脉冲编码调制(PCM)系统

合集下载

脉冲编码调制PCM及其数字通信的特点

脉冲编码调制PCM及其数字通信的特点

A / D变化
m(t) 抽样
量化 mq(t) 编码
信道 干扰
ms(t)
低通 滤波
译码
m(t)
mq(t)
PCM系统原理框图
•2
7
量化电平数 5 M= 8 3
1 0
4 .3 8 2 .2 2
5 .2 4 2 .9 1
精 确 抽样 值 量化值
Ts
2 .2 2
4 .3 8
5 .2 4

2 .9 1
2
4
5
3
•4
数字通信的许多优点都是用比模拟通信占据更宽的系统 频带为代价而换取的。以电话为例,一路模拟电话通常只 占据4kHz带宽,但一路接近同样话音质量的数字电话可能 要占据 20~60kHz的带宽,因此数字通信的频带利用率不 高。另外,由于数字通信对同步要求高,因而系统设备比 较复杂。不过,随着新的宽带传输信道(如光导纤维)的 采用、 窄带调制技术和超大规模集成电路的发展,数字通 信的这些缺点已经弱化。随着微电子技术和计算机技术的 迅猛发展和广泛应用,数字通信在今后的通信方式中必将 逐步取代模拟通信而占主导地位。
•5
脉冲编码调制(PCM)
脉冲编码调制(PCM)简称脉码调制,它是一种用 一组二进制数字代码来代替连续信号的抽样值,从而 实现通信的方式。由于这种通信方式抗干扰能力强, 它在光纤通信、数字微波通信、卫星通信中均获得了 极为广泛的应用。
PCM是一种最典型的语音信号数字化的波形编码 方式, 其系统原理框图如图所示。首先,在发送端进 行波形编码(主要包括抽样、量化和编码三个过程), 把模拟信号变换为二进制码组。编码后的PCM码组的 数字传输方式可以是直接的基带传输,也可以是对微 波、光波等载波调制后的调制传输。在接收端,二进 制码组经译码后还原为量化后的样值脉冲序列,然后 经低通滤波器滤除高频分量,便可得到重建信号。 •1

基于Matlab的脉冲编码调制(PCM)系统设计与仿真之令狐文艳创作

基于Matlab的脉冲编码调制(PCM)系统设计与仿真之令狐文艳创作

课程设计任务书令狐文艳学生姓名:专业班级:指导教师:工作单位:题目: 脉冲编码调制(PCM)的实现初始条件:1、MATLAB软件;2、脉冲编码调制相关知识。

要求完成的主要任务:1、任务实现脉冲编码调制(PCM)技术的三个过程:采样、量化与编码。

2、要求用仿真软件对其进行验证,使其满足以下要求:(1)模拟信号的最高频率限制在4KHZ以内;(2)分别实现64级电平的均匀量化和A压缩率的非均匀量化;(3)按照13折线A律特性编成8位码。

时间安排:第1,2天:分析题目,方案设计;第3,4,5天:软件设计;第6,7天:系统仿真;第8天:答辩,完成设计说明书。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要IAbstractII1 绪论12 MATLAB简介22.1 MATLAB软件简介22.2 MATLAB程序设计方法23 PCM脉冲编码原理43.1 模拟信号的抽样及频谱分析43.1.1 信号的采样43.1.2 抽样定理43.1.3采样信号的频谱分析53.2 量化53.2.1 量化的定义53.2.2 量化的分类63.2.3 MATLAB的A律13折线量化123.3 PCM编码123.3.1 编码的定义123.3.2 码型的选择133.3.3 PCM脉冲编码的原理134 PCM的MATLAB实现154.1 PCM抽样的MATLAB实现154.2PCM量化的MATLAB实现184.2.1 PCM均匀量化的MATLAB实现184.2.2 PCM A律非均匀量化的MATLAB实现204.3PCM A律13折线编码的MATLAB实现225结果分析及总结25参考文献26摘要本设计结合PCM的抽样、量化、编码原理,利用MATLAB软件编程和绘图功能,完成了对脉冲编码调制(PCM)系统的建模与仿真分析。

课题中主要分为三部分对脉冲编码调制(PCM)系统原理进行建模与仿真分析,分别为采样、量化和编码原理的建模仿真。

实验四 脉冲编码调制与解调实验(PCM)

实验四 脉冲编码调制与解调实验(PCM)

实验四脉冲编码调制与解调实验(PCM)一、实验目的1、掌握抽样信号的量化原理。

2、掌握脉冲编码调制的基本原理。

3、了解PCM系统中噪声的影响。

二、实验内容1、对模拟信号脉冲编码调制,观测PCM编码。

2、将PCM编码解调还原。

三、实验仪器1、信号源模块一块2、模拟信号数字化模块一块3、20M双踪示波器一台4、带话筒立体声耳机一副四、实验原理PCM原理框图如下图9-1所示。

编码部分译码部分图9-1 PCM原理框图上图中,信号源模块提供音频范围内模拟信号及时钟信号,包括工作时钟2048K、位同步时钟64K、帧同步时钟8K,送模拟信号数字化模块,经抽样保持、量化、编码过程,产生64K码速率的PCM编码信号。

