外三边用栅栏围起来。
已知墙的一段长为4米,花坛的面积为12平方米。
若栅栏的费用为每米15元,求栅栏的总费用。
解答:设花坛的另外两条边长分别为x和y,则有xy = 12。
二次函数习题带答案
二次函数习题带答案(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二十二章、二次函数二次函数一、选择题1、抛物线y=ax2+bx+c(a≠0)的对称轴是x=2,且经过点P(3,0).则a+b+c的值为( B )A.-1 B.0 C.1 D.22、已知二次函数的图象经过(1,3)、(2,7)和(0,1)三点,则该函数的解析式是( A )A.y=x2+x+1 B.y=x2+3x+2 C.y=x2-2x+3 D.y=2x2+x+13、已知二次函数的图象的顶点为(1,1),且经过点(2,2)则该函数的解析式是( C )A.y=x2+x+1 B.y=x2+2x+1 C.y=x2-2x+2 D.y=x2-x+14、无论m为任何实数,二次函数y=2x+(2-m)x+m的图象总过的点是( A )A.(1,3) B.(1,0) C.(-1,3) D.(-1,0)5、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a-b-c <0;③b+2a<0;④abc>0.其中所有正确结论的序号是( B )A.③④ B.②③ C.①④ D.①②③6、如图,抛物线y=ax2+bx+c(a≠0)的图象与x轴的一个交点是(-2,0),顶点是(1,3).下列说法中不正确的是( C )A.抛物线的对称轴是x=1 B.抛物线的开口向下C.抛物线与x轴的另一个交点是(2,0) D.当x=1时,y有最大值是37、y=(x-2)2+2的图象可由y=x2的图象( A )A.向右平移2个单位,向上平移2个单位得到;B.向右平移2个单位,向下平移2个单位得到;C.向左平移2个单位,向上平移2个单位得到;D.向左平移2个单位,向下平移2个单位得到。
8、抛物线y=x2-4x+5的顶点P到x轴的距离为PQ,则△PQO的周长是( A )A.53+ B.53- C.8 D.56+9、二次函数y=ax2+bx+c的图象如图所示,那么a,b,c的符号是( C )A.a>0,b>0,c<0 B.a<0,b<0,c>0C.a<0,b>0,c>0 D.a<0,b<0,c<010、某拱门跨度为2米,高度为2米,若边长为a米的立方体恰好能从此门通过,则a为( A )米.A.1 B.2 C.3 D.4姓名: 教案二、解答题11、已知二次函数y=2x 2+2kx +k 2-4的图象与x 轴的一个交点是A(-2,0),求该二次函数的顶点坐标.解:(-1,-2)12、已知二次函数y=ax 2+bx +c 的图象经过点(0,0),(2,0),(1,1)。
二次函数经典计算题
6、已知二次函数的图象经过点A (-3,0),B (0,3),C (2, -5),且另与x 轴交于D 点。
(1)试确定此二次函数的解析式;(2)判断点P (-2,3)是否在这个二次函数的图象上?如果在,请求出△P AD 的面积; 如果不在,试说明理由.27、已知二次函数c bx x y ++-=2的图象如图所示,它与x 轴的一个交点坐标为(-1,0),与y 轴的交点坐标为(0,3)。
(1)求此二次函数的解析式; (2)根据图象,写出函数值y 为正数时,自变量x 的取值范围。
O 3 -1 xy28、已知二次函数c bx x y ++-=221的图象经过A (2,0)、B (0,-6)两点。
(1)求这个二次函数的解析式(2)设该二次函数的对称轴与x 轴交于点C ,连结BA 、BC ,求△ABC 的面积。
30、已知二次函数y =x 2+bx +c +1的图象过点P (2,1).(1)求证:c =―2b ―4;(3)若二次函数的图象与x 轴交于点A (x 1,0)、B (x 2,0),△ABP 的面积是 3 4,求b 的值.34、如图,已知二次函数24y ax x c =-+的图像经过点A 和点B .(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P (m ,m )与点Q 均在该函数图像上(其中m >0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 到x 轴的距离.5、(2009年安顺)如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。
(1) 求抛物线的解析式;(2) 设抛物线顶点为D ,求四边形AEDB 的面积;(3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。
xy O 3-9 -1 -1 A B22、(江苏省苏州市 )如图,以A 为顶点的抛物线与y 轴交于点.B 已知A B 、两点的坐标分别为()()3004.,、,(1)求抛物线的解析式;(2)设()M m n ,是抛物线上的一点(m n 、为正整数),且它位于对称轴的右侧.若以M B O A 、、、为顶点的四边形四条边的长度是四个连续的正整数,求点M 的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P ,22228PA PB PM ++>是否总成立?请说明理由.(第29题)。
二次函数练习题及答案
二次函数练习题及答案二次函数是高中数学中的重要内容,也是学生们常常遇到的难点之一。
为了帮助学生更好地理解和掌握二次函数,下面将给大家提供一些二次函数的练习题及答案。
