热力学函数间的关系

合集下载

热力学函数的基本关系式

热力学函数的基本关系式

dU = TdS- pdV
(1-108)
dH = TdS + Vdp
(1-109)
dA = -SdT- pdV
(1-110)
dG = -SdT + Vdp
(1-111)
式(1-108),(1-109),(1-110),(1-111)称为热力学基本方程
dU = TdS- pdV dH = TdS + Vdp dA = -SdT- pdV dG = -SdT + Vdp
常用的是式(1-120)及式(1-121),这两等式右边的变化率是可以由 实验直接测定的,而左边则不能。可用等式右边的变化率代替左
4.热力学状态方程
由dU=TdS-pdV
定温下, dUT=TdST-pdVT
等式两边除以dVT 即
dUT T dST p
dVT
dVT
由麦克斯韦方程 于是
U T S p V T V T S p V T T V
式(1-116)及 (1-117)叫吉布斯 - 亥姆霍茨方程。
(1-117)
G-H方程常用的形式为:



(G / T )
T p


H T2
加△
(1-116)
Gibbs自由能随压力的变化

(эG/эP)T,n=V
(э△G/эP)T,n=△V 此即G---V关系式
只要知道△V--p关系式,在定温下P1的△G1就可求算出P2的△G2。
在定压下从T1到 T2积分得: (△G)2/ T2- (△G)1/ T1=- =∫T1 T2 △H/T2dT 若知△H--T关系以及T1时的△G1就可求算T2时的△G2 而: △H= △H T0+∫ T0 T △CpdT △H T0是T0时的焓变。

热力学函数的基本关系式

热力学函数的基本关系式

dG = -SdT + Vdp
S p
T
V T
p
麦克斯韦关系式 :表示的是系统在同一状态的两种
变化率数值相等。 9
二阶混合偏导数
T p V S S V 麦氏方程记忆法:
T p
S
V S
p
① 对角乘积永远是pV,TS;
② 等式两边分母与外角标互换;
S p
T
V T
4
由四个热力学基本方程,分别加上相应的条件,可得到
8个派生公式:
dU = TdS- pdV
U S
V
T
U V
S
p
dH = TdS + Vdp
T V H
S p
H p S
dA = -SdT- pdV
A T
V
S
A V
T
p
dG = -SdT + Vdp
G T
P
S
G P

U T p p
V T T V
11
练习:由热力学基本方程出发证明,
H p
T
T
V T
p
V
证明:
dH=TdS+Vdp
定温下,等式两边除以dp
H p
T
T
S p
T
V
由麦克斯韦方程
S p
T
V T
p
返回
H p
T
T
V T
p
V
12
U T p p V T T V
S T p
T
T
定容
S CV T V T
S T V
15
T
V
5
2. 吉布斯 - 亥姆霍茨方程

热力学第二定律(4)

热力学第二定律(4)

dH TdS Vdp
(3) dA SdT pdV (4)
A(T ,V )
G(T , p)
dG SdT Vdp
适用条件:(1)无相变化和化学变化(恒定组成)的均 相封闭系统发生单纯pVT变化的可逆或不可逆过程(2) 对于化学反应和相变化只适用于非体积功为零的可逆过程 即非体积功为零的恒定组成的封闭系统
解:对理想气体,
pV nRT
p nRT /V
p nR ( )V T V
p nR U ( )T T ( )V p T p 0 V T V
所以,理想气体的热力学能只是温度的函数。
§3.8 热力学基本方程
8、偏微分运算规则: z f ( x, y ) 循环关系式:
=
2U U V S SV V S T V S
S一定时对V 微分 U T ; S V
§3.8 热力学基本方程 (1) dU TdS pdV
§3.8 热力学基本方程 3、热力学方程的简单应用
例:试证明理想气体恒温过程ΔA=ΔG
dT 0 dA pdV A
V2 V1
dT 0 dG Vdp G Vdp nRT ln
p1 p2
V1 pdV nRT ln V2
p2 V nRT ln 1 p1 V2
H G / T 2 T T p
积分:

G2
G1
T2 G H d( ) 2 dT T1 T T
T2 H G2 G1 dT 2 T1 T T2 T1
§3.8 热力学基本方程

§9.6 系统的热力学能与配分函数的关系

§9.6 系统的热力学能与配分函数的关系

T
V
NkT 2 ln qt NkT 2 d ln qr NkT 2 d ln qvT VdT NhomakorabeadT
NkT 2 d ln qe NkT 2 d ln qn
dT
dT
Ut Ur Uv Ue Un
(因为q = qt qr qv qe qn ,只有qt 与V 有关,所以必须
写成偏导数, 其它均可写成全导数。)
1
kT 2
g e i / kT ii
移项得:
kT 2 q T V
i giei / kT
带入热力学能公式: U
N q
gi e i / kT i
得:
U N kT 2 q NkT 2 ln q
q T V
T V
2
将 q = qt qr qv qe qn 代入,则;
U NkT 2 ln qtqrqvqeqn
NkT 2
d
ln
1
1 e
ΘV
/T
dT
1 NkΘV ev /T 1
a)通常情况下,v>>T,量子化效应较突出
ΘV 1 T
,
qV0 1
,
U
0 V
0
振动基本都处于基态,对Uv0无贡献
8
b)v /T<<1 (高温或低V) 时
eΘV /T 1 ΘV T
U
0 v
NkΘV
1 eΘv /T
1
NkΘV
U
0 r
0
,
U
0 V
0
3 Um 2 RT U0,m
低温:振动能级未开放:
5 Um 2 RT U0,m
(U
0 v
0)

热力学函数间关系及其相互变换

热力学函数间关系及其相互变换
证明: 先去掉U dU =TdS−pdV
恒压下,两边同时对S 求偏导
18
1.3 例证

19
1.3 例证
证明:
20
1.3 例证
任意绝热可逆过程膨胀后压力必降低。
21
中科院考研题
理想气体绝热膨胀时并不恒容,为什么仍可使用公式 dW=CvdT
dU U U U 答:dU dT dV 。 对理想气体 =0 ,故 dT T V V T V T U 或dU CV dT。因此在本例中dU d W CV dT 完全适用。 T V
热力学函数间关系及其相互变换
1
热力学函数间关系及其相互变换
两种情况:
一、U、H、S、F、G 等热力学量不能确定绝对值、 且不能通过设计实验直接测定,而p、V 、T、Cp 、 CV 、α、β、κ 等是可设计实验测定。而在研究U、H、 S、F、G 等变化规律时希望在不可测量与可测量的热 力学间建立起某些关系,从而取得某种规律性的认识
3
1.1 函数关系
三、定义式
四、Maxwell 关系
4 记忆口诀:“S−p、V−T,排成口字齐;平行求偏导,侧转找下 标”。
1.1 函数关系
◆ Maxwell 关系
5
1.1 函数关系
五、数学公式
Euler 关系
链关系:
倒易关系:
循环关系:
6
1.2 熵变换是函数变换之关键
(不含U、H、F、G)
24
25
二、科研和解决实际问题提出的许多命题要论证。
2
1.1 函数关系
一、基本方程
H = U+PV、 F=U-TS、 G = H-TS dU=TdS-pdV dF=-SdT-pdV dH=TdS+Vdp dG=-SdT+Vdp pV=nRT

热力学函数间的关系

热力学函数间的关系
则T = 1000 K, rG1000 = 61900 Jmol-1>0
计算结果说明,在给定条件下,298K时,合成氨反应可 以进行;而在1000K时,反应不能自发进行
再见!
H
U
TS
G
TS F
H U pV pV U H pV
G H TS F pV pV F U TS G pV
T1
T
T2 T1
H T2
dT
(1) 若温度变化范围不大,△H可近似为不随温度变化的常数
G T
T 2
G T
T 1
H
1 T2
1 T1
四、G与温度的关系—吉布斯-亥姆霍兹公式
25℃,反应 2SO3(g) 2SO2(g) O2(g)
rGm (298K) 1.400 10 5 J mol1 r Hm 1.966 105 J mol1
H T2
吉布斯-亥姆赫兹公式
G T
T
H T2
P
四、G与温度的关系—吉布斯-亥姆霍兹公式
吉布斯-亥姆赫兹方程式
Байду номын сангаас
G T
T
H T2
P
(微分形式)
应用:在等压下若已知反应在T1的rGm(T1),则可求得该反 应在T2时的rGm(T2)。
积分形式
T2 d ( G )
M 和N也是 x,y 的函数
二阶导数
M
2Z
( y )x xy ,
N
2Z
( x )y xy
所以
M N ( y )x ( x )y
三、Maxwell 关系式
热力学函数是状态函数,数学上具有全微分性质,将上述
关系式用到四个基本公式中, 就得到Maxwell关系式:

6.热力学基本关系式

6.热力学基本关系式

G U pV TS
dG S dT V d p
U、H、F、G这些热力学函数之间的关系实质是勒让德变换 勒让德变换实际上是在我们得到了一个不变量后,要得到它的对偶自变量下的 不变量的一个重要的变换。
热力学四个基本关系式(Gibbs关系式)如下:
d U T d S p dV
S p V T T V
(1)
U p V T T p T V
得证
几个重要的偏导关系式
1.与S有关的
S p V T T V
S V T p p T
d H T d S V d p
(1)
(2) (3)
d F S d T p dV dG S dT V d p
(4)
条件: 简单封闭系统,只作体积功。
• 基本关系式实质上是 U 、 H 、 F 和 G 的数学全 微分展开式。 • 简单的封闭系统, 状态只需两个独立变量即可 决定, 这两个变量可以任意选取. • 从四个关系式的微分变量可知, 对不同的状态 函数, 在作全微分展开时, 选取的独立变量是 不一样的:
例: 试证明:
U p V T T p T V
解:有基本热力学关系式
d U T d S p dV
在等温条件下,求内能对体积的偏微商:
U S V T V p T T
由麦克斯韦关系式: 代入(1)式得:
Wf 0
Qr T d S
将上式代入内能的全微分:
W p dV
d U T d S p dV
(1)

3.7 热力学基本方程及Maxwell关系式

3.7  热力学基本方程及Maxwell关系式

恒T、p、W= 0: G 0
自发 平衡
dGm α dGm β Sm α dT Vm α dp Sm β dT
Vm β dp
[Sm β Sm α ]dT [Vm β Vm α ]dp
dp Sm β Sm α
βαSm
dT Vm β Vm α
βαVm
又因 βαSm
βαHm T
dp dT
βαH m T βαVm
U
SV
H
A
pT
G
说明: 1. 等式右边只有四个物理量T,S, p,V
2. 十字交叉法:
对U来说,S,V分别表示dS和dV; dS对角线 对应T,dV对角线对应p;箭头方向表示正负,指向 为负,则为TdS和 –pdV
2. U、H、A、G的一阶偏导数关系式
U f (S,V ) H f (S, p) A f (T ,V ) G f (T , p)
p
S V
T
p T
V
V T
p
S p
T
T V
S
p S
V
T p
S
V S
p
S V
T
p T
V
V T
p
S p
T
说明:
1. 关系式中只有四个物理量T, S, p,V
2. 对角线乘积为 TS 与 pV
3. 等式两边的分母与下标互换
4. S和V为广度量,而T和p为强 度量。同种性质的状态函数 的分式,不取负号。
分析:利用克拉佩龙方程 dT T βαVm
dp 解:由克拉佩龙方程有 dT
T
βαH m
lsVm lsH m
dp
积分,得 lnT2
T1

热力学函数间的普遍关系式

热力学函数间的普遍关系式

不可逆过程 可逆过程 不可能过程
此式热力学第二定律的数学表达式之一,其中δQ为微循环中系 统从外界吸收的热量,T为吸热时热源的温度。
孤立系统的熵增原理:
孤立系统所进行的一切实际过程都朝着系统熵增 加的方向进行,在有限的情况下,系统的熵维持 不变,任何使系统熵减小的过程都是不可逆的。
S iso
0 0 0
U P V S H V p S A P V T G V p T
下变量N常常省略
A S T V G S T
因为U、H、A和G为热力学函数,因此他们的微分式是全 微分,因全微分的二阶偏导数与求导次序无关,从而得 到下列麦克斯韦关系式:
U U (S ,V ) H H ( S , p) A A(T ,V ) G G(T , p)
上述热力学基本关系式仅适用于摩尔数不变的均匀 系,如果考虑单组元系统摩尔数的变化,系统的广 延参数将取决于其摩尔数,这样上式就可扩展为:
U U ( S ,V , N ) H H ( S , p, N ) A A(T ,V , N ) G G (T , p, N )
V , S p, T V , T V , T p, S p, T
S T T V S V pT
p
由于热熔:
CV T S
并有:

T
V
C p T S
dH d (U pV ) TdS Vdp
dG SdT Vdp
dA SdT pdV
这四个式子,是组成固定物质的热力学基本微分关系式。

第二章 热力学函数及关系

第二章 热力学函数及关系
将上式改写为
d (U 0HM ) TdS pdV 0MdH 定义包括了磁介质在磁场中势能的内能:U * U 0HM ,则
dU * TdS pdV 0MdH
24
定义磁介质系统的吉布斯函数:G U * TS pV ,那么
dG SdT Vdp 0MdH
因为G是一个态函数,存在全微分,即在数学上
21
它常决定物体的性质,可看成是一个热力学系统, 状态参量:温度T、表面张力σ、表面积ξ。 物态方程:f (T,σ,ξ)=C, 外界对系统所做的功为
A d
dF SdT d
S F , T
F
T
注意:表面积扩大系外界对系统做功的结果,因此对于非气体 系统的广义位型变化前加一个负号。
22
下面这个图是解释表面张力的一个理想试验。一个光滑的金属 框,有一边是可以自由滑动的。把这个框在水里浸一下,框里 就形成一层水膜。水膜有上下两个表面。表面上的水分子有使 表面减小的倾向,所以必须施加一定的力F才能对抗这个力从 而保持住水膜面积。很显然,这个力F的大小与那个边的长度l 成正比。而这个比例是水的一种基本性质,与力F 和边l无关。 在界面科学里,这个比例被定义为表面张力,它的单位是力除 以长度,牛顿/米。
dG
G T
p,H
dT
G p
T
,H
dp
G H
T
,
p
dH
比较以上两个等式的右边对应项,可得
0M
G H
, T , p
V
G p
T ,H
对两者求混合偏导,有
0M
p
T
,
H
V H
T , p
此式将压缩效应(左边)与磁致伸缩效应(右边)

热力学函数的基本关系式

热力学函数的基本关系式
△S=QR/T; T △S= QR 故△G= △H- T △S=0- T △S= QR= WR=-RTlnP1/P2=5744Jmol-1 解法二: △G=∫ p1 p2Vdp = RTlnP2/P1=5744Jmol-1.
⑵等温等压相变△G 对于等温等压的可逆相变,直接可得(△G)T,P=0.对于非等温 等压的非可逆相变或同温同压下两个相态的△G,可以通过设计可 逆过程进行计算,也可根据G---P关系公式求算。
1.8 热力学函数的基本关系式
H
U、H、S、A、G 、 p、V、T H =U+pV,A =U-TS,G =H-TS 1. 热力学基本方程
U
pV
TS A pV
TS
G
δWr ′=0时,则δWr=-pdV,于是
一微小可逆过程
dU=δQr+δWr,
dS δ Qr T
δWr ′ =0时,则δWr=-pdV,于是
=8586Jmol-1 故△G= △G1+ △G2 + △G3=8584Jmol-1 依Gibbs自由能减少原理,298K,1atm水不能经等温等压过程转变 为同温 同压的水蒸气,但其逆过程则是可以的。因此在298K, 1atm下液态水是稳定态。
⒊应用Gibbs--helmholtz方程求△G 将 G--H方程:{э(△G/T)/эT}P=- △H/T2
△S=0,△T=0,△H=0,
△G=0
⑵理气在等温等压的Gibbs自由能改变 △G = △H-T △S (△H=0) △S=-R∑nilnXi △G= RT∑nilnXi 其中ni为组分i的量,Xi为理想混合气中
为组分I的摩尔数。
⒌非等温等压两态的△G 若体系的两态温度,压力都不相等,根据G的定义:

第一章 热力学函数及其相互关系(1)

第一章 热力学函数及其相互关系(1)

第一章热力学函数及其相互关系(1):热力学状态与气体方程系统与环境、平衡状态、非平衡状态、稳定状态、可逆过程与不可逆过程、局部平衡、部分平衡与介稳平衡、温标的发展、热力学温标、理想气体定律、van der Waals状态方程、virial方程、Redlich-Kwong方程、实际气体的液化与临界现象、对应态理论1.1系统、环境、热力学状态1.1.1 系统与系统的环境热力学把相互联系的客观真实世界区分为系统与系统的环境两部分。

系统(system)是我们要研究的那部分真实世界,即我们要研究的那部分物质或空间。

假如要研究一台运行着的热机汽缸内气体性质的变化,或者要研究一反应器中的全部物质,就分别是两种不同情况下的系统。

又如一氧气缸瓶在不断地向外喷射氧气,我们要研究喷射过程到某阶段时钢瓶中剩余氧气的性质,则该瞬间瓶中残留的氧应当是系统。

以往的书刊中曾用过一些系统的同义词,例如“物系”、“体系”等等。

系统的环境(surroundings)是系统以外与之相联系的真实世界,可以简单称为环境或外界。

需要指出,系统与环境之间可以有实际存在的边界隔开,例如上述汽缸、反应器壁等;也可能在系统与环境间只有假象的边界隔开,例如上述氧气瓶中作为系统的残留氧气与喷射出去的那些氧气本来是存在于同一钢瓶中,它们之间没有任何间隔,而喷射出去的那些氧气实际是环境的一部分。