译码部分同样将PCM编码与各时钟信号送入,经译码、低通滤波器,还原出模拟信号。

五、实验步骤1、将模块小心地固定在主机箱中,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的电源开关,对应的发光二极管灯亮,两个模块均开始工作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)3、PCM编码(1)信号源模块“2K正弦基波”幅度调节至3V左右。

(2)实验连线如下:信号源模块模拟信号数字化模块(模块左下方PCM编解码)2K正弦基波—————S-IN2048K———————2048K-IN64 K————————CLK-IN8K————————FRAM-IN(3)以“FRAM-IN”信号为内触发源,示波器双踪观测“FRAM-IN”、“PCM-OUT”测试点波形,PCM编码能够稳定观测,且每四帧编码为一个周期。

说明:帧信号对应的4位PCM编码的第一位码,是上一帧8位PCM编码的第8位,可能出现半位为0,半位为1的情况,这是由使用的PCM编译码芯片的工作时序决定。

(4)以“S-IN”信号为内触发源,示波器双踪观测“S-IN”、“PCM-OUT”测试点波形,PCM编码能够稳定观测,每一周期正弦波对应4帧共32位PCM编码,且32位一循环,码速率为64K。

脉冲编码调制(PCM)系统.

脉冲编码调制(PCM)系统.

脉冲编码调制(PCM)系统摘要:脉冲编码调制(PulseCodeModulation),简称PCM。

是数字信号是对连续变化的模拟信号进行抽样、量化和编码产生。

PCM的优点就是音质好,缺点就是体积大。

PCM可以提供用户从2M到155M速率的数字数据专线业务,也可以提供话音、图象传送、远程教学等其他业务。

关键字:脉冲编码调制、取样、量化、编码、解码Abstract:Pulse Code Modulation (PulseCodeModulation), referred to as PCM. Digital signal is a continuous change in analog signal sampling, quantization and coding production. PCM sound quality is good advantages and disadvantages are bulky. PCM can provide users from 2M to 155M line speed of digital data services, can also provide voice, video transmission, remote learning, and other businesses.Keywords:Pulse code modulation, modulation, demodulation目录一、工作原理 (4)1.1 取样 (5)1.2 量化 (5)1.3 编码 (7)1.4 再生 (10)1.5 解码 (10)二、芯片选择 (11)2.1 TP3067管脚定义 (13)三、电路设计 (14)四、心得体会 (16)一、工作原理:脉冲编码调制是把模拟信号数字化传输的基本方法之一,它通过抽样、量化和编码,把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号,然后在信道中进行传输。

脉冲编码调制PCM

脉冲编码调制PCM

脉冲编码调制(PCM)什么是脉冲编码调制(PCM)脉冲编码调制(Pulse Code Modulation,简称PCM)是一种数字通信技术,用于将模拟信号转化为数字信号进行传输。

PCM是一种有损压缩算法,它将连续模拟信号离散化成固定的采样值,并使用一定的编码方案进行表示。

脉冲编码调制的原理脉冲编码调制的原理主要包括三个步骤:采样、量化和编码。

采样采样是指对连续的模拟信号进行间隔一定时间采集取样。

采样过程中,将模拟信号的幅度值在时间轴上不断取样并离散化。

采样率是指每秒钟采集的样本数,通常以赫兹(Hz)为单位。

较高的采样率可以更准确地还原模拟信号。

量化量化是指将采样得到的模拟信号幅度值映射到离散的数值上,以减少数据量。

量化的单位被称为量化水平或量化位数,通常以比特(bit)为单位。

较高的量化位数可以提供更高的精度,但也会增加数据量。

编码编码是将量化后的离散信号转换为二进制码流,以便通过数字通信系统进行传输。

常用的编码方式包括直接二进制编码(Differential Pulse Code Modulation,DPCM)、调制码(Delta Modulation,DM)和PAM(脉冲幅度调制)等。

脉冲编码调制的应用脉冲编码调制广泛应用于音频、视频和数据传输等领域。

以下是一些常见的应用场景:电话通信脉冲编码调制被广泛应用于传统的电话通信系统中。

通过PCM,模拟信号可以转换成数字化的信号,并通过电话网络进行传输。

音频编码在音频编码中,PCM被用于将模拟音频信号转换为数字音频信号,以便于储存和传输。

常见的音频编码标准包括CD音质的16位PCM编码和DVD音质的24位PCM编码。

数字视频在数字视频处理中,PCM常用于将模拟视频信号转换为数字视频信号,以实现高质量的视频编码和传输。

PCM可以通过降低采样率和量化位数,来减小视频数据的体积。

数据传输PCM也广泛用于数据传输领域,特别是在传输需要高精度和可靠性的信号时。

脉冲编码调制(PCM)实验报告

脉冲编码调制(PCM)实验报告

脉冲编码调制(PCM)实验一、 实验目的 1. 了解语音信号编译码的工作原理; 2. 验证PCM 编码原理; 3. 初步了解PCM 专用大规模集成电路的工作原理和应用; 4. 了解语音信号数字化技术的主要指标及测试方法。