1. 求解下列二次方程:(1) x^2 - 5x + 6 = 0(2) 2x^2 + 3x - 2 = 0解答:(1) 将方程因式分解得:(x - 2)(x - 3) = 0因此,x = 2 或 x = 3(2) 使用求根公式得:x = (-b ± √(b^2 - 4ac)) / (2a)将方程中的系数代入公式计算得:x = (-3 ± √(3^2 - 4*2*(-2))) / (2*2)化简得:x = (-3 ± √(9 + 16)) / 4= (-3 ± √25) / 4因此,x = (-3 + 5) / 4 = 1/2 或 x = (-3 - 5) / 4 = -22. 求解下列二次不等式:(1) x^2 - 4x > 3(2) 2x^2 + 5x < 3x + 2解答:(1) 将不等式移项得:x^2 - 4x - 3 > 0将不等式左边进行因式分解得:(x - 3)(x + 1) > 0因此,x > 3 或 x < -1(2) 将不等式移项得:2x^2 + 5x - 3x - 2 < 0化简得:2x^2 + 2x - 2 < 0将不等式左边进行因式分解得:2(x - 1)(x + 1) < 0因此,-1 < x < 13. 求解下列二次函数的顶点坐标和对称轴方程:(1) y = x^2 - 4x + 3(2) y = -2x^2 + 4x - 1解答:(1) 将二次函数转化为顶点形式:y = (x - 2)^2 - 1顶点坐标为 (2, -1)对称轴方程为 x = 2(2) 将二次函数转化为顶点形式:y = -2(x - 1)^2 + 3顶点坐标为 (1, 3)对称轴方程为 x = 1通过以上的练习题,我们可以更好地理解和掌握二次函数的相关概念和解题方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1.0可编辑可修改二次函数计算题1、在平面直角坐标系xOy (如图)中,已知:点 A ( 3 , 0 )、y B(2,5)、C( 0,3).( 1)求经过点A、B、C的抛物线的表达式及画出图形;( 2)若点D是( 1)中求出的抛物线的顶点,求tan CAD 的值.O x2、已知:抛物线y ax2 b x c 经过A( -1 , 8)、B(3, 0)、C( 0, 3)三点.(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.23 、如图,直线y=x+3与x轴、 y 轴分别交于点A、 C,经过 A、C 两点的抛物线y=axy+ bx+c 与 x 轴的负半轴上另一交点为B,且tan∠ CBO=3.( 1)求该抛物线的解析式及抛物线的顶点D的坐标; C(2)若点P是射线BD上一点,且以点P、A、B为顶点的三角形与△ ABC相似,求 P 点坐标.A B O xD4、已知:如图,抛物线 y4 x 2 mx 4 与 y 轴交于点 C ,5y与 x 轴交于点 A 、B ,(点 A 在点 B 的左侧)且满足 OC =4OA . 设抛物线的对称轴与 x 轴交于点 M :( 1)求抛物线的解析式及点M 的坐标;C( 2)联接 CM ,点 Q 是射线 CM 上的一个动点,当△ QMB 与△ COM 相似时,求直线 AQ 的解析式.ABOx5、如图,在直角坐标平面上,点A 、B 在 x 轴上( A 点在 B 点左侧),点 在 y 轴正半轴C上,若 A (-1,0 ),OB =3OA ,且 tan ∠CAO =2.( 1)求点 B 、C 的坐标;( 2)求经过点 A 、B 、C 三点的抛物线解析式;( 3) P 是( 2)中所求抛物线的顶点,设Q 是此抛物线上一点,若△ ABQ 与△ ABP 的面积y相等,求 Q 点的坐标 .6、如图,已知抛物线y1 x2bx c经过点B(-4,0)与点C(8,0),且交y轴于点A.4(1)求该抛物线的表达式,并写出其顶点坐标;(2)将该抛物线向上平移 4 个单位,再向右平移m个单位,得到新抛物线.若新抛物线的顶点为P,联结 BP,直线 BP将△ ABC分割成面积相等的两个三角形,求m的值.yB OC xA7、在平面直角坐标系xOy (如图)中,已知A(-1,3) 2, n )两点在二次函、B(数 y 1 x2 bx 4 的图像上.yv1.0可编辑可修改(1)求b与n的值;(2)联结OA、OB、AB,求△AOB的面积;(3)若点P(不与点A重合)在题目中已经求出的二次函数的图像上,且POB 45 ,求点 P 的坐标.8、如图,抛物线y ax 2 2ax b 经过点 C(0,3),2且与 x 轴交于点 A、点 B,若tan∠ ACO=2.y 3( 1)求此抛物线的解析式;P2 M P OB A B是线段O x ()若抛物线的顶点为,点上一动点(不与点 B重合),∠ MPQ=45°,射线 PQ与线段 BM CQ交于点 Q,当△ MPQ为等腰三角形时,求点P 的坐标.Mv1.0可编辑可修改答案:1.解:(1 )设经过点A、B、C的抛物线的表达式为y ax 2 bx c ,将点 A(3 ,0)、 B(2,5)、C(0 , 3 )分别代入,得9a 3b c 0, a 1,4a 2b c 5, 解这个方程组,得b 2, 1+3 分c 3. c 3.所以,经过点 A 、 B 、 C 的抛物线的表达式为y x2 2x 3.1分y( 2)由y x2 2x 3 = (x 1) 2 4 ,得顶点 D 的坐标是D(1, 4). 1 分方法 1:AC2 32 32 18 ,CD 2 (1 0) 2( 4 3)2 2 ,AD 2 (3 1) 2(0 4) 2 20 . ⋯⋯⋯⋯ 1分∵ AC2 CD 2 18 2 20, AD2 20,∴ AC 2 CD 2 AD2.