凯洛夫PPT精选文档

合集下载

卡罗纳精品PPT课件

卡罗纳精品PPT课件

可是半年后,无限疼爱他的母 亲竟然去世了,他遭到了巨大的不 幸,他面容灰白,眼睛哭红了,连 两腿也站不稳,好像他自己也大病 了一场似的。他万分伤心。
老师

同学
妈妈
心灵之语
卡罗纳走进教室,突然放声大哭起来。
走进教室
卡罗纳翻开书,当他看到一幅母亲拉着儿子的 手的插图时,突然双手抱住脑袋,趴在桌子上号啕 翻开书 大哭。
我恍然大悟,没去拉母亲的手,却拉起卡 罗纳的手,和他一块儿回家去。
放学的时候,大家围在他的身边,谁都不说话, 只用关切的目光默默地看着他。
母亲把我推开了,她目不转睛地望着卡罗纳。
面对遭遇不幸的卡罗纳,大家以 不同的方式传递一种关爱,假如你当 时也在场,你会怎样去宽慰卡罗纳呢?
爱 的 奉 献
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程: /excel/ PPT课件下载:/kejian/ 试卷下载: /shiti/ PPT论坛:
千叮咛万嘱咐
说一说:课文讲了一件什么事?
卡罗纳失去母亲后,心情悲痛,身 边的人关心关爱他。
学习要求:
这是还一是个 一怎 个样 怎的 样孩 的子 孩?子?
默读课文,一边读一边把文中 最让你感动的语句和段落作上记号。 并说说这是一个怎样的孩子?
幸福
悲伤
那时候,母亲差不多每天都 来接他;要考试了,母亲总是 俯下身来向他千叮咛万嘱咐。
好 书 推 荐
《爱的教育》是一部日记 体儿童小说,原名《心》。 书中以小学生的口吻,记述 了发生在学生中的一百个动 人的故事。故事的主人公主 要是学生,还有老师以及学 生的父母亲等平凡的人。他 们都具有高尚的品质。小说 写出了他们对祖国和人民、 对父母和兄弟、对老师和同 学深厚而真挚的爱。小说在 1886年发表后,轰动了意大 利文坛,先后被译成许多种 文字,在世界各国广流传。

凯洛夫

凯洛夫

主要活动
• 1937年起先后任莫斯科大学和莫斯科列宁师范学院教育 学教研室主任 • 1942~1950年担任《苏维埃教育学》杂志主编 • 1946~1967年任俄罗斯联邦教育科学院院长 • 1949~1956年兼任俄罗斯联邦教育部部长 • 曾被选为原苏联共产党中央委员会候补委员,苏共中央监 察委员会委员,最高苏维埃代表 • 曾获社会主义劳动英雄称号和列宁勋章
教学6环节
• 使学生感知具体的事物,在此基础上形成学生的 表象 • 分清事物的异同、主次,认清他们之间的各种关 系 • 形成概念,认识定律、定理、规则、主导思想、 规范等 • 使学生牢固地掌握事实和概括性的规则(记忆、 背诵) • 技能和熟练技巧的养成和加强 • 在实践中检验知识,将之用于包括创造性作业在 内的各种作业
德育方法 儿童集体 组织法 说服法 练习 法
在集体中 和通过集 体进行教 育
奖惩法
五、总评
• 1948年版《教育学》中的教育学思想体系是苏联特定历 史时期的产物,它吸取初版进步之处;力图将其理论建立 在辩证唯物主义的历史论的基础上,是一种历史的进步; 不仅对苏联教育的发展起到过重要的影响,对我国解放初 期的教育理论建设也产生过很大的影响。 • 主要缺点在于,未能根据苏联当时的实际情况提出和解决 新的教育理论与实际问题,具有浓重的滞后性和封闭性; 对一系列教育、教学理论问题的处理过于绝对化和机械化, 很少辩证法。
评价: • 本意让学生通过教师的讲述,系统地掌握知识, 为进一步学习夯实基础
• 思考局限在是学生能牢固掌握间接知识的任务上 • 过于强调教师在教学中的主导作用,对培养学生 的主动性和创造性极为不利。
教养和教学的内容
主要表现在教学计划、教学大纲和教科书中 • 教学计划:强调普通学校授予学生的应该是从整个科学知 识中选择出来的基本知识