二、 实验仪器双踪同步示波器1台;直流稳压电源l 台;低频信号发生器l 台;失真度测试仪l 台;PCM 实验箱l 台。

三、 实验原理 PCM 数字终端机的结构示意图如下:PCM 原理图如下:模拟信源 预滤波抽样器 波形编码器 量化、编码 数字信道波形解码器重建滤波器抽样保持、X/sinx 低通模拟终端()x t ()x n ()ˆxn ()ˆxt 发送端接收端PCM 编译码原理为:1.PCM主要包括抽样、量化与编码三个过程。

2.抽样:把连续时间模拟信号转换成离散时间连续幅度的抽样信号;3.量化:把离散时间连续幅度的抽样信号转换成离散时间离散幅度的数字信号;4.编码:将量化后的信号编码形成一个二进制码组输出。

5.国际标准化的PCM 码组(电话语音)是八位码组代表一个抽样值。

ITT G.712 详细规定了它的S/N指标,还规定比特率为64Kb/s. 使用A 律或u 律编码律。

A律13折线和其编码表为:A律13折线图A律13折线编码表段落序号段落码c2 c3 c4段内码c5 c6 c7 c88 111 0000…….11117 110 0000…….11116 101 0000…….11115 100 0000…….11114 011 0000…….11113 010 0000…….11112 001 0000…….11111 000 0000…….1111内为均匀分层量化,即等问隔16 个分层。

系统性能测试有三项指标,即动态范围、信噪比特性和频率特性。

在满足一定信噪比(SIN)条件下,编译码系统所对应的音频信号的幅度范围定义为动态范围。

PCM 编译码系统动态范围样板值图:动态范围测试框图:四、 实验步骤(一)时钟部分:1. 主振频率为4096KHz ;用示波器在测试点(1)观察主振波形,用示波器测量其频率。

脉冲编码调制 (2)

脉冲编码调制 (2)

脉冲编码调制简述脉冲编码调制(PulseCodeModulation),简称PCM。

脉冲编码调制就是把一个时间,取值连续的模拟信号变换成时间离散,取值离散的数字信号后在信道中传输。

脉冲编码调制就是对模拟信号先抽样,再对样值幅度量化,编码的过程。

分别完成时间上离散、幅度上离散、及量化信号的二进制表示。

根据CCITT的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A律和μ律方式,我国采用了A律方式,由于A律压缩实现复杂,常使用13折线法编码。

PCM的优点就是音质好,缺点就是体积大。

PCM可以提供用户从2M到155M速率的数字数据专线业务,也可以提供话音、图象传送、远程教学等其他业务。

PCM有两个标准(表现形式):E1和T1。

脉冲编码调制(pulse code modulation,PCM)是概念上最简单、理论上最完善的编码系统,是最早研制成功、使用最为广泛的编码系统,但也是数据量最大的编码系统。

它是一种直接、简单地把语音经抽样、A/D转换得到的数字均匀量化后进行编码的方法,是其他编码算法的基础。

1.功能介绍PCM复用设备是采用了最新的大规模数字集成电路和厚薄膜工艺技术而推出的新一代高集成度单板PCM基群复接设备,它可以在标准的PCM30基群即2M传输通道上直接提供30路终端业务接口。

用户接口类型多样(包括语音、数据、图象),均以小型模块化部件方式装配到母板上,各种用户模块可以混合装配。

支持来电显示,可提供反极信令用于实时计费,具有集中监控功能,方便用户维护管理。

输入的模拟信号m(t)经抽样、量化、编码后变成了数字信号(PCM信号),经信道传输到达接收端,由译码器恢复出抽样值序列,再由低通滤波器滤出模拟基带信号m(t)。

通常,将量化与编码的组合称为模/数变换器(A/D变换器);而译码与低通滤波的组合称为数/模变换器(D/A变换器)。

前者完成由模拟信号到数字信号的变换,后者则相反,即完成数字信号到模拟信号的变换。

什么是PCM

什么是PCM

PCM详解(1)什么是PCMPCM是用于将一个模拟信号(如话音)嫁接到一个64kbps的数字位流上,以便于传输。

PCM将连续的模拟信号变换成离散的数字信号,在数字音响中普遍采用的是脉冲编码研制方式,即所谓的PCM (PULSE CODE MODULATION)。

PCM编码是Pulse Code Modulation的缩写,又叫脉冲编码调制,它是数字通信的编码方式之一,其编码主要过程是将话音、图像等模拟信号每隔一定时间进行取样,使其离散化,同时将抽样值按分层单位四舍五入取整量化,同时将抽样值按一组二进制码来表示抽样脉冲的幅值。

