第七章-时间序列分析模型
第7章 平稳时间序列模型预测
et l
xˆt l
预测误差
预测值
特别当 l=1时有 Xt1 t1 xˆt 1 ,即 t1 Xt1 xˆt 1
MA(q)序列的预测
当预测步长l大于等于MA模型的阶数q,即l >q时, Xt+l可以分解为:
X tl tl 1tl1 2tl2 L qtlq
即一期修正后第 l 步预测方差就等于修正前第 l 1步预测
方差。它比修正前的同期预测方差减少了Gl21 2,提高了预
测精度。
一般情况
假设获得k个新的观察值 Xt1,L , Xtk 1 k l ,则
X tl 的修正预测值为
Xˆ tk (l k ) Gl-k t+k L Gl1t+1 Glt Gl1t1 L
其中t+1=Xt1 Xˆt 1 是Xt+1的一步预测误差。
修正预测误差为 et1 (l 1) G0 tl Gl2 t2
修正预测原理
预测方差为
var[et1(l 1)] (G02 L
G2 l2
)
2
var et l 1
1
Xˆ
t
l
1
2
Xˆ
t
l
2
L
p Xˆ t l p
q
i tli , l q
il
1Xˆ t l 1 2 Xˆ t l 2 L p Xˆ t l p,
lq
例7.4
已知ARMA(1,1)模型为:
X t 0.8X t1 t 0.6t1, 2 0.0025
解: (1) 预测值计算
第七章.时间序列(平均发展速度)
128.9 128.9 28.9 28.9
114.9 148.1 14.9 48.1
112.5 166.6 12.5 66.6
108.1 180.2
8.1 80.2
108.1 194.8
8.1 94.8
三、平均发展速度和平均增长速度
1.平均发展速度是现象环比发展速度的序时平 均数。
2.平均增长速度是现象环比增长速度的序时平 均数,可以根据以下公式计算:
解:已知a0 15, a1 a2 a3 60, n 3,
则X 3 X 2 X n ai a0 0,即 i 1
3
X
2
X
X
4 0,解得X
1.151
平均发展速度的计算
两种方法的比较:
几何平均法:
an
n
a0 X G
方程法:X n X n1 X 2 X n ai a0 i 1
繁荣 116
115ቤተ መጻሕፍቲ ባይዱ
拐点 114
113 112 111 110 109 108 107 106 105
104 103 102 101 100
衰退 拐点
萧条 拐点
繁荣 拐点
复苏 拐点
经济周期:循环性变动 年份
时间数列的组合模型
(1)加法模型:Y=T+S+C+I
计量单位相同 的总量指标
对长期趋势 产生的或正 或负的偏差
定基增长速度=定基发展速度-1 环比增长速度=环比发展速度-1 年距增长速度=年距发展速度-1
环比增长速度 定基增长速度 年距增长速度
ai ai1 ai 100﹪
ai 1
ai 1
ai a0 ai 100﹪
a0
ARMA模型
方差为 2 的正态分布.随机项与滞后变量不相关。
注2: 一般假定
X t 均值为0,否则令
X
t
Xt
1 时间序列分析模型【ARMA模型 】简介
记 Bk 为 k 步滞后算子, 即 Bk X t X tk , 则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
实际问题中, 常会遇到季节性和趋势性同时存在的情况, 这 时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖, 以至判断错误.
