2020届普通高等学校招生全国统一考试高三数学模拟试题(三)理

合集下载

2020年全国普通高等学校招生统一考试理科数学试卷 全国III卷(含答案)

2020年全国普通高等学校招生统一考试理科数学试卷 全国III卷(含答案)

2020年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A=(){}*,,,x y x y N y x ∈≥,B=(){},8x y x y +=,则A B 中元素个数为A. 2B. 3C. 4D. 6解:有下列(1,7)(2,6)(3,8)(4,4)2.复数113i -的虚部是 A. 310- B. 110- C. 110D. 310解:1131313101010i z i i +===+-3.在一组样本数据中,1,2,3,4出现的频率分别为1p ,2p ,3p ,4p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A. 14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ==== D .14230.3,0.2p p p p ==== 解:B4. Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531--=+t K I t e,其中K 为的最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(ln19≈3)A.60B.63C.66D.69()()()()()0.23530.23530.2353-10.951100511====1995951930010.2353=3,53132323153136623解:则,则------==++--===+≈t t t KI t Kee e t t t5. 设O 为坐标原点,直线2x =与抛物线2:2(0)=>C y px p 交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为A. (14,0)B. (12,0)C. (1,0)D. (2,0)1212222122212124y y 0又由点在曲线2上y =4,y =4(y y )16,y y 44,1OD OEOD OE y px p p P p p →→⊥•=+====-=-=6. 已知向量a,b 满足5a =,6b =,·6a b =-,则cos(,)a a b += A. 3135-B. 1935-C. 1735D. 1935222解:()=++2253612497()19cos(,)5735a b a b a b a b a a b a a a ba ab a a b+•=+-=+=•+•+•+===⨯+7. 在△ABC 中,2cos =3C ,4AC =,3BC =,则cos B =A. 19B. 13C. 12D. 23222222222解:由余弦定理得:AB =AC +BC -2AC BC cos 216924393AB 3由余弦定理得:AB AC3341cosB=23392AB BCC BC=+-⨯⨯⨯==+-+-==⨯⨯8. 右图为某几何体的三视图,则该几何体的表面积是 A. 6+42 B. 442+ C. 623+ D. 423+表面积122221222sin 602323S VAB S VAC S ABC S VBC S ∆∆∆∆===⨯⨯==⨯⨯⨯= 9.已知2tan tan()74πθθ-+=,则tan θ=A. -2B. -1C. 1D. 222221tan 解:原式=2tan 71tan 则2tan -2tan -1-tan 77tan 则2tan -8tan +8=0则tan -4tan +4=(tan 2)0则tan 2θθθθθθθθθθθθθ+-=-=--==10.若直线l 与曲线y x =2215x y +=都相切,则l 的方程为 A. 21y x =+ B. 122y x =+ C. 112y x =+ D. 1122y x =+设00000000000设的切点P(x ,x )(x 0)111,,则切线方程为:y-x (x )222化为:-2x 0x 1又与圆相切则:d=x 114x 511直线方程为:y=22y x y k x 解:xx x x x y x =>'===-+==⇒=+∴+11. 设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F , 2F ,离心率为5. P 是C 上一点,且12F P F P ⊥.若△12PF F 的面积为4,则a=A .1B .2C .4D .82222121212121222212121212222222222解:,则+=(2c)414,82又-=2a,-24164,4又5,54,1,1PF PF PF PF cS PF F PF PF PF PFPF PF PF PF PF PF PF PFc a c ace c a a a a aa∆⊥=====+-=-=-===⇒=-===12. 已知5458<,45138<,设5a log3=,8b=log5,13c log8=,则A. a b c<<B. b a c<<C. b c a<<D. c a b<<5445544588131381381325822222解;58,138,则log5log8,log13log8445log54,45log8;log5,log8,则55lg3lg5lg3lg8lg5log3log5lg5lg8lg5lg8lg3lg8lg24lg252lg5lg30,lg80,lg3lg8()()()()lg52222c ba b<<<<<<<>>•--=-=-=•+>>•<=<== 0,a b a b-<<二、填空题:本题共4小题,每小题5分,共20分。

2020年山东省普通高等学校招生全国统一考试模拟卷(三)数学试题(解析版)

2020年山东省普通高等学校招生全国统一考试模拟卷(三)数学试题(解析版)

绝密★启用前山东省2020年普通高等学校招生全国统一考试模拟卷(三)数学试题(解析版)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}312,log 1||A x x B x x =-≤≤=≤,则A B = ( )A. {|12}x x -≤≤B. {|02}x x <≤C. {|12}x x ≤≤D. {|1x x ≤-或2}x >【答案】B【解析】【分析】 先求出集合{03}B x x =<≤,再利用交集的定义得出答案.【详解】因为3{|log 1}B x x =≤可得{03}B x x =<≤,集合{|12}A x x =-≤≤, 所以{|02}A B x x ⋂=<≤故选B【点睛】本题主要考查了交集的定义,属于基础题.2.已知复数z 满足(1)1z i =+,则复平面内与复数z 对应的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】 把已知等式变形,利用复数代数形式的乘除运算化简,求出z 的坐标得答案. 【详解】由()131i z i +=+,得()()()()1131313131313131313i i i z i i i i +-++-+-====++++-, ∴复数z 在复平面内对应的点的坐标为(13+,13-),在第四象限. 故选D . 【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.某校拟从甲、乙两名同学中选一人参加疫情知识问答竞赛,于是抽取了甲、乙两人最近同时参加校内竞赛的十次成绩,将统计情况绘制成如图所示的折线图.根据该折线图,下面结论正确的是( )。

2020年全国3卷高考理科数学仿真试卷(三)答案

2020年全国3卷高考理科数学仿真试卷(三)答案

绝密★启用前2020年普通高等学校招生全国统一考试仿真卷理科数学(三)答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分一、选择题:本大题共12小题,每小题5分1.D 2.A 3.B 4.C 5.B 6.C 7.C8.C9.A10.B11.D12.D第Ⅱ卷本卷包括必考题和选考题两部分。