形式教育与实质教育【精选文档】

形式教育与实质教育【精选文档】

浅谈“形式教育”和“实质教育”“形式教育”与“实质教育”,是在教育的历史发展过程中形成的两种相对立的教育理论。

概括说来,前者认为教育旨在使学生的天赋官能或能力得到发展;后者则认为教育在于使学生获得知识。

前者是所谓“形式目的”的;后者是所谓“实质目的的”的。

毫无疑问,就形式教育与实质教育理论本身而言,早已成为历史。

现在很难找到一位自称是形式教育论者或实质教育论者的教育学家或教育家。

但就实质教育与形式教育理论的体质——知识与能力的关系——而言,它们始终以各种各样的形式,若隐若现地表现在教育理论和实践中。

从这个意义上说,这是一个具有普遍意义的问题,也许甚至是一个永恒的课题。

形式教育概念:形式教育,也称形式训练,形式陶冶;心智训练,心智陶冶。

同实质教育相对。

认为,教育的主要任务在于使学生的官能或能力得到发展。

它是资产阶级关于普通教育学校设置课程和选择教材的一种教育理论。

来源:形式教育论或形式训练论,可以追溯到古代的希腊和罗马。

英国教育家J. 洛克往往被认为是形式训练论的倡导者。

他说:“要使所有的人都成为深奥的数学家,并无必要,我只认为研究数学一定会使人心获得推理的方法,当他们有机会时,就会把推理的方法移用到知识的其他部分去。

”这一论点被奉为形式教育的圭臬。

在近代,形式教育论以官能心理学为理论依据,而官能心理学来源于心灵实体说,简称心体说。

以官能心理学为理论基础的形式教育论,在18世纪下半叶和19世纪初,对欧、美中小学的教育实践曾有很大的影响。

它所维护的,是文艺复兴以后旨在培养资产阶级统治人才的古典教育方向;强调古典语言、文字和古代历史等学科的教学,轻视自然科学知识的教学。

基本观点:①教育的任务在于训练心灵的官能。

身体上的各种器官,只有用操练使它们发展起来;心智的能力,也只有用练习使它们发展起来。

除了练习或训练以外,没有别的方法能发展官能。

人们的一切能力,都是从练习而来的,记忆力因记忆而增强,想象力由想象而长进,推理力以推理而提高,等等。

高中语文安东诺夫卡苹果ppt1 人教课标版最新精品课件

高中语文安东诺夫卡苹果ppt1 人教课标版最新精品课件
是如何结尾的?
以萧瑟荒凉的打猎场景结尾,最终 更以一首悠扬而悲壮的歌谣作结。
线索分析:
以时间为线索,从八月写到十一月, 将“初秋”苹果成熟的季节、农田丰收 的季节、“九月杪起”以及“深秋”初 冬时狩猎的季节连缀成四幅如诗如画的 图景,描绘出精美的俄罗斯农村秋天的 景致。
主题探究:
“安东诺夫卡苹果”仅仅是一种美味的水果吗?
跟随自己,为自己奔跑,抵制物欲的袭击,使心不为形役。即使自己不能成为圣人,只要心中有了圣人的目标,在别人眼里,你也将成为一位圣者。 1.花开时节,有赏花的心情。
2.瓜果应季,喜欢瓜果的人牙好、胃口好。 3.感受春天的微风轻抚最初萌芽的青草和树叶,把稚嫩的清香散播到四面八方。
4.酷热的夏天,享受一场豪雨和随之而来的凉爽、清新、草木苍翠。 5.在秋天火一样的红叶面前停下脚步,体味凋谢前最盛大的灿烂。 6.站在温暖的窗户后面欣赏大雪最初的样子:轻盈、迷蒙、笼罩大地,洁白还无人践踏。 7.喝酒的时候,是心在应对,而不是肠胃在应对。如同焚香,要的只是一种香的氛围,而不是把香氛当氧气,这也是酒逢知己饮的本意。 8.有很够分量的情敌,你却不战而胜,似乎比用大笔钱买到极昂贵的东西还快乐。这是棋逢对手或物有所值的含义之一。 9.生命中永存一个可以单相思的人,又不是一日不见如隔三秋的那种情怀,美中不足的生活就有了完美的寄托,如同诚信基督的教徒有一个上帝。 10.在花季结束的时候,采摘到最后一朵玫瑰。多情的人,最后一次恋情以最美的方式成为标本。 11.说话投机:有些迷乱豁然开朗,如同苗圃除尽了杂草;有些感觉处处共鸣,如同鲜花映照在清潭。 12.没有预谋的闲聊空谈,却生出实际漂亮的事情来。如同野游采摘到美味的山果。

242、坚韧是成功的一大要素,只要在门上敲得够久、够大声,终会把人唤醒的。

凯洛夫

凯洛夫

1、凯洛夫简介:苏联教育家。

四、五十年代苏维埃教育学的代表人物之一。

1917年毕业于莫斯科大学物理系,同年加入俄国社会民主工党(布尔什维克)。

1935年被授予教育学博士学位。

从1937年起先后任莫斯科大学和莫斯科列宁师范学院教育学教研室主任。

1942~1950年担任《苏维埃教育学》杂志主编。

1946~1967年任俄罗斯联邦教育科学院院长,1949~1956年兼任俄罗斯联邦教育部部长。

曾被选为苏联共产党中央委员会候补委员,苏共中央监察委员会委员,最高苏维埃代表。

曾获社会主义劳动英雄称号和列宁勋章。

凯洛夫在改革苏联的国民教育和发展教育理论方面进行了大量的工作。

他曾提出发展教育科学的计划, 建议开展教育科学研究,充实和扩大教育研究机构,并为普通学校和高等学校编写了多种教科书和教学参考书,发表了许多有关教育、教学问题的论文和报告。

他主编的《教育学》(1939,教科书),系统地总结了苏联二、三十年代的教育经验,批判地吸收了教育史上进步教育家的思想。

全书包括总论、教学论、德育论和学校管理论4个方面。

其主要特点是重视智育在全面发展教育中的地位和作用,认为“学校的首要任务,就是授予学生以自然、社会和人类思维发展的深刻而确实的普通知识”,形成学生的技能、技巧,并在此基础上发展学生的认识能力,培养学生的共产主义人生观;肯定课堂教学是学校教学工作的基本组织形式,强调教师在教育和教学工作中的主导作用。

凯洛夫1956年访问过中国。

他的《教育学》曾被译为中文。

他的教育思想曾对中华人民共和国建国初期的教育发生过较大影响。

教育思想与主张:凯洛夫的教育思想和教育主张,集中体现在《教育学》一书中。

(一)对教育的几个基本理论的论述关于教育的起源和教育的阶级性、历史性问题。

凯洛夫根据恩格斯关于人类起源于劳动、劳动创造了人本身以及劳动是人类生存的基本条件的科学论断,指出“在劳动过程中,教育也发展了”,(1)明确提出教育起源于劳动。

这种观点与资产阶级教育学中把教育起源归结为无意识的本能模仿,从理论上划清了唯物与唯心的界限。

18_Stoica Facets

18_Stoica Facets
o cost, schedule, process, and risk. DF is applicable especially in the early stages of the software development process when major decisions have to be taken and major risks have to be managed.
Facets of the Software Development Represented by Model Systems: Analysis and Enhancement
Anca- Juliana Stoica Computer Scie:nce Department Stanford University Stanford, CA 94305-9040
stoica@
Critical success factors for the software projects (such as setting realistic objectives for al stakel holders and successful project start, tracking progress, making smart decisions, institutionalizing analyses in view of learning from previous experience), as well as the current and future trends in software systems (like ever-more complexity, reuse-driven, COTS-driven, Internet-based) are arguments in favor of an integrated use of models (model systems) for software development. Model systems are frameworks recently developed in order to integrate models associated to different facets of the software development. Examples are: MBASE - Model Based (System) Architecting and Software Engineering [Boehm, Port, 19981 integrates success, product, process, and property models MBSE - Model Based Software Engineering [Fisher et al., 19981 concentrates almost exclusively on product models (ancl their associated property models) SEI-MBSE - Software Engineering Institute's Model Based Software Engineering [GargaroPeterson, 19961 idem H-MBSD - Honeywell's Model Based Software Development [Honeywell 19981 idem USDP - The Unified Software Development Process [Jacobson, Booch, Rumbaugh, 19991 is directed towards software process and product models. Most of these models are oriented towards product and process models (sometimes also on their associated property models). An exception is the MBASE model system which integrates process, propery, product, and success models as well as interactions between them. At a recent workshop on software research strategies [NSF Workshop, 19991 it was emphasized that an important focus in software science should be: i)explanatory/predictive models (process, product, user, interaction among models); ii)ernpirical validation technology and analytic methods. Software engineering has a science base that needs development in areas such as: creation of integrative technologies and methodologies software evolution ability to predictably produce software in a dynamic setting (optimal) decision making support regarding changes in an efficient and reliable manner. The focus in this paper is twofold: i) to show how facets of the software development are related in different approaches such as the MBASE model system and the USDP generic process framework; ii) to present an enhancement of the MBASE success models with a reasoning and decision framework (DF) in which optimal decisions in software development are based on formal dynamic