包含季节性的时间序列也不能直接建立ARMA模型, 需进 行季节差分消除序列的季节性, 差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
式【5】称为( p, q)阶的自回归移动平均模型, 记为ARMA ( p, q)
注1: 实参数 1,2 , , p 称为自回归系数, 1,2 , ,q 为移动平均系数,
都是模型的待估参数
注2: 【1】和【3】是【5】的特殊情形 注3: 引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
【6】
在实际中, 常见的时间序列多具有某种趋势, 但很多序列 通过差分可以平稳
判断时间序列的趋势是否消除, 只需考察经过差分后序列 的自相关系数
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上, 序列重
复出现某种特性.比如地区降雨量、旅游收入和空调销售额等 时间序列都具有明显的季节变化. 一般地, 月度资料的时间序列, 其季节周期为12个月;
Xt 1 v1B v2B2
ut
vjB
j
ut
j0
第七章.时间序列(平均发展水平)
1950-1998年中国水灾受灾面积(单位:千公顷)
二、时间数列的种类
按数列中所排列指标的表现形式不同分为:
绝对数数列
时期数列 (总量指标数列) 时点数列
相对数数列 (相对指标数列)
平均数数列 (平均指标数列)
时期序列与时点序列的区别
如果数列中变量反映现象在各段时期内发展过程的总量, 即为时期序列。 其特点是:第一,数列中各变量值可以累计相加。 第二,变量值大小随时间长短而变动。 第三,数据的取得一般采用连续登记的方法。 如果数列中变量反映现象在某一时点上所处的状态,即为 时点序列。 其特点是:第一,数列中变量值不能相加。 第二,变量值大小与时间长短没有直接关系。 第三,数据的取得一般采用间断登记的方法。
【例】某商业企业2006年第二季度某商品库存 资料如下,求第二季度的月平均库存额 时间 库存量(百件) 3月末 4月末 5月末 6月末 66 72 64 68
解:第二季度的月平均库存额为:
66 68 72 64 2 67.67 百件 a 2 4 1
※间隔不相等 时,采用加权序时平均法
构成要素:
现象所属的时间
反映现象发展水平的指标数值
研究的目的
1、描述社会经济现象的发展状况和 结果; 2、研究社会经济现象的发展速度、 发展趋势和平均水平,探索社会经济 现象发展变化的规律,并据以对未来 进行统计预测;
3、利用不同的但互相联系的时间数 列进行对比分析或相关分析。
要素一:时间t
年份 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
②该企业第二季度的月平均劳动生产率:
a 10000 12 .6 14 .6 16 .3 3 c 2200 b 2000 2000 2200 4 1 2 2 6904 .76 元 人
时间序列分析课件-07-ARIMA模型、疏系数模型、季节模型
xt 0 1t at
• 考察一阶差分后序列和二阶差分序列 的平稳性与方差
比较
• 一阶差分
– 平稳
xt xt xt1
1 at at1 – 方差小
• 二阶差分(过差分)
– 平稳
2 xt xt xt1 at 2at1 at2
– 方差大
Var(xt ) Var(at at1)
• 参数估计
(1 0.44746 B 0.28132 B4 )(1 B)(1 B4 )xt t
模型检验
残差白噪声检验
参数显著性检验
延迟 阶数
2统 计量
P值
待估 t 统
参数 计量
P值
6
2.09 0.7191 1
12 10.99 0.3584 4
5.48 <0.0001 -3.41 <0.0001
2 2
Var(2xt ) Var(at 2at1 at2 )
6 2
ARIMA模型
• ARIMA模型结构 • ARIMA模型性质 • ARIMA模型建模 • ARIMA模型预测 • 疏系数模型 • 季节模型
ARIMA模型结构
• 使用场合
– 差分平稳序列拟合
• 模型结构
( B) d
E( t )
Tt 0 1 xtm l xtlm
• 简单/复杂季节模型 • X-11 • etc
• AR • MA • ARMA • WN • etc
3.考虑残差
获 得 观 察 值 序
Y
Y
平稳性 检验
白噪声 检验
分 析
结
N
束 N
列
差分 运算
拟合
ARMA 模型
第七章时间序列分解法和趋势外推法
(1)直观法—主观法 (2)模拟法---客观法
2019/11/30
27
7.2 样本序列具有非水平趋势的外推预测
最优 的求取
(1)穷举法 步长(0,1) (2)优选法---0. 618法
第一步:取第一个 的值记为 1 ,
1 (1 0) 0.618 0.618
2019/11/30
2019/11/30
40
趋势外推法的两个假定:
(1)假设事物发展过程没有跳跃式变化;
(2)假定事物的发展因素也决定事物未来的发展, 其条件是不变或变化不大。
2019/11/30
41
二 、趋势模型的种类
多项式曲线外推模型:
一次(线性)预测模型:
yˆt b0 b1t
二次(二次抛物线)预测模型: yˆt b0 b1t b2t 2
2019/11/30
实际销售量 3个月的滑动平均预测值 4个月的滑动平均预测值
20
21
23
24
21.3
25
22.7
27
24.0
26
25.3
25
26.0
26
26.0
28
25.7
27
26.3
29