系统与环境之间的联系包括有能量交换与物质交换两类。

针对二者之间联系情况的差别,可以把系统分成以下三种:(1) 隔离系统(孤立系统, isolated system)隔离系统(孤立系统)与环境之间既无能量交换,又无物质交换,所以环境对隔离系统中发生的任何变化不会有任何影响。

在热力学中,有时我们把所研究的系统及该系统的环境作为一个整体来看待,这个整体就应当是隔离系统。

(2)封闭系统(closed system)封闭系统与环境之间只有能量交换而无物质交换。

在前面提到的几个系统中,物质均被封闭于实有的容器间壁内或假象的边界内,使系统仅能通过界面与环境有热、功等形式的能量交换,故应当属于封闭系统。

热力学基本关系式

热力学基本关系式

至今讨论中常应用的八个热力学函数--p、V、T、U、H、S、A、G。

其中 U 和 S 分别由热力学第一定律和第二定律导出;H、A、G 则由定义得来。

而 U、H、A、G 为具有能量量纲的函数。

这些热力学函数间通过一定关系式相互联系着。

基本热力学关系式共有十一个(以下分别用公式左边括弧中的数字标明)。

从这十一个基本关系式出发,可以导出许多其它衍生关系式,它们表示出各不同物理量间的相互关系,利用它们可以帮助我们由易于直接测量的物理量出发以计算难于直接测量的物理量的数值。

由定义可得如下三个关系式:(1) (3-136)(2) (3-137)(3) (3-138)又由热力学第一定律、第二定律联合公式,在无非膨胀功条件下:将它和式(3-136)、(3-137)、(3-138)联系起来:即可得以下四个一组被称为恒组成均相封闭系统的热力学基本方程。

又称 Gibbs 方程。

(4) (3-139)(5) (3-140)(6) (3-141)(7) (3-142)这四个基本方程均不受可逆过程的限制,因为 U、H、A、G 等随着相应两个独立的状态函数变化而变化,因而与变化的具体途径(可逆或不可逆)无关,自然亦可用于不可逆过程。

公式虽然是四个,但式(5)、(6)、(7)实际上是基本公式(4)在不同条件下的表示形式。

根据全微分定义可有如下关系:(3-143)(3-144)(3-145)(3-146)式(3-139)与式(3-143)对比、式(3-140)与式(3-144)对比、式(3-141)与式(3-145)对比、式(3-142)与式(3-146)对比,可得如下关系(或称"对应系数式"):(3-147)(3-148)(3-149)和 (3-150)如分别将尤拉(Euler)定则:应用于热力学基本方程(4)、(5)、(6)、(7)可得如下四式:(8) (3-151)(9) (3-152)(10) (3-153)(11) (3-154)这四式常称为"麦克斯威关系式"。

第三章热力学函数及其应用热力学第三定律

第三章热力学函数及其应用热力学第三定律

(6)函数之间关系
dU yi dxi
i 0
经勒让德变换得到其它态函数的微分式 dU TdS pd (Vபைடு நூலகம்) H 以 S,p 为自变量
dH TdS pd (V ) d ( p(V )) TdS (V )dp d ( H p(V ) TdS pd (V ) dU H U p(V )
G H V p p T S
对广义力求偏导加负号
(5)麦克斯韦关系(二阶关系)
T (V ) S p p S
S p T V (V ) T
dU Q pd (V )
dH dU pdV Q p
e) 对于给定(p, S)的系统,焓最低是热力学平衡态的判据
• 热二定律
• 等压等熵
TdS dU pdV
dH 0
• 以上均未考虑除体积做功外的其他形式的功
• 1.5 吉布斯自由能作为热力学函数
• 与在等温等容条件下引入自由能的动机相同,我们关心等 温等压的情况,所以引入吉布斯自由能 a) 定义 • G=U+pV–TS b) G的微分 • dG = dU + pdV + Vdp – TdS – SdT = - SdT – (-V)dp c) 把G( T, p) 作为热力学函数,则它已经包含了热力学平衡 态的全部信息: 一阶导数
变量与函数的关系
U H T S V S p
G F S T p T V
U F p (V) S (V) T
dH (V)dp TdS