PCM编码的最大的优点就是音质好,最大的缺点就是体积大。

我们常见的Audio CD就采用了PCM编码,一张光盘的容量只能容纳72分钟的音乐信息。

PCM方式是由取样,量化和编码三个基本环节完成的。

音频信号经低通滤波器带限滤波后,由取样,量化,编码三个环节完成PCM调制,实现A/D变化,形成的PCM数字信号再经纠错编码和调制后,录制在记录媒介上。

数字音响的记录媒介有激光唱片和盒式磁带等。

放音时,从记录媒介上取出的数字信号经解调,纠错等处理后,恢复为PCM数字信号,由D/A变换器和低通滤波器还原成模拟音频信号。

将CD―PCM数字信号变换还原成模拟信号的解码器―称为CD---PCM 解码器。

(2) PCM基本工作原理脉冲调制就是把一个时间连续,取值连续的模拟信号变换成时间离散,取值离散的数字信号后在信道中传输.脉冲编码调制就是对模拟信号先抽样,再对样值幅度量化,编码的过程.所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号.该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号.它的抽样速率的下限是由抽样定理确定的.在该实验中,抽样速率采用8Kbit/s.所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示.一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值.所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值.然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D.PCM的原理如图5-1所示.话音信号先经防混叠低通滤波器,进行脉冲抽样,变成8KHz重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PAM信号用"四舍五入"办法量化为有限个幅度取值的信号,再经编码后转换成二进制码.对于电话,CCITT规定抽样率为8KHz,每抽样值编8位码,即共有28=256个量化值,因而每话路PCM 编码后的标准数码率是64kb/s.为解决均匀量化时小信号量化误差大,音质差的问题,在实际中采用不均匀选取量化间隔的非线性量化方法,即量化特性在小信号时分层密,量化间隔小,而在大信号时分层疏,量化间隔大.在实际中广泛使用的是两种对数形式的压缩特性:A律和律.A律PCM用于欧洲和我国,律用于北美和日本.PCM是为了用数字方式传输或存储模拟信号,对模拟信号进行数字化的一种方法。

脉冲编码调制(PCM)及系统实验报告

脉冲编码调制(PCM)及系统实验报告

深圳大学实验报告
课程名称:通信原理
实验项目名称:脉冲编码调制(PCM)及系统
学院:信息工程学院
专业:通信工程
指导教师:李晓滨
报告人:学号:班级: 2 实验时间:2017.11.22
实验报告提交时间:2017.12.
教务部制
图2-2帧脉冲和PCM编码数据(128K)实测波形
(2)时钟为128KHZ,频率为2KHZ的同步正弦波及PCM编码数据波形:用8KHZ的矩形窄脉冲测出一帧两路的PCM编码数据
(3)时钟为64KHZ,频率为2KHZ的非同步正弦波及PCM编码数据波形用8KHZ的矩形窄脉冲测出一帧8bit的PCM编码数据;
(4)时钟为128KHZ,频率为2KHZ的非同步正弦波及用8KHZ的矩形窄脉冲测出一帧两路的PCM编码数据。

脉冲编码调制(PCM)系统设计方案

脉冲编码调制(PCM)系统设计方案

数字通信原理与技术设计报告书课题名称脉冲编码调制<PCM)系统设计与仿真姓名学号院系专业指导教师2018年1月15日脉冲编码调制<PCM)系统设计与仿真<1设计目的加深对所学的通信原理知识理解,培养专业素质;掌握通信电路的设计方法,能够进行设计简单的通信电路系统;掌握通信系统安装的基本知识和技能,培养学生对通信电路系统的整机调试和检测的能力;通过专业课程设计掌握通信中常用的信号处理方法,能够分析简单通信系统的性能。

2 设计要求画出系统结构框图,根据系统的工作原理,利用SystemView的模块画出系统的结构图并进行仿真,观察仿真波形。

3 设计原理SystemView 仿真软件可以实现多层次的通信系统仿真。

脉冲编码调制<PCM)是现代语音通信中数字化的重要编码方式。

利用SystemView 实现脉冲编码调制(PCM>仿真,可以为硬件电路实现提供理论依据。

通过仿真展示了PCM编码实现的设计思路及具体过程,并加以进行分析。

PCM即脉冲编码调制,在通信系统中完成将语音信号数字化功能。

PCM的实现主要包括三个步骤完成:抽样、量化、编码。

分别完成时间上离散、幅度上离散、及量化信号的二进制表示。

根据CCITT的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A律和μ律方式,我国采用了A律方式,由于A律压缩实现复杂,常使用 13 折线法编码,采用非均匀量化PCM 编码示意图见图1。

图3.1 PCM原理框图下面将介绍PCM编码中抽样、量化及编码的原理:(a> 抽样所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。

