20162017学年四川省宜宾市九年级上期末数学试卷

合集下载

(2021年整理)最新2016-2017学年人教版九年级上册数学期末测试卷及答案

(2021年整理)最新2016-2017学年人教版九年级上册数学期末测试卷及答案

(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案的全部内容。

第1 页共6 页2016—-—2017学年度九年级上册数学期末试卷(时间120分钟,满分120分)一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )2.将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A.y=2(x-1)2-3 B.y=2(x-1)2+3C.y=2(x+1)2-3 D.y=2(x+1)2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于 ( )A.55° B。

70° C。

125° D。

145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )A。

4 5.一个半径为2cm的圆内接正六边形A.24cm2 B.63 cm2 C .6.如图,若AB是⊙O的直径,CD是A.35° B.45° C.55°7.函数mxxy+--=822的图象上有两点B。

四川省宜宾市2017年九年级(上)教学质量检测(含答案)-- (2)

四川省宜宾市2017年九年级(上)教学质量检测(含答案)-- (2)

宜宾市2017年九年级上期教学质量检测数学试卷本试题卷共4页.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效.满分120分,考试时间120分钟. 考试结束,将本试题卷和答题卡一并交回.注意事项:1.答题前,考生在答题卷上务必将自己的姓名、学校、班级、考号填写清楚,并贴好条形码.请认真核准条形码上的考号、姓名和科目.2.解答选择题时,每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.解答填空题、解答题时,请在答题卷上各题的答题区域内作答.一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. (注意..:在试题卷上作答无效.........) 1. =︒60sinA .1B .23 C .22D .212.掷一枚质地均匀的硬币10次,下列说法正确的是A .每2次必有1次正面向上B . 必有5次正面向上C .可能有5次正面向上D .不可能有10次正面向上 3.给出下面四种解答过程:①20)4()5(1625)16()25(=-⨯-=-⨯-=-⨯-;②20)4()5(1625)16()25(±=⨯±=⨯±=-⨯-;③20451625)16()25(=⨯=⨯=-⨯-;④142135213522=-=-.其中,运算正确的个数是A .1个B .2个C .3个D .4个 4.在Rt △ABC 中,∠C = 90°,1=BC ,4=AB ,则B sin 的值是A .1515 B .41 C .31 D .4155.一元二次方程0542=--x x 经过配方后,可变形为A .1)2(2=-x B .1)2(2-=+x C .9)2(2=-x D .9)2(2=+x6.如图, 在ABC ∆中,如果DE ∥BC ,3=AD ,2=AE ,5=BD ,则AC 的长为A . 316B .310C .35D .2157.设关于x 的方程01)(2=-++-ab x b a x 的两个实数根为1x 、2x ,现给出三个结论:ECBDA6题图①21x x ≠; ②ab x x <21; ③222221b a x x +<+. 则正确结论的个数是 A .1 B .2 C .3 D .无法确定8.已知一张矩形纸片ABCD ,AB =2.5,AD =1.5,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F (如图),则CF 的长为A .0.5B .0.75C.1 D .1.25二、填空题:本大题共8个小题,每小题3分,共24分.请把答案直接填在答题卡对应题中横线上.(注.意.: 在试题卷上作答无效.........) 9.二次根式12+x 在实数范围内有意义,则x 的取值范围为 . 10.已知实数a 、b 在数轴上的位置如图所示,且b a >,则化简||2b a a +-的结果为 . 11.已知0≠xy ,且082322=--y xy x ,那么yx的值为 . 12.某机械厂七月生产某零件50万个,第三季度共生产这种零件196万个,设该厂八、九月平均每月的增长率为x ,则可列出方程为 .13.已知河堤横断面如图所示,堤高BC =6米,迎水坡AB 的坡度为1:,则AB 的长为 米.14.如图,当太阳在A 处时,测得某树的影长为2 m ,在B 处时,又测得该树的影长为8 m ,若两次日照的光线互相垂直, 则树的高度为 m .15.若点G 是△ABC 的重心,CG 、BG 的延长线分别交AB 、AC边于点D 、E ,则△DEG 和△ABC 的面积比是 .16. 如图,在Rt △ABC 中,AB =BC ,∠ABC =90°,点D 是AB 的中点,连结CD ,过点B 作BG ⊥CD ,分别交CD ,CA 于点E ,F ,与过点A 且垂直于AB 的直线相交于点G ,连结DF ,给出以下几个结论:① FBFGAB AG =; ②∠ADF =∠CDB ; ③点F 是GE 的中点; 8题图13题图aob 14题图A 时B 时④AB AF 32=. 其中正确的结论是 (写出所有正确结论的序号).三、解答题:本大题共8个题,共72分.解答应写出文字说明,证明过程或演算步骤. 17.(每小题5分,共10分)(注意..: 在试题卷上作答无效.........) (1)计算: 30tan 682912+--; (2)解方程:01522=+-x x .18.(本小题8分)(注意..: 在试题卷上作答无效.........) 若35+=x ,35-=y ,求22y xy x +-的值.19.(本小题8分)(注.意.: 在试题卷上作答无效.........) 已知关于x 的方程0)1(222=+--k x k x 有两个实数根1x ,2x . (1)求k 的取值范围;(2)若12121-=+x x x x ,求k 的值.20.(本小题8分)(注意..: 在试题卷上作答无效.........) 经过某十字路口的汽车,按交通规定它可以继续直行,也可以向左转或向右转三种行驶方向.如果这三种行驶方向的可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树状图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果; (2)求至少有一辆汽车向左转的概率.21.(本小题8分)(注意..: 在试题卷上作答无效.........) 如图所示,一段街道的两边缘所在直线分别为AB ,PQ ,并且AB ∥PQ .建筑物的一端DE 所在的直线MN ⊥AB 于点M ,交PQ 于点N .小强从胜利街的A 处,沿着AB 方向直行,小明站在点 P 的位置等候小强.(1)请你在图中画出小强恰好能看见小明时的视线,并标出此时小强所在位置(用点C 标出);(2)已知:MN =20 m ,MD =8 m ,PN =24 m ,求(1)中的点C 到胜利街口CM 的长.22.(本小题8分)(注意..: 在试题卷上作答无效.........)P N Q 21题图某校九年级二班的一个数学综合实践小组去沃尔玛超市调查某种商品“十·一”节期间的销售情况,下面是调查后小阳与其他两位同学交流的情况: 小阳:据调查,该商品的进价为12元/件. 小佳:该商品定价为20元时,每天可售出240件.小欣:在定价为20元的基础上,涨价1元,每天少售出20件;降价1元,则每天多售出40件. 根据他们的对话,若销售的商品每天能获利1920元时,应该怎样定价更合理?23.(本小题10分)(注意..: 在试题卷上作答无效.........) 如图,小强同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小明同学,发现自己的位置与风筝C 处和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离(结果保留根号);(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,求A 、C 两点间的距离(结果保留根号).24.(本小题12分)(注意..: 在试题卷上作答无效.........) 如图,已知∠DAC =∠ECA =90°,点B 在线段AC 上,且 BD ⊥BE ,AD =BC .(1)求证:AC = AD + CE ;(2)若AD = 3,CE = 5,点P 为线段AB 上的动点,连接DP ,作PQ ⊥DP ,交直线BE 于点Q .①当点P 与A ,B 两点不重合时,求PQDP的值; ②当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.23题图24题图2017年秋期义务教育阶段教学质量测试题 九年级数学试题答案及评分意见说 明:一、本解答给出了一种或几种解法供参考,如果考生的解答与本解答不同,可比照评分意见制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半,如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一、选择题(每小题3分,共24分)二、填空题(每小题3分,共24分)9.21-≥x ; 10. b ; 11.2或34-; 12. 196)1(50)1(50502=++++x x ; 13.12; 14 .4; 15.1∶12; 16. ①②④.三、解答题:(本大题共8个题,共72分) 17.(1)解: 原式3362222332+--= ………(3分) 22734-= ………(5分)(2)解: 017124)5(422>=⨯⨯--=-ac b ………(2分)∴41752217)5(±=⨯±--=x ………(4分) ∴4175,417521-=+=x x ………(5分) 18.解: 52)35()35(=-++=+y x , ………(2分)2)35)(35(=-+=xy ………(4分)∴原式=1423)52(3)(22=⨯-=-+xy y x ………(8分) 19.(1)根据题意,得[]04)1(222≥---=∆k k .解得21≤k ………(3分) (2))1(221-=+k x x ,221k x x = ………(4分) 由0221≥=k x x ,知:1x ,2x 同号或有根为0,当0=k 时,方程变为 0,2,02212=-=∴=+x x x x ,∴1||2121-≠+x x x x ,0≠∴k , ………(6分) 又21≤k ,)1(221-=+k x x 0<,两根为负,即021<+x x , ∴)1(2121--=+x x x x . ………(7分))1()1(22--=-k k ,即0322=-+k k解得11=k ,31-=k 21≤k ,3-=∴k 综上, 3-=k . ………(8分) 20.解法1:(1)根据题意,可以画出如下的“树状图”:第一辆车 左 直 右第二辆车 左 直 右 左 直 右 左 直 右∴这两辆汽车行驶方向共有9种可能的结果 ………(5分)(2)由(1)中“树状图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等 ∴P (至少有一辆汽车向左转)=95………(8分) 解法2以下同解法1(略)21.解:(1)连接PD 并延长,交AB 于点C ,则点C 为小强所在的位置.………(3分)(2)AB ∥PQNDP MDC NPD MCD ∠=∠∠=∠ ,M D C ∆∴∽NDP ∆ ………(5分) NDMD NP MC =∴820824-=∴MC ………(7分) 16=∴MC∴点C 到胜利街口CM 的长为16. ………(8分)22.解:当涨价时,设每件商品定价为x 元,则每件商品的销售利润为(12-x )元,根据题意,得[]1920)12()20(20240=-⋅--x x 整理,得0480442=+-x x解得,201=x ,242=x ………(3分) 当降价时,设每件商品定价为y 元,则每件商品的销售利润为(12-y )元, 根据题意,得[]1920)12()20(40240=-⋅-+y y 整理,得0360382=+-y y解得,201=y ,182=y ………(6分) 综上所述,比较两种方案后,定价为18元更合理. ………(8分) 23.解:(1)在BQP Rt ∆中,PQBQ=30cot ,31030cot =⋅=∴ PQ BQ (米) …(2分) 在AQP Rt ∆中,PQAQ =45cot ,1045cot =⋅=∴PQ AQ (米) …(4分) )10310(+=+=∴AQ BQ AB 米∴A 、B 之间的距离为)10310(+米. ………(5分)22题图 P N Q23题图(2)过点A 作BC AE ⊥于点E . 在ABE Rt ∆中,ABAE=30sin ,)535(30sin +=⋅=∴ AB AE 米 …(6分) 在ACE Rt ∆中,453075=-=∠-∠=∠B CAD C 且ACAE=45sin ………(8分) )2565()535(22+=+=⋅=∴AE AC 米∴绳子AC 的长度为)2565(+米. ………(10分)24.(1)证明:如图,∵BD ⊥BE ,∴∠1+∠2=180°﹣90°=90°,∵∠ECA = 90°, ∴∠2+∠E = 90°,∴∠1 = ∠E , ………(1分)在Rt △ABD 和Rt △CEB 中,⎪⎩⎪⎨⎧==∠=∠∠=∠BC AD ECA DAC E901∴△ABD ≌△CEB (AAS ), ………(2分) ∴AB = CE ,又AD = BC∴AC = AB + BC = AD + CE ; ………(4分)(2)①如图,过点Q 作QF ⊥BC 于F ,则△BFQ ∽△BCE ,∴CEQFBC BF =, 即53QF BF =,∴BF QF 35=, ………(5分) ∵∠DAC = 90°, ∴∠ADP +∠APD = 90°, ∵PQ ⊥DP ,∴∠DPQ = 90° ∵∠FPQ +∠APD = 180°﹣90° = 90°,∴∠ADP = ∠FPQ , 又∵∠A =∠PFQ =90°,∴△ADP ∽△FPQ , ∴QF AP PF AD =, 即QFAPBF AP =+-53, ………(7分) ∴BF BF AP AP AP 35352⋅=⋅+-, 整理得,0)5)((=--AP BF AP ,∵点P 与A ,B 两点不重合,∴AP ≠ 5,∴AP = BF ,PF = PB + BF = AB= 5 由△ADP ∽△FPQ 得,PF AD PQ DP =, ∴53=PQ DP . ………(9分) ②线段DQ 的中点所经过的路径(线段)就是△BDQ 的中位线MN . ………(10分) 由(2)①可知,BF QF 35=,且AP = BF当点P 运动至AC 中点时,BF AP ==4,∴320=QF ………(10分)在Rt △BFQ 中,根据勾股定理得:3434)320(42222=+=+=QF BF BQ . ∴343221==BQ MN .∴线段DQ 的中点所经过的路径(线段)长为3432. ………(12分)。