几个热力学函数间的关系

几个热力学函数间的关系

化学与环境科学学院
对于U,H,S,A,G 等热力学函数,只 要其独立变量选择适当,就可以从一个已知 的热力学函数求得所有其它热力学函数,从 而可以把一个热力学系统的平衡性质完全确
定下来。
这个已知函数就称为特性函数,所选择的 独立变量就称为该特性函数的特征变量。
Physical Chemistry
化学与环境科学学院
化学与环境科学学院
一、几个函数的定义式
Physical Chemistry
化学与环境科学学院
在热力学第一、第二定律中,共涉及五个热力学
函数:U、H、S、A、G,可通过定义式将它们相关 联。定义式适用于任何热力学平衡态系统,只是在特 定的条件下才有明确的物理意义。 (1) 焓的定义式
H U pV
Physical Chemistry
化学与环境科学学院
(2)
dH TdS Vdp
因为
H U pV
dH dU pdV Vdp
dU TdS pdV
所以
dH TdS Vdp
Physical Chemistry
化学与环境科学学院
(3)
dA SdT pdV
说明:
上述四个基本公式导出时,以 TdS 代 替 QR,以 pdV 代替 We,即在可逆过程条件下推得的。所以基 本公式对可逆过程、Wf = 0、组成平衡 ( 组成不变或 仅发生可逆相变、可逆化学反应的过程) 的封闭体系严 格成立。 但基本公式最终表达式中的每一热力学量(U、T 、S、P、V、T、H、F、G)都是体系的状态函数; 因此,其积分结果适用于任何始、终态相同的可逆或 不可逆过程。
Physical Chemistry
化学与环境科学学院

物理化学1.15-1 热力学函数的基本关系式

物理化学1.15-1  热力学函数的基本关系式
§1.15 热力学函数的基本关系式
8个热力学函数: 可直接测定
p、V、T、U 、H 、S、A、G
定 H =U+pV 义 式 A =U-TS
可求得
G =H-TS=A+pV
1.热力学基本方程
封闭系统 dU =δQ + δW
可逆过程
=δQr -pdV + δWr′
δQr =TdS
dU = TdS -pdV + δWr' δWr'=0:
dA = -SdT- pdV dG = -SdT + Vdp
G S T p

G p
T
V
证明:无相变和化学变化的封 闭系统,在定温下其吉布斯自 由能随压力的改变恒为正值。
证明:
dG = -SdT + Vdp
G ( p )T
V
>0
解: dG = -SdT + Vdp
S T2 nCV ,mdT nR ln V2 ,
T1
T
V1
A nRT ln V2 V1
应(用ቤተ መጻሕፍቲ ባይዱ()i封条i()i无i闭件i)非可系:体逆统积过,功程,。
可用于: (i)定量,定组成的单相系统;
(ii) 保持相平衡及化学平衡的系统.
8个派生公式: dU = TdS- pdV dH = TdS + Vdp
U T S V U p V S
dU = TdS -pdV
dU=TdS-pdV
H=U+pV dH=dU+pdV+Vdp
A=U-TS dA=dU-TdS-SdT
dH=TdS+Vdp
dA= - SdT - pdV

第四章-热力学函数与定律-5

第四章-热力学函数与定律-5
工科大学化学
2. 讨论 ☆ A是体系的状态函数,容量性质,能量量 纲,绝对值无法确定;
☆在一定条件下ΔA可作过程性质的判据:
ΔAT 、ΔAT,V 和 ΔAT,W’=0 判断可逆与否
ΔAT, V , W’=0 判断自动与否
☆A也称为恒容位
工科大学化学
☆可逆条件下的ΔA才有物理意义:
① 恒温可逆, -dAT =-δWT ,体系自由能
工科大学化学
依据的基本关系式: A=U-TS, G=H-TS= U+pV-TS =A+pV dA= dU-TdS -SdT dG= dH-TdS -SdT = dU+pdV +Vdp -TdS -SdT = dA+pdV +Vdp ΔA = ΔU- Δ(TS) ΔG = ΔH-Δ(TS) = ΔU+Δ(pV)-Δ(TS)
p2
工科大学化学
[例4-11] 在300K时,体系的压强由pΘ增至10pΘ,
求经过该过程体系的△A和△G。
设体系为(1)1mol理想气体;(2)1mol水。
解: (1) ΔA =ΔG = nRTln(p2/p1)
= 1×8.314×300×ln10 = 5743J
(2) 水为凝聚态, 可忽略压强对其体积的影响, 即dV = 0,则 ΔA = 0, 1mol水的体积为 Vm≈1×18×10-6=1.8 ×10-5 /m3 所以:ΔG = V(p2-p1) = 9 pΘV =16.4 /J
工科大学化学
2. 讨论 ☆ G 是体系的状态函数,容量性质,能量量纲, 绝对值无法确定; ☆ 在恒温、恒压可逆下,体系 G 的减少体现了体
系对外作有效功的本领: -dGT,p=- δW’
☆在一定条件下,体系Gibbs自由能的变化量可作 为过程性质的判据:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T2 G2 G1 H = ∫ 2 dT T1 T2 T1 T rGm 2 rGm1 1 1 = rHm( ) T2 T1 T2 T1
r Gm ,2
1.400 × 105 1 1 5 ) = 1.966 × 10 ( 873 298 873 298
r Gm ,2 = 30820J mol -1
吉布斯- 吉布斯-亥姆赫兹方程式
G T = H T2 T P
(微分形式)
应用:在等压下若已知反应在 应用:在等压下若已知反应在T1的rGm(T1),则可求得该反 应在T 时的 应在 2时的rGm(T2)。 积分形式