该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。

它的抽样速率的下限是由抽样定理确定的。

(b> 量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。

脉冲编码调制(PCM)编译码系统设计

脉冲编码调制(PCM)编译码系统设计
周安排
设 计 内 容
设计时间
第一周
学习有关PCM编译码知识,查阅有关资料
09.08-09.12
第二周
硬件电路实现,焊接电路及调试
09.15-09.19
第三周
软件仿真,编写设计说明书、答辩、评定成绩
09.22-09.26
五、指导教师评语及学生成绩
指导教师评语:
年 月 日
成绩
指导教师(签字):
前言
1.1专业综合设计目的
1.3专业综合设计的意义
本课题研究的是PCM编译码系统的设计。通过学习PCM系统的原理和信号传输的过程,学会了画出PCM原理框图并能说明各环节的作用以及画出电路各点波形图,熟悉了PCM编译码芯片TP3057功能以及电路的各元件功能,也会用实验板焊接电路来实现PCM编译码器。这让我们更好的掌握模拟通信和数字通信系统的信息传输的基本原理和分析方法,能懂得通信系统的基本原理和构成,了解有关通信系统中的技术指标及改善系统性能的一些基本技术措施,为我们全面、系统的了解信号传输过程提供了理论依据。
(4) V+接+5V电源。
(5) FSR接收部分帧同信号输入端,此信号为8KHz脉冲序列。
(6) DR接收部分PCM码流输入端。
(7) BCLKR/CLKSEL接收部分位时钟(同步)信号输入端,此信号将PCM码流在FSR上升沿后逐位移入DR端。位时钟可以为64KHz到2.048MHz的任意频率,或者输入逻辑“1”或“0”电平器以选择1.536MHz、1.544MHz或2.048MHz用作同步模式的主时钟,此时发时钟信号BCLKX同时作为发时钟和收时钟。
量化器的平均输出信号量噪比随量化电平数的增大而提高。在实际应用中,对于给定的量化器,量化电平数和量化间隔都是确定的,所以量化噪声也是确定的。但是,信号的强度可能随时间变化,像话音信号就是这样,当信号小时,信号量噪比也小。所以,这种均匀量化器对于小输入信号很不利。为了克服这个缺点,改善小信号时的信号量噪比,在实际应用中常采用非均匀实现语音信号数字化的一种方法。一语音信号的数字化语音信号是连续变化的模拟信号,实现语音信号的数字化必须经过抽样、量化和编码三个过程。

pcm脉冲编码调制发展史

pcm脉冲编码调制发展史

pcm脉冲编码调制发展史
脉冲编码调制(PCM)是一种将模拟信号转换为数字信号的
技术。

PCM的发展历史可以追溯到20世纪40年代。

1943年,英国科学家Arthur C. Clarke首次提出了脉冲编码调
制的概念。

他认为,通过适当的采样和量化技术,可以将模拟信号转换为一系列脉冲,并在接收端重新构建出原始信号。

在20世纪50年代,PCM技术得到了进一步的发展和应用。

美国电话实验室的研究人员在通信领域中采用了PCM技术,
用于传输语音信号。

随着数字电子技术的发展,PCM技术可
以更好地与其他数字设备集成,如计算机和数字电视。

到了20世纪60年代,PCM技术进一步发展,出现了一些新
的变体。

其中之一是Delta调制技术,它利用相邻脉冲之间的
变化来编码信号。

这种技术在无线通信和音频存储领域得到广泛应用。

随着时间的推移,PCM技术得到了不断改进和拓展。

例如,
增量脉冲编码调制(DPCM)技术在20世纪70年代出现,它
通过利用信号之间的差异性来减少传输和存储的数据量。

另外,8位PCM技术在20世纪80年代出现,它可以提供更高的信
噪比和动态范围。

到了21世纪,随着数字通信和多媒体技术的飞速发展,PCM
技术得到了广泛应用。

它被用于电话通信、音频和视频编码、数字音频存储等领域。

此外,随着高清视频和无线通信技术的
兴起,PCM技术也在不断进行改进和优化,以满足对更高质量和更高传输速率的需求。

脉冲编码调制PCM

脉冲编码调制PCM

2.3 脉冲编码调制(PCM)
PCM调制系统
1
信号的压缩与扩张
2
PCM编码器和译码器
3
PCM系统的噪声性能
4
差分脉冲编码调制
5
PCM编码器和译码器
编码器 译码器 PCM编码和译码器集成电路
码位的选择和安排
13折线编码采用8位二进制码,对应256个量化级,即正、负输入幅度范围内各有128个量化级 需要将13折线中的每个折线段再均匀划分16个量化级 正、负输入的8个段落被划分成128个不均匀量化级 8位码的安排
脉冲编码调制系统
30/32PCM端机每帧共有32个时隙,传30路数字话音信号和2时隙的勤务信息。 30/32PCM端机输出的信号称为一次群信号。实际应用中,还可将多个一次群进行准同步复接(PDH):即四个基群 (一次群)复接组成二次群,四个二次群组成三次群,四个三次群组成四次群,四个四次群组成五次群,或进行同步复接(SDH)。
脉冲编码调制系统
以30/32PCM端机为例,介绍PCM的系统组成 话音信号的抽样频率为8000Hz,抽样的间隔时间Ts=1/fs=125s 为了时分复用将125 s分为32个时隙,即每个时隙为125 s /32=3.9 s 每个抽样脉冲用8bit编码,即8位二进制脉冲作一个码组,一次放入各个时隙。 为保证通信的正常进行,每帧的起始时刻由帧定时信号决定,收端也应有相应的帧定时信号,收发两端的帧定时信号必须同频同相,即实现帧同步。
目前用得较多
逐次比较编码器原理框图
全波整流
参考电源
PAM信号
US
|US|
UR
极性判决
D1
比较码 形成
或 门
a2-a8
a1
PCM 编码输出