2016-2017年四川省宜宾市八年级(上)期末数学试卷含参考答案

2016-2017年四川省宜宾市八年级(上)期末数学试卷含参考答案
2016-2017 学年四川省宜宾市八年级(上)期末数学试卷
一、选择题(本大题共 8 个小题,每小题 3 分,共 24 分) ,以下各题均给出 A、 B、C、D 四个选项,但其中只有一个是正确的,请在答题卡作答. 1. (3 分)36 的平方根是( A.±6 B.±18 ) C. (﹣2a3)2=4a6 D.a3+a3=2a6 ) C.6 D.﹣6
命题. (填“真”或“假”)
13. (3 分)用反证法证明:“在一个三角形中,至少有一个内角小于或等于 60°”, 证明过程大致分 步,第一步是假设 .
14. (3 分)如图,△ABC 中,AB=AC=15,BC=18,AD 为 BC 边上的中线,则 AD= .
15. (3 分)如图,Rt△ABC 中,∠C=90°,AD 平分∠BAC 交 BC 于 D.若 BC=16,
A.25%
5. (3 分)如图,用直尺和圆规作一个角等于已知角,其作图的依据是(
A.SAS
B.ASA
C.AAS
D.SSS )
6. (3 分)已知无理数 x= A.1
+2 的小数部分是 y,则 xy 的值是( C.2
B.﹣1
D.﹣2 )
7. (3 分)已知 a﹣b=5,ab=﹣2,则代数式 a2+b2﹣1 的值是( A.16 B.18 C.20
【分析】根据平方根的定义求解即可. 【解答】解:36 的平方根是±6. 故选:A.
2. (3 分)下列计算正确的是( A.a3•a5=a15 B.a6÷a2=a3
D.28
8. (3 分)如图,在等腰直角△ABC 中,AC=BC,∠BCA=90°,D、E 为斜边 AB 上 的点,∠DCE=45°,若 AD=2,DE=5,则 BE 的长是( )

九年级2016--2017期末数学试卷

九年级2016--2017期末数学试卷

人教版九年级2016--2017期末数学试卷一.选择题(共12分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD的大小为()A.90°B.125°C.135°D.145°4.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.45.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.6.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大二.填空题(共24分)7.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.8.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.9.二次函数y=x2+4x﹣3的最小值是.10.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.11.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=度.12.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.13.关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=,b=.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三.解答题(共84分)15.解方程:x2+4x﹣1=0.16.如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.17.已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.18.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.19.如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.22.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C (0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.23.把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为cm,高为cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.24.已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.25.如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.26.已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.九年级2016--2017期末数学试卷一.选择题(共6小题)1.(2016秋•南京期中)方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣1【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,x=0,x﹣1=0,x1=0,x2=1,故选C.2.(2016•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.3.(2016•长春模拟)如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD 的大小为()A.90°B.125°C.135°D.145°【解答】解:∵∠BOD=90°,∴∠A=∠BOD=45°,∵四边形ABCD为⊙O的内接四边形,∴∠A+∠BCD=180°,∴∠BCD=135°,故选:C.4.(2016•抚顺)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.5.(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.6.(2016•三明)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【解答】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.二.填空题(共8小题)7.(2016•临夏州)三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为12.【解答】解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.8.(2016•本溪)关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为1.【解答】解:∵关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,∴k≠0且b2﹣4ac>0,即,解得k>﹣1且k≠0,∴k的最小整数值为:1.故答案为:1.9.(2016•兰州)二次函数y=x2+4x﹣3的最小值是﹣7.【解答】解:∵y=x2+4x﹣3=(x+2)2﹣7,∵a=1>0,∴x=﹣2时,y有最小值=﹣7.故答案为﹣7.10.(2016•黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为π.【解答】解:∵,∴S 阴影==πAB2=π.故答案为:π.11.(2016•牡丹江)如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=30度.【解答】解:连接AC,∵AB是直径,∴∠ACB=90°,∵AB=6,BC=3,∴sin∠CAB===,∴∠CAB=30°,∴∠BDC=30°,故答案为:30.12.(2016•聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.13.(2016春•延庆县期末)关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=1,b=2015.【解答】解:把x=1代入ax2+bx﹣2016=0得a+b﹣2016=0,当a=1时,b=2015.故答案为:1,2015.14.(2016•长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,∵﹣<0,∴S△BCD有最大值,最大值为15,故答案为15.三.解答题(共12小题)15.(2016•淄博)解方程:x2+4x﹣1=0.【解答】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.16.(2015•香坊区三模)如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.【解答】解:(1)如图1所示:(2)如图2所示:四边形ACBE的面积为:2×4=8.17.(2016春•南开区期末)已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0 (Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.【解答】(1)证明:∵△=(2k+3)2﹣4(k2+3k+2)=1,∴△>0,∴无论k取何值时,方程总有两个不相等的实数根;(2﹚解:∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴(2k+3)2﹣4(k2+3k+2)=0,解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6.∴△ABC的周长为14或16.18.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).19.(2015秋•玄武区期末)如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.【解答】解:(1)过点O作OD⊥AB于点D,连接AO,BO.如图1所示:∵OD⊥AB且过圆心,AB=2,∴AD=AB=1,∠ADO=90°,在Rt△ADO中,∠ADO=90°,AO=2,AD=1,∴OD==.即点O到AB的距离为.(2)如图2所示:∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA=(360°﹣∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.20.(2015•宁波)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.21.(2014•黔南州)两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.【解答】证明:(1)如图②,∵由题意知,AD=GD,ED=CD,∠ADC=∠GDE=90°,∴∠ADC+∠CDE=∠GDE+∠CDE,即∠ADE=∠GDC,在△AED与△GCD中,,∴△AED≌△GCD(SAS);(2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°,∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.22.(2016春•荣成市校级月考)如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.【解答】解:(1)根据题意得,解得,所以二次函数解析式为y=﹣x2+4x+5;(2)y=﹣x2+4x+5=﹣(x﹣2)2+9,则M点坐标为(2,9),设直线MC的解析式为y=mx+n,把M(2,9)和C(0,5)代入得,解得,所以直线CM的解析式为y=2x+5;(3)把y=0代入y=2x+5得2x+5=0,解得x=﹣,则E点坐标为(﹣,0),把y=0代入y=﹣x2+4x+5得﹣x2+4x+5=0,解得x1=﹣1,x2=5,所以S△MCB=S△MBE﹣S△CBE=××9﹣××5=15.23.(2016秋•孝感校级月考)把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为22cm,高为9cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.【解答】解:(1)如图所示,由已知得:BC=9cm,AB=40﹣2×9=22cm,故答案为:22,9;(2)设剪掉的正方形的边长为x cm,则(40﹣2x)2=484,即40﹣2x=±22,解得x1=31(不合题意,舍去),x2=9;答:剪掉的正方形边长为9cm;③折成的长方体盒子的侧面积有最大值,设剪掉的正方形的边长为x cm,盒子的侧面积为y cm2,则y与x的函数关系式为y=4(40﹣2x)x,即y=﹣8x2+160x,y=﹣8(x﹣10)2+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm2,此时剪掉的正方形的边长是10cm.24.(2016春•合肥校级月考)已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【解答】(1)证明:如图1,连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB是⊙O的直径;(2)证明:如图2,连接OD,∵AO=BO,BD=DC,∴DO是△BAC的中位线,∴DO∥AC,∴DO⊥DE,∴DE为⊙O的切线;(3)解:如图3,∵AO=3,∴AB=6,又∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AD=3,∵AC×DE=CD×AD,∴6×DE=3×3,解得:DE=.25.(2015•南丹县一模)如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.【解答】(1)证明:∵⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,∴∠C=∠CFO=∠CEO=90°,∴四边形CFOE是矩形,∵OF=OE,∴四边形OECF为正方形;(2)解:由题意可得:EO∥AC,∴△DEO∽△DCA,∴=,设⊙O的半径为x,则=,解得:x=1.5,故⊙O的半径为1.5;(3)解:∵⊙O的半径为1.5,AC=6,∴CF=1.5,AF=4.5∴AG=4.5,设BG=BE=y,∴在Rt△ACB中AC2+BC2=AB2,∴62+(y+1.5)2=(4.5+y)2,解得:y=3,∴AB=AG+BG=4.5+3=7.5.26.(2016•亭湖区一模)已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.【解答】解:(1)把A(0,1),代入y=x2+bx+c,解得c=1,将y=10代入y=﹣x+1,得x=﹣9,∴B点坐标为(﹣9,10),将B (﹣9,10),代入y=x2+bx+c得b=2;(2)△ABC是直角三角形,理由如下:∵y=x2+2x+1=(x+3)2﹣2,∴点C的坐标为(﹣3,﹣2),分别作BG垂直于y轴,CH垂直于y轴∵BG=AG=9,∴∠BAG=45°,同理∠CAH=45°,∴∠CAB=90°∴△ABC是直角三角形;(3)∵BG=AG=9,∴AB=9,∵CH=AH=3,∴AC=3,∵四边形ADEF为平行四边形,∴AD∥EF,又∵F为CD中点,∴CE=BE,即EF为△DBC的中位线,EF∴EF=AD=BD,∵AB=9,∴EF=AD=3在Rt△ACD中,AD=3,AC=3,∴CD=6,∴AF=3,∴平行四边形ADEF周长为6+6.第21页(共21页)。