27.0
22.0 23.3 24.8 25.5 25.8 26.0 26.3 26.5
19
7.2 样本序列具有非水平趋势的外推预测
2019/11/30
34
(2) 季节变动因素(S) 是经济现象受季节变动影响所形成的一种长 度和幅度固定的周期波动。
(3) 周期变动因素(C) 周期变动因素也称循环变动因素,它是受各 种经济因素影响形成的上下起伏不定的波动。
时间序列分析模型
时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。
它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。
时间序列分析模型可以分为统计模型和机器学习模型两类。
一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。
常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。
-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。
它将序列的当前值作为过去值的线性组合来预测未来值。
ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。
-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。
ARIMA(p,d,q)模型中,d表示差分的次数。
-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。
SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。
2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。
常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。
- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。
-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。
-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。
二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。
季节性时间序列分析方法
季节性时间序列分析⽅法第七章季节性时间序列分析⽅法由于季节性时间序列在经济⽣活中⼤量存在,故将季节时间序列从⾮平稳序列中抽出来,单独作为⼀章加以研究,具有较强的现实意义。
本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建⽴、季节调整⽅法X-11程序。
本章的学习重点是季节模型的⼀般形式和建模。
§1 简单随机时序模型在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。
⽐如:建筑施⼯在冬季的⽉份当中将减少,旅游⼈数将在夏季达到⾼峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。
对于这各时间数列我们可以说,变量同它上⼀年同⼀⽉(季度,周等)的值的关系可能⽐它同前⼀⽉的值的相关更密切。
⼀、季节性时间序列1.含义:在⼀个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。
具有周期特性的序列就称为季节性时间序列,这⾥S为周期长度。
注:①在经济领域中,季节性的数据⼏乎⽆处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、⽉度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若⼲种周期,如客运量数据(S=12,S=7)2.处理办法:(1)建⽴组合模型;(1)将原序列分解成S个⼦序列(Buys-Ballot 1847)对于这样每⼀个⼦序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独⽴的。
但是这种做法不可取,原因有⼆:(1)S 个⼦序列事实上并不相互独⽴,硬性划分这样的⼦序列不能反映序列{}t x 的总体特征;(2)⼦序列的划分要求原序列的样本⾜够⼤。
启发意义:如果把每⼀时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,就是考查与前期相⽐的净增值,⽤数学语⾔来描述就是定义季节差分算⼦。
《数据分析实战-托马兹.卓巴斯》读书笔记第7章-时间序列技术(ARMA模型、ARIMA模型)
《数据分析实战-托马兹.卓巴斯》读书笔记第7章-时间序列技术(ARMA模型、ARIMA模型)第7章探索了如何处理和理解时间序列数据,并建⽴ARMA模型以及ARIMA模型。
注意:我在本章花的时间较长,主要是对dataframe结构不熟。
/*sh riverflows.webarchive*/邀⽉建议:安装cygwin巨⿇烦,还是⽤安装好的CentOS虚拟机执⾏⼀下。
7.2在Python中如何处理⽇期对象时间序列是以某个时间间隔进⾏采样得到的数据,例如,记录每秒的车速。
拿到这样的数据,我们可以轻松估算经过的距离(假设观测值加总并除以3600)或者汽车的加速度(计算两个观测值之间的差异)。