pcm系统原理

pcm系统原理

pcm系统原理
PCM(脉冲编码调制)系统是一种用于数字信号传输的调制技术。

其原理是将模拟信号通过一系列的采样和量化操作,将模拟信号转换为一系列的数字信号样本,然后通过调制和解调操作将数字信号传输到接收端,并重新恢复为模拟信号。

首先,PCM系统对模拟信号进行采样,即以一定的时间间隔对模拟信号进行离散采样,得到一系列模拟信号样本。

采样定理要求采样频率应大于模拟信号中最高频率的两倍,以避免采样失真。

采样操作将模拟信号离散化为一系列数字信号样本。

接下来,PCM系统对采样得到的模拟信号样本进行量化。

量化操作将离散的模拟信号样本映射到一组有限的数字值上。

通常情况下,采用均匀量化的方法,将模拟信号样本映射到一个固定的数字范围内。

量化结果越精细,表示模拟信号的数字值越多,但同时也会增加数据传输的带宽需求。

然后,PCM系统对量化后的数字信号样本进行编码。

编码操作将每个数字信号样本映射为一系列二进制码字,以便在传输中进行传输。

具体的编码方法有很多种,常见的编码方式包括脉冲码调制(PCM)、Δ调制(DM)和自适应编码(ADPCM)等。

在信号传输的过程中,PCM系统采用一定的调制技术将编码后的数字信号样本转换为模拟信号,并进行传输。

接收端通过解调操作将接收到的模拟信号转换为数字信号样本,并进行解码操作,恢复原始的模拟信号。

总结来说,PCM系统通过采样、量化、编码和调制等操作,
将模拟信号转换为数字信号,并进行传输;接收端则通过解调和解码操作将接收到的数字信号重新恢复为模拟信号。

这种数字信号传输的方式能够有效地提高信号传输的质量和传输距离。

脉冲编码调制(PCM)的MATLAB仿真(QDTU YUANCHAO)

脉冲编码调制(PCM)的MATLAB仿真(QDTU YUANCHAO)
模拟信号的量化分为均匀量化和非均匀量化。由于均匀量化存在的主要缺点是:无论抽样值大小如何,量化噪声的均方根值都固定不变。因此,当信号 较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态范围将受到较大的限制。为了克服这个缺点,实际中,往往采用非均匀量化。
(c)编码
所谓编码就是把量化后的信号变换成代码,其相反的过程称为译码。当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的范畴。
在现有的编码方法中,若按编码的速度来分,大致可分为两大类:低速编码和高速编码。通信中一般都采用第二类。编码器的种类大体上可以归结为三类:逐次比较型、折叠级联型、混合型。在逐次比较型编码方式中,无论采用几位码,一般均按极性码、段落码、段内码的顺序排列。下面结合13折线的量化来加以说明。
非均匀量化是根据信号的不同区间来确定量化间隔的。对于信号取值小的区间,其量化间隔 也小;反之,量化间隔就大。它与均匀量化相比,有两个突出的优点。首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。
(2)在设计滤波器时,首先要看系统信号源输出信号频率到底是处于在哪个频率范围,再根据其他参考参数和系统各项技术要求,决定是要设计哪种类型的滤波器。
图1 pcm系统原理框图
2.PCM编码中抽样、量化及编码的原理:
(a)抽样
所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。

5.3 脉冲编码调制(PCM)

5.3 脉冲编码调制(PCM)

1 斜率:
0
0
0
111 110 101 100 011 010 001 000
1 x

5.3.1 PCM编码原理
3.码位的选择与安排
第 5 至第 8 位码 C5C6C7C8 为段内码,这 4 位码的 16 种可能状态 用来分别代表每一段落内的16个均匀划分的量化级。 段内码与16 个量化级之间的关系如表 5.6 所示。
m t
抽样
ms t
量化 A/D变换
mq t
编码
信道 m t 来自干扰 mq t 低通滤波
译码与低通滤波的组合称为数/模变换器(D/A变换器)。
抽 样 是 按 抽 样 定 理 把量化是把幅度上仍连续(无穷 时 间上连续的模拟 信 号 转 编 码 是 用二进制码组表 多个取值)的抽样信号进行幅 换成时间上离散 的 抽度离散,即指定 样 M个样值脉冲。 示量化后的 M个规定的电平, 信号; 把抽样值用最接近的电平表示;
码相同;段内码第一位若为0,除段内码第一位外,
其余码取反即可。