四川省宜宾市九年级上学期期末数学试卷

四川省宜宾市九年级上学期期末数学试卷

四川省宜宾市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·温州模拟) 如图,正△AOB的边长为5,点B在x轴正半轴上,点A在第一象限,反比例函数y=(x>0)的图象分别交边AO,AB于点C,D,若OC=2BD,则实数k的值为()A . 4B .C .D . 82. (2分)(2013·海南) 如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A .B .C .D .3. (2分)在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球有4个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱,通过大量重复摸球实验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是()A . 3B . 4C . 12D . 164. (2分)(2012·北海) 如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了()A . 2周B . 3周C . 4周D . 5周5. (2分)某商店将进价为8元的商品按每件10元出售,每天可销售200件,现商家采用提高售价,减少进货量的方法增加利润,如果这种商品每件涨0.5元,其销量就会减少10件,那么要使利润为640元,需将售价定为()A . 16元B . 12元C . 16元或12元D . 14元6. (2分) (2017九上·衡阳期末) 已知关于x的一元二次方程x2-m=2x有两个不相等的实数根,则m的取值范围是()A . m>-1B . m<-2C . m≥0D . m<07. (2分)如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是()A . y=x2﹣1B . y=x2+6x+5C . y=x2+4x+4D . y=x2+8x+178. (2分)如图,在直角梯形ABCD中,AD∥BC ,∠ABC= ,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A . 1个B . 2个C . 3个D . 4个9. (2分)如图,直线y=mx与双曲线y=交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△AB M=2,则k的值是()A . 2B . m﹣2C . mD . 410. (2分)如图,AB为⊙O的直径,AB=10cm,弦CD⊥AB,垂足为E,且AE:EB=2:3,则AC=()A . 3cmB . 4cmC . cmD . cm11. (2分) (2019九上·宁河期中) 二次函数y=ax2+bx+c中,b=4a,它的图象如图所示,有以下结论:①c >0;②a+b+c>0;③b2-4ac<0;④abc<0;⑤4a>c.其中正确的是()A . ①②④B . ①④⑤C . ①②⑤D . ①③⑤12. (2分)(2011·常州) 已知二次函数,当自变量x取m时对应的值大于0,当自变量x 分别取m﹣1、m+1时对应的函数值为y1、y2 ,则y1、y2必须满足()A . y1>0、y2>0B . y1<0、y2<0C . y1<0、y2>0D . y1>0、y2<0二、填空题 (共6题;共6分)13. (1分) (2018九上·娄底期中) 设m , n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=________.14. (1分)如图,将△A BC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是________ .15. (1分)在直角坐标系中有两点A(6,3)、B(6,0).以原点O为位似中心,把线段AB按相似的1:3缩小后得到线段CD,点C在第一象限(如图),则点C的坐标为________ .16. (1分)(2017·历下模拟) 如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是________度.17. (1分)(2017·吉林模拟) 一元二次方程 x2﹣3=0的两个根是________.18. (1分)如图,直径AB为3的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是________三、解答题 (共7题;共66分)19. (5分) x2﹣6x+9=(5﹣2x)220. (6分)(2017·玄武模拟) 从2名男生和3名女生中随机抽取运动会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生的概率为________;(2)抽取2名,恰好是1名男生和1名女生.21. (15分)(2018·广水模拟) 已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3) a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.22. (10分)(2018·灌南模拟) 今年“五一“假期.某数学活动小组组织一次登山活动.他们从山脚下A 点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC 的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡度.23. (10分) (2016九上·黄山期中) 在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.24. (10分)(2020九上·高平期末) 如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD , CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;25. (10分)(2017·如皋模拟) 若抛物线L:y=ax2+bx+c(a,b,c是常数,a≠0)的顶点P在直线l上,则称该抛物线L与直线l具有“”一带一路关系,此时,抛物线L叫做直线l的“带线”,直线l叫做抛物线L的“路线”.(1)求“带线”L:y=x2﹣2mx+m2+m﹣1(m是常数)的“路线”l的解析式;(2)若某“带线”L:y= x2+bx+c的顶点在二次函数y=x2+4x+1的图象上,它的“路线”l的解析式为y=2x+4.①求此“带线”L的解析式;②设“带线”L与“路线”l的另一个交点为Q,点R在PQ之间的“带线”L上,当点R到“路线”l的距离最大时,求点R的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共66分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。

2017年宜宾市秋九上数学期末试题

2017年宜宾市秋九上数学期末试题

2017年秋期义务教育阶段教学质量监测九年级数学(考试时间:120分钟,总分120分)注意事项:1.答题前,考生在答题卷上务必将自己的姓名、学校、班级、考号填写清楚,并贴好条形码.请认真核准条形码上的考号、姓名和科目.2.解答选择题时,每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.解答填空题、解答题时,请在答题卷上各题的答题区域内作答. 一、选择题:(本大题共8个小题,每小题3分,共24分).在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效.........) 1. 若式子42-x 有意义,则x 的取值范围是 A .21≥x B . 2≥x C .2≤x D . 21≤x 2.“水中捞月”事件发生的概率是 A .0 B .41 C .21D . 1 3. 一元二次方程0)7)(3(=-+x x 的两个根是A .31=x ,72-=xB .31=x ,72=xC .31-=x ,72=xD .31-=x ,72-=x 4. 在Rt △ABC 中,∠︒=90C ,5=AC ,13=AB ,则A sin 的值为 A .125 B . 135 C .1312 D . 12135. 小兵身高1.4m ,他的影长是2.1 m ,若此时学校旗杆的影长是18 m ,那么旗杆的高度是A . 9mB .11 mC .12 mD .27m 6. 如图,在△ABC 中,AB CD ACB ⊥︒=∠,90于点D , 若5:2:=AB AC ,则S △ADC :S △BDC 是 A . 19:3 B . 19:1 C . 21:3 D . 21:4第6题ACBD7. 某商店原来平均每天可销售某种水果150千克,每千克盈利7元,为了减少库存,经市场调查,这种水果每千克降价1元,那么每天可多售出20千克,若要平均每天盈利960元,则每千克应降价多元?设每千克降价x 元,则所列方程是 A .960)7)(150(=++x xB .960)7)(20150(=-+x xC .960)7)(20150(=++x xD .960)207)(150(=++x x 8. 如图,在菱形ABCD 中,P 是对角线AC 上的一点, 连结DP 并延长交AB 于点E ,交CB 的延长线于点F .若DP =3,EF =32,则PE 的长是A . 2B . 3C . 2D .5二、填空题:(本大题8个小题,每小题3分,共24分).请把答案直接填写在答题卡对应题中横线上.(注意:在试题卷上作答无效.........) 9. 计算:2)3( = ▲ .10. 打开电视机,正在播广告是 ▲ 事件.(填“随机”或“确定”) 11. 已知162-=+x x 可以配成q p x =+2)(的形式,则q = ▲ .12. 在一个直角三角形中,斜边上的中线长为5,一条直角边长为8,则另一条直角边的长为 ▲ .13. 已知2=x 是一元二次方程062=++mx x 的一个根,则方程的另一个根是 ▲ . 14. 若α为锐角,且25cos sin =+αα,则ααcos sin ⋅= ▲ .15. 如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,M 为AD 中点,连结CM 交BD 于点N .若1=ON ,则=BD ▲ .CDB 第8题第15题D16. 如图,把等边△ABC 沿DE 翻折,使点A 落在BC 上的F 处,给出以下结论:①EFC BDF ∠=∠; ②CF BF CE BD ⋅=⋅;③ABC EFCBDF S S S ∆∆∆21=+; ④若2:1:=CF BF ,则5:4:=AE AD .其中正确的结 论有 .(填序号)三、解答题:(本大题8个小题,共72分)解答题应写出必要的文字说明,证明过程或演算步骤. (注意:在试题卷上作答无效.........) 17. 计算题(每小题5分,共10分)(1)计算:)22)(12(-+ (2)3612360sin 4--+︒18. 用适当的方法解方程(每小题5分,共10分)(1)0432=--x x (2)22)2(16)3(x x -=+ 19.(本题6分)如图,在12×12的正方形网格中,△TABT (1,1)、A (2,3)、B (4,2).(1)以图中的点T 为位似中心,在第一象限内将△TAB 到2倍得到△TA′B′,放大后点A 、B 的对应点分别为A′、请在网格图中画出△TA′B′. (2)请直接写出点A′、B′ 的坐标. 20. (本题共8分)如图,∠C=∠CBD=︒90,DE ⊥AB 于点E . ⑴求证:△DBE ∽△BAC .⑵若3=BC ,2=DB ,1=CA ,求DE 的长. 21 (本题共8分)一个不透明的口袋中装有4张卡片,卡片上分別标有数字1、2-、3、4-,这些卡片除数字外都相同.王兴从口袋中随机抽取一张卡片,钟华从剩余的三张卡片中随机抽取一张,求两张卡片上数字之积.(1)请你用画树状图或列表的方法,列出两人抽到的数字之积所有可能的结果.C第16题ABCDEFA(2)求两人抽到的数字之积为正数的概率.22.(本题共8分)为了测量白塔的高度AB,在D处用高为1.5米的测角仪CD,测得塔顶A的仰角为︒42,再向白塔方向前进12米,又测得白塔的顶端A的仰角为︒61,求白塔的高度AB.(参考数据80.161tan,87.061sin,90.042tan,67.042sin≈︒≈︒≈︒≈︒,结果保留整数)23. (本题共10分)已知关于x的方程021)12(22=+++-mxmx有两个不相等的实数根.(1)求m的取值范围;(2)若m为(1)中符合条件的最小正整数,设此时对应的一元二次方程的两个实数根分别为α,β,求代数式αβαα3313123-+的值.24.(本题共12分)在平面直角坐标系xoy中,点B(0,3),点C(4,0).(1)求线段BC的长.(2)如图1,点A1(-,0),D是线段BC上的一点,若△BAD∽△BCA时,求点D 的坐标.(3)如图2,以BC为边在第一象限内作等边△BCE,求点E的坐标.第22题图12017年秋(九上)数学参考答案及评分细则一、选择题.1.B ; 2.A ; 3.C ; 4.C ; 5.C ; 6.D ; 7.B ; 8.B 二、填空题9.3; 10.随机; 11.8; 12.6;13.3; 14.81; 15.6; 16.①②④ 三、解答题17.(1)解:原式=22222-+- ……(3分)=2 ……(5分)(2)解:原式=32312234--+⋅……(3分) =332- ……(5分) 18.(1)解:0)1)(43(=+-x x ……(3分)1,3421-==x x ……(5分) (2)解:()x x -±=+243 ……(3分)1,31121==x x ……(5分) 19. (1)解:如图 ……(2分)(2)A′ ()5,3 ; B′ ()3,7 ……(6分)20.(1)证明:如图分)(∽△△又于49090,,90 BAC DBE A DBE A CBA DBE CBA E BA DE CBD C ∴∠=∠∴=∠+∠=∠+∠∴⊥=∠=∠A分)米答:白塔山的高度为米)8(.23(235.16.216.21128.19.01261tan 42tan ≈+===-=-AB x x x xx (2) 分)即∽△△中△在4(10531023,,10131,2,32 =∴==∴=+====DE DE AB BD BC DE BAC DBE AB ABC Rt CA DB BC21.解:P (积为正)=31 22.解:如图DE 交AB 与于E,AF 交DE 于 F.设AE=x,有23.解:[]分)5(410)21(4)12(04)1(222 >>+⨯-+->-=m m m ac b ∆F()分)()(,为方程的两根时,有当523-3-3-3313-313-3131,233,023312222232 ==⋅=+=+=⋅=+∴=+-=αααααβαααβααβαβαβαx x m24.(本题共12分)解:(1)5=BC …………(3分) (2)分)(),(即,中,△在,即∽△△∥,即∽△△中在平面直角坐标系于点,交作过点7595858513591059353,321051010.)0,4(),3,0(),0,1(.22 D OE AE DE AD ADE Rt DE DE BO DE CB CD CBO CDE BO DE BD BC CD BD BDBA BD CB AB BCA BAD OB OA AB xoy C B A E AC AC DE D =∴=∴=====∴∴=-=∴===∴=+=-⊥(3)如图:在x 轴上作∠BMC =∠ENC=600,过E 作EH ⊥x 轴于点E ,在R t △BMO , ∠BMC =600,易得32,3==BM OM ,易得△BMC ≌△NCE ,∴34,3+===MC EN CN ,在R t △EHN 中, ∠ENC =600,易得2332+=EH ,232+=HN ,2332+=OH 所以点E 的坐标是(2332+,3223+)。