可以直接⽤pandas处理时间序列数据。
准备:需装好pandas、NumPy和Matplotlib。
1import numpy as np2import pandas as pd3import pandas.tseries.offsets as ofst4import matplotlib5import matplotlib.pyplot as plt67# change the font size8 matplotlib.rc('xtick', labelsize=9)9 matplotlib.rc('ytick', labelsize=9)10 matplotlib.rc('font', size=14)1112# files we'll be working with13 files=['american.csv', 'columbia.csv']1415# folder with data16 data_folder = '../../Data/Chapter07/'1718# colors19 colors = ['#FF6600', '#000000', '#29407C', '#660000']2021# read the data22 american = pd.read_csv(data_folder + files[0],23 index_col=0, parse_dates=[0],24 header=0, names=['','american_flow'])2526 columbia = pd.read_csv(data_folder + files[1],27 index_col=0, parse_dates=[0],28 header=0, names=['','columbia_flow'])2930# combine the datasets31 riverFlows = bine_first(columbia)3233# periods aren't equal in the two datasets so find the overlap34# find the first month where the flow is missing for american35 idx_american = riverFlows \36 .index[riverFlows['american_flow'].apply(np.isnan)].min()3738# find the last month where the flow is missing for columbia39 idx_columbia = riverFlows \40 .index[riverFlows['columbia_flow'].apply(np.isnan)].max()4142# truncate the time series43 riverFlows = riverFlows.truncate(44 before=idx_columbia + ofst.DateOffset(months=1),45 after=idx_american - ofst.DateOffset(months=1))Tips:/*Traceback (most recent call last):File "D:\Java2018\practicalDataAnalysis\Codes\Chapter07\ts_handlingData.py", line 49, in <module>o.write(riverFlows.to_csv(ignore_index=True))TypeError: to_csv() got an unexpected keyword argument 'ignore_index'D:\Java2018\practicalDataAnalysis\Codes\Chapter07\ts_handlingData.py:80: FutureWarning: how in .resample() is deprecatedthe new syntax is .resample(...).mean()year = riverFlows.resample('A', how='mean')*/解决⽅案:/*# year = riverFlows.resample('A', how='mean')year = riverFlows.resample('A').mean()# o.write(riverFlows.to_csv(ignore_index=True))o.write(riverFlows.to_csv(index=True))*/原理:⾸先,我们引⼊所有必需的模块:pandas和NumPy。
时间序列分析:方法与应用(第二版)传统时间序列分析模型
型。
例1.1
9
例1.1
Y
3,000 2,500 2,000 1,500 1,000
500 0 1955 1960 1965 1970 1975 1980
社会商品零售总额时序图 10
例1.2
Y
9,000 8,000 7,000 6,000 5,000 4,000 3,000 2,000 1,000
10,000
9,000
8,000
7,000
6,000
5,000
4,000 1995
1996
1997
1998
1999
2000
Y
YY
37
为评价模型的预测效果,也可以象例1.12一样, 预留部分数据作为试测数据,评价模型的适用性。