第(13)~(21)题为必考题,每个试题考生都必须作答。

第(22)~(23)题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分。

13.214.2015.32016.9π三、解答题:解答应写出文字说明、证明过程或演算步骤。

17.【答案】(1)2n a n =;(2)()1654209n nn S +-+=.【解析】(1)由题意得22228t t t t t -++==,所以2t =±,···········2分2t =时,12a =,公差2d =,所以2n a n =;···········4分2t =-时,16a =,公差2d =-,所以82n a n =-.···········6分(2)若数列{}n a 为递增数列,则2n a n =,所以2log 2n b n =,4n n b =,()()1214nn n a b n -=-⋅,···········8分所以()()231143454234214n nn S n n -=⋅+⋅+⋅++-⋅+-⋅ ,·········9分()()23414143454234214n n n S n n +=⋅+⋅+⋅++-⋅+-⋅ ,所以()23134242424214n n n S n +-=+⋅+⋅++⋅--⋅ ()()211414422143n n n -+-=+⨯---()1206543n n +---=,···········10分所以()1654209n nn S +-+=.···········12分18.【答案】(1)见解析;(2)4.【解析】(1)随机变量X 的可取值为0,1,2,3,4···········1分 (2) (3)分 (4) (5)分···········6分故随机变量X 的分布列为:X 01234P1708351835835170···········7分(2)随机变量X 服从超几何分布:()4428E x ⨯∴==,···········9分()1422E Y ∴=⨯=.···········11分()()224E X E Y ∴+=+=.···········12分19.【答案】(1)证明见解析;(2).【解析】(1)在半圆柱中,1BB ⊥平面11PA B ,所以1BB PA ⊥.···········2分因为11A B 是上底面对应圆的直径,所以11PA PB ⊥.···········4分因为111PB BB B = ,1PB ⊂平面1PBB ,11BB PBB ⊂,所以1PA ⊥平面1PBB .···········5分(2)以C 为坐标原点,以CA ,CB 为,y 轴,过C 作与平面ABC 垂直的直线为轴,建立空间直角坐标系C xyz -.如图所示,设1CB =,则()1,0,0B ,()0,1,0A,(1A,(1B,(P .···6分平面11PA B 的一个法向量()10,0,1=n .···········8分设平面11CA B 的一个法向量()2,,x y z =n ,则1z =···········10分···········11分由图可知二面角11P A B C --为钝角,所以所求二面角的余弦值为.···········12分20.【答案】(1)2214y x +=;(2)答案见解析.【解析】(1)取(0,F ',连结PF ',设动圆的圆心为M ,∵两圆相内切,∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',···········3分∴点P 的轨迹是以F ,F '为焦点的椭圆,其中24a =,2c =,∴2a =,c =,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=.···········5分(2)当AB x ⊥轴时,有12x x =,12y y =-,由⊥m n ,得112y x =,又221114y x +=,∴122x =,1y =,∴111121222AOB S x y ∆=⨯⨯=⨯=.···········7分当AB 与轴不垂直时,设直线AB 的方程为y kx m =+,()2224240k x kmx m +++-=,则12224kmx x k -+=+,212244m x x k -=+,···········9分由0⋅=m n ,得121240y y x x +=,∴()()121240kx m kx m x x +++=,整理得()()22121240k x x km x x m ++++=,···········10分∴2224m k =+,1221==,综上所述,AOB △的面积为定值.···········12分21.【答案】(1)见解析;(2)当1m <时,()g x 没有零点;1m =时,()g x 有一个零点;1m >时,()g x 有两个零点.【解析】(1)1m =时,()1e ln x f x x x -=-,()1'e ln 1x f x x -=--,········1分要证()f x 在()0+∞,上单调递增,只要证:()0f x '≥对0x >恒成立,令()1e x i x x -=-,则()1e 1x i x -'=-,当1x >时,()0i x '>,···········2分当1x <时,()0i x '<,故()i x 在()1-∞,上单调递减,在()1+∞,上单调递增,所以()()10i x i =≥,···········3分即1e x x -≥(当且仅当1x =时等号成立),令()()1ln 0j x x x x =-->当01x <<时,()'0j x <,当1x >时,()'0j x >,故()j x 在()0,1上单调递减,在()1+∞,上单调递增,所以()()10j x j =≥,即ln 1x x +≥(当且仅当1x =时取等号),()1e ln 1x f x x -'=--()ln 10x x -+≥≥(当且仅当1x =时等号成立),()f x 在()0+∞,上单调递增.···········5分(2)由()e ln x m g x x m -=--有,显然()g x '是增函数,令()00g x '=,00e e x m x =,00ln m x x =+,则(]00,x x ∈时,()0g x '≤,[)0,x x ∈+∞时,()0g x '≥,∴()g x 在(]00,x 上是减函数,在[)0,x +∞上是增函数,∴()g x ···········7分①当1m =时,01x =,()()=10g x g =极小值,()g x 有一个零点1;···········8分②当1m <时,001x <<02ln 0x <,001x <<,所以()0g x >0,()g x 没有零点;···········9分③当1m >时,01x >,()01010g x <--=,又()eee e e 0mmm mmg m m -----=+-=>,又对于函数e 1x y x =--,'e 10x y =-≥时0x ≥,∴当0x >时,1010y >--=,即e 1x x >+,∴()23e ln3m g m m m =-->21ln3m m m +--=1ln ln3m m +--,令()1ln ln3t m m m =+--,则()11'1m t m m m-=-=,∵1m >,∴()'0t m >,∴()()12ln30t m t >=->,∴()30g m >,又0e 1m x -<<,000333ln m x x x =+>,∴()g x 有两个零点,综上,当1m <时,()g x 没有零点;1m =时,()g x 有一个零点;1m >时,()g x 有两个零点.···········12分请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。

2020年普通高等学校招生第三次统一模拟考试理科数学参考答案

2020年普通高等学校招生第三次统一模拟考试理科数学参考答案
----------------- ③
2 Sn = 3 × 3 × 21 + 5 × 3 × 22 + 7 × 3 × 23 + × × × + (2n - 1) × 3 × 2n-1 + (2n + 1) × 3 × 2n
-------------------- ④ 由③-④得:
- Sn = 9+6[ 21 + 22 + 23 + × × × + 2n-1 ]-(2n + 1) × 3 × 2n ∴ Sn = (6n - 3) × 2n + 3 . -----------------------------------12 分
平均数为:
X 160 0.06 170 0.12 180 0.34 190 0.30 200 0.1 210 0.08
= 185( 个 ).
----------------------------------------6 分
( Ⅱ ) 跳 绳 个 数 在 [155 , 165) 内 的 人 数 为 100 0.06 6 个 ,
12
高三理科数学参考答案 第 5 页 (共 8 页)
20.(本小题满分 12 分)
已 知 函 数 f (x) x ln(x a) 1(a < 0) .
(Ⅰ)若 函 数 f (x) 在 定 义 域 上 为 增 函 数 , 求 a 的 取 值 范 围 ;
(Ⅱ )证 明 : f(x) < ex + sin x .
绝密★启用前
2020 年普通高等学校招生第一次统一模拟考试 理科数学参考答案及评分标准 2020.03
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