人教版2016-2017学年九年级(上册)期末数学试卷及答案

人教版2016-2017学年九年级(上册)期末数学试卷及答案

人教版2016-2017学年九年级(上册)期末数学试卷及答案2016-2017学年九年级(上册)期末数学试卷一、选择题(共8小题,每小题4分,满分32分)1.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同。

若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大2.圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°3.若关于x的方程2x²-ax+a-2=0有两个相等的实根,则a 的值是()A.-4B.4C.4或-4D.24.二次函数y=-x²+2x+4的最大值为()A.3B.4C.5D.65.在平面直角坐标系中,点A的坐标为(-1,-2),将OA绕原点O逆时针旋转180°得到OA',点A'的坐标为(a,b),则a-b等于()A.1B.-1C.3D.-36.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,-2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)7.若c(c≠0)为关于x的一元二次方程x²+bx+c=0的根,则c+b的值为()A.1B.-1C.2D.-28.如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是()A.πB.24πC.πD.12π二、填空题(共6小题,每小题3分,满分18分)9.小红有一个正方体玩具,6个面上分别画有线段、角、平行四边形、圆、菱形和等边三角形这6个图形。

抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是_______。

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。

2016-2017第一学期初三数学期末调研试卷

2016-2017第一学期初三数学期末调研试卷
(1)求点B的坐标;
(2)二次函数y=ax+bx+c的图像经过A、B、O三点,若点P为此图像上一动点,过点P作PQ∥x轴交此图像于点Q,若以PQ为直径的圆与x轴相切,求PQ的长.
26.(本题满分8分)大学生小洪准备在校园做微商销售某商品,该商品的进价为每件40元.为更好决策,小洪用计算机模拟销售,发现:如果售价为每件50元,每周可卖出100件;如果售价超过50元但不超过61元,每件商品的售价每上涨1元,则每周少卖2件;如果售价超过61元后,每涨1元,则每周少卖3件,直至销售量为0.设每件商品的售价为x(x≥50且x为整数)元,每周的销售量为y件.(1)当售价为61元时,销售量为多少件;(2)求y与x的函数关系式;(3)小洪用计算机模拟图像发现,当销售价定为a(a>61)元时,该周获取的销售利润最多,聪明的同学,请你计算a的值及该周的最大销售利润w(元).
13.如图:已知AD//BE//CF,且AB= 4,BC=5,EF=4,则DE=_____.
14.如图,在⊙O的内接四边形ABCD中,∠BOD=90°,则∠BCD=__ ____°.
15.如图,在正六边形ABCDEF中,连接AE,DF交于点O,则∠AOD=°.
16.设A(1,y1),B(-2,y2)是抛物线y=-(x+1)2+a上的二点,则y1,y2的大小关系为__ __.
9.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),下列命题:
①b=2a;②a-b+c=0;③b<0;④3b=2c,其中正确的有()
A.①④B.②③C.①②③D.②③④
10.在四边形ABCD中,E是AB上一点,EC∥AD,DE∥BC,若S△ADE=3,S△DEC=2,则S△CBE的值是()

宜宾市宜宾县2016-2017学年九年级上期中数学试卷含答案解析

宜宾市宜宾县2016-2017学年九年级上期中数学试卷含答案解析

A.x2+130x▱ 1400=0 B.x2▱ 130x▱ 1400=0 C.x2+65x▱ 250=0 D.x2▱ 65x▱ 250=0 7.已知,如图,在△ABC 中,∠ADE= B. = C. = D. =
24.(10 分)如图 1 将矩形 ABCD 折叠,使得顶点 B 落在 CD 边上的 P 点处,已知折痕 与边 BC 交于点 O,连结 AP、OP、OA.
(1)求证:△OCP∽△PDA; (2)如图 2,擦去折痕 AO、线段 OP,连结 BP.动点 M 在线段 AP 上(点 M 与点 P、A 不重合),动点 N 在线段 AB 的延长线上,且 BN=PM,连结 MN 交 PB 于点 F,作 ME⊥ BP 于点 E.探究:当点 M、N 在移动过程中,线段 EF 与线段 PB 有何数量关系?并说明 理由.
2016-2017 学年四川省宜宾市宜宾县九年级(上)期中 数学试卷
参考答案与试题解析
一、选择题:(本大题共 8 小题,每小题 3 分,共 24 分)
1.若二次根式
有意义,则 x 的取值范围是( )
A.x>1 B.x≥1 C.x<1 D.x≤1 【考点】二次根式有意义的条件. 【分析】根据二次根式有意义的条件列出关于 x 的不等式,求出 x 的取值范围即可.
2016-2017 学年四川省宜宾市宜宾县九年级(上)期中数学试卷
一、选择题:(本大题共 8 小题,每小题 3 分,共 24 分)
1.若二次根式
有意义,则 x 的取值范围是( )
A.x>1 B.x≥1 C.x<1 D.x≤1 2.下列根式中,是最简二次根式的是( )
A. B. C. D.
3.已知 x=1 是关于 x 的一元二次方程 2x2﹣x+a=0 的一个根,则 a 的值是( ) A.2 B.▱ 2 C.1 D.▱ 1 4.一元二次方程 x2﹣2x+m=0 总有实数根,则 m 应满足的条件是( ) A.m>1 B.m=1 C.m<1D.m≤1 5.设α、β是一元二次方程 x2+2x﹣1=0 的两个根,则αβ的值是( ) A.2 B.1 C.▱ 2 D.▱ 1 6.在一幅长 80cm,宽 50cm 的矩形风景画的四周镶上一条金色纸边,制成一幅矩形挂 图,如果要使整个挂图的面积是 5000cm2,设金色纸边的宽为 xcm,那么满足的方程是 ()