凯洛夫的《教育学》

凯洛夫的《教育学》

凯洛夫的《教育学》一、凯洛夫《教育学》的指导思想及其源泉20世纪30年代末,克洛夫教育学的理论体系开始形成。

关于教育学的思想渊源,作者曾在书中指出,它包括以下三个部分:“(1)作为一般科学方法论基础的马克思列宁主义哲学,以及马克思、恩格斯和斯大林关于文化和教育的理论;(2)经过批判性改造的教育学的历史遗产,学校和其他教育机构的工作和发展的历史经验,特别是我们祖国进步的教育学对科学的贡献;(3)在苏联学校和其他教育机构的现代工作经验,以及家庭教育经验。

" ①在马列主义指导下,凯洛夫着重从三个方面进行了认真的领会、研究和吸收工作。

这三个方面是30年代联共中央为调整和整顿普通教育作出的各项决议的精神,以实施这些决议为主要内容的苏联教育经验和经加工整理的教育历史遗产特别是在资本主义上长时期形成的教育理论遗产。

这三者是凯洛夫教育思想的主要来源和依据。

正是这些重要的来源和依据,构成了凯洛夫《教育学》的基本体系和具体内容。

这三个方面的地位是有所不同的:联共中央决议精神是凯洛夫《教育学》的核心部分;苏联教育经验则是用以验证中央决议的必要性和正确性的;至于教育历史遗产特别是西方传统的教育理论主要是作为充实和丰富〈教育学〉的具体内容而选用的。

二、论克洛夫教育学的教学凯洛夫对教学论的论述,可以说是他主编的《教育学》的精华所在。

它讨论了教学过程问题,以及教养和教学的内容、教学工作的基本组织形式、教学方法、对学生知识的检查和评定等问题。

(一)关于教学过程的本质问题基于辩证唯物主义的认识论,克洛夫讨论了教学过程的本质。

根据列宁“从生动的直觉到抽象的思维,从抽象的思维到实践”的辩证唯物主义认识真理和客观现实的科学认识论过程,它肯定了学生掌握知识的过程与人类在历史发展中认识世界的过程有着共同之处。

② 因此,教学过程必须在科学认识论的指导下进行。

但同时,他也明确肯定“教学不是,也不可能是一个与科学认知过程完全一致的过程”。

土耳其之父——凯末尔PPT课件 人教课标版

土耳其之父——凯末尔PPT课件 人教课标版

凯末尔检阅军队
(三) 土耳其的崛起
1共和国的建立 1923.10
2凯末尔改革的措施与意义
3土耳其人民对凯末尔的尊敬与怀 念
主要内容:
(1)政治方面: 意义:实现国家的世俗化,政教分离和军政分离.
(2)经济方面: 意义:为国民经济现代化奠定初步基础.
(3)文字改革:
意义:实现了教育与宗教的分离;从根本上为妇女 地位的提高打下基础;使土耳其成为中东识字率最 高的国家之一;为日后融入西方社会准备了社会条 件.
入德奥集团方面作战。土耳其成为德国 的财政和军事附庸。大战期间土耳其有 60万士兵战死或被俘,200万人受伤, 国债高达44,800万金里拉,经济陷于 崩溃。
问题一
身为高级军官的凯末尔,为什么置 个人的得失于不顾,毅然决定投身 于领导土耳其民族独立运动的洪流 中去呢?
参考答案:
这是和凯末尔个人的教育背景与其耳闻 目睹的祖国的悲惨现实有关.凯末尔经受多 年军事教育,是一名职业军人,意志和品格受 到很好的磨练.凯末尔青少年时代就受到革 命思想的影响,秘密参加革命活动,帝国时代 军事活动的经历和土耳其各地尤其是安纳 托利亚地区独立运动的高涨,使凯末尔认识 到国家面临的严重危机和素丹政府的腐败 无能.民族的独立和复兴一旦成为凯末尔的 人生理想和奋斗目标,他就能不顾个人得失, 投身于民族独立运动的洪流之中.
(4)社会生活方面:
意义:适应了世界现代化的潮流,推动了土耳其的 社会进步.
凯末尔主义”
六大原则:
共和主义——反对君主专制,建立资产阶级共和国 民族主义——保卫土耳其的领土完整、民族独立和国际上 应有的地位 平民主义——公民主权,即国家权力属于全体公民和在法 律面前人人平等 国家主义——以国营经济为基础,同时鼓励私人工商业和 坚持经济独立自主地发展民族资本主义 世俗主义——反对伊斯兰封建神权势力干预国家政权、法 律、教育和社会生活 改革主义——反对满足现状、盲目保守和听天由命的思想, 坚持不懈地进行社会经济改革

凯洛夫的新传统教学论 ppt课件

凯洛夫的新传统教学论 ppt课件

凯洛夫的新传统教学论
• 关于教育的起源和教育的阶级性、历史性问题 明确提出教育起源于劳动
• 关于教育的作用问题 教育在人的发展中起主导作用
• 关于教育目的的任务问题 “六育”的实现
凯洛夫的新ቤተ መጻሕፍቲ ባይዱ统教学论
• 凯洛夫认为,教学内容决定着学校工作的性质, “教学内容具体表现在教学计划、教学大纲和教 科书中”。
凯洛夫的新传统教学论
• 关于教学过程的本质问题 • 凯洛夫《教育学》中的教学原则 • 关于课堂教学是教学工作的基本组织形式的问题 • 论教养和教学内容
凯洛夫的新传统教学论
• 关于教学过程的本质问题
主要表明特别是在中小学里,学生掌握知识时, 主要是在老师指导这下,采取各种教学途径来完 成的。这样,强以避免人类认识历史上往往难以 避免的那些走弯路、犯错误的现象。
凯洛夫的新传统教学论
凯洛夫的新传统教学论
伊•安•凯洛夫 (N.A.Kaiipob,18931978),原苏联著名教 育家,四、五十年代苏 维埃教育学的代表人物 之一。他所主编的《教 育学》一书曾对我国产 生过很大影响。
凯洛夫的新传统教学论
• 对教育的几个基本理论的论述 • 对教育理论的论述 • 对德育的论述(教育论)
• 明确了六条教学原则:直观性原则;理论与实际 相结合原则;系统性和连贯性原则;可接受性原 则;学生掌握知识的自和积极性原则;巩固性原 则。
凯洛夫的新传统教学论
凯洛夫《教育学》的教学论 凯洛夫对教学论的论述,可以 说是他主编的《教育学》的精 华所在。它讨论了教学过程问 题,以及教养和教学的内容、 教学工作的基本组织形式、教 学方法、对学生知识的检查和 评定等问题。
凯洛夫的新传统教学论
• 凯洛夫《教育学》中的教学原则