⋯⋯⋯⋯⋯1分∴ ACD 90 . ∴ tan CAD CD 2 1 . ⋯⋯⋯⋯ 1+1AC 3 2 3分2. 解:( 1)由抛物 y ax2 bx c C(0,3)可知c 3 . ⋯⋯⋯⋯( 2 分)由抛物2b x 3 A(-1 , 8)、B( 3, 0)得y axa ( 1)2b ( 1) 3 8,2 分)a 32b 3 3 0.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(a 1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)解得4.b∴ 抛物的表达式y x2 4 x 3 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)( 2)由 y24 x 3 配方得 y ( x21 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)x 2)∴ 点坐( 2, -1 ) . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)3、解:( 1)∵直y=x+ 3 与x、y分交于点A、 C∴ A( 3,0), B(0,3) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)在 Rt△ADB中,COtan CBO 3 ,得 BO=1, B(1,0)⋯⋯⋯(2分)BO二次函数解析式y a( x 3)( x 1) ,将点B(0,3)代入,解得a=1∴二次函数解析式y x2 4x 3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)∴ 点 D 坐( 2, 1) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1分)( 2) D ( 2, 1),B( 1,0) ,∴∠ABD=45°,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)直 AC的解析式y=x+3,∴∠ CAO=45°即∠ ABD=∠ CAO⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)P(分)4.若APB ACB,即四形平行四形,解得( -4,- 3) ;APBC P若BAP ACB,得ACAB ,得 3 2 2 ,得BP 2 2 ,解得AB BP 2 BP 35 2, ).3 35 2上所述,点P 的坐(-4,-3)或( , ) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 43 3解:( 1)根据意: C( 0, 4)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵OC=4OA∴ A(1,0)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)把点 A代入得 0= 4 m 4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)5解得 m=16⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)5∴抛物的解析式y 4 x2 16 x 4 ⋯⋯⋯⋯⋯⋯⋯(1分)5 5y4x 216442) 2365x ( x55 5∴ M (2,0) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)(2)根据意得: BM=3, tan ∠CMO=2 ,直 CM: y= 2x+4(i )当∠ COM=∠MBQ=90° ,△ COM∽△ QBM∴ tan ∠BMQ=BQ2v1.0可编辑可修改∴ BQ=6即 Q (5, 6 )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分) ∴ AQ : yx 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)( i i )当∠ COM=∠BQM=90° ,△ COM ∽△ BQM同理 Q (13,- 6 )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)5 5∴ AQ : y1 x 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)33OC (1 分)5、解:( 1)据 意 OA =1, Rt △ ACO 中, tan ∠ CAO==2 OA∴ OC =2 ∴C (0,2 ) (1 分)OB =3OA=3 ∴ B ( 3,0 ) ( 1 分)( 2) ya ( x 1)(x 3) a 0 ( 1 分)( 0,2 )代入得 2=-3a∴a - 2(1分) C32 1)(x2 2 4 2(1分)∴ y - ( x3) - xx333( 3) Q (x,y )∵y2 x 242 ∴P (,8)(1 分)- x1333AB=OA+OB =4SABP1AB y p 1 48 1622 3 3∵△ ABQ 与△ ABP 的面 相等∴S ABQ 116∴ y=8AB y(2 分)当 y=88 - 2 x 24 x2332 解得 x 1 x 2 13333∴Q (1, 8)(1 分)3当 y= - 8-8 - 2 x 2 4x 2 解得 x 1,2 1 2 233 33v1.0 可编辑可修改∴ Q (122,8)(2 分)36.