T2
T1
T2 G H ( ) = ∫ 2 dT T1 T T
( V V ) p dT = ( )T dp T p
1mol理想气体, PV = RT 理想气体, 理想气体 p T ( )p = , R V V V ( )T = , p p R p ( )V = V T 则 ( T ) p ( V )T ( p )V = 1
V p T
可写成
T V p ( )p( )T ( )V = 1 V p T
2010-8-2
三、Maxwell 关系式
证明: 例3证明:(
T V p )p( )T ( )V = 1 并以理想气体验证上式的正确。 并以理想气体验证上式的正确。 V p T
定量纯气体, 证: 定量纯气体, V = f (p,T)
dV = ( V V ) p dT + ( )T dp T p
当V恒定,dV = 0,则 恒定, , 恒定
dU = Td S pdV
U S 等温对V求偏微分 等温对 求偏微分 ( )T = T ( )T p V V
S p S 不易测定,根据Maxwell关系式 ( )T = ( ) V 关系式 ( )T 不易测定,根据 V T V
求得
U p ( )T = T ( )V p V T
只要知道气体的状态方程, 只要知道气体的状态方程,就可得到 ( 力学能随体积的变化值。 力学能随体积的变化值。
O r Gm ,T = 39340 + 25.46T ln T 9.17 × 10 3 T 2 + 0.35 × 10 7 T 3 + IT
代入得: 将T = 298 K, rG298 = 16.45kJ代入得:I= 65.5 , 代入得 则T = 1000 K, rG1000 = 61900 Jmol-1>0 ,
1 1 r H m = H 0 25.46T + × 18 33 × 103 T 2 × 2 05 × 107 T 3 则 2 3
1 3 N 2 ( g ) + H 2 ( g ) = NH 3 ( g ) 氨的合成 2 2
将T = 298 K, rH298 = -46.11kJ代入得: H0 = 39340 代入得: , 代入得
(1) 若温度变化范围不大,△H可近似为不随温度变化的常数 若温度变化范围不大, 可近似为不随温度变化的常数
1 1 G G T T = H T T T 2 T 1 1 2
与温度的关系—吉布斯 四、G与温度的关系 吉布斯 亥姆霍兹公式 与温度的关系 吉布斯-亥姆霍兹公式
O m ,T
b 2 c 3 T T + + IT = H 0 aT ln T 2 6
与温度的关系—吉布斯 四、G与温度的关系 吉布斯 亥姆霍兹公式 与温度的关系 吉布斯-亥姆霍兹公式
已知, 各种气体均处于100kPa时,rH298 = -46.11kJ, 已知,在298K各种气体均处于 各种气体均处于 时 , 时的 rG298 = 16.45kJ,试求 ,试求1000K时的rGm值 时的 解答: × × 解答:查表可知 Cp = 25.46 + 18.33× 103T 2.05× 10-7T2
S 不易测定,据Maxwell关系式 ( S ) = ( V ) 关系式 ( )T 不易测定, T p p T p
H V )T = V T ( )p 可得: 可得: ( p T
只要知道气体的状态方程, 只要知道气体的状态方程,就可求得 ( )T 值,即等 p 温时焓随压力的变化值。 温时焓随压力的变化值。
d G = d H Td S S d T