5.3.1 PCM编码原理
以非均匀量化时的最小量化间隔Δ =1/2048 作为均 匀量化的量化间隔
从13 折线的第一段到第八段所包含的均匀量化级数 共有2048 个均匀量化级
非均匀量化只有128 个量化级
3.码位的选择与安排
假设:
均匀量化需要编11 位码,而非均匀量化只要编7 位 码
5.3.1 PCM编码原理
1.PCM调制系统框图
脉冲编码调制(PCM)简称脉码调制,是一种用一 组二进制数字代码来代替连续信号的抽样值, 从而实现通信的方式。 PCM是一种最典型的语音信号数字化的波形编码 方式。 原理框图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字通信原理课程设计报告书课题名称脉冲编码调制(PCM)系统设计与仿真姓 名 学 号院 系 物理与电信工程系专 业 通信工程指导教师2010年01月09日※※※※※※※※※ ※※ ※※ ※※ ※※※※※※※※※2007级学生数字通信原理课程设计一、设计任务及要求(1)完成脉冲编码调制(PCM)系统的设计与仿真。

(2)用MATLAB软件将此次设计在电脑上实现,观察输出的波形。

(3)要求有各种需要的信号波形输出,并记录。

指导教师签名:2010年01月15日二、指导教师评语:指导教师签名:2010 年01月15 日三、成绩盖章验收2010年01月15 日脉冲编码调制(PCM)系统设计与仿真谢柯(湖南城市学院物理与电信工程系电子信息工程专业,益阳,413000)一、设计目的加深对《数字通信原理与技术》及《MATLAB》课程的认识,进一步熟悉M语言编程中各个指令语句的运用;进一步了解和掌握数字通信原理课程设计中各种原理程序的设计技巧;掌握宏汇编语言的设计方法;掌握MATLAB软件的使用方法,加深对试验设备的了解以及对硬件设备的正确使用。

加强对于电路图的描绘技能,巩固独立设计实验的实验技能。

提高实践动手能力。

二、设计要求采用matlab或者其它软件工具实现脉冲编码调制(PCM)系统的设计与仿真,并且绘制相关的图形;通过编程设置对参数进行调整,可以调节输出信号的显示效果。

所有设计要求,均必须在实验室调试,保证功能能够实现。

三、设计原理在PCM中,波形的每个样本独立进行编码。

然而,以奈奎斯特速率或更高速率采样的绝大多数信号(包括语音信号),其相邻的样本之间呈现明显的相关性,换言之,相邻采样幅度间的平均变化较小。

所以,利用采样中多余度的编码方案将使语音信号的码率降低。

一种简单的解决方法就是对相邻样本之差编码而不是对样本本身编码,由于相邻样本之差比实际样本幅度小,所以表示差信号需要较小的位数。

这种普通方法的一种改进方案是用前面的n个样本根据一定的规律来预测当前的样本,然后将预测值与实际值的误差进行量化后传输,在根据误差信号,采用和发送端相同的预测方法恢复出原始信号。

图1 PCM的原理框图模拟信号数字化必须经过三个过程,即抽样、量化和编码,以实现话音数字化的脉冲编码调制(PCM,Pulse Coding Modulation)技术。

1. 抽样(Samping)抽样是把模拟信号以其信号带宽2倍以上的频率提取样值,变为在时间轴上离散的抽样信号的过程。

例如,话音信号带宽被限制在0.3~3.4kHz内,用8kHz 的抽样频率(fs),就可获得能取代原来连续话音信号的抽样信号。

对一个正弦信号进行抽样获得的抽样信号是一个脉冲幅度调制(PAM)信号,如下图对模拟正弦信号的抽样所示。

对抽样信号进行检波和平滑滤波,即可还原出原来的模拟信号。

2. 量化(quantizing)抽样信号虽然是时间轴上离散的信号,但仍然是模拟信号,其样值在一定的取值范围内,可有无限多个值。

显然,对无限个样值一一给出数字码组来对应是不可能的。

为了实现以数字码表示样值,必须采用“四舍五入”的方法把样值分级“取整”,使一定取值范围内的样值由无限多个值变为有限个值。

这一过程称为量化。

量化后的抽样信号与量化前的抽样信号相比较,当然有所失真,且不再是模拟信号。

这种量化失真在接收端还原模拟信号时表现为噪声,并称为量化噪声。

量化噪声的大小取决于把样值分级“取整”的方式,分的级数越多,即量化级差或间隔越小,量化噪声也越小。

3. 编码(Coding)量化后的抽样信号在一定的取值范围内仅有有限个可取的样值,且信号正、负幅度分布的对称性使正、负样值的个数相等,正、负向的量化级对称分布。

若将有限个量化样值的绝对值从小到大依次排列,并对应地依次赋予一个十进制数字代码(例如,赋予样值0的十进制数字代码为0),在码前以“+”、“-”号为前缀,来区分样值的正、负,则量化后的抽样信号就转化为按抽样时序排列的一串十进制数字码流,即十进制数字信号。