教育的产生与发展【精选文档】

教育的产生与发展【精选文档】

教育的产生与发展1.定义(1)教育一词最早见于《孟子尽心上》中的“得天下英才而教育之,三乐也”(2)广义:增进人的知识技能,影响人的思想观念的活动,包括社会教育、学校教育和家庭教育。

(3)狭义:指学校教育。

有目的有计划有组织,以影响人的身心发展为直接目标的活动。

学校教育的直接目标是促进人的发展。

2.教育属性(1)本质属性:有目的地培养人的社会活动,是教育质的规定性.(2)社会属性:永恒性、历史性、相对独立性3.教育形态:学校、家庭和社会4.教育要素:教育者、受教育者和教育影响(教育内容和教育活动方式)。

教育者起主导作用5.教育功能(1)按作用的对象分为个体发展功能(本体功能)和社会发展功能(派生功能)(2)按作用的方向分为正向与负向功能(3)作用呈现形式分为显性与隐性功能.显性是与教育目的相吻合的功能,隐性是伴随显性功能所出现的非预期性的功能.6.教育起源(1)神话起源:所有的宗教(2)生物起源:教育是一种本能,是一种生物现象。

代表有英国沛西能,法国利托尔诺。

第一个正式提出的教育起源,否认了教育的社会性(3)心理起源:儿童对成人无意识的模仿。

代表有孟禄。

否认了社会性(4)劳动起源:教育起源于人类特有的生产劳动。

代表有苏联学者7.教育产生的根本原因:人类对自身生存和发展需要的满足8.教育的发展(1)原始社会教育:和社会生活、生产劳动紧密相连;具有自发性、全民性和无阶级性;内容简单,方法单一,具有原始性(2)古代社会的教育:包括奴隶社会和封建社会教育。