2020学年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理及答案解析

2020学年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理及答案解析

2020年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}解析:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2},∴A∩B={x|x≥1}∩{0,1,2}={1,2}.答案:C2.(1+i)(2﹣i)=( )A.﹣3﹣iB.﹣3+iC.3﹣iD.3+i解析:(1+i)(2﹣i)=3+i.答案:D3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A.B.C.D.解析:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.答案:A4.若sinα=13,则cos2α=( ) A.89 B.79C.﹣79D.﹣89解析:∵sinα=13,∴cos2α=1﹣2sin 2α=192719-⨯=. 答案:B5.(x 2+2x )5的展开式中x 4的系数为( )A.10B.20C.40D.80解析:由二项式定理得(x 2+2x )5的展开式的通项为:()()5210315522rrr rr rr xT Cx C x--+==,由10﹣3r=4,解得r=2,∴(x 2+2x )5的展开式中x 4的系数为5222C =40.答案:C6.直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x ﹣2)2+y 2=2上,则△ABP 面积的取值范围是( ) A.[2,6] B.[4,8]232,D.[2232,] 解析:∵直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点, ∴令x=0,得y=﹣2,令y=0,得x=﹣2,∴A(﹣2,0),B(0,﹣2),4+4=22∵点P 在圆(x ﹣2)2+y 2=2上,∴设P ()2co 2s sin 2θθ+,,∴点P 到直线x+y+2=0的距离:()2sin 42cos sin 242222d πθθθ+++++==,∵()sin 4πθ+∈[﹣1,1],∴d= ()22sin 44πθ++∈[232,], ∴△ABP 面积的取值范围是:[11222223222⨯⨯⨯⨯,,6].答案:A7.函数y=﹣x 4+x 2+2的图象大致为( )A.B.C.D.解析:函数过定点(0,2),排除A ,B.函数的导数f′(x)=﹣4x 3+2x=﹣2x(2x 2﹣1),由f′(x)>0得2x(2x 2﹣1)<0,得x <﹣或0<x <,此时函数单调递增,排除C.答案:D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 解析:某群体中的每位成员使用移动支付的概率都为p ,看做是独立重复事件,满足X ~B(10,p),P(x=4)<P(X=6),可得()()644466101011C p p C p p --<,可得1﹣2p <0.即12p >. 因为DX=2.4,可得10p(1﹣p)=2.4,解得p=0.6或p=0.4(舍去). 答案:B9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为2224a b c +-,则C=( )A.2πB.3πC.4πD.6π解析:∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.△ABC 的面积为2224a b c +-,∴S △ABC =222s 1in 42a b c ab C +-=,∴sinC=2222a b c bc +-=cosC ,∵0<C <π,∴C=4π.答案:C10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为则三棱锥D ﹣ABC 体积的最大值为( )A.B.C.D.543解析:△ABC 为等边三角形且面积为93,可得2393AB ⨯=,解得AB=6,球心为O ,三角形ABC 的外心为O′,显然D 在O′O 的延长线与球的交点如图:()222362342323O C OO '=='=-=,,则三棱锥D ﹣ABC 高的最大值为:6,则三棱锥D ﹣ABC 体积的最大值为:31361833=答案:B11.设F 1,F 2是双曲线C :22221y x a b -=(a >0.b >0)的左,右焦点,O 是坐标原点.过F 2作C的一条渐近线的垂线,垂足为P ,若|PF 1|=6|OP|,则C 的离心率为( )A.5B.2C.3D.2解析:双曲线C :22221y x a b -=(a >0.b >0)的一条渐近线方程为b y x a =, ∴点F 2到渐近线的距离22bcd b a b ==+,即|PF 2|=b ,∴2222222cos bOP OF PF c b a PF O c =-=-=∠=,, ∵|PF 16|OP|,∴|PF 16a ,在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2﹣2|PF 2|·|F 1F 2|COS ∠PF 2O ,∴6a 2=b 2+4c 2﹣2×b ×2c ×bc =4c 2﹣3b 2=4c 2﹣3(c 2﹣a 2),即3a 2=c 2, 即3a=c ,∴3c e a ==.答案:C12.设a=log 0.20.3,b=log 20.3,则( ) A.a+b <ab <0 B.ab <a+b <0 C.a+b <0<ab D.ab <0<a+b解析:∵a=log 0.20.3=lg 0.3lg 5-,b=log 20.3=lg 0.3lg 2,∴()5lg 0.3lg lg 0.3lg 5lg 2lg 0.3lg 0.32lg 2lg 5lg 2lg 5lg 2lg 5a b -+-===,10lg 0.3lg lg 0.3lg 0.33lg 2lg 5lg 2lg 5ab ⋅-⋅==,∵105lg lg 32>,lg 0.3lg 2lg 5<,∴ab <a+b <0.答案:B二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(1,2),b =(2,﹣2),c =(1,λ).若c ∥(2a b +),则λ=____. 解析:∵向量a =(1,2),b =(2,﹣2), ∴2a b +=(4,2),∵c =(1,λ),c ∥(2a b +),∴142λ=, 解得λ=12.答案: 1214.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=____.解析:曲线y=(ax+1)e x ,可得y′=ae x +(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2, 可得:a+1=﹣2,解得a=﹣3. 答案:﹣315.函数f(x)=cos(3x+6π)在[0,π]的零点个数为____.解析:∵f(x)=cos(3x+6π)=0, ∴362x k πππ+=+,k ∈Z ,∴x=193k ππ+,k ∈Z ,当k=0时,x=9π,当k=1时,x=49π,当k=2时,x=79π,当k=3时,x=109π,∵x ∈[0,π],∴x=9π,或x=49π,或x=79π,故零点的个数为3. 答案:316.已知点M(﹣1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k=____.解析:∵抛物线C :y 2=4x 的焦点F(1,0), ∴过A ,B 两点的直线方程为y=k(x ﹣1),联立()241y x y k x ⎪-⎧⎪⎨⎩==可得,k 2x 2﹣2(2+k 2)x+k 2=0, 设A(x 1,y 1),B(x 2,y 2),则212242k x x k ++=,x 1x 2=1, ∴y 1+y 2=k(x 1+x 2﹣2)=4k ,y 1y 2=k 2(x 1﹣1)(x 2﹣1)=k 2[x 1x 2﹣(x 1+x 2)+1]=﹣4,∵M(﹣1,1),∴MA =(x 1+1,y 1﹣1),MB =(x 2+1,y 2﹣1), ∵∠AMB=90°=0,∴0MA MB ⋅= ∴(x 1+1)(x 2+1)+(y 1﹣1)(y 2﹣1)=0,整理可得,x 1x 2+(x 1+x 2)+y 1y 2﹣(y 1+y 2)+2=0,∴24124420k k ++--+=,即k 2﹣4k+4=0,∴k=2. 答案:2三、解答题:共70分。

2020年全国3卷高考理科数学仿真试卷(三)

2020年全国3卷高考理科数学仿真试卷(三)