解:( 1)由题意,得:4 4b c0,b 116 8b c解这个方程组,得8c∴抛物线的表达式为 y1 x2 x 84∵ y1 x2 x 81( x 2) 2 9 ∴顶点坐标是( 2, -9 )44( 2)易求 A ( 0, -8 ),设线段 AC 的中点为 D ,可求得点 D 的坐标是( 4, -4 )由题意知 BP 经过 D ( 4,-4 )0 4k b1 设 l BP : ykx b(k 0) k,可得4k ,解得24 bb2∴ l BP : y1 x 22又由题意知,新抛物线的解析式为y1( x 2 m)2 54∴顶点P 坐标为( 2+ , -5 )m∵点 P 在直线 BP 上,∴ 51(2 m) 22∴ m47 .解:( 1) ∵点 A ( - 1, 3 )在二次函数 y1 x 2bx 4 的图像上,1( 1)232 .∴ 3b 4. 解得 b2 分3 312∴经过 A ( , )、B ( 2 ,n )两点的二次函数的解析式是 y24 .1 22 22 4,即 n 4 .33∴ n2 分33(2)如图 9-1 ,过点 A 作 ADx 轴,垂足为 D ,过点 B 作 BE AD ,垂足为 E .由题意,易得 OD 1, AD 3, BE 3, ED 4, AE4 3 1 .v1.0 可编辑可修改∴梯形 ODEB 的面积为:yS梯形ODEB1(OD BE ) DE 1 4 4 8 .1 2 3 , 2SADOAD OD22SAEB1BE AE 3 . x22∴S AOBS 梯形 ODEB S ADO S AEB 8 3 5.评分标准:四个面积表达式,每个1 分 .图 9--1方法 2:与方法 1 类似S 梯形ADMB1(3 4) 3 21 ,y22SSADOBOM1 AD OD 3 ,2 2 1 BM OM4,2∴SAOBS梯形ADMBSADOSBOM5 .x评分标准:四个面积表达式,每个1 分 .图 9—2方法 3:分别求 AB 、 AO 、 AB 的长度,勾股逆定理证 △ AOB 是直角三角形,使用三角形面积公式直接求 △AOB 的面积 .其中,求出 AO10、AB10,OB20 , 1 分.勾股逆定理证 △ AOB2 分是直角三角形SAOB1OA AB1 1010 51 分22方法 4:与方法 1 类似,证明 △AOD ≌ △BAE .方法 5:求直线 AB 与 y 轴的交点 N 的坐标,然后求 △AON 、 △ BON 的面积 .10v1.0可编辑可修改( 3)分 算: AO10、AB 10 ,OB 20 ,y利用勾股逆定理△AOB 是直角三角形 .由 AOAB 得到 AOB ABO 45 .∵∴POB 45 , P 不与点 A 重合,xAOPAOB POB 90 .P 作PHx ,垂足 H .9—3由 POH AOD 90 , OADAOD 90得POHOAD .⋯⋯1分∴ PHtan POHtan OADOD 1 .OHAD3∴ PHtan POH1, PHk , OH3k ,得 P(3k, k) .⋯⋯1 分OH3将 P(3k, k) 代入 y1 x2 2 x4 ,得 k1 (3k )22(3k) 4 .3 33 3整理,得 3k 2k 4 0 .解 个关于 k 的方程,得 k 11, k 244 ⋯⋯1分.得P 1( 3, 1)、 P 2(4, )33知 P 2 (3, 1) 不合 意,舍去 . 故所求的点 P 的坐 P(4,4⋯⋯1分) .38. 解: (1) ∵抛物 y1 ax2 2ax b点C3),( 0,2∴ = 3= 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)b 2 ,OC2∵∠ AOC =90°, tan ∠ ACO =23,∴ OA = 2OC =1,∴点 A 坐 (1,0),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)3代入解析式,解得 a=12,所以解析式 :y1 x2 x3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 122分)11v1.0可编辑可修改(2) 由1 2 32y x x 解得: M(,), B( 3 ,0 ).2 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)y点 M作 MD⊥ x 交于点 D,⋯⋯⋯⋯( 1 分)∵ DM=DB=2,P D B∴∠ OBM=45°.⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)A O xQC①当 QP=QM,M∠ QPM=∠ QMP=45°,∴∠ PQM=90°.又∵∠ OBM=45°,∴∠ MPB=90°.∴ P(1,0).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)②当 PM=PQ,∵∠ MPQ=∠ OBM=45°,∠ PMQ=∠ BMP,∴△ PMQ∽△ BMP,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∴ BP= BM= 2 2 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)∴P( 3 2 2 ,0).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)③当 MP=MQ,点 Q与点 B 重合,点 P 与点 A 重合,不合意,舍去.⋯⋯⋯⋯⋯⋯⋯(1分)上所述,符合条件的点 P 坐(1,0)或( 3 2 2 ,0).12。