奴隶社会出现了学校;具有阶级性、专制性、刻板性和象征性;教育与生产劳动脱离。

古中国:夏代出现学校,学习内容有四书,五经,六艺。

四书《大学、中庸、论语、孟子》;五经《诗书礼易春秋》;六艺“礼乐射御书数”②古印度:婆罗门教有和佛教教育;③古埃及:文士学校,以僧为师,以吏为师。

④古希腊:雅典和斯巴达教育。

雅典最早形成和谐发展的教育,斯巴达培养军人武士。

⑤中世纪西欧:教会教育和骑士教育。

03_kessler

03_kessler

CHAPTER 3PLANT–INSECT INTERACTIONS IN THE ERA OFCONSOLIDATION IN BIOLOGICAL SCIENCES Nicotiana attenuata as an ecological expression systemANDRÉ KESSLERDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853, USA. E-mail: ak357@Abstract. The past decades have seen an intense development of organismal biology and genomics of individual species on the one hand, and population biology and evolutionary ecology on the other. While the great discoveries fuelled by the current model systems will continue over the next decades, more and more discoveries will occur at the interface between different biological disciplines. It is through such integrative approaches that the mechanisms of evolution and adaptation will be revealed. The study of plant–insect interactions, exemplary among such integrative research fields, unifies research efforts on the cellular and organismal level with those on the whole-plant and community level. Recent studies on the wild tobacco plant Nicotiana attenuata illustrate both the value of using genetic and molecular tools in ecological research and the importance of profound natural-history knowledge when studying plant–insect interactions.Keywords: induced plant responses; herbivory; plant defence; jasmonate signallingINTRODUCTION – THE MODERN CONSOLIDATION IN BIOLOGYWe are in the midst of what is widely regarded as the century of biology. Life science is already influencing multiple aspects of the modern economy and is expected to move to the forefront of all the sciences. Biotechnology, projected to become an unparalleled industrial mainstay, already touches everyone’s daily life. Its increasing importance even prompts university departments in the traditional engineering disciplines to offer life science as part of their curricula (Friedman 2001). The notion of the dominant role of life sciences in modern research and the economy is to a great extent based on the breathtakingly fast advances in genetics and molecular biology. It is projected that through this progress we will eventually be enabled to reveal how cells, organisms and ecosystems function. But will we?The disproportionately high allocation of workforce and financial resources to genetics and molecular biology has led to an apparent under-representation of subjects such as natural history and organismal biodiversity in our biological curricula. Greene (2005) argues that scientific theories help us to study nature better Marcel Dicke and Willem Takken (eds.), Chemical ecology: from gene to ecosystem, 19-37© 2006 Springer. Printed in the Netherlands.20 A.K ESSLERthrough summarizing current knowledge and formulating hypotheses. Nonetheless, such theories cannot themselves replace discoveries of new organisms or new facts about organisms. The continuous study of species’ natural history can help to reset research cycles and may change the hypothesis testing that underlies conceptual progress in science. Following this integrative notion, a profound understanding of ecological and evolutionary processes can be found only at the interface between different biological research domains. Scientific progress will ultimately be based on unification rather than fragmentation of knowledge (Kafatos and Eisner 2004).On the threshold of the biological era, the life sciences are at the inception of a profound transformation by starting a process of consolidation. The life sciences have long formed two major domains, one reaching from the molecule to the organism, the other bringing together population biology, biodiversity study and ecology. Kafatos and Eisner (2004) argue that these domains, kept separate, no matter how fruitful, cannot deliver on the full promise of modern biology. Only the unification of the two research domains can lead to a full appreciation of life’s complexity from the molecule to the biosphere or, indeed, maximize the benefits of biological research for medicine, industry, agriculture or conservation biology. Many researchers and academic institutions have recognized the necessity for unification and created research environments with integrative collaborations of researchers representing different disciplines and teaching programmes that emphasize multi-disciplinary approaches.Chemical ecology is a discipline that emerged during the past half century and is by definition an integrative research field. It is driven by the recognition that organisms of diverse kinds make use of chemical signals to interact (Karban and Baldwin 1997). The original endeavour to decipher the chemical structure and the information content of the mediating molecules as well as the ecological consequences of signal transduction is now receiving a major directional addition, the modern domain of molecular biology (Eisner and Berenbaum 2002). It promises an understanding of the molecular and genetic mechanisms of biological signal transduction in species interactions, which can help to ultimately understand the evolution of complex species interactions.The study of plant–insect interactions is an excellent example of the success of the modern approaches taken in chemical and molecular biology (e.g. Walling 2000; Berenbaum 2002; Kessler and Baldwin 2002; Dicke and Hilker 2003; Hartmann 2004). It is a fast-growing field within the research of organismal interactions to a great extent because the results can readily be applied in modern agriculture and therefore have a potentially high economic value (Khan et al. 2000). In the following sections I will summarize selected characteristics of induced plant responses to herbivory that at the same time define integrative focus directions in this research field, ranging from the physiological and ecological costs and consequences to the cellular signalling crosstalks that result in the elicitation of plant defences. In addition I will summarize studies of the complex multitrophic interactions of the wild tobacco plant Nicotiana attenuata (Torr. ex Watts) with its insect community that emphasize the potential role of induced plant defences in structuring arthropod communities and the value of using molecular and chemical analytical tools in ecological research.P LANT–INSECT INTERACTIONS 21 PLANT–INSECT INTERACTIONSChemical communication can be studied at various levels of integration reachingfrom the expression of genes involved in biosynthesis of signal molecules toecological consequences of the resulting organismal interactions on the communitylevel. When studying plant–insect interactions we observe an exchange of signalsthat reciprocally influence the interacting partners and consequently include acomplex crosstalk across all the levels of integration. Moreover, plant–insectinteractions are played out in an arena that is much bigger than the plant itself. Itincludes interferences on the cellular level that have been extensively studied inplant–pathogen interactions (e.g. Lam et al. 2001; Van Breusegem et al. 2001) aswell as interactions at the whole-plant and the community level. The latter resultfrom multitrophic and inter-guild interactions, which are frequently mediated by theplants’ chemical defences (Agrawal 2000; Dicke and Van Loon 2000; Karban andAgrawal 2002; Kessler and Baldwin 2002).The fitness costs of plant defencesPlants have myriad ways to defend themselves against their attackers, including theproduction of defensive chemicals such as secondary metabolites and defensiveproteins (Duffey and Stout 1996). The evolutionary arms race between plants andherbivorous insects has early on been suggested as one of the driving forces of thechemical diversity in the plant kingdom. Ehrlich and Raven (1964) coined the term‘coevolution’ and stimulated entomological studies of how plants and insectsinfluence each other’s evolutionary trajectories. In the notion of their coevolutionaryhypothesis a plant species’ evolutionary innovation of new defensive compoundsresults in the exclusion of potential herbivores, which in turn will be stronglyselected to tolerate or detoxify the new plant compounds. The counter-defences ofinsects are by no measure less diverse than the plant defences, and reach from theelicitation of changes in plant morphology (Sopow et al. 2003) to the sequestrationof plant secondary metabolites and their use for the insects’ own defences againstnatural enemies (Hartmann 2004).The production of plant defence traits when they are not needed (e.g., in absenceof herbivores) incurs significant fitness cost for a number of reasons (Agrawal et al.1999; Heil and Baldwin 2002). First, the production of secondary metabolites can becostly if fitness-limiting resources are invested (Baldwin 2001; Heil and Baldwin2002). For example, recent studies on nutrient-rich clay habitats and nutrient-poorwhite-sand habitats in the Peruvian Amazon region show that immature trees innutrient-poor habitats are not able to compensate for severe herbivore damage. Thenutrient-poor habitat therefore selects for plant species that invest more in defensivesecondary-metabolite production at the cost of slower growth (Fine et al. 2004).However, resistance costs can also arise from higher-level ecological processes. Forexample, specialized herbivores may sequester defensive plant metabolites and usethem for their own defence against predators (Karban and Agrawal 2002; Reddy andGuerrero 2004; Hartmann 2004), or compounds that provide defence againstgeneralist herbivores may attract specialist herbivores, which use them as host22 A.K ESSLERlocation signals (Turlings and Benrey 1998). In addition plant defences may disrupt important mutualistic interactions with other insects such as pollinators (Adler et al. 2001) and parasitoids (Campbell and Duffey 1981; Barbosa et al. 1991), and may differently affect the