绝密★启用前2020年普通高等学校招生全国统一考试仿真卷理科数学(三)本试题卷共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合{}|11A x x =-<<,{}|02B x x =<<,则A B = ()A .{}|11x x -<<B .{}|12x x -<<C .{}|02x x <<D .{}|01x x <<2.设复数12i z =+(是虚数单位),则在复平面内,复数2z 对应的点的坐标为()A .()3,4-B .()5,4C .()3,2-D .()3,43.()()6221x x -+的展开式中4x 的系数为()A .-160B .320C .480D .6404.某几何体的三视图如图所示,则该几何体的表面积为()A .52π+B .42π+C .44π+D .54π+5.过双曲线221916x y -=的右支上一点P ,分别向圆1C :()2254x y ++=和圆2C :()2225x y r -+=(0r >)作切线,切点分别为M ,N ,若22PM PN -的最小值为58,则r =()A .B .2C .3D .6.设函数()()3sin cos 0f x x x ωωω=+>,其图象的一条对称轴在区间,63ππ⎛⎫⎪⎝⎭内,且()f x 的最小正周期大于,则ω的取值范围为()A .1,12⎛⎫ ⎪⎝⎭B .()0,2C .()1,2D .[)1,27.在ABC △中,内角A ,B ,C 的对边分别为,,,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是()A .6πB .4πC .3πD .2π8.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:sin150.2588≈ ,sin7.50.1305≈ )班级姓名准考证号考场号座位号此卷只装订不密封A .12B .20C .24D .489.设π02x <<,则“2cos x x <”是“cos x x <”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为()A .14πB .49πC .19D .58π11.已知()cos23,cos67AB =︒︒ ,()2cos68,2cos22BC =︒︒,则ABC △的面积为()A .2B 2C .1D .2212.已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数均有()()()10x f x xf x '-+>成立,且()1e y f x =+-是奇函数,则不等式()e 0x xf x ->的解集是()A .(),e -∞B .()e,+∞C .(),1-∞D .()1,+∞第Ⅱ卷本卷包括必考题和选考题两部分。

高三数学模拟试题三(理科)

高三数学模拟试题三(理科)