(3) dF = SdT pdV (4)
dH = TdS + Vdp 代入
得 dG = SdT + Vdp
适用条件:组成恒定、不 适用条件:组成恒定、 作非体积功的封闭系统的 作非体积功的封闭系统的 任何过程。 任何过程。
二、对应系数关系式
(1) (2)
= TdS pdV 代入
得 dH = TdS + Vdp
得 dF = SdT pdV
一、热力学基本关系式
(4)
dG = SdT + Vdp
G = H TS
总结: 总结:热力学四个基本关系式
根据定义式 取全微分: 取全微分:
(1) dU = TdS pdV (2)
dH = TdS + Vdp dG = SdT + Vdp
= T nR p = 0
V
所以,理想气体的热力学能只是温度的函数。 所以,理想气体的热力学能只是温度的函数。
三、Maxwell 关系式
(2)求等温条件下,H 随 p 的变化关系 )求等温条件下, 已知基本公式
d H = Td S + Vd p
H S 等温对p求偏微分 等温对 求偏微分 ( )T = T ( )T + V p p
r Gm (298K) = 1.400 × 10 5 J mol 1
25℃,反应 2SO (g) = 2SO (g) + O (g) ℃ 3 2 2
r H m = 1.966 × 10 5 J mol 1
不随温度而变化试求上述反应在600℃进行时的rGm rHm不随温度而变化试求上述反应在 ℃进行时的 视为常数,由公式: 解:由于温度变化不大,可将rHm视为常数,由公式: 由于温度变化不大,可将
与温度的关系—吉布斯 四、G与温度的关系 吉布斯 亥姆霍兹公式 与温度的关系 吉布斯-亥姆霍兹公式
(2) 若温度变化范围大,△H随温度变化而改变 若温度变化范围大, 随温度变化而改变 Cp写成温度的函数 Cp = a + bT + cT2 + …… 产物与反应物恒压热容之差为 rCp = a + bT + cT2 + …… 则 r H = H 0 + ∫ 0 r C p dT
H
三、Maxwell 关系式
证明理想气体的焓只是温度的函数。 例2 证明理想气体的焓只是温度的函数。 解:对理想气体, p V 对理想气体,
= nRT
p = nR T /V
nR V ( )p = p T
V H nR ( )T = V T ( )p = V T =0 T p p
所以,理想气体的焓只是温度的函数。 所以,理想气体的焓只是温度的函数。
与温度的关系—吉布斯 四、G与温度的关系 吉布斯 亥姆霍兹公式 与温度的关系 吉布斯-亥姆霍兹公式
对于一个化学反应:自一个温度反应的 求另一温度的 对于一个化学反应:自一个温度反应的rG1求另一温度的rG2 G dG = SdT + Vdp = S T P 在温度T时 在温度 时 G = H T S
第十一节 热力学函数间的关系
H
H = U + pV pV
U
U = H pV
TS TS
G
G = H TS = F + pV pV F = U TS = G pV
F
函数间关系的图示
H
U
H=U+ pV
pV
U = H pV
TS TS
F
G
G= HTS = F+ pV
pV F =UTS =G pV
一、热力学基本关系式
G H G 因此 = T T P
两边同时除以T 两边同时除以
1 G G H T T 2 = T 2 T P
G T = H T2 T P
吉布斯-亥姆赫兹公式 吉布斯-
与温度的关系—吉布斯 四、G与温度的关系 吉布斯 亥姆霍兹公式 与温度的关系 吉布斯-亥姆霍兹公式
U F p = ( ) S = ( )T V V
H G V =( ) S = ( )T p p
F G S = ( )V = ( ) P T T
三、Maxwell 关系式
全微分的性质 设函数Z的独立变量为 , , 具有全微分性质 设函数 的独立变量为x,y, Z具有全微分性质 的独立变量为
z = z( x , y )
对于定组成只作体积功的封闭系统 存在 dU = δQ pdV
δQ 若系统经历可逆过程 若系统经历可逆过程 dS = T
代入上式即得 dU = TdS pdV
(1)
这是热力学第一与第二定律的联合公式,适用于组成恒 这是热力学第一与第二定律的联合公式,适用于组成恒 热力学第一与第二定律的联合公式 不作非体积功的封闭系统。 定、不作非体积功的封闭系统。 的封闭系统 注意理解: 注意理解: 在推导中引用了可逆过程的条件, 在推导中引用了可逆过程的条件,但导出的关系式中所有的 物理量均为状态函数,在始终态一定时,其变量为定值, 物理量均为状态函数,在始终态一定时,其变量为定值,热力学 关系式与过程是否可逆无关。 关系式与过程是否可逆无关。
一、热力学基本关系式
(2)
dH = TdS + Vdp
H = U + pV
(3) dF = SdT pdV
根据定义式 取全微分: 取全微分:
根据定义式 取全微分: 取全微分:
F = U TS
相关文档
最新文档