performance of interacting organisms across several trophic levels (Orr and Boethel 1986; Harvey et al. 2003).Induced plant defencesConstitutively high production of costly defences could only be beneficial for a plant if herbivore pressure is a predictable environmental factor. Unpredictable environments would select for plants that are able to produce a defence only when needed, in the presence of herbivores. Such phenotypically plastic plant responses are referred to as induced defences (Karban and Baldwin 1997). The fitness costs of the production of defensive compounds probably provide the selection pressure behind the evolution of inducible defences. Herbivore-induced plant defences have received a considerable attention in the past few decades, in part because the ecological implications for the plant and its arthropod community are different from those that derive from purely constitutive defences. Induced defences extend plant–insect interactions from the cell and whole-plant level to the community level.Plants can respond to herbivore damage with the increased production of secondary metabolites or defensive proteins that are categorized by their mode of action (Duffey and Stout 1996). Compounds such as alkaloids, glucosinolates (in combination with myrosinase) and terpenoids function as toxins while proteinase inhibitors and polyphenol oxidases function as anti-digestive or anti-nutritive compounds, respectively. A plant inducing such defences in response to herbivory has a lower nutritive value for subsequently arriving herbivores and therefore reduces the probability of secondary attacks. The plant’s metabolic changes may thereby not only affect insects of the same species but may result in cross-resistance effects that affect the herbivore-community composition of this plant (Agrawal 1998; Kessler and Baldwin 2004).In addition to direct defensive secondary metabolites, plants produce volatile organic compounds (VOCs) in response to herbivore damage. These can function as signals for organisms able to receive and respond to changed odour bouquets. The most studied function of herbivore-induced VOC emission is the attraction of natural enemies such as parasitoids and/or predators to the damaged plant, a process referred to as indirect plant defence (Dicke and Van Loon 2000; Turlings and Benrey 1998). The VOC signal increases the natural enemy’s foraging success and therefore facilitates top-down control of the herbivore population. The VOC response can be highly specific. For example, parasitoid wasps can use the specificity of the signal to locate particular hosts or even particular instars of their hosts (Turlings and Benrey 1998). On the other hand, generalist herbivores can also be attracted by single compounds of the VOC bouquet, which are commonly emitted after attack from a diverse set of herbivore species (Kessler and Baldwin 2001). In addition to attracting natural enemies, VOCs can function as direct defences by repelling ovipositing herbivores (De Moraes et al. 2001; Kessler and Baldwin 2001;P LANT–INSECT INTERACTIONS 23 2004) or they may be involved in plant–plant interactions (Arimura et al. 2000;Karban et al. 2000).Indirect plant defences may be compromised by direct plant defences ifherbivores are able to sequester secondary plant metabolites and use them for theirown defence. A number of studies have shown negative effects of plant secondarymetabolites on the third (Campbell and Duffey 1981; Barbosa et al. 1991) and thefourth trophic level (Orr and Boethel 1986; Harvey et al. 2003), and suggest trait-offs between direct and indirect defences. However, direct and indirect defenceshave rarely been manipulated or characterized in the same experiment. Moreover,the parasitoid performance was only investigated in non-choice experiments. Sinceherbivore-induced VOC emission is a signal that is very specifically associated withhost/prey (Turlings and Benrey 1998) it may provide information not only about thespatial distribution of potential hosts/prey species but also about their quality.Parasitoids or predators of the third trophic level may well be able to differentiatebetween good and bad hosts and may, in nature, actively avoid hosts whichsequester plant metabolites that the natural enemies can not detoxify. Therefore wemay more commonly observe a synergism rather than a trade-off between direct andindirect defences in nature because the plant’s direct defences may amplify theeffects of parasitoid/predator attraction (Kessler and Baldwin 2004, see examplebelow). There is an urgent need to approach this question for the apparent trade-offbetween direct and indirect defences in native systems without artificial humanselection, because answering it provides one of the most important building blocksfor utilizing plant defences in sustainable agriculture.Defensive function of plant secondary metabolitesThe biosynthetic pathways involved in the production of secondary metabolites havebeen or are currently elucidated with impressive speed, and the progress inidentification of the underlying genetic and transcriptional mechanisms will onlyenhance this exploratory process. However, the knowledge about the ecologicalconsequences of induced direct and indirect defences is sketchy and we are far fromappreciating the complexity of the arena of plant–insect interactions to its fullextent. The defensive function as well as direct physiological or indirect ecologicalcosts of secondary-metabolite production can only be evaluated when the defensivetraits can be experimentally manipulated and tested in comparative experiments,ideally in the plants’ natural habitats. This can be accomplished by both usingchemical elicitors to induce specific plant responses and using mutants or transgenicplants that are not able to produce or over-express a particular defence (Thomas andKlaper 2004). This latter approach is largely restricted to a few model plant species,such as Arabidopsis thaliana (e.g. Van Poecke and Dicke 2004; D'Auria andGershenzon 2005) or a limited number of agricultural crops (e.g. tomato, maize,rice). Thereby the current widespread exposure of genetically modified crop plantsthat express new defensive compounds, such as Bacillus turingiensis-toxin (Bt-toxin), to the natural arthropod community could be used to elucidate principalpatterns in the plant–insect coevolutionary process (e.g. the evolution of the insect’s24 A.K ESSLERresistance to plant toxins) (Tabashnik et al. 1998). However, the conclusions derived from studies in agro-ecosystems may be limited because frequently neither the crop plant nor their herbivores are studied in their native habitats where coevolutionary processes occur or occurred. Similarly limiting is the study of single native species. The induction mechanisms of plant defences may differ among species specifically depending on internal factors, such as signal perception and transduction (elicitation), and external factors, such as the frequently complex web of interacting species on multiple trophic levels and abiotic factors. Thus, the inclusion of additional, preferentially native study systems to survey the diversity of internal and external factors influencing plant–insect interactions, will eventually reveal the general underlying mechanisms, which would allow a sustainable utilization of plant defences in agriculture.Elicitation of plant responsesAny compound that comes from herbivores and interacts with the plant on a cellular level is a potential elicitor. A series of herbivore-derived elicitors have been isolated from the oral secretion of lepidopteran caterpillars and the oviposition fluid of weevil beetles. The elicitors represent three classes of compounds; lytic enzymes (Mattiacci et al. 1995; Felton and Eichenseer 1999), fatty-acid–amino-acid conjugates (FACs) (Halitschke et al. 2001; Alborn et al. 1997; Pohnert et al. 1999) from caterpillar regurgitant, and bruchins from the oviposition fluid of Callosobruchus maculatus (Doss et al. 2000).Both herbivore feeding and mechanical damage induce plant responses that are systemically propagated throughout the plant or remain locally restricted to the wound site. As a consequence, the plant’s response to herbivore damage must integrate the responses to the herbivore-unspecific mechanical wounding and the herbivore-specific application of insect-derived chemical elicitors. Wound-induced resistance is to a large extent mediated by products of the octadecanoid pathway, which includes linolenic acid-derived compounds, such as 12-oxophytodienoic acid, jasmonic acid and methyl jasmonate (Creelman and Mullet 1997; Wasternack and Parthier 1997). However, at least two more signalling pathways, to ethylene and salicylic acid, are involved in the plant response to herbivores. Although it is becoming increasingly clear that single signal cascades, such as the oxylipins, can alone produce a bewildering array of potential secondary signal molecules with a diversity of functions (Creelman and Mullet 1997; Farmer et al. 1998; Wasternack and Parthier 1997), it has also become apparent that herbivore attack frequently involves the recruitment of several signalling cascades. The interaction between these different signalling pathways, widely referred to as ‘signalling crosstalk’, may explain the specificity of responses. Reymond and Farmer (1998) proposed a tuneable dial as a model for the regulation of defensive gene expression based on the crosstalk of the three signal pathways for jasmonic acid, salicylic acid and ethylene. How the responses are fine-tuned to optimize the defence against particular herbivore species or the attack by multiple species or guilds is the subject of a series of recent investigations (Bostock et al. 2001; Walling 2000; Thaler and BostockP LANT–INSECT INTERACTIONS 25 2004). Genoud and Metraux (1999) summarized examples of crosstalks betweendifferent signal pathways and modelled them as Boolean networks with logicallinkages and