四川省宜宾市2016届九年级数学上学期期末考试试题(含解析)新人教版

四川省宜宾市2016届九年级数学上学期期末考试试题(含解析)新人教版

四川省宜宾市2016届九年级数学上学期期末考试试题一、选择题:(本大题8个小题,每小题3分,共24分)1.要使根式有意义,则字母x的取值范围是()A.x≠3 B.x≤3 C.x>3 D.x≥32.下面计算正确的是()A. +=B.×=C. =﹣3 D.﹣=3.用配方法解方程x2+4x+1=0时,经过配方,得到()A.(x+2)2=5 B.(x﹣2)2=5 C.(x﹣2)2=3 D.(x+2)2=34.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°5.下列事件是确定事件的是()A.任意打开一本200页的数学书,恰好是第50页B.打开电视机,任选一个频道,正在播放足球赛C.在空旷的操场上向上抛出的篮球一定会下落D.阴天一定会下雨6.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D.则△BCD与△ABC的周长之比为()A.1:2 B.1:3 C.1:4 D.1:57.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣18.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)二、填空题:(本大题8个小题,每小题3分,共24分)9.化简: = .10.关于x的方程2x2+kx﹣4=0的一个根是﹣2,则方程的另一个根是.11.若m:n=5:4,则= .12.一次会议上,每两个参加会议的人员都相互握了一次手,有人统计共握了36次手,这次到会的人数为人.13.已知a,b,c是三角形的三边,且满足b2=(c+a)(c﹣a),5a=3c,则sinA= .14.如图,在△ABC中,D、E分别为边BC、AB的中点,AD、CE相交于O,AB=8,BC=10,AC=6,求OD= .15.如图,已知点A(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b= .16.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边DC于点E,AH⊥DE于点H,连接CH并延长交AB边于点F,连接AE交CF于点O,给出下列命题:①AD=DE ②DH=2EH ③△AEH∽△CFB ④HO=AE其中正确命题的序号是(填上所有正确命题的序号)三、解答题:(本大题8个小题,共72分)17.(1)计算:2sin45°+(π﹣1)0﹣+|1﹣|(2)解方程:2x2+5x﹣3=0.18.已知a=+1,b=﹣1,求a2+ab+b2.19.将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上.(1)从中随机抽取一张卡片,求该卡片正面的数字是奇数的概率;(2)先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是3的倍数的概率是多少?请用树状图或列表法加以说明.20.已知关于x的一元二次方程(x﹣1)(x﹣2)﹣m2=0(1)请说明对于任意实数m方程总有两个不相等的实数根;(2)若方程两实数根为x1,x2,且满足(x1+x2)2=3﹣x1x2,求m的值.21.电动自行车成为市民日常出行的首选工具,据某市品牌电动车经销商7至9月份统计,该品牌电动自行车7月份销售200辆,9月份销售242辆.(1)求该品牌电动车销售量的月平均增长率;(2)若该品牌电动自行车的造价为2300元,售价2700元,则该经销商7月至9月共盈利多少元?22.如图,某滑板爱好者训练时的斜坡示意图,出于安全因素考虑,决定将训练的斜坡的倾角由45°降为30°,已知原斜坡坡面AB的长为5米,点D、B、C在同一水平地面上.(1)改善后斜坡坡面AD比原斜坡坡面AB会加长多少米?(精确到0.01)(2)若斜坡的正前方能有3米长的空地就能保证安全,已知原斜坡AB的前方有6米长的空地,进行这样的改造是否可行?说明理由.(参考数据:)23.如图,在正方形ABCD中,F是AD的钟点,BF与AC交于点G.(1)求证:△AGF∽△CGB;(2)请求出△BGC与四边形CGFD的面积之比.24.如图,在△ABC中,己知AB=AC=10,BC=16,点p在线段BC上运动(P不与B,C重合),连接AP,做∠APM=∠B,PM交AC于点M.(1)求证:△ABP∽△PCM;(2)在P点运动过程中,若PM∥AB,请求出线段BP的长;(3)探究:在P点运动过程中,连接BM,设△ABM的面积为S,试分析S是否存在最小值,如果存在,求出这个最小值;如果不存在,说明理由.2015-2016学年四川省宜宾市九年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题8个小题,每小题3分,共24分)1.要使根式有意义,则字母x的取值范围是()A.x≠3 B.x≤3 C.x>3 D.x≥3【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,可知当x﹣3≥0时,二次根式有意义.【解答】解:要使有意义,只需x﹣3≥0,解得x≥3.故选D.2.下面计算正确的是()A. +=B.×=C. =﹣3 D.﹣=【考点】二次根式的混合运算.【分析】计算各个选项的式子,然后对比选项中的式子即可得到问题的答案.【解答】解:∵,∴选项A错误;∵,∴选项B正确;∵,∴选项C错误;∵,∴选项D错误.故选B.3.用配方法解方程x2+4x+1=0时,经过配方,得到()A.(x+2)2=5 B.(x﹣2)2=5 C.(x﹣2)2=3 D.(x+2)2=3【考点】解一元二次方程-配方法.【分析】在本题中,把常数项1移项后,应该在左右两边同时加上一次项系数4的一半的平方.【解答】解:把方程x2+4x+1=0的常数项移到等号的右边,得到x2+4x=﹣1,方程两边同时加上一次项系数一半的平方,得到x2+4x+4=﹣1+4配方得(x+2)2=3.故选:D.4.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°【考点】解直角三角形的应用.【分析】因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,分别求出∠CAB,∠C′AB′,然后可以求出∠C′AC,即求出了鱼竿转过的角度.【解答】解:∵sin∠CAB===,∴∠CAB=45°.∵==,∴∠C′AB′=60°.∴∠CAC′=60°﹣45°=15°,鱼竿转过的角度是15°.故选:C.5.下列事件是确定事件的是()A.任意打开一本200页的数学书,恰好是第50页B.打开电视机,任选一个频道,正在播放足球赛C.在空旷的操场上向上抛出的篮球一定会下落D.阴天一定会下雨【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、任意打开一本200页的数学书,恰好是第50页是随机事件,故A错误;B、打开电视机,任选一个频道,正在播放足球赛,是随机事件,故B错误;C、在空旷的操场上向上抛出的篮球一定会下落,是必然事件,故C正确;D、阴天一定会下雨,是随机事件,故D错误;故选:C.6.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D.则△BCD与△ABC的周长之比为()A.1:2 B.1:3 C.1:4 D.1:5【考点】相似三角形的判定与性质.【分析】易证得△BCD∽△BAC,得∠BCD=∠A=30°,那么BC=2BD,即△BCD与△BAC的相似比为1:2,根据相似三角形的周长比等于相似比即可得到正确的结论.【解答】解:∵∠B=∠B,∠BDC=∠BCA=90°,∴△BCD∽△BAC;①∴∠BCD=∠A=30°;Rt△BCD中,∠BCD=30°,则BC=2BD;由①得:C△BCD:C△BAC=BD:BC=1:2;故选A.7.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣1【考点】解分式方程.【分析】根据x与﹣x的大小关系,取x与﹣x中的最大值化简所求方程,求出解即可.【解答】解:当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选D.8.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)【考点】矩形的性质;坐标与图形性质;全等三角形的判定与性质;相似三角形的判定与性质.【分析】首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.【解答】解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,延长CA交x轴于点H,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE=∠CHO,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点C(﹣,4).故选:B.二、填空题:(本大题8个小题,每小题3分,共24分)9.化简: = 3 .【考点】算术平方根.【分析】根据算术平方根的定义求出即可.【解答】解: =3.故答案为:3.10.关于x的方程2x2+kx﹣4=0的一个根是﹣2,则方程的另一个根是 1 .【考点】一元二次方程的解.【分析】设方程的另一个根为t,根据根与系数的关系得到﹣2•t=,然后解一次方程即可.【解答】解:设方程的另一个根为t,根据题意得﹣2•t=,解得t=1,即方程的另一个根是1.故答案为1.11.若m:n=5:4,则= .【考点】比例的性质.【分析】由于m:n=5:4,于是可设m=5k,n=4k,利用把m=5k,n=4k代入中进行分式的混合运算即可.【解答】解:∵m:n=5:4,∴可设m=5k,n=4k,∴==.故答案为.12.一次会议上,每两个参加会议的人员都相互握了一次手,有人统计共握了36次手,这次到会的人数为9 人.【考点】一元二次方程的应用.【分析】设参加会议有x人,每个人都与其他(x﹣1)人握手,共握手次数为x(x﹣1),根据题意列方程求解即可.【解答】解:设这次参加会议的人有x人,依题意得: x(x﹣1)=36,整理得:x2﹣x﹣72=0解得x1=9,x2=﹣8(舍去).答:这次参加会议的人有9人.故答案为:9.13.已知a,b,c是三角形的三边,且满足b2=(c+a)(c﹣a),5a=3c,则sinA= .【考点】解直角三角形;勾股定理的逆定理.【分析】先利用勾股定理的逆定理证明△ABC为直角三角形,∠C=90°,然后根据正弦的定义求解.【解答】解:∵b2=(c+a)(c﹣a)=c2﹣a2,即a2+b2=c2,∴△ABC为直角三角形,∠C=90°,∴sinA=,而5a=3c,∴=,∴sinA=.故答案为.14.如图,在△ABC中,D、E分别为边BC、AB的中点,AD、CE相交于O,AB=8,BC=10,AC=6,求OD= .【考点】相似三角形的判定与性质;直角三角形斜边上的中线;勾股定理的逆定理;三角形中位线定理.【分析】根据勾股定理的逆定理得出∠BAC=90°,根据直角三角形斜边上中线性质求出AD,根据三角形中位线定理求出DE=AC,DE∥AC,推出△DOE∽△AOC,得出比例式,即可求出答案.【解答】解:∵AB=8,BC=10,AC=6,∴AB2+AC2=BC2,∴∠BAC=90°,∵D为BC的中点,∴AD=BC=×10=5,∵D、E分别为BC和AB的中点,∴DE=AC,DE∥AC,∴△DOE∽△AOC,∴==,∴DO=AD=.故答案为:.15.如图,已知点A(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b= 5 .【考点】解直角三角形;一次函数图象上点的坐标特征.【分析】首先根据直线y=x+b(b>0)与x轴、y轴分别交于点C、点B,求出点C,点B的坐标各是多少;然后根据∠α=75°,∠BCA=45°,应用三角形的外角的性质,求出∠BAC 的度数是多少,进而求出b的值是多少即可.【解答】解:如图1,,∵直线y=x+b(b>0)与x轴、y轴分别交于点C、点B,∴点C的坐标是(﹣b,0),点B的坐标是(0,b),∵∠α=75°,∠BCA=45°,∴∠BAC=75°﹣45°=30°,∴解得b=5.故答案为:5.16.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边DC于点E,AH⊥DE于点H,连接CH并延长交AB边于点F,连接AE交CF于点O,给出下列命题:①AD=DE ②DH=2EH ③△AEH∽△CFB ④HO=AE其中正确命题的序号是①③④(填上所有正确命题的序号)【考点】相似三角形的判定与性质;矩形的性质.【分析】根据矩形的性质得到AD=BC=AB=CD,由DE平分∠ADC,得到△ADH是等腰直角三角形,△DEC是等腰直角三角形,得到DE=CD,得到等腰三角形求出∠AED=67.5°,∠AEB=180°﹣45°﹣67.5°=67.5°,得到①正确;设DH=1,则AH=DH=1,AD=DE=,求出HE=,得到2HE=≠1,故②错误;通过角的度数求出△AOH和△OEH是等腰三角形,从而得到④正确;由△AFH≌△CHE,根据全等三角形的性质得到∠AHF=∠HCE,根据等腰三角形的性质得到∠HAO=∠AHO,求得∠HAO=∠BCF即可证得△AEH∽△CFB,故③正确.【解答】解:在矩形ABCD中,AD=BC=AB=CD,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AD⊥DE,∴△ADH是等腰直角三角形,∴AD=AB,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AED=67.5°,∴∠AEB=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠AEB,∵AD∥BC,∴∠DAE=∠AEB,∴∠DAE=∠AED,∴AD=DE,故①正确;设DH=1,则AH=DH=1,AD=DE=,∴HE=,∴2HE=2≠1,故②错误;∵∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,∴OH=AE,故④正确;∵AH=DH,CD=CE,在△AFH与△CHE中,,∴△AFH≌△CHE,∴∠AHF=∠HCE,∵AO=OH,∴∠HAO=∠AHO,∴∠HAO=∠BCF,∵∠B=∠AHE=90°,∴△AEH∽△CFB,故③正确.故答案为:①③④.三、解答题:(本大题8个小题,共72分)17.(1)计算:2sin45°+(π﹣1)0﹣+|1﹣| (2)解方程:2x2+5x﹣3=0.【考点】实数的运算;零指数幂;解一元二次方程-因式分解法;特殊角的三角函数值.【分析】(1)原式第一项利用特殊角的三角函数值计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)方程利用因式分解法求出解即可.【解答】解:(1)原式=2×+1﹣2+﹣1=0;(2)方程分解得:(2x﹣1)(x+3)=0,解得:x1=,x2=﹣3.18.已知a=+1,b=﹣1,求a2+ab+b2.【考点】二次根式的化简求值.【分析】所求的式子可以化成(a+b)2﹣ab,然后代入a和b的值求解即可.【解答】解:原式=(a+b)2﹣ab=(2)2﹣(+1)(﹣1)=8﹣1=7.19.将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上.(1)从中随机抽取一张卡片,求该卡片正面的数字是奇数的概率;(2)先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是3的倍数的概率是多少?请用树状图或列表法加以说明.【考点】列表法与树状图法.【分析】(1)由将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与组成的两位数恰好是3的倍数的情况,再利用概率公式即可求得答案.【解答】解:(1)∵将背面相同,正面分别标有数字1,2,3,4的四张卡片洗匀后,背面朝上放在桌面上,是奇数的有1,3;∴从中随机抽取一张卡片,该卡片正面的数字是奇数的概率为: =;(2)画树状图得:∵共有12种等可能的结果,组成的两位数恰好是3的倍数的有4种情况,∴组成的两位数恰好是3的倍数的概率是: =.20.已知关于x的一元二次方程(x﹣1)(x﹣2)﹣m2=0(1)请说明对于任意实数m方程总有两个不相等的实数根;(2)若方程两实数根为x1,x2,且满足(x1+x2)2=3﹣x1x2,求m的值.【考点】根的判别式;根与系数的关系.【分析】(1)先把方程(x﹣1)(x﹣2)﹣m2=0变形为x2﹣3x+2﹣m2=0,得出△=9﹣4(2﹣m2)=3+4m2>0,即可得出答案;(2)利用根与系数的关系可以得到x1+x2=3,x1•x2=2﹣m2,代入(x1+x2)2=3﹣x1x2,即可得到结果.【解答】解:(1)∵关于x的一元二次方程(x﹣1)(x﹣2)﹣m2=0,∴x2﹣3x+2﹣m2=0,∴△=9﹣4(2﹣m2)=3+4m2>0,∴对于任意实数m,方程总有两个不相等的实数根;(2)∵方程两实数根为x1,x2,∴x1+x2=3,x1•x2=2﹣m2,∵(x1+x2)2=3﹣x1x2,∴9=3﹣2+m2,∴m=±2.21.电动自行车成为市民日常出行的首选工具,据某市品牌电动车经销商7至9月份统计,该品牌电动自行车7月份销售200辆,9月份销售242辆.(1)求该品牌电动车销售量的月平均增长率;(2)若该品牌电动自行车的造价为2300元,售价2700元,则该经销商7月至9月共盈利多少元?【考点】一元二次方程的应用.【分析】(1)首先假设出平均增长率,进而利用9月份销售量为:7月销量×(1+x)2,进而求出答案;(2)利用(1)中所求,表示出8月份的销量,进而求出总利润.【解答】解:(1)设该品牌电动车销售量的月平均增长率为x,根据题意可得:200(1+x)2=242,解得:x1=﹣2.1(不合题意舍去),x2=0.1=10%,答:该品牌电动车销售量的月平均增长率为10%;(2)由(1)得:8月份的销量为:200(1+10%)=220(辆),则×=264800(元).答:该经销商7月至9月共盈利264800元.22.如图,某滑板爱好者训练时的斜坡示意图,出于安全因素考虑,决定将训练的斜坡的倾角由45°降为30°,已知原斜坡坡面AB的长为5米,点D、B、C在同一水平地面上.(1)改善后斜坡坡面AD比原斜坡坡面AB会加长多少米?(精确到0.01)(2)若斜坡的正前方能有3米长的空地就能保证安全,已知原斜坡AB的前方有6米长的空地,进行这样的改造是否可行?说明理由.(参考数据:)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)滑滑板增加的长度实际是(AD﹣AB)的长.在Rt△ABC中,通过解直角三角形求出AC的长,进而在Rt△ACD中求出AD的长得解;(2)分别在Rt△ABC、Rt△ACD中求出BC、CD的长,即可求出BD的长,进而可求出改造后滑滑板前方的空地长.若此距离大于等于3米则这样改造安全,反之则不安全.【解答】解:(1)在Rt△ABC中,BC=AC=AB•sin45°=(m),在Rt△ADC中AD==5(m),CD==(m),∴AD﹣AB≈2.07(m).改善后的斜坡会加长2.07m;(2)这样改造能行.∵CD﹣BC≈2.59(m),而6﹣3>2.59,∴这样改造能行.23.如图,在正方形ABCD中,F是AD的钟点,BF与AC交于点G.(1)求证:△AGF∽△CGB;(2)请求出△BGC与四边形CGFD的面积之比.【考点】相似三角形的判定与性质.【分析】(1)根据正方形的性质得到AF∥BC,根据相似三角形的判定定理即可得到结论;(2)设正方形的边长是a,可分别求得△BFC,△ABC,△AFG的面积,从而可求得四边形CGFD的面积,则不难求△BFC与四边形CGFD的面积之比.【解答】(1)证明:∵四边形ABCD是正方形,∴AF∥BC,∴△AGF∽△CGB;(2)解:∵F是AD的中点,∴AF=AD=BC,设正方形的边长是a,则△BFC的面积是a2,△ABC的面积是a2,AF=,S△ABF=××a=,=,∴S△AFG=S△AFB=,∴四边形CGFD的面积a2﹣a2﹣=,∴△BFC与四边形CGFD的面积之比是6:5.24.如图,在△ABC中,己知AB=AC=10,BC=16,点p在线段BC上运动(P不与B,C重合),连接AP,做∠APM=∠B,PM交AC于点M.(1)求证:△ABP∽△PCM;(2)在P点运动过程中,若PM∥AB,请求出线段BP的长;(3)探究:在P点运动过程中,连接BM,设△ABM的面积为S,试分析S是否存在最小值,如果存在,求出这个最小值;如果不存在,说明理由.【考点】相似形综合题.【分析】(1)根据三角形的外角的性质求出∠PAB=∠MPC,根据相似三角形的判定定理证明即可;(2)根据平行线的性质和相似三角形的性质列出比例式,得到关于x的一元二次方程,解方程即可;(3)作AH⊥BC于H,根据勾股定理和三角形的面积公式求出△ABC的面积,根据相似三角形的性质用x表示出AM,计算即可.【解答】(1)证明:∵∠APC=∠B+∠PAB,∠APM=∠B,∴∠PAB=∠MPC,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCM;(2)∵PM∥AB,∴∠APM=∠BAP,又∠APM=∠B,∴∠B=∠PAB,设BP=x,PM=y,则PC=16﹣x,PA=x,∵PM∥AB,∴=,即=,整理得,5x+8y=80,①∵△ABP∽△PCM,∴=,即=,整理得,10y=16x﹣x2,②x1=16(舍去),x2=,答:PM∥AB时,线段BP的长为;(3)作AH⊥BC于H,∵AB=AC=10,BC=16,∴BH=HC=8,由勾股定理得,AH=6,∴△ABC的面积为:×BC×AH=48,设BP=x,∵△ABP∽△PCM,∴=,MC=,则AM=10﹣MC=,∵=,∴=,则S=(x2﹣10x+100)=(x﹣5)2+36,∴S存在最小值是36.。