38
fi 为季节指数
T为季节周期的长度,4或12
26
2. 适用条件:
既有季节变动,又有趋势变动 且波动幅度不断变化的时间序列
至少需要5年分月或分季的数据
3. 应用
例1.12 我国工业总产值序列
27
1)时序变化分析 绘制时序曲线图
明显的线性增长趋势、季节波动,且波动幅度随趋 势的增加而变大。
Y
6,000
3. 应用
例1.13 我国社会商品零售总额的分析预测
33
1)时序变化分析 绘制时序曲线图
明显的线性增长趋势、季节波动,且波动幅度随趋势 的增加基本不变。
Y
10,000
9,000
8,000
7,000
6,000
5,000
4,000
1995
1996
时间序列分析中常用的模型
时间序列分析中常用的模型时间序列分析是一种重要的数据分析方法,用于研究随时间变化的数据。
在实际应用中,常常需要使用合适的模型来描述和预测时间序列数据。
本文将介绍时间序列分析中常用的几种模型,并对其原理和应用进行详细的讨论。
一、移动平均模型(MA模型)移动平均模型是时间序列分析中最简单的模型之一。
它基于时间序列在不同时刻的观测值之间存在一定的相关性,并假设当前的观测值是过去一段时间内的观测值的线性组合。
移动平均模型一般用“MA(q)”表示,其中q表示移动平均阶数,即过去q个观测值的影响。
二、自回归模型(AR模型)自回归模型是另一种常用的时间序列模型。
它假设当前的观测值与过去一段时间内的观测值之间存在线性关系,并通过自相关函数来描述观测值之间的相关性。
自回归模型一般用“AR(p)”表示,其中p表示自回归阶数,即过去p个观测值的影响。
三、自回归移动平均模型(ARMA模型)自回归移动平均模型是将移动平均模型和自回归模型相结合得到的一种模型。
它通过同时考虑观测值的移动平均部分和自回归部分来描述时间序列的相关性。
四、季节性模型在一些具有周期性波动的时间序列数据中,常常需要使用季节性模型进行分析。
季节性模型一般是在上述模型的基础上加入季节因素,以更准确地描述和预测数据的季节性变化。
五、自回归积分移动平均模型(ARIMA模型)自回归积分移动平均模型是时间序列分析中最常用的模型之一。
它通过引入差分运算来处理非平稳时间序列,并结合自回归模型和移动平均模型来描述残差项之间的相关性。
六、指数平滑模型指数平滑模型是一种常用的时间序列预测方法。
它假设未来的观测值与过去的观测值之间存在指数级的衰减关系,并通过平滑系数来反映不同观测值之间的权重。
七、ARCH模型和GARCH模型ARCH模型和GARCH模型是用于处理时间序列波动性的模型。
它们基于过去的方差序列来描述未来的波动性,并用于金融市场等领域的风险管理和波动率预测。
总结来说,时间序列分析中常用的模型包括移动平均模型、自回归模型、自回归移动平均模型、季节性模型、自回归积分移动平均模型、指数平滑模型、ARCH模型和GARCH模型等。
时间序列分析模型
时间序列分析模型时间序列分析模型是一种通过对时间序列数据进行建模和分析的方法,旨在揭示数据中的趋势、季节性、周期和不规则波动等特征,并进行预测和决策。
时间序列分析模型在经济、金融、市场、气象、医学等领域都有广泛的应用。
本文将介绍几种常见的时间序列分析模型。
1. 移动平均模型(MA)移动平均模型是时间序列分析中最简单的模型之一。
它基于一个基本假设,即观察到的时间序列数据是对随机误差的线性组合。
该模型表示为:y_t = c + e_t + θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,θ₁,θ₂,…,θ_q 是移动平均项的参数,q 是移动平均项的阶数。
2. 自回归模型(AR)自回归模型是基于一个基本假设,即观察到的时间序列数据是过去若干时间点的线性组合。
自回归模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,p 是自回归项的阶数。
3. 自回归移动平均模型(ARMA)自回归移动平均模型将自回归模型和移动平均模型结合在一起,用于处理同时具有自相关和移动平均性质的时间序列数据。
自回归移动平均模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t +θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,θ₁,θ₂,…,θ_q 是移动平均项的参数,p 是自回归项的阶数,q 是移动平均项的阶数。
4. 季节性自回归移动平均模型(SARIMA)季节性自回归移动平均模型是自回归移动平均模型的扩展,用于处理具有季节性和趋势变化的时间序列数据。
时间序列分析模型
时间序列分析模型时间序列分析是一种用来处理时间变化数据的统计分析方法。
它将观测数据按照时间顺序进行排列,并利用过去的数据来预测未来的发展趋势。
在时间序列分析中,通常会使用一些常见的模型,如自回归(AR)、移动平均(MA)和自回归移动平均(ARMA)模型。
自回归模型(AR)是时间序列分析中最基本的模型之一。
它假设未来的观测值可以通过当前和过去的观测值来预测。
AR 模型的数学表达式为:Y_t = c + ∑(φ_i * Y_t-i) + ε_t其中,Y_t表示第t个观测值,c表示常数,φ_i表示第i个滞后的自回归系数,ε_t表示误差项。
通过对AR模型进行参数估计,可以得到最优的系数估计值,从而进行未来观测值的预测。
移动平均模型(MA)是另一种常见的时间序列分析模型。
它假设未来的观测值可以通过当前和过去的误差项来预测。