高三数学模拟试题三(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}53|≤<-=x x M ,{}5,5|>-<=x x x N 或,则N M =A.﹛x |x <-5,或x >-3﹜B.﹛x |-5<x <5﹜C.﹛x |-3<x <5﹜D.﹛x |x <-3,或x >5﹜ 2. 若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z =A .i -B .i 2-C .iD .i 23. 已知映射B A f→:,其中R B A ==,对应法则21||:xy x f =→,若对实数B k ∈,在集合A 中不存在元素x 使得k x f →:,则k 的取值范围是A .0≤kB .0>kC .0≥kD . 0<k 4. 已知函数)sin(2ϕω+=x y 满足)()(x f x f =-,其图象与直线2=y 的某两个交点横坐标为21,x x ,21x x -的最小值为π,则 A. 21=ω,4πϕ=B. 2=ω,4πϕ=C. 21=ω,2πϕ=D. 2=ω,2πϕ=5. 实数y x ,满足条件⎪⎩⎪⎨⎧≥≥≥+-≤-+0,002204y x y x y x ,则yx -2的最小值为 A .16 B .4 C .1 D .21 6. 下列命题中正确命题的个数是 (1)0cos ≠α是)(22Z k k ∈+≠ππα的充分必要条件;(2)若,0,0>>b a 且112=+ba ,则4≥ab ; (3)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;(4)设随机变量ξ服从正态分布N(0,1),若p P =>)1(ξ,则.21)01(p P -=<<-ξ A .4 B .3 C .2 D .1 7. 10)31(xx -的展开式中含有x 的正整数幂的项的个数是 A. 0 B. 2 C. 4 D. 6 8. 在同一平面直角坐标系中,函数)(x f y =的图象与x e y =的图象关于直线x y =对称.而函数)(x f y =的图象与)(x g y =的图象关于y 轴对称,若1)(-=m g ,则m 的值是A .eB . e 1C .e -D .e1- 9. 曲线2x y =和曲线x y =2围成的图形面积是( )A. 31B.32C. 1D. 34 10. 过双曲线)0,0(12222>>=-b a by a x 的左焦点)0)(0,(>-c c F ,作圆4222a y x =+的切线,切点为E ,延长FE 交双曲线右支于点P ,若)(21+=,则双曲线的离心率为 A .10B .510C .210 D .211. 在ABC ∆中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若ACc +0=+PB b PA a ,则ABC ∆的形状为A.直角三角形B.钝角三角形C.等边三角形D.等腰三角形但不是等边三角形.12. 直线t x =(0>t )与函数1)(2+=x x f ,x x g ln )(=的图象分别交于A 、INPUT xIF 0<x THEN2)^2(+=x yELSEIF0=xTHEN4=yB 两点,当||AB 最小时,t 值是A. 1B.22 C. 21D.33 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分. 13.已知21cos sin =-αα,2,0(πα∈,则=-)42cos παα . 14. 右图所示的程序是计算函数)(x f 函数值的程序,若输出的y 值为4,则输入的x 值是 .15. 已知抛物线)0(22>=p px y ,过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 .16. 四棱锥ABCD P -的三视图如右图所示,四棱锥ABCD P -的五个顶点都在一个球面上,E 、F 分别是 棱AB 、CD 的中点,直线EF 被球面所截得的线段长为22,则该球表面积为 .三.解答题:17. (本小题满分12分)已知公差不为零的等差数列}{n a 的前4项和为10,且732,,a a a 成等比数列.(Ⅰ)求通项公式n a ;(Ⅱ)设na nb 2=,求数列{}n b 的前n 项和n S .18.某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)如下:(I)请作出样本数据的茎叶图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).(Ⅱ)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩..中至少有一个比12.8秒差的概率.(Ⅲ)经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.19.(本小题满分12分)如图,正方形ADEF与梯形ABCD所在的平面互相垂直,CDAD ,AB∥CD,221===CD AD AB ,点M 在线段EC 上. (I )当点M 为EC 中点时,求证:BM ∥平 面ADEF ;(II )当平面BDM 与平面ABF 所成锐二面角 的余弦值为66时,求三棱锥BDE M -的体积.20. (本小题满分12分)22=+yx上,⊥PD x点M在射线DP上,且满足DPλ.DMλ=)0(≠(Ⅰ)当点P在圆O上运动时,求点M的轨迹C 程,并根据λ取值说明轨迹C的形状.(Ⅱ)设轨迹C与x轴正半轴交于点A,与y交于点B,直线0x与轨迹C交于点E、F,点G3-y2=在直线AB上,满足6=,求实数λ的值.21.已知函数1)(2++=x bxax x f ,曲线)(x f y =在点()1(,1f )处的切线方程是.0145=+-y x(Ⅰ)求b a ,的值;(Ⅱ)设),()1ln(2)(x mf x x g -+=若当[)+∞∈,0x 时,恒有0)(≤x g ,求m 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,O ⊙是△ABC 的外接圆,D 是AC⌒ (Ⅰ)求证:DB DE DC ⋅=2; (Ⅱ)若32=CD ,O到AC 的距离为123.(本小题满分10分)选修4—4:坐标系与参数方程平面直角坐标系中,直线l 的参数方程是⎪⎩⎪⎨⎧==ty t x 3(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为-+θρθρ2222sin cos 03sin 2=-θρ.(Ⅰ)求直线l 的极坐标方程;(Ⅱ)若直线l 与曲线C 相交于A 、B 两点,求||AB . 24.(本小题满分l0分)选修4—5:不等式选讲已知函数|1||2|)(+--=x x x f . (Ⅰ)求证:3)(3≤≤-x f ;(Ⅱ)解不等式x x x f 2)(2-≥.高三数学模拟试题三(理科)参考答案一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A ;2C ;3D ;4D ;5D ;6B ;7B ;8D ;9A ;10C ;11C.;12B.. 二、填空题:本大题共4小题,每小题5分. 13.214-;14.-4,0,4;15.1-=x ;16.π12三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17. (本小题满分12分) 解:(1)由题意知⎩⎨⎧++=+=+).6)(()2(,106411211d a d a d a d a …………………………3分 解得⎩⎨⎧=-=321d a ……………………………………………………… 5分所以a n =3n -5.………………………………………………………… 6分(Ⅱ)∵15384122--⋅===n n a nn b ∴数列{b n }是首项为41,公比为8的等比数列,---------------------------9分所以;281881)81(41-=--=n n n S …………………………………………12分.18.(本小题满分12分) 解:(Ⅰ) 茎叶图…………2分从统计图中可以看出,乙的成绩较为集中,差异程度较小,应选派乙同学代表班级参加比赛更好;………………4分(Ⅱ)设事件A 为:甲的成绩低于12.8,事件B 为:乙的成绩低于12.8,则甲、乙两人成绩至少有一个低于12.8秒的概率为:=P ))((1B A P -=541051041=⨯-;……………8分(此部分,可根据解法给步骤分:2分)(Ⅲ)设甲同学的成绩为x ,乙同学的成绩为y ,则0.8x y -<,……………10分 得0.80.8x y x -+<<+,如图阴影部分面积即为33 2.2 2.2 4.16⨯-⨯=,则4.16104(0.8)(0.80.8)33225P x y P x y x -<=-+<<+==⨯. …………12分19.(本小题满分12分) 解:(1)以直线DA 、DC 、DE 分别为x 轴、y 轴、z 轴建立空间直角坐标系,则)0,0,2(A ,)0,2,2(B )0,4,0(C ,)2,0,0(E ,所以)1,2,0(M . ∴)1,0,2(-=BM ————————2分又,)0,4,0(=OC 是平面ADEF 的一个法向量. ∵0=⋅即⊥∴BM ∥平面ADEF ——————4分 (2)设),,(z y x M ,则)2,,(-=z y x , 又)2,4,0(-=EC设10(<<=λλ,则,λλ22,4,0-===z y x 即)22,4,0(λλ-M .——6分设),,(111z y x =是平面BDM 的一个法向量,则02211=+=⋅y x 0)22(411=-+=⋅z y λλ取11=x 得 λλ-=-=12,111z y 即 )12,1,1(λλ--=n 又由题设,)0,0,2(=OA 是平面ABF 的一个法向量,——————8分∴ 2166)1(4222|,cos |22=⇒=-+==><λλλn OA ————10分即点M 为EC 中点,此时,2=DEM S ∆,AD 为三棱锥DEM B -的高,∴ =-BDEM V 342231=⋅⋅=-DEMB V ————————————12分20. (本小题满分12分) 解:(1)设),(y x M 、),(00y x P ,由于DP DM λ=和⊥PD x 轴,所以⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧==⇒==λλyy xx y y xx 0000 代入圆方程得:144222=+λy x --------------2分当11<<λ时,轨迹C 表示焦点在x 轴上的椭圆;当1=λ时轨迹C 就是圆O ;当1>λ时轨迹C 表示焦点是y 轴上的椭圆.---------------4分 (2)由题设知)0,2(A ,)2,0(λB ,E ,F 关于原点对称,所以设)32,(11x x E ,)32,(11y x F --,)32,(00x x G ,不妨设01>x ---------------6分直线 AB 的方程为:122=+λy x 把点G 坐标代入得2360+=λλx 又, 点E 在轨迹C 上,则有⇒=+19422121λx x 49621+=λλx -------8分∵ GF EG 6=即 )(60110x x x x --=- 1075x x =⇒-----------10分 ∴⋅=+75236λλ4962+λλ(>λ)⇒9821or=λ----------12分21.(本小题满分12分)解:(1)22)1()()1)(2()(++-++='x bx ax x b ax x f .由于直线.0145=+-y x 的斜是45,且过点(23,1), ∴⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧==⇒=+=+⇒='=21454323245)1(23)1(b a b a b a f f 即1)(2++=x xx x f -------4分(2)由(1)知:),1(12)1ln(2)(2->++-+=x x xx m x x g 则22)(22)22()(+-+-+-='x mx m mx x g ,--------------------------6分令m x m mx x h 22)22()(2-+-+-=,当0=m 时,22)(+=x x h ,在[)+∞∈,0x 时,0)(>x h 0)(>'x g 即,)(x g 在 [)+∞,0上是增函数,则0)0()(=≥g x g ,不满足题设.当0<m 时,∵011222<-=---mm m 且022)0(>-=m h ∴[)+∞∈,0x 时,0)(>x h 0)(>'x g 即,)(x g 在[)+∞,0上是增函数,则)0()(=≥g x g ,不满足题设.----------------------------------8分当10<<m时,则0)1(4)22(4)22(22>-==+-=m m m m ∆,由0)(=x h 得01121<---=m m m x ; 01122>-+-=mm m x则,),0[2x x ∈时,0)(>x h ,0)(>'x g 即,)(x g 在[)2,0x 上是增函数,则)0()(2=≥g x g ,不满足题设.--------------------------------------10分当1≥m 时,0)1(4)22(4)22(22≤-==+-=m m m m ∆,0)(≤x h 0)(≤'x g 即,)(x g 在[)+∞,0上是减函数,则0)0()(=≤g x g ,满足题设. 综上所述,),1[+∞∈m -------------------------------------------------12分请考生从第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.做题时用2B 铅笔在答题卡上把所选题目的题号涂黑. (22)(本小题满分10分)选修4—1:几何证明选讲 解:(I )证明:∵CBD ABD ∠=∠,ECD ABD ∠=∠∴ECD CBD ∠=∠,又EDC CDB ∠=∠,∴△BCD ~△CED ,∴DBDCDCDE=, ∴CD 2=DE ·DB ; ………………(5分)23.(本小题满分10分)选修4—4:坐标系与参数方程解:(Ⅰ)消去参数得直线l 的直角坐标方程:x y 3=---------2分由⎩⎨⎧==θρθρsin cos y x 代入得 θρθρcos 3sin =)(3R ∈=⇒ρπθ.( 也可以是:3πθ=或)0(34≥=ρπθ)---------------------5分(Ⅱ)⎪⎩⎪⎨⎧==--+303sin 2sin cos 2222πθθρθρθρ 得 0332=--ρρ-----------------------------7分设)3,(1πρA ,)3,(2πρB , 则154)(||||2122121=--=-=ρρρρρρAB .---------10分(若学生化成直角坐标方程求解,按步骤对应给分) 24.(本小题满分l0分)选修4—5:不等式选讲解:(1)⎪⎩⎪⎨⎧>-<<-+--≤=)2(3)21(12)1(3)(x x x x x f ,------------------3分又当21<<-x 时,3123<+-<-x ,∴3)(3≤≤-x f -----------------------------------------------5分(2)当1-≤x 时,121322=⇒≤≤-⇒≤-x x x x ;当21<<-x 时,11111222≤<-⇒≤≤-⇒+-≤-x x x x x ; 当2≥x 时,φ∈⇒-≤-x x x 322;-------------------------8分综合上述,不等式的解集为:[]1,1-.-------------------------10分。