2016-2017年九年级上学期期末数学试卷及答案

2016-2017年九年级上学期期末数学试卷及答案

C O 图4DB A 2016-2017年九年级上学期期末数学试卷一、选择题(每小题4分,共40分)1. 下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( B )A .B .C .D .2.有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同。

小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( B )A .6 B .16 C .18 D .243.已知1x 、2x 是一元二次方程2362x x =-的两根,则1122x x x x -+的值是( C )A .43-B .83C .83-D .434.已知二次函数y =-(x +k )2+h ,当x >-2时,y 随x 的增大而减小,则函数中k 的取值范围是( C )A .k ≥-2 B .k ≤-2 C .k ≥2 D .k ≤2 5.在△ABC 中,∠A =90°,AB =3cm ,AC =4cm ,若以A 为圆心3cm 为半径作⊙O ,则BC 与⊙O 的位置关系是( A )A .相交 B .相离 C .相切 D .不能确定 6.如图C 、D 是以线段AB 为直径的⊙O 上两点,若CA CD =,且40ACD ∠=, 则CAB ∠=( B ) A.10B.20C.30D.407.如图在△ABC 中,∠C=90°,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为 ( A ) A .10 B .2 2 C .3 D .2 58.如图AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为 的中点,P 是直径AB 上一动点,则PC+PD 的最小值为( B )A .22B.2C.1D.29.如图⊙O 是以原点为圆心,2为半径的圆,点P 是直线 y =-x +6上的一点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( B )A .3B .4C .6-D .3-110.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为x =1,给出下列结论:①abc >0;②当x >2时,y >0;③3a +c >0;④3a+b >0.其中正确的结论有( C ) A .①② B .①④ C .①③④ D .②③④ 二、填空题(每小题4分,共40分)11.已知m 是关于x 的方程x 2﹣2x ﹣3=0的一个根,则2m 2﹣4m= 6 .12.若关于x 的二次函数221y kx x =+-与x 轴仅有一个公共点,则实数k 的值为1k =-. 13.如图,⊙O 的直径CD 与弦AB 垂直相交于点E ,且BC =1,AD =2,则⊙O 的直径长为5 .14.如图,AB 为⊙0的弦,AB=6,点C 是⊙0上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是____32__________。