MA 模型的数学表达式为:Y_t = μ + ∑(θ_i * ε_t-i) + ε_t其中,Y_t表示第t个观测值,μ表示均值,θ_i表示第i个滞后的移动平均系数,ε_t表示误差项。
通过对MA模型进行参数估计,可以得到最优的系数估计值,从而进行未来观测值的预测。
自回归移动平均模型(ARMA)是将AR模型和MA模型结合起来的一种复合模型。
它假设未来的观测值可以通过当前观测值、滞后观测值和误差项来预测。
ARMA模型的数学表达式为:Y_t = c + ∑(φ_i * Y_t-i) + ∑(θ_i * ε_t-i) + ε_t其中,Y_t表示第t个观测值,c表示常数,φ_i表示第i个滞后的自回归系数,θ_i表示第i个滞后的移动平均系数,ε_t表示误差项。
通过对ARMA模型进行参数估计,可以得到最优的系数估计值,从而进行未来观测值的预测。
总之,时间序列分析模型是一种通过利用过去数据来预测未来数据的统计分析方法。
其中,自回归模型、移动平均模型和自回归移动平均模型是一些常见的时间序列分析模型。
通过对这些模型进行参数估计,可以得到最优的预测结果。
时间序列分析与的基本模型
时间序列分析与的基本模型时间序列分析是一种重要的统计学方法,用于预测和解释时间序列的行为。
它可以应用于各种领域,如经济学、金融学、气象学等。
本文将介绍时间序列分析的基本模型及其应用。
一、时间序列分析概述时间序列分析是指通过对时间序列数据进行建模和分析,来研究时间序列的特征、趋势和周期性等。
它可以帮助我们理解时间序列中的规律,并进行预测和决策。
二、基本模型1. 自回归模型(AR)自回归模型是一种线性模型,它假设当前观测值与过去的观测值之间存在关系。
自回归模型的一般形式为AR(p),其中p表示过去p个观测值对当前观测值的影响程度。
AR模型可以用公式表示为:```X(t) = c + Σ(φ(i) * X(t-i)) + ε(t)```其中,X(t)表示当前观测值,φ(i)表示对应滞后期的系数,ε(t)表示误差项。
2. 移动平均模型(MA)移动平均模型是一种线性模型,它假设当前观测值与过去观测值的误差之间存在关系。
移动平均模型的一般形式为MA(q),其中q表示过去q个观测误差对当前观测值的影响程度。
MA模型可以用公式表示为:```X(t) = μ + Σ(θ(i) * ε(t-i)) + ε(t)```其中,μ表示均值,θ(i)表示对应滞后期的系数,ε(t)表示误差项。
3. 自回归移动平均模型(ARMA)自回归移动平均模型是自回归模型和移动平均模型的结合。
ARMA模型的一般形式为ARMA(p,q),其中p表示自回归项数,q表示移动平均项数。
ARMA模型可以用公式表示为:```X(t) = c + Σ(φ(i) * X(t-i)) + Σ(θ(i) * ε(t-i)) + ε(t)```4. 自回归积分移动平均模型(ARIMA)自回归积分移动平均模型是自回归模型、差分和移动平均模型的结合。
ARIMA模型的一般形式为ARIMA(p,d,q),其中p表示自回归项数,d表示差分次数,q表示移动平均项数。
ARIMA模型可以用公式表示为:```(1-B)^d * X(t) = c + Σ(φ(i) * X(t-i)) + Σ(θ(i) * ε(t-i)) + ε(t)```其中,B是滞后算子。
时间序列分析模型汇总
时间序列分析模型汇总时间序列分析是一种广泛应用于各个领域的统计分析方法,它用来研究一组随时间而变化的数据。
时间序列数据通常具有趋势、季节性和随机性等特征,时间序列分析的目的是通过建立适当的模型来描述和预测这些特征。
本文将汇总一些常用的时间序列分析模型,包括AR、MA、ARIMA、GARCH和VAR等。
1.AR模型(自回归模型):AR模型是根据过去的观测值来预测未来的观测值。
它假设未来的观测值与过去的一系列观测值有关,且与其他因素无关。
AR模型的一般形式为:Y_t=c+Σ(φ_i*Y_t-i)+ε_t,其中Y_t表示时间t的观测值,c 为常数,φ_i为系数,ε_t为误差项。
2.MA模型(移动平均模型):MA模型是根据过去的误差项来预测未来的观测值。
它假设未来的观测值与过去的一系列误差项有关,且与其他因素无关。
MA模型的一般形式为:Y_t=μ+ε_t+Σ(θ_i*ε_t-i),其中Y_t表示时间t的观测值,μ为平均值,θ_i为系数,ε_t为误差项。
3.ARIMA模型(自回归积分移动平均模型):ARIMA模型是AR和MA模型的组合,它结合了时间序列数据的趋势和随机性特征。
ARIMA模型的一般形式为:Y_t=c+Σ(φ_i*Y_t-i)+Σ(θ_i*ε_t-i)+ε_t,其中Y_t表示时间t的观测值,c为常数,φ_i和θ_i为系数,ε_t为误差项。
4.GARCH模型(广义自回归条件异方差模型):GARCH模型用于建模并预测时间序列数据的波动性。
它假设波动性是由过去观测值的平方误差和波动性的自相关引起的。
GARCH模型的一般形式为:σ_t^2=ω+Σ(α_i*ε^2_t-i)+Σ(β_i*σ^2_t-i),其中σ_t^2为时间t的波动性,ω为常数,α_i和β_i为系数,ε_t为误差项。
5.VAR模型(向量自回归模型):VAR模型用于建模并预测多个时间序列变量之间的相互关系。
它假设多个变量之间存在相互依赖的关系,即一个变量的变动会对其他变量产生影响。
第七章_季节性时间序列模型
2443.1
2536 2652.2 3131.4
2604.3
2743.9 2781.5 3405.7
2854
3029 3108 3680
(1)绘制时序图
(2)选择拟合模型