circuits. The model complements earlier crosstalk models and makesconcrete predictions regarding the outcome of the interactions between differentsignalling pathways. Currently such models are limited by our incompleteunderstanding of all the signalling cascades that are involved and sketchyknowledge about the biochemical consequences of the expression and interactions ofthese pathways. Also sketchy is the understanding of how signal crosstalk translatesto ecological interactions among players of the second and the third trophic levelsand how compromised plant defence responses translate into plant fitness andeventually influence the coevolutionary process between plants and insects. Anunderstanding of the functional consequences of signal crosstalk and the resultingexpression of the various plant defences requires a sophisticated understanding ofthe whole plant function and natural history of the involved multitrophic interactionnetworks in the plants’ native habitats (Kessler et al. 2004; Steppuhn et al. 2004).The wild tobacco plant Nicotiana attenuata (Torr.ex Watts) is a study system inwhich modern molecular and chemical-analytical tools are being applied in field andlaboratory experiments to understand the complex plant–insect interactions. Thesystem, propagated by Ian T. Baldwin and his co-workers at the Max PlanckInstitute for Chemical Ecology in Jena, Germany, is a prime example of the modernconsolidation of different research domains. In the following paragraph I will give abrief introduction into the study system and highlight studies that illustrate thecomplexity of species interactions that result from herbivore-induced plantresponses and the potential importance of inducible plant defences for structuringthe plant’s arthropod community.THE WILD TOBACCO NICOTIANA ATTENUATAThe wild tobacco plant N. attenuata grows ephemerally in Great Basin deserthabitats in the southwestern USA. It germinates from long-lived seed banks inresponse to chemical cues in wood smoke (Preston and Baldwin 1999). One suchcompound, the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one, has recently beenidentified and found to promote seed germination in a number of plant species(Flematti et al. 2004). The ‘fire-chasing behaviour’ of N. attenuata forces the plant’sarthropod herbivore community to re-establish with every new plant population.Inducible plant defences are thought to be an adaptation to such unpredictableherbivore pressure (Karban and Baldwin 1997). Wild tobacco increases itsproduction of secondary metabolites (nicotine, phenolics, diterpeneglycosides,VOCs) and defensive proteins (trypsin proteinase inhibitors (TPI)) after attack byherbivores such as Manduca hornworms, Tupiocoris notatus bugs or Epitrixhirtipennis beetles (Kessler and Baldwin 2001; 2004), as well as in response tomechanical damage, or by elicitation with methyl jasmonate (Halitschke et al. 2000;Keinanen et al. 2001; Van Dam and Baldwin 2001).Although the responses to these different elicitors frequently differ qualitativelyand quantitatively, they diminish the plant’s palatability to herbivores (direct26 A.K ESSLERdefence) (Steppuhn et al. 2004; Van Dam et al. 2000; Zavala et al. 2004b) and/or increase its attractiveness to the natural enemies of the herbivores (indirect defence) (Kessler and Baldwin 2001; 2004). Anti-digestive proteins such as TPIs are known from several plant species to play a direct defensive role (Koiwa et al. 1997; Tamayo et al. 2000). Recent studies with natural mutants and antisense-transformed N. attenuata plants that are deficient in the induced production of TPIs, provide striking evidence for the defensive function of these anti-digestive enzymes. Manduca sexta caterpillars grow significantly faster and suffer from lower mortality rates on TPI-deficient plants than on plants with an intact TPI response or on plants that constitutively produced TPIs (Zavala et al. 2004b). The production of TPIs results in significant physiological fitness costs for the plant (Zavala et al. 2004a). In nature, the induction of plant defences in the absence of herbivores causes a significant reduction in lifetime seed production (Baldwin 1998). In contrast to the nitrogen-consuming production of defences such as nicotine or TPIs, the herbivore-induced production of VOCs is thought to be less costly (Halitschke et al. 2000). However, their indirect defensive effects may be not less important for the plant’s fitness.N. attenuata produces a series of VOCs, which derive from at least three different biochemical pathways (terpenoids, oxylipins, shikimates), in response to herbivore damage (Halitschke et al. 2000; Kessler and Baldwin 2001). Interestingly the four herbivore species (M. sexta,M. quinquemaculata,T. notatus and E. hirtipennis) that had been used in experiments elicited the emission of similar VOCs from N. attenuata plants (Kessler and Baldwin 2001). However, the quantities of the specific compounds, produced by the plant, differed significantly after the elicitation by different herbivore species. Some of the commonly emitted compounds have also been identified in the headspace of other plant species (Pare and Tumlinson 1998; Takabayashi and Dicke 1996; Turlings and Benrey 1998). Therefore it had been hypothesized that they may function as universal signs of herbivore damage and should, if singly emitted in the background of the plants’ natural emissions, attract generalist predators in nature. The hypothesis proved right in that a generalist predator, the big-eyed bug Geocoris pallens, was attracted by the entire herbivore-induced VOCs bouquet as well as by single compounds (Kessler and Baldwin 2001; James 2005). In addition, adult Manduca moths used the same VOC signal to avoid already damaged plants for oviposition and thereby avoid increased predation pressure and reduced food quality as a result of induced direct defences. As a consequence, the multiplicative effect of the bottom-up and top-down components of herbivore-induced VOC emission was significant. It could reduce the numbers of N. attenuata’s most damaging herbivore, M. quinquemaculata by over 90% (Kessler and Baldwin 2001).N. attenuata is attacked by many herbivore species from different feeding guilds in nature. However, these species may not always co-occur on the same plant due to plant-mediated effects. For example, the leaf-chewing larvae of the sympatric sibling species M. sexta and M. quinquemaculata tend not to co-occur with the sap-sucking mirid T. notatus, even when both species are found in adjoining host populations. Moreover, in plant populations with high numbers of plants infested by T. notatus the mortality of Manduca larvae and the seed-capsule production of N.P LANT–INSECT INTERACTIONS 27 attenuata plants was higher than in plant populations without T. notatus (Kesslerand Baldwin 2004). The apparent mechanism of this antagonistic relationshipbetween two herbivore species and its fitness consequences for the plant reflects thecomplexity of plant–insect interactions and the size of the arena in which theinteraction is played out (Figure 1).That the two hornworm species and the mirid bugs seemed not to interactdirectly led us to hypothesize that plant-mediated effects caused the seeminglycompetitive interaction between the herbivores. Indeed, M. sexta and M.quinquemaculata hornworms grew much more slowly on plants that previously hadbeen damaged by T. notatus than on undamaged plants. Interestingly, the metabolicresponses to the damage by leaf-chewing hornworms and piercing-sucking miridsseemed very similar. The concentrations of a series of plant resistance-relatedsecondary metabolites (phenolics and diterpene glycosides) and TPI were similarlyincreased in hornworm and mirid-damaged plants compared to undamaged plants. Inconfirmation with this result the Manduca larvae grew slower on plants that hadbeen damaged by both conspecific caterpillars and mirids than on undamaged plants.Moreover, the emission of VOCs as well as the production of direct defensivecompounds was increased after the damage by both herbivore species. Herbivore-induced VOCs in turn can function as indirect defences by attracting predators, suchas G. pallens, to the damage site. As attack from both species elicits rather similardirect and indirect defensive plant responses, it was likely that the ecological contextof these similar responses determines fitness consequences of the interaction for theManduca hornworms and as a consequence for the plants (Kessler and Baldwin2004).One fitness benefit for the plant arises from the natural history of its interactionswith herbivores. Manduca hornworms can consume three to five plants before theyreach the pupal stage and therefore are considered the most damaging insectherbivores on N. attenuata. The hornworms usually depart before the plant iscompletely consumed, but the amount of leaf tissue lost to hornworm feeding isnegatively correlated to the lifetime seed-capsule production of N. attenuata.Therefore, the plant’s fitness costs from hornworm damage depend strongly on thedevelopmental stage in which the hornworm leaves the plant or is removed bynatural enemies such as parasitoids or predators. The growth-reducing effect of TPIsand secondary metabolites elicited by previous hornworm and mirid attack causessubsequently feeding hornworms to remain longer in the first two larval instars. As aconsequence, the younger, more vulnerable hornworms are exposed longer to thedominating predator, the big-eyed bug Geocoris pallens, which is additionallyattracted by the herbivore-induced VOCs (Kessler and Baldwin 2004). The directeffects of mirid-induced plant responses amplify the indirect defensive effects ofpredator attraction with negative fitness effects for the hornworms. Moreover, thepredators prefer young hornworms over mirids as prey, which adds yet anotherfactor contributing to the outcome of the interaction between the plant and its insectcommunity.。