四川省宜宾市九年级(上)期末数学试卷

四川省宜宾市九年级(上)期末数学试卷

九年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.下列二次根式中,是最简二次根式的是()A. 12B. 11C. 27D. a32.下列计算正确的是()A. 3+2=5B. 2+2=22C. 26−5=1D. 8−2=23.下列说法正确的是()A. “任意画一个三角形,其内角和为360∘”是随机事件B. 某种彩票的中奖率是1100,说明每买100张彩票,一定有1张中奖C. “篮球队员在罚球线上投篮一次,投中”为随机事件D. 投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次4.用配方法解方程x2+2x-3=0,下列配方结果正确的是()A. (x−1)2=2B. (x−1)2=4C. (x+1)2=2D. (x+1)2=45.如图,在Rt△ABC中,∠ACB=90°,AC=24,AB=25,CD是斜边AB上的高,则cos∠BCD的值为()A. 725B. 2425C. 724D. 2476.如图,在平行四边形ABCD中,点M为AD边上一点,且AM=2DM,连接CM,对角线BD与CM相交于点N,若△CDN的面积等于3,则四边形ABNM的面积为()A. 8B. 9C. 11D. 127.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x,则可列方程是()A. 400(1+x)=640B. 400(1+x)2=640C. 400(1+x)+400(1+x)2=640D. 400+400(1+x)+400(1+x)2=6408.如图,矩形OABC的边OA在x轴上,OC在y轴上,点B(10,6),把矩形OABC绕点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A. (−185,245)B. (−245,185)C. (−225,245)D. (−245,225)二、填空题(本大题共8小题,共24.0分)9.若二次根式3−x有意义,则x的取值范围是______.10.已知ab=25,则2a+ba=______.11.关于x的方程2x2-5x=0的两个解为______.12.在一个不透明的盒子中装有除了颜色以外没有任何其他区别的1个黑球和2个红球,从盒子中任意取出1个球,取出红球的概率是______.13.已知-3是关于x的一元二次方程ax2-2x+3=0的一个解,则此方程的另一个解为______.14.如图,在Rt△ABC中,∠ABC=90°,AB=12,BC=5,点D、E分别是AB、AC的中点,CF是∠ACB的平分线,交ED的延长线于点F,则DF的长是______.15.如图,在Rt△ABC中,∠ACB=90°,cos A=45,点D为AB边上一点,作DE⊥BC于点E,若AD=5,DE=8,则tan∠ACD的值为______.16.如图,△ABC是等腰直角三角形,∠ACB=90°,以BC为边向外作等边三角形BCD,CE⊥AB,连接AD交CE于点F,交BC于点G,过点C作CH⊥AD交AB于点H.下列结论:①CF=CG;②△CFG∽△DBG;③CF=(3−1)EF;④tan∠CDA=2-3.则正确的结论是______.(填序号)三、解答题(本大题共8小题,共72.0分)17.(1)计算:2cos30°+(π-3.14)0-12(2)解方程:x2+4x=1218.如图,在边长为1的小正方形组成14×14的正方形网格中,△ABC的顶点坐标分别为A(-1,1)、B(-3,4)、C(-4,2).(1)以原点O为位似中心,在y轴的右侧画出△ABC放大2倍后的△A1B1C1.(2)设△A1B1C1的面积为S,则S=______.19.正面标有数字-1,-2,3,4背面完全相同的4张卡片,洗匀后背面向上放置在桌面上.甲同学抽取一张卡片,正面的数字记为a,然后将卡片背面向上放回桌面,洗匀后,乙同学再抽取一张卡片,正面的数字记为b.(1)请用列表或画树状图的方法把(a,b)所有结果表示出来;(2)求出点(a,b)在函数y=-x+2图象上的概率.20.如图,点D、E分别在△ABC的边AB、AC上,若∠A=40°,∠B=65°,∠AED=75°.(1)求证:△ADE∽△ABC;(2)已知,AD:BD=2:3,AE=3,求AC的长.21.我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)22.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.23.已知关于x的一元二次方程x2+(m+1)x+14m2-2=0.(1)若此方程有两个实数根,求m的最小整数值;(2)若此方程的两个实数根为x1,x2,且满足x12+x22+x1x2=18-14m2,求m的值.24.如图,在矩形ABCD中,AB=6,P为边CD上一点,把△BCP沿直线BP折叠,顶点C折叠到C',连接BC'与AD交于点E,连接CE与BP交于点Q,若CE⊥BE.(1)求证:△ABE∽△DEC;(2)当AD=13时,AE<DE,求CE的长;(3)连接C'Q,直接写出四边形C'QCP的形状:______.当CP=4时,并求CE•EQ 的值.答案和解析1.【答案】B【解析】解:=,A不是最简二次根式;B,是最简二次根式;=3,C不是最简二次根式;=a,D不是最简二次根式;故选:B.根据最简二次根式的概念判断即可.本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.【答案】D【解析】解:A、+无法计算,故此选项错误;B、2+无法计算,故此选项错误;C、2-,无法计算,故此选项错误;D、-=,正确.故选:D.直接利用二次根式的加减运算法则计算得出答案.此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.3.【答案】C【解析】解:A、“任意画一个三角形,其内角和为360°”是不可能事件,故此选项错误;B、某种彩票的中奖率是,说明每买100张彩票,不一定有1张中奖,故此选项错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次,错误.故选:C.直接利用概率的意义以及三角形内角和定理分别分析得出答案.此题主要考查了概率的意义,正确掌握概率的意义是解题关键.4.【答案】D【解析】解:∵x2+2x-3=0∴x2+2x=3∴x2+2x+1=1+3∴(x+1)2=4故选:D.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.【答案】B【解析】解:∵在Rt△ABC中,∠ACB=90°,AC=24,AB=25,∴BC=7,∵CD是斜边AB上的高,,∴CD==,∵CD⊥AB,∴∠CDB=90°,∴cos∠BCD===,故选:B.根据题意和题目中的数据,利用勾股定理可以求得BC的长,然后根据等积法可以求得CD的长,从而可以求得cos∠BCD的值.本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数解答.6.【答案】C【解析】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AM=2DM,∴AD=CB=3DM,∴===,∵△CDN的面积等于3,∴△NMD的面积为1,△BNC的面积为9,∴△BCD的面积为12,∴△ABD的面积为12,∴四边形ABNM的面积为12-1=11,故选:C.由AD∥BC,可得===,求出△ABD,△MND的面积即可解决问题;本题考查平行四边形的性质,等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.【答案】B【解析】解:设这两年的年净利润平均增长率为x,根据题意得:400(1+x)2=640.故选:B.设这两年的年净利润平均增长率为x,根据该集团2018年及2020年的净利润,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.【答案】A【解析】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵点B(10,6),∴OA=10,OC=6,∴OA1=10,A1M=6,∴OM=8,∴设NO=3x,NC1=4x,则OC1=5x∵OC1=6,则5x=6,x=则NO=3x=,NC1=4x=,故点C的对应点C1的坐标为:(-,).故选:A.直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.此题主要考查了矩形的性质、旋转的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.9.【答案】x≤3【解析】解:∵二次根式有意义,∴3-x≥0,解得:x≤3.故答案为:x≤3.直接利用二次根式的性质得出3-x的取值范围,进而求出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的性质是解题关键.10.【答案】92【解析】解:设=k,则a=2k,b=5k,∴===.故答案为:.根据题意,设a=2k,b=5k.再代入,计算即可求解.本题考查了比例的性质.已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.11.【答案】0,2.5【解析】解:∵2x2-5x=0,∴x(2x-5)=0,∴x=0或2x-5=0,解得:x1=0,x2=2.5.故答案为:0或2.5.用因式分解法求出原方程的解即可.本题考查了因式分解法求一元二次方程的解的运用,一元二次方程的解法的运用.12.【答案】23【解析】解:∵在一个不透明的盒子中装有除了颜色以外没有任何其他区别的1个黑球和2个红球,∴从盒子中任意取出1个球,取出红球的概率是:.故答案为:.用红色小球的个数除以球的总个数即可得出答案.本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.13.【答案】x=1【解析】解:将x=-3代入方程得9a+6+3=0,解得a=-1,则方程为-x2-2x+3=0,设方程的另一个根为x2,则-3+x2=-2,解得x2=1,故答案为:x=1.将x=-3代入方程求得a=-1,据此可得方程,再根据两根之和求解可得.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-,x1x2=.14.【答案】9【解析】解:∵∠B=90°,AB=12,BC=5,∴AC==13,∵D,E分别是AB,AC的中点,∴DE=BC=,EC=AC=,DE∥BC,∴∠F=∠FCB,∵CF是∠ACB的平分线,∴∠FCB=∠FCE,∴∠F=∠FCE,∴EF=EC=,∴DF=DE+EF=9,故答案是:9.根据勾股定理求出AC,根据三角形中位线定理求出DE、EC,根据等腰三角形的性质求出EF,计算即可.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.【答案】38【解析】解:∵∠ACB=∠DEB=90°,∴DE∥AC,∴∠A=∠EDB,∴cosA=cos∠EDB=,∴,∴DB=10,∴由勾股定理可知:EB=6,∵AB=AD+DB=15,∴cosA==,∴AC=12,∴由勾股定理可知:CB=9,∴CE=3,∵∠ACD=∠CDE,∴tan∠ACD=tan∠CDE==,故答案为:.易证DE∥AC,所以cosA=cos∠EDB=,从而可知DB=10,再由由勾股定理可知:EB=6,由于cosA==,所以AC=12,由勾股定理可知:CB=9,从而可求出CE=3,易证∠ACD=∠CDE,所以tan∠ACD=tan∠CDE==.本题考查相似三角形,涉及勾股定理,锐角三角函数的定义,平行线的判定与性质等知识,需要学生灵活运用所学知识.16.【答案】②③④【解析】解:∵CA=CB,∠ACB=90°,CE∴⊥AB,∴∠ACE=∠BCE=45°,CE=AE=EB,∵△BCD是等边三角形,∴CD=CB,∠BCD=∠CBD=60°,∴CA=CD,∠ACD=90°+60°=150°,∴∠CAD=∠CDA=15°,∴∠CFG=∠CAF+∠ACF=60°,∠CGF=∠CDG+∠GCD=75°,∴∠CFG≠∠CGF,∴CF≠CG,故①错误,∵∠CGF=∠DGB,∠CFG=∠DBG=60°,∴△CFG∽△DBG,故②正确,∵∠CAE=45°,∠CAF=15°,∴∠EAF=30°,设EF=m,则AE=EC=m,∴CF=m-m,∴==-1,∴CF=(-1)EF,故③正确,如图设AD交CH于点N,在DN上截取DM,使得DM=CM,连接CM.设CN=a.∵MC=MD,∴∠MCD=∠MDC=15°,∴∠CMN=15°+15°=30°,∴CM=MD=2a,MN=a,∴tan∠CDA===2-,故④正确,故答案为②③④.①错误.通过计算证明∠CFG≠∠CGF即可;②正确.只要证明∠CFG=∠CBD=60°,∠CGF=∠DGB即可解决问题;、③正确.设EF=m,则AE=EC=m,通过计算证明即可;④正确.如图设AD交CH于点N,在DN上截取DM,使得DM=CM,连接CM.设CN=a.通过计算证明即可;本题考查相似三角形的判定和性质,等腰直角三角形的性质,等边三角形的性质,锐角三角函数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】解:(1)原式=2×32+1-23=3+1-23=1-3;(2)x2+4x-12=0,(x-2)(x+6)=0,x-2=0,x+6=0,所以x1=2,x2=-6.【解析】(1)利用特殊角的三角函数值和零指数幂的意义计算;(2)先把方程化为一般式,然后利用因式分解法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了实数的运算.18.【答案】14【解析】解:(1)如图所示:△A1B1C1,即为所求;(2)设△A1B1C1的面积为S,则S=36-×2×6-×4×6-×2×4=14.故答案为:14.(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用△A1B1C1所在矩形面积,减去周围三角形面积进而得出答案.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题关键.(2)∵点(-1,3),(-2,4),(3,-1),(4,-2)在函数y=-x+2的图象上,∴P(点(a,b)在函数y=-x+2的图象上)=416=14.【解析】(1)首先根据题意画树状图,然后由树状图即可求得所有等可能的结果;(2)根据树状图求得点(a,b)在函数y=-x+2图象上的情况,然后利用概率公式求解即可求得答案.此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】解:(1)∵∠A=40°,∠B=65°∴∠C=180°-40°-65°=75°,∴∠C=∠AED,∵∠A=∠A∴△ADE∽△ABC;(2)由△ADE∽△ABC得:ADAB=AEAC∴25=3AC,∴AC=152.【解析】(1)根据三角形内角和定理以及相似三角形的判定定理即可求出答案.(2)根据相似三角形的性质即可求出答案.本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.21.【答案】解:过点C作CF⊥AB于点F,如右图所示,由题知:四边形CDBF为矩形,BD=12米,∴CF=DB=12米,∵在Rt△ACF中,∠ACF=45°,∴tan∠ACF=AFCF=1,∴AF=12米,∵在Rt△CEF中,∠ECF=30°,∴tan∠ECF=EFCF,∴EF12=33,∴EF=43米,∴AE=AF+EF=(12+43)米,即条幅AE的长度为(12+43)米.【解析】根据题意,作出合适的辅助线,然后利用锐角三角函数即可求得AE的长度,本题得以解决.本题考查解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.22.【答案】解:(1)设甲种苹果的进价为a元/千克,乙种苹果的进价为b元/千克,根据题意得:a+b=183(a+4)+4(b+2)=82,解得:a=10b=8.答:甲种苹果的进价为10元/千克,乙种苹果的进价为8元/千克.(2)根据题意得:(4+x)(100-10x)+(2+x)(140-10x)=960,整理得:x2-9x+14=0,解得:x1=2,x2=7,经检验,x1=2,x2=7均符合题意.答:x的值为2或7.【解析】(1)设甲种苹果的进价为a元/千克,乙种苹果的进价为b元/千克,根据“1千克甲种苹果和1千克乙种苹果的进价之和为18元/千克,购买3千克甲种苹果和4千克乙种苹果共用82元”,即可得出关于a,b的二元一次方程组,解之即可得出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元二次方程.23.【答案】(1)解:△=(m+1)2−4×1×(14m2−2)=m2+2m+1-m2+8=2m+9.∵方程有两个实数根,∴△≥0,即2m+9≥0,∴m≥−92.∴m的最小整数值为-4;(2)由根与系数的关系得:x1+x2=-(m+1),x1x2=14m2−2.由x12+x22+x1x2=18−14m2得:[−(m+1)]2−(14m2−2)=18−14m2.∴m1=3,m2=-5.∵m≥−92,∴m=3.【解析】(1)利用判别式的意义得到△=(m+1)2-4(-2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=-(m+1),,再利用x12+x22+x1x2=18-得到,接着解关于m的方程确定m的值.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1•x2=.也考查了根的判别式.24.【答案】菱形【解析】证明:(1)∵CE⊥BE,∴∠BEC=90°,∴∠AEB+∠CED=90°,又∵∠ECD+∠CED=90°,∴∠AEB=∠ECD,又∵∠A=∠D=90°,∴△ABE∽△DEC(2)设AE=x,则DE=13-x,由(1)知:△ABE∽△DEC,∴,即:∴x2-13x+36=0,∴x1=4,x2=9,又∵AE<DE∴AE=4,DE=9,在Rt△CDE中,由勾股定理得:(3)∵折叠,∴CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,∵CE⊥BC',∠BC'P=90°,∴CE∥C'P,∴∠C'PQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP,∴CQ=CP=C'Q=C'P,∴四边形C'QCP是菱形,故答案为:菱形∵四边形C'QCP是菱形,∴C'Q∥CP,C'Q=CP,∠EQC'=∠ECD又∵∠C'EQ=∠D=90°∴△C'EQ∽△EDC∴即:CE•EQ=DC•C'Q=6×4=24(1)由题意可得∠AEB+∠CED=90°,且∠ECD+∠CED=90°,可得∠AEB=∠ECD,且∠A=∠D=90°,则可证△ABE∽△DEC;(2)设AE=x,则DE=13-x,由相似三角形的性质可得,即:,可求x的值,即可得DE=9,根据勾股定理可求CE的长;(3)由折叠的性质可得CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,由平行线的性质可得∠C'PQ=∠CQP=∠CPQ,即可得CQ=CP=C'Q=C'P,则四边形C'QCP是菱形,通过证△C'EQ∽△EDC,可得,即可求CE•EQ的值.本题是相似形综合题,考查了矩形的性质,菱形的判定和性质,折叠的性质,相似三角形的判定和性质,勾股定理等性质,灵活运用相关的性质定理、综合运用知识是解题的关键.。