2020年全国普通高等学校招生统一考试理科数学试卷 全国Ⅲ卷(含答案)

2020年全国普通高等学校招生统一考试理科数学试卷 全国Ⅲ卷(含答案)

2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合*{()|}A x y x y y x =∈N ,,,,{()|8}B x y x y =+=,,则A B 中元素的个数为( ) A.2 B.3C.4D.62.复数113i-的虚部是( ) A.310-B.110-C.110D.3103.在一组样本数据中,1,2,3,4出现的频率分别为1234p p p p ,,,,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( ) A.140.1p p ==,230.4p p == B.140.4p p ==,230.1p p == C.140.2p p ==,230.3p p ==D.140.3p p ==,230.2p p ==4.Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(53)()1e t K I t --=+,其中K 为最大确诊病例数.当*()0.95I t K =时,标志着已初步遏制疫情,则t *约为(ln193≈)( ) A.60B.63C.66D.695.设O 为坐标原点,直线2x =与抛物线22(0)C y px p =>:交于D E ,两点,若OD OE ⊥,则C 的焦点坐标为( )A.(14)0, B.(12)0, C.(10), D.(20),6.已知向量a b,满足||5||66===-a b a b,,⋅,则cos+=a a b,()A.3135- B.1935- C.1735D.19357.在ABC中,2cos3C=,4AC=,3BC=,则cos B=()A.19B.13C.12D.238.下图为某几何体的三视图,则该几何体的表面积是()A.62+ B.442+ C.623+ D.423+9.已知π2tan tan()74θθ-+=,则tanθ=()A.2-B.1-C.1D.210.若直线l与曲线y x=和圆2215x y+=都相切,则l的方程为()A.21y x=+ B.122y x=+ C.112y x=+ D.1122y x=+11.设双曲线22221(00)x yC a ba b-=>>:,的左、右焦点分别为1F,2F5.P是C上一点,且12F P F P⊥.若12PF F的面积为4,则a=()A.1B.2C.4D.812.已知5458<,45138<.设5log3a=,8log5b=,13log8c=,则()A.a b c<< B.b a c<< C.b c a<< D.c a b<<二、填空题:本题共4小题,每小题5分,共20分。

2020届普通高等学校高三招生全国统一考试模拟(三)数学(理)模拟试题word版有答案

2020届普通高等学校高三招生全国统一考试模拟(三)数学(理)模拟试题word版有答案

普通高等学校招生全国统一考试模拟试题理数(三)本试卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证号条形码粘贴在答题卡上的指定位置。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合(){}2ln 330A x x x =-->,集合{}231,B x x U R =->=,则()U C A B ⋂=A. ()2,+∞B. []2,4C. (]1,3D. (]2,42.设i 为虚数单位,给出下面四个命题:1:342p i i +>+;()()22:42p a a i a R -++∈为纯虚数的充要条件为2a =;()()23:112p z i i =++共轭复数对应的点为第三象限内的点; 41:2i p z i +=+的虚部为15i . 其中真命题的个数为A .1B .2C .3D .43.某同学从家到学校途经两个红绿灯,从家到学校预计走到第一个红绿灯路口遇到红灯的概率为0.75,两个红绿灯路口都遇到红灯的概率为0.60,则在第一个路口遇到红灯的前提下,第二个路口也遇到红灯的概率为A .0.85B .0.80C .0.60D .0.564.已知函数()f x =的值域为A ,且,a b A ∈,直线()()2212x y x a y b +=-+-=与圆有交点的概率为 A .18B .38C.78D.145.一条渐近线的方程为43y x =的双曲线与抛物线2:8C y x =的一个交点为A ,已知AF =(F 为抛物线C 的焦点),则双曲线的标准方程为A .2211832x y -=B .2213218y x -= C .221916x y -=D .2291805y x -= 6.如图,弧田由圆弧和其所对弦围成,《九章算术》中《方田》章给出计算弧田面积所用的经验公式为:以弦乘矢,矢又自乘,并之,二而一”,即弧田面积12=(弦×矢+矢2).公式中“弦”指圆弧所对的线段,“矢”等于半径长与圆心到弦的距离之差,按照上述的经验公式计算弧田面积与实际面积存在误差,则圆心角为3π,弦长为1的弧田的实际面积与经验公式算得的面积的差为 A .138-B .31168π+- C .123623π+- D .53325-7.已知()()32210012100223nn x dx x x a a x a x a x =+-=+++⋅⋅⋅+⎰,且,则12310012102310a a a a a a a a +++⋅⋅⋅++++⋅⋅⋅+的值为 A .823B .845C .965-D .8778.已知函数()()sin 2cos 2,0,66f x x x x f x k ππ⎛⎫⎡⎤=++∈= ⎪⎢⎥⎝⎭⎣⎦当时,有两个不同的根12,x x ,则()12f x x k ++的取值范围为A .)1,3⎡⎣B .)3,23⎡⎣C .33,12⎛⎫+ ⎪ ⎪⎭D .)3,2⎡⎣ 9.运行如图所示的程序框图,输出的S 值为 A .2018201722⨯- B .2018201822⨯+ C. 2019201822⨯-D .2019201722⨯+10.已知直线()()21350m x m y m +++--=过定点A ,该点也在抛物线()220x py p =>上,若抛物线与圆()()()222:120C x y rr -+-=>有公共点P ,且抛物线在P 点处的切线与圆C 也相切,则圆C 上的点到抛物线的准线的距离的最小值为 A .35-B. 33-C .3D .32-11.已知几何体的三视图如图所示,则该几何体的外接球的表面积为 A .2143π B .1273πC.1153π D .1243π12.已知函数()f x 的导函数为()'fx ,且满足()32123f x x ax bx =+++,()()''24f x f x +=-,若函数()6ln 2f x x x ≥+恒成立,则实数b 的取值范围为A .[)64ln3,++∞B .[)5ln5,++∞ C.[)66ln6,++∞ D .[)4ln 2,++∞第Ⅱ卷本卷包括必考题和选考题两部分。

2020年普通高等学校招生全国统一考试数学试题理(全国卷3,含答案)

2020年普通高等学校招生全国统一考试数学试题理(全国卷3,含答案)