简单高效的数据系统是二进制码系统,因此,应将十进制数字代码变换成二进制编码。

根据十进制数字代码的总个数,可以确定所需二进制编码的位数,即字长。

这种把量化的抽样信号变换成给定字长的二进制码流的过程称为编码。

话音PCM的抽样频率为8kHz,每个量化样值对应一个8位二进制码,故话音数字编码信号的速率为8bits×8kHz=64kb/s。

量化噪声随量化级数的增多和级差的缩小而减小。

量化级数增多即样值个数增多,就要求更长的二进制编码。

因此,量化噪声随二进制编码的位数增多而减小,即随数字编码信号的速率提高而减小。

自然界中的声音非常复杂,波形极其复杂,通常我们采用的是脉冲代码调制编码,即PCM编码。

PCM通过抽样、量化、编码三个步骤将连续变化的模拟信号转换为数字编码。

图2 PCM 模块电路方框图四、设计步骤4.1、实施步骤A、输出时钟和帧同步时隙信号观测用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504作为同步信号。

B、抽样时钟信号与PCM编码数据测量将跳线开关K501设置在T位置,用函数信号发生器产生一个频率为100HZ,电平为2V的正弦波测试信号,送入信号测试端口J005和J006。

用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号(TP502),观测时以TP504 作为同步信号。

4.2、具体设计程序main.m%show the pcm encode and decodeclear allclose allt=0:0.01:10;%1001个数vm1=-70:1:10; %输入正弦信号幅度不同 dBvm=10.^(vm1/20);%dB---10进制figure(1)for k=1:length(vm)for m=1:2x=vm(k)*sin(2*pi*t+2*pi*rand(1));v=1;xx=x/v; %normalizesxx=floor(xx*4096);y=pcm_encode(sxx);yy=pcm_decode(y,v);nq(m)=sum((x-yy).*(x-yy))/length(x);%燥声功率 sq(m)=mean(yy.^2);%信号功率snr(m)=(sq(m)/nq(m));%信燥比drawnowsubplot(211)plot(t,x);title('sample sequence');subplot(212)plot(t,yy);title('pcm decode sequence');endsnrq(k)=10*log10(mean(snr));endfigure(2)plot(vm1,snrq);axis([-60 0 0 60]);grid;pcm_encode.mfunction [out]=pcm_encode(x)%x encode to pcm coden=length(x);%-4096<x<4096for i=1:nif x(i)>0out(i,1)=1;%符号位elseout(i,1)=0;%符号位endif abs(x(i))>=0&abs(x(i))<32out(i,2)=0;out(i,3)=0;out(i,4)=0;step=2;st=0;elseif 32<=abs(x(i))&abs(x(i))<64out(i,2)=0;out(i,3)=0;out(i,4)=1;step=2;st=32;elseif 64<=abs(x(i))&abs(x(i))<128out(i,2)=0;out(i,3)=1;out(i,4)=0;step=4;st=64;elseif 128<=abs(x(i))&abs(x(i))<256out(i,2)=0;out(i,3)=1;out(i,4)=1;step=8;st=128;elseif 256<=abs(x(i))&abs(x(i))<512out(i,2)=1;out(i,3)=0;out(i,4)=0;step=16;st=256;elseif 512<=abs(x(i))&abs(x(i))<1024out(i,2)=1;out(i,3)=0;out(i,4)=1;step=32;st=512;elseif 1024<=abs(x(i))&abs(x(i))<2048out(i,2)=1;out(i,3)=1;out(i,4)=0;step=64;st=1024;elseif 2048<=abs(x(i))&abs(x(i))<4096out(i,2)=1;out(i,3)=1;out(i,4)=1;step=128;st=2048;elseout(i,2)=1;out(i,3)=1;out(i,4)=1;step=128;st=2048;endif (abs(x(i))>=4096)out(i,2:8)=[1 1 1 1 1 1 1];elsetmp=floor((abs(x(i))-st)/step);t=dec2bin(tmp,4)-48; %函数dec2bin输出的是ASCII字符串,48对应0out(i,5:8)=t(1:4);endendout=reshape(out',1,8*n);%行变列pcm_decode.mfunction [out]=pcm_decode(in,v)%decode the input pcm code%in:input the pcm code 8 bits sample%v:quantized leveln=length(in);in=reshape(in',8,n/8)';%列变行slot(1)=0;slot(2)=32;slot(3)=64;slot(4)=128; slot(5)=256; slot(6)=512; slot(7)=1024; slot(8)=2048;step(1)=2; step(2)=2; step(3)=4; step(4)=8;step(5)=16; step(6)=32; step(7)=64; step(8)=128;for i=1:n/8ss=2*in(i,1)-1;%+1 -1tmp=in(i,2)*4+in(i,3)*2+in(i,4)+1;%2进制转换10进制 st=slot(tmp);dt=(in(i,5)*8+in(i,6)*4+in(i,7)*2+in(i,8))*step(tmp)+0.5*step(tmp); out(i)=ss*(st+dt)/4096*v; end五、设计结果012345678910-1-0.500.51sample sequence12345678910-1-0.500.51pcm decode sequence图3 输入正弦信号图-60-50-40-30-20-1000102030405060图4 实验结果图六、设计体会与建议6.1设计体会在此次设计中,我们将课本理论知识与实际应用联系起来,按照书本上的知识和老师讲授的方法,首先分析研究此次数字电路课程设计任务和要求,然后按照分析的结果进行实际编程操作,检测和校正,再进一步完善M 程序。

相关文档
最新文档