长期递增趋势和以年为固定周期的季节波动 同时作用于该序列,因而尝试使用混合模型 (b)拟合该序列的发展
第三节 季节性检验
一、季节性MA的自相关系数 二、季节性AR的偏自相关系数
一、季节性MA模型的自相关函数
设某一季节性时间序列 的季节性,即各周期点 之间的相关性 可用:X t (1 S B S )et 而et 又适合于一个MA( 1 )模型, 即et (1 1 B)at 二式结合得:X t (1 1 B)(1 S B S )at
二、乘积季节模型
使用场合
序列的季节效应、长期趋势效应和随机波动之间有着复
杂地相互关联性,简单的季节模型不能充分地提取其中 的相关关系
构造原理
短期相关性用低阶ARMA(p,q)模型提取
季节相关性用以周期步长S为单位的ARMA(k,m)
模型提取 假设短期相关和季节效应之间具有乘积关系, 模型结构如下
例1 季节指数的计算
季节指数图
四、综合分析
常用综合分析模型
加法模型
xt Tt St I t
乘法模型
xt Tt S t I t
混合模型
a) xt S t Tt I t b) xt S t (Tt I t )
上一页 下一页 返回本节首页
例2
第四节 季节时间序列模型的建立
1.根据时间序列的ACF和PACF确定是否为季节性 时间序列,其周期是多少; 2.对序列进行差分和季节差分,以得到一个平稳序 列; 3.计算差分后序列的ACF和PACF识别模型阶数, 选择一个初始模型; 4.对模型进行初估计,然后以初估计值为初始值, 进行普通最小二乘估计或极大似然估计;
第七章-时间序列分析
第一节 时间序列分析的基本概念 第二节 平稳性检验 第三节 协整 第四节 误差修正模型
第一节 时间序列分析的基本概念
一、平稳性的定义 二、几种有用的时间序列模型 三、单整的时间序列
经济分析通常假定所研究的经济理论中涉及的
变量之间存在着长期均衡关系。按照这一假定,在 估计这些长期关系时,计量经济分析假定所涉及的 变量的均值和方差是常数,不随时间而变。
△x t=α+δx t-1+εt (7.14) 和 △x t=α+βt+δx t-1+εt (7.15)
二者的τ临界值分别记为τμ和τT。尽管三种 方程的τ临界值有所不同,但有关时间序列平 稳性的检验依赖的是Xt-1的系数δ,而与α、β无 关。
3.增项的单位根检验(ADF检验)
ADF 检 验 的 全 称 是 扩 展 的 迪 奇 - 福 勒 检 验 (Augmented Dickey-Fuller test),它是 DF检验的扩 展AD,F适与用DF于检扰验动的项区εt别是服在从(平7稳.12的)A式R(中P)增过加程若的干情形个。 △要回x t 归的的滞方后程项变△为x t-j(j=1,2,…,p)作为解释变量,即
一、 平稳性(Stationarity)
1. 严格平稳性
如果一个时间序列Xt的联合概率分布不随时 间而变,即对于任何n和k,X1,X2,…,Xn的联 合概率分布与X1+k,X2+k,…Xn+k 的联合分布相同, 则称该时间序列是严格平稳的。
2. 弱平稳性(宽平稳)
由于在实践中上述联合概率分布很难确定,我 们用随机变量Xt(t=1,2,…)的均值、方差和协方 差代替之。 如果一个时间序列满足下列条件:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(其中p为自回归项数,q为滑动平均项数,d为使之成为平稳 序列所做的差分阶数)。
Box—Jenkins模型实际上主要是运用于单变量、 同方差场合的线性模型 ,存在局限性。
Cramer分解定理(1961)
Var (
t
)
E(
2 t
)
所以考察残差序列是否方差齐性,主要是考 察残差平方序列是否平稳
异方差处理方法
疏系数模型类型
如果只是自相关部分有省缺系数,那么该疏系 数模型可以简记为ARIMA(( p1, , pm ), d, q)
p1, , pm 为非零自相关系数的阶数
如果只是移动平滑部分有省缺系数,那么该疏 系数模型可以简记为 ARIMA( p, d, (q1, , qn ))
q1 , , qn 为非零移动平均系数的阶数
对季节效应的常用拟合方法
给定季节指数 St St
建立季节自回归模型
Tt 0 1 xtm l xtlm
完善阶段
异方差场合 Robert F.Engle,1982年,ARCH(自回归条件异方差)模 型。 Bollerslov,1985年GARCH(时变自回归 )模型 都是对经典ARIMA模型的很好补充。
xt
Tt
St
t
t 1 t1 p t p at
E(at
)
0,Var(at
)
2
,
Cov(at
,
at
i
)
0,
i
1
对趋势效应的常用拟合方法
自变量为时间t的幂函数
Tt 0 1 t k t k t
自变量为历史观察值
Tt 0 1 xt1 k xtk t
保证t期的随机干扰与过 去s期的序列值无关
特别地、当φ0=0时,称为中心化AR(p)模型
Green函数
AR模型的传递形式
由(B)xt t可得(过程略)
xt
t
(B)
j0
p
ki
ij
t
,
j
记xt
i 1
Gjt j
j0
G j B j t G(B) t j0
其中ki(i=1,…,p)为常数,λi为特征值且在单位圆内
t
s
)
0,
s
t
特别当φ0=0 时,称为中心化ARMA(p,q)模型
பைடு நூலகம்数多项式
引进延迟算子,中心化ARMA(p,q)模型 可简记为 (B)xt (B)t
其中p阶自回归系数多项式:
(B) 11B 2B2 pBp
q阶移动平均系数多项式:
(B) 11B 2B2 q Bq
可转化为无穷阶MA模型