一个教学论难题:凯洛夫问题

一个教学论难题:凯洛夫问题

一个教学论难题:“凯洛夫问题”来源:《教育学报》2005年第6期作者:杨四耕摘要:无论是理论上还是实践上,凯洛夫教学论的贡献都是巨大的,是第一位的,是任何人都无法抹杀的。

与此同时,凯洛夫教学论也存在着其自身无法克服的问题,即“凯洛夫问题”。

对于凯洛夫教学论,必须谨慎地秉持“一种积极的怀疑论”,而不能对它进行简单地否定、甚至“颠覆”。

“凯洛夫问题”的实质是理想与现实、理论与实践的关系问题,而归根结底是事实与价值的关系问题。

关键词:教学论难题;凯洛夫教学论;凯洛夫问题;凯洛夫法则;事实问题;承诺问题一、凯洛夫教学论体系对于“教学是什么”,古往今来,无数的学者给以了回答,可谓见仁见智。

20世纪30年代,以凯洛夫为代表的苏联教育学者,遵循马克思列宁主义的认识论,提出了自己独特的见解。

他们认为:教学是一种特殊的认识过程。

由这一基本观点出发,凯洛夫建立了相对完整的教学论体系,即“凯洛夫教学论体系”①,具体内容如下。

1.关于教学目的和任务的说明。

凯洛夫认为教学的目的和任务是“领会确实的知识体系,就是领会正确反映外界事物与现象以及存在于它们之间的联系的知识体系”[1](p60)。

此后,凯洛夫又将教学目的和任务表述为:“我们的普通教育和综合技术教育理论是从培养全面发展的人这一个目的和任务出发的,是从学校教育应该使学生具有一定的系统的知识、技能和技巧,同时应该保证学生认识能力的发展出发的。

”[2](p131) 2.关于教学过程与环节的说明。

教学是一个特殊的认识过程。

基于教学过程的特殊性,教学过程的基本环节是:“一、授予学生并使他们知觉具体的东西(物体、现象、过程的展示与观察,叙述事实,引证实例等)。

要在这个基础上造成学生的表象。

在这里,知识的源泉乃是:具体的事实本身,物体、现象、过程、事件等的描绘、印刷品(首先是教科书)以及教师的语言等。

二、认清(理解)所学习的客体中的相同点与相异点,本质的、主要的和次要的地方,认清原因与结果、相互作用关系及其他各种联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
之本也是五步法)
.
2
凯洛夫(N.A.Kailpob)
凯洛夫三中心论: 以教师为中心 以课堂为中心 以教学内容为中心
.

3
凯洛夫(N.A.Kailpob)
凯洛夫教育学在我国影响甚远、甚深、甚 笃。原因有5:
1、凯洛夫教育学与我国几千年 传统的国文教育、历史教育不 谋而合,可以迅速植根于我国 的教育。(讲读)
4、凯洛夫五步教学法本身简明、 科学,而且源自于赫尔巴特, 可谓根红苗正;对于教师而言 容易学习、驾驭和掌握。
.
7
凯洛夫(N.A.Kailpob)
5、凯洛夫五步教学法对于当时 的学生而言非常适合。教学资 源(书籍、信息、学习的材料) 匮乏、奇缺。
.
8
.
4
凯洛夫(N.A.Kailpob)
2、凯洛夫教学法对环境条件要 求很低,恰好也符合一个穷国 办大教育的客观需求。(初期 一穷二白,办不起现代教育)
.
5
凯洛夫(N.A.Kailpob)
3、当时党中央、毛主席决策, 外交政策“一边倒”,全面学 习苏联,教育概莫能外。
.
6
凯洛夫(N.A.Kailpob)
凯洛夫(N.A.Kailpob)4
凯洛夫教学原则 1、理论与实际相结合原则; 2、系统性和连贯性原则; 3、教学的通俗性和可接受原则; 4、学生的自觉性与积极性原则; 5、巩固性原则。
.
1
凯洛夫(N.A.Kailpob)
凯洛夫五步教学法: 复习旧课(组织教学) 导入新课 讲授新课 巩固(小结) 作业 (你我均出自五步法教育,而且安身立命
相关文档
最新文档