绝密★启用前2020年普通高等学校招生全国统一考试(新课标m)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A= (x,y)| x2y2 1 , B= (x,y)| y x ,则A I B中元素的个数为A. 3B. 2C. 1D. 02.设复数z满足(1+i) z=2i ,则I z I =A. 1B.停C. 2D. 23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2020年1月至2020年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4. (x+y)(2 x-y)5的展开式中x3y3的系数为设函数f (x )=cos( x + —),则下列结论错误的是8 .已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.冗B.红C. -D.」9 .等差数列 a n 的首项为1,公差不为0.若a 2, S 3, a 6成等比数列,则 4 前6项的和为A. -24B. -3C. 3D. 822x y10.已知椭圆C :二上21,(a>b >0)的左、右顶点分别为 A 1, A 且以线段A 1A 2为直径的圆与直线a bbx ay 2ab 0相切,则C 的离心率为5.A. -80B. -40C. 40D. 802 (x)已知双曲线 C: -2a2y_ b 21( a>0,b>0)的一条渐近线方程为2x 12 2—1有公共3焦点,则 C 的方程为2A. — 82L 110B. C.2x D.—42y 36. A. f (x )的一个周期为-2兀B. y =f (x )的图像关于直线 x =3C. f (x+Tt)的一个零点为 x=-6D. f (x )在(_,兀)单调递减27. 执行下面的程序框图,为使输出 A. 58. 4S 的值小于91,则输入的正整数 N 的最小值为则+的最大值为A. 3B. 2、,2C. .5D. 2二、填空题:本题共 4小题,每小题5分,共20分。

2020高考模拟数学试题(全国Ⅲ卷)-理科

2020高考模拟数学试题(全国Ⅲ卷)-理科

绝密★启用前|铭师堂试题2020高考模拟数学试题(全国Ⅲ卷)—理科(考试时间:120分钟 试卷满分:150分)第I 卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={﹣2,﹣1,0,1,2,3},B ={x ∈Z |x 2﹣1<0},则A ∩(∁A B )=( ) A .{﹣2,-1,1,2,3} B .{﹣2,﹣1,0,1,2,3} C .{﹣2,2,3}D .{﹣1,0,1}2.若复数z 满足(1+i )z =|√3−i |,则z =( ) A .√2iB .−√2iC .1﹣iD .√2−√2i3.(1+2x 2)(x −1x )6的展开式中,含x 2的项的系数是( ) A .﹣40B .﹣25C .25D .554.在△ABC 中,B =2π3,AB =3,E 为AB 的中点,S △BCE =3√38,则AC 等于( ) A .√13 B .√10C .√7D .35.已知函数y =asinxx在点M (π,0)处的切线−1πx +b =y ,则( )A .a =﹣1,b =1B .a =﹣1,b =﹣1C .a =1,b =1D .a =1,b =﹣1 6.函数f(x)=2x 2+3xx的大致图象是( )A .B .C .D .7.已知函数f(x)=Asin(ωx +ϕ)(A >0,ω>0,|ϕ|<π)的部分图象如图所示,则下列判断正确的是( )A .函数的图象关于点(−π,0)对称 B .函数的图象关于直线x =−π6对称 C .函数f (2x )的最小正周期为π D .当π6≤x ≤7π6时,函数f (x )的图象与直线y =2围成的封闭图形面积为2π8.一位老师有两个推理能力很强的学生甲和乙,他告诉学生他手里拿着与以下扑克牌中的一张相同的牌:黑桃:3,5,Q ,K 红心:7,8,Q 梅花:3,8,J ,Q 方块:2,7,9老师只给甲同学说这张牌的数字(或字母),只给乙同学说这张牌的花色,接着老师让这两个同学猜这是张什么牌:甲同学说:我不知道这是张什么牌,乙同学说:我也不知道这是张什么牌. 甲同学说:现在我们知道了. 则这张牌是( ) A .梅花3B .方块7C .红心7D .黑桃Q9.已知三棱锥D ﹣ABC 的四个顶点在球O 的球面上,若AB =AC =BC =DB =DC =1,当三棱锥D ﹣ABC 的体积取到最大值时,球O 的表面积为( ) A .5π3B .2πC .5πD .20π310.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x 2+y 2≤1,若将军从点A (2,0)处出发,河岸线所在直线方程为x +y =3,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ) A .√10−1 B .2√2−1 C .2√2 D .√1011.过双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右焦点F 作双曲线的一条渐近线的垂线,垂足为A ,交另一条渐近线于B ,点Q 是圆x 2+y 2=a 2上的动点.若FB →=2FA →,|BQ |的最大值为9,则此双曲线的方程为( ) A .x 24−y 212=1 B .x 24−y 216=1 C .x 29−y 227=1D .x 29−y 236=112.已知函数f (x )={|log 2x|,x >0x 2+4x +1,x ≤0,若函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),则x 4x 3−x 1x 32+x 2x 324的取值范围是( )A .(2,+∞)B .[2,174)C .(2,174]D .[2,+∞)第II 卷二、非选择题:本卷包括填空题和解答题两部分。

全国卷Ⅲ2020届高三高考压轴卷数学试题(理科)(含解析)

全国卷Ⅲ2020届高三高考压轴卷数学试题(理科)(含解析)
是符合题目要求的。
1.已知集合 A = {x (x +1)(x − 4) ≤ 0}, B = {x log2 x ≤ 2} ,则 A ∩ B = ( )
A. [− 2 , 4 ]
B. [1,+∞)
C. (0,4]
D.[−2, +∞)
2.若复数 z 满足 z(1−i)2 = i (i 是虚数单位),则 z 为( )
b = 2×1 = 2
成 a < b 不 立
n =1+1= 2
a = 9 + 1 × 9 = 27 2 22 4
b = 2×2 = 4
成 a < b 不 立
n = 2+1= 3
a = 27 + 1 × 27 = 81 4 24 8
b = 2×4 =8
成 a < b 不 立
n = 3+1= 4
8 / 18
x≥ 0,
14.已知
,x y
满足Βιβλιοθήκη x+y

4,若
x
+
2
y
的最小值为_________.
≤ x − 2 y 1.
.D [−1, 1] 3
15.已知 线 与 有 的 , 是两 抛物
y2 = 2 px( p > 0)
椭圆
x2 a2
+
y2 b2
= 1(a
>b
>
0)
相同 焦点 F
P

线的公共点,若
PF
=
5
,则此 的 为 . p
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的 第一题计分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高等学校招生全国统一考试模拟试题理科数学(三)本试卷满分150分,考试时间。

120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上.2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题纸上,写在本试卷上无效.3.考试结束后,将本试卷和答题纸一并交回.一、选择题:本题共12小题。