分类
简单指数平滑 Holt两参数指数平滑
季节指数
季节指数的概念
所谓季节指数就是用简单平均法计算的周期 内各时期季节性影响的相对数
季节模型
xij x S j Iij
季节指数的计算
计算周期内各期平均数
n
xik
xk
i 1
n
计算总平均数
, k 1,2, , m
nm
xik
x i1 k 1 nm
如果自相关和移动平滑部分都有省缺,可以简 记为
ARIMA(( p1, , pm ), d, (q1, , qn ))
季节模型
简单季节模型 乘积季节模型
简单季节模型
简单季节模型是指序列中的季节效应和 其它效应之间是加法关系
xt St Tt It
简单季节模型通过简单的趋势差分、季 节差分之后序列即可转化为平稳,它的 模型结构通常如下
推断出各种确定性因素彼此之间的相互 作用关系及它们对序列的综合影响
趋势分析
目的
有些时间序列具有非常显著的趋势,我们分 析的目的就是要找到序列中的这种趋势,并 利用这种趋势对序列的发展作出合理的预测
常用方法
趋势拟合法 平滑法
趋势拟合法
趋势拟合法就是把时间作为自变量,相 应的序列观察值作为因变量,建立序列 值随时间变化的回归模型的方法
分类
n期中心移动平均 n期移动平均
指数平滑法
指数平滑方法的基本思想
在实际生活中,我们会发现对大多数随机事件而言, 一般都是近期的结果对现在的影响会大些,远期的 结果对现在的影响会小些。为了更好地反映这种影 响作用,我们将考虑到时间间隔对事件发展的影响, 各期权重随时间间隔的增大而呈指数衰减。这就是 指数平滑法的基本思想
d 0时,原序列方差非齐性
ARIMA(0,1,0)模型
Var(xt
)
Var(x0
t
t1
1)
t
2
d阶差分后,差分后序列方差齐性
ARIMA(0,1,0)模型
V
ar(xt
)
V
ar(
t
)
2
ARIMA 模型族
d=0 ARIMA(p,d,q)=ARMA(p,q)
P=0 ARIMA(P,d,q)=IMA(d,q)
【注意】(1)MA模型总满足平稳条件 ;(2) AR(p)的假设条件不满足时可以考虑用此模型。 (3)系数敏感性较AR模型差。
MA的逆函数的递推公式
对可逆的MA模型,有
xt
t
( B) t
I (B)xt
(B)I (B)xt
xt
逆函数I(B)递推公式
I0
I j
1
j
kI
k 1
j k,j
1,2,
Dd xt
(B) (B)
t
乘积季节模型
使用场合
序列的季节效应、长期趋势效应和随机波动之间有着复 杂地相互关联性,简单的季节模型不能充分地提取其中 的相关关系
构造原理
短期相关性用低阶ARMA(p,q)模型提取
季节相关性用以周期步长S为单位的ARMA(P,Q)模型提取
假设短期相关和季节效应之间具有乘积关系,模型结构
任何一个时间序列{xt } 都可以分解为两部分的叠 加:其中一部分是由多项式决定的确定性趋势成 分,另一部分是平稳的零均值误差成分,即
xt t t
d
jt j
j0
确定性影响
(B)at
随机性影响
确定性因素分解
现在的因素分解
长期趋势波动 季节性变化 随机波动
确定性时序分析的目的
克服其它因素的影响,单纯测度出某一 个确定性因素对序列的影响
可转化为无穷阶AR模型
3、传递形式与逆转形式
传递形式
逆转形式
xt 1(B)(B)t
t G jt j j 1
Green函数:
t 1(B)(B) xt
xt I j xt j j 1
逆函数:
G0 1
Gk
k
jGk j j
,
k 1
j1
I0 1
I
k
k
j Ik j j
框中式子称为AR模型的传递形式,而系数 {Gj,j=1,2,…}称为Green函数。
Green函数性质:呈负指数下降,且
lim |
j
Gj
|
0
(2)Green函数递推公式
由
(
xt
B)xt G(
B)
t t
(B)G(B) t
t
利用待定系数法解上述方程可得递推公式
G0
G j
1
j
kG jk,j
q=0 ARIMA(P,d,q)=ARI(p,d)
d=1,P=q=0 ARIMA(P,d,q)=random walk model
随机游走模型( random walk)
模型结构
xt xt1 t
E(
t
)
0,Var(
t
)
2
,
E(
t
s
)
0,
s
t
Exs t 0,s t
模型产生典故
Karl Pearson(1905)在《自然》杂志上提问:假如有个 醉汉醉得非常严重,完全丧失方向感,把他放在荒郊
第七章
时间序列分析模型
本章结构
时间序列模型发展 基础阶段-平稳时间序列模型 核心阶段-非平稳时间序列模型 完善阶段-异方差条件下模型
时间序列分析方法的发展过程
基础阶段 核心阶段 完善阶段
基础阶段
G.U.Yule
1927年,AR(自回归)模型
G.T.Walker
1931年,MA(平均)模型
,
k 1
j 1
其
中j
j, j
0, j
p
,
p
j
j, j q
0, j q
平稳时间序列建模步骤
平
计
稳
算
非
样
白
本
噪
相
声
关
序
系
列
数
模型 识别
参数 估计
模
序
No 模型 Yes 型
列
检验
优
预
化
测
核心阶段
G.E.P.Box和 G.M.Jenkins
1970年,出版《Time Series Analysis Forecasting and Control》。
ARMA(自回归移动平均)模型
AR模型
1、定义:具有如下结构的模型称为p阶自回归 模型,简记为AR(p)
xt 0 1 xt1 2 xt2 p xt p t
p 0
保证最高阶数为p
E(
t
)
0,Var(
t
)
2
,
E(
t
s