每小题5分。

共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的.1.已知i 为虚数单位,则下列运算结果为纯虚数是A .()1i i i +-B .()1i i i --C .()11i i i i +++D .()11i i i i+-+ 2.已知集合A=31x x x ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭,B={}10x ax -=,若B A ⊆,则实数a 的取值集合为 A .{}0,1 B .{}1,0- C .{}1,1- D .{}1,0,1-3.已知某科研小组的技术人员由7名男性和4名女性组成,其中3名年龄在50岁以上且均为男性.现从中选出两人完成一项工作,记事件A 为选出的两人均为男性,记事件B 为选出的两人的年龄都在50岁以上,则()P B A 的值为A .17B .37C .47D .574.运行如图所示的程序框图,当输入的m=1时,输出的m 的结果为16,则判断框中可以填入A .15?m <B .16?m <C .15?m >D .16?m >5.已知双曲线()222210,0x y a b a b-=>>,F 1,F 2是双曲线的左、右焦点,A(a ,0),P 为双曲线上的任意一点,若122PF A PF A S S =V V ,则该双曲线的离心率为A 2B .2C 3D .36.若a >1>b >0,-1<c <0,则下列不等式成立的是A .22b a -<B .()log log a b b c <-C .22a b <D .2log b c a <7.已知等差数列{}n a 的前n 项和为n S ,且24a a +=10,若点P ()35,a S 在函数2y mx =的图像上。

则过点P ()35,a S 的切线方程为A .200x y -+=B .300x y +-=C .10250x y --=D .10750x y +-=8.已知实数,x y 满足不等式组2220x tx y x y ≤⎧⎪+≥⎨⎪-+≥⎩,其中02sin t xdx π=⎰,则22x y +的最大值是A .5B .25C .20D .209 9.我国古代数学名著《数书九章》中有“天池盆测雨”题,题中描绘的器具的三视图如图所示(单位:寸).若在某天某地下雨天时利用该器具接的雨水的深度为6寸,则这天该地的降雨量约为(精确到0.01寸)(注:平地降雨量等于器具中积水体积除以器具口面积.参考公式:台体的体积()13V S S S S =++下下上上,其中S 上,S 下分别表示上、下底面的面积,h 为高)A .1.56寸B .1.66寸C .1.76寸D .1.86寸10.如图,在所有棱长均为a 的直三棱柱ABC-A 1B 1C 1中,D ,E 分别为BB 1,A 1C 1的中点,则异面直线AD ,CE 所成角的余弦值为A .12B 3C .15D .45 11.如图,由抛物线28y x =与圆E :()2229x y -+=的实线部分构成图形Ω,过点P(2,0)的直线始终与图形Ω中的抛物线部分及圆部分有交点,则AB 的取值范围为A .[2,3]B .[3,4]C .[4,5]D .[5,6]12.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像与x 轴的两个相邻交点分别为O 1,O 2(其中O 2在O 1的右边),曲线()f x 上任意一点A ()00,x y 关于点O 1,O 2的对称点分别为()()111222,,,A x y A x y ,且21x x π-=,且当06x π=时,有012y =.记函数()f x 的导函数为()f x '()()21fαα'-=时,cos2α的值为 A .14 B .13 C .12 D .1二、填空题:本题共4小题.每小题5分.共20分.13.在△ABC 中,D 为BC 边上的一点,2BD DC =u u u r u u u r ,若(),AD AB AC R λμλμ=+∈u u u r u u u r u u u r ,则λμ+=______________.14.已知正项等比数列{}n a 的前n 项和为n S ,且1531,4a a a ==,若对任意n N *∈,不等式()0n n S a k k Z +-≥∈恒成立,则实数k 的最大值为__________.15.已知函数()f x 是定义域为R 的偶函数,对于任意的实数x ,都有()()()24f x f f x -=-,且当02x ≤<时,()()22f x x =-,则方程()2log 0f x x -=的解的个数为__________.16.甲、乙、丙、丁四人进行选择题解题比赛,已知每个选择题选择正确得5分,否则得0分.其测试结果如下:甲解题正确的个数小于乙解题正确的个数,乙解题正确的个数小于丙解题正确的个数,丙解题正确的个数小于丁解题正确的个数;且丁解题正确的个数的2倍小于甲解题正确的个数的3倍,则这四人测试总得分的最少分数为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题.每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在△ABC 中,角A ,B ,C 所对的边分别为()(,,,cos sin ,cos ,sin ,a b c m A A C n C =+=- )cos sin ,A A m n -⋅=.(1)求角B 的大小;(2)若,23ABC C b S π∆==,求.18.(12分)某科研单位在改进某种材料配方的过程中,为了解其稳定性,需监控配制生产过程中的数据变化,检验员每天从实验记录的数据中随机抽取10个数据,并认为数据在正常状态下服从正态分布()2N μσ,(1)假设实验状态正常,记X 为一天内抽取的10个数据在()33μσμσ-+,外的实验次数,求()1P X ≥及X 的数学期望.(2)一天内抽检的数据中,如果出现了数据在()33μσμσ-+,外的实验,就认为该实验存在问题,需对当天的实验配方进行调整.(i)试说明上述监控实验过程方法的合理性.(ii)下面是检验员在一天内抽取的10个实验的数据:2.953.12 2.96 3.01 2.982.913.13 3.02 2.22 2.04 经计算得1011 2.834,0.3610i i x x s =====≈∑,其中i x 为抽取的第i 次实验数据,1,2,,10i =⋅⋅⋅.用样本平均数x 作为μ的估计值µμ,用样本标准差s 作为σ的估计值µσ,利用估计值判断是否需对当天的实验配方进行调整(精确到0.01).附:若随机变量Z 服从正态分布()()2,330.9973N P Z μσμσμσ-<<+≈,则, 100.99730.973≈.19.(12分)如图①,在四边形PBCD 中,PB ∥CD ,45PBC ∠=o ,点A 在边PB 上,且满足2PA=3AB ,AB=2CD,BC ,O 为AC 的中点.现将△PAD 沿AD 翻折,使平面PAD ⊥平面ABCD ,如图②所示.(1)证明:BC ⊥PO .(2)点E 在线段BC 上,则是否存在点E ,使二面角G-PO-E若存在,求出点E 的位置;若不存在,请说明理由.20.(12分)已知椭圆()()()221234223310112,0,1,,1,22x y C a b P P P P a b ⎛⎫⎛⎫+=>>- ⎪ ⎪⎝⎭⎝⎭:,四点,,中恰有三点在椭圆C 上.(1)求椭圆C 的标准方程.(2)已知动直线l 过椭圆C 的右焦点F ,且与椭圆C 交于A ,B 两点,则在x 轴上是否存在定点Q ,使得13564OA QB ⋅=-u u u r u u u r 恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.21.(12分)已知函数()()()1ln 102f x ax a x=++>. (1)当1a =时,求函数()f x 的单调区间;(2)设()[]()()00011,2g x x x e f x g x x=+∃∈>,若,使得成立,求实数a 的取值范围.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,直线l 的参数方程为2,222x a y a ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为2cos ρθ=.(1)写出直线l 的普通方程和圆C 的参数方程;(2)若直线l 与圆C 相切于点P ,求点P 的直角坐标.23.[选修4-5:不等式选讲](10分) 已知函数()212f x x x =++-.(1)当[]2,3x ∈-时,求函数()f x 的值域M.(2)若0a >,证明:2123x a x a ++-≥.。

相关文档
最新文档