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案2016-2017学年度第一学期期末考试初三年级数学试卷一、选择题(10×3分=30分)1、下列图形中,既是中心对称图形又是轴对称图形的是(。

)2、将函数y=-3x^2+1的图象向右平移2个单位得到的新图象的函数解析式为(。

)A。

y=-3(x-2)^2+1B。

y=-3(x+2)^2+1C。

y=-3x^2+2D。

y=-3x^2-23、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为(。

)A.40°B.30°C.45°D.50°4、方程x^2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.无法确定5、如图,有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意抽取一张是数字3的概率是(。

)A、1/4B、1/6C、2/3D、1/36、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(。

)A.4B.5C.6D.37、如果矩形的面积为6,那么它的长y与宽x间的函数关系用图像表示(。

)8、如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△ABC1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(。

)A.55°B.70°C.125°D.145°9、一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是(。

)A.B.C.D.10、如图,已知正方形ABCD的边长为2,P为BC的中点,连接AP并延长交BD于点E,则PE的长度为(。

)A。

2B。

1C。

√2D。

1/√2二、填空题(8×4分=32分)11、方程x^2=x的解是(。

)12、正六边形的边长为10cm,那么它的边心距等于(。

初中数学四川省宜宾市九年级上期末数学考试卷含答案解析.docx

初中数学四川省宜宾市九年级上期末数学考试卷含答案解析.docx

xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列二次根式中,是最简二次根式的为()A. B . C . D .试题2:已知方程x2+mx+3=0的一个根是1,则m的值为()A.4 B.﹣4 C.3 D.﹣3试题3:已知,则的值为()A. B. C. D.试题4:“射击运动员射击一次,命中靶心”这个事件是()A.确定事件 B.必然事件 C.不可能事件 D.不确定事件试题5:在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值为()A. B. C. D.试题6:.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值为()A. B. C. D.试题7:已知m、n是方程x2+3x﹣2=0的两个实数根,则m2+4m+n+2mn的值为()A.1 B.3 C.﹣5 D.﹣9试题8:如图1,在三角形纸片ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有()A.①②③ B.①②④ C.①③④ D.②③④试题9:二次根式有意义,则x的取值范围是.试题10:计算的结果为.试题11:将方程x2﹣4x﹣3=0配方成(x﹣h)2=k的形式为.试题12:如图,在△ABC中,G是重心.如果AG=6,那么线段DG的长为.试题13:为进一步发展基础教育,自2014年以来,某区加大了教育经费的投入,2014年该区投入教育经费7000万元,2016年投入教育经费8470万元.设该区这两年投入教育经费的年平均增长率为x,则可列方程为.试题14:如图,菱形ABCD中,点M,N在AC上,ME⊥AD于点E,NF⊥AB于点F.若ME=3,NM=NF=2,则AN 的长为.试题15:如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.试题16:如图,在矩形ABCD中,E是BC边的中点,DE⊥AC,垂足为点F,连接BF,下列四个结论:①△CEF∽△ACD;②=2;③sin∠CAD=;④AB=BF.其中正确的结论有(写出所有正确结论的序号).试题17:计算:﹣2sin60°+(1﹣)0﹣|﹣|.试题18:解方程:x2+6x﹣1=0.试题19:若x=﹣,y=+,求x2y+xy2的值.试题20:我市某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A、B、C依次表示这三个诵读材料),将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小华和小敏参加诵读比赛,比赛时小华先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小敏从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小华诵读《弟子规》的概率是;(2)请用列表法或画树状图法求小华和小敏诵读两个不同材料的概率.试题21:如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?试题22:如图,已知AB∥CD,AD、BC相交于点E,点F在ED上,且∠CBF=∠D.(1)求证:FB2=FE•FA;(2)若BF=3,EF=2,求△ABE与△BEF的面积之比.试题23:关于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.(1)若方程有实数根,求实数m的取值范围;(2)设x1,x2分别是方程的两个根,且满足x12+x22=x1x2+10,求实数m的值.试题24:如图,已知斜坡AB长为80米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为45°,求平台DE的长;(结果保留根号)(2)一座建筑物GH距离A处36米远(即AG为36米),小明在D处测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高度.(结果保留根号)试题25:已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿着CB方向匀速移动,速度为1cm/s;当△PNM停止平移时,点Q也停止移动,如图②.设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.解答下列问题:(1)当t为何值时,PQ∥AB?(2)当t=3时,求△QMC的面积;(3)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.试题1答案:A【考点】最简二次根式.【分析】根据各个选项中的式子,进行化简,则不能化简的选项中式子即为所求.【解答】解:是最简二次根式,故选项A正确,,故选项B错误,,故选项C错误,,故选项D错误,故选A.【点评】本题考查最简二次根式,解题的关键是明确二次根式化简的方法.试题2答案:B【考点】一元二次方程的解.【分析】根据一元二次方程的解把x=1代入一元二次方程得到还有m的一次方程,然后解一次方程即可.【解答】解:把x=1代入x2+mx+3=0得1+m+3=0,解得m=﹣4.故选B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.试题3答案:D【考点】比例的性质.【分析】根据分比性质,可得答案.【解答】解:,则==,故选:D.【点评】本题考查了比例的性质,利用分比性质是解题关键.试题4答案:D【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事试题5答案:A【考点】锐角三角函数的定义.【分析】根据余弦函数的定义即可求解.【解答】解:cosB==.故选A.【点评】本题考查了余弦的定义,在直角三角形中,余弦为邻边比斜边.试题6答案:B【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定定理得到△DOE∽△COA,根据相似三角形的性质定理得到答案.【解答】解:∵DE∥AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,∴=,∵DE∥AC,∴==,∴=,【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.试题7答案:C【考点】根与系数的关系.【分析】根据根与系数的关系以及一元二次方程的解即可得出m+n=﹣3、mn=﹣2、m2+3m=2,将其代入m2+4m+n+2mn中即可求出结论.【解答】解:∵m、n是方程x2+3x﹣2=0的两个实数根,∴m+n=﹣3,mn=﹣2,m2+3m=2,∴m2+4m+n+2mn=m2+3m+m+n+2mn=2﹣3﹣2×2=﹣5.故选C.【点评】本题考查了根与系数的关系以及一元二次方程的解,熟练掌握x1+x2=﹣、x1x2=是解题的关键.试题8答案:B【考点】相似三角形的判定.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似;C、两三角形的对应边不成比例,故两三角形不相似;D、两三角形对应边成比例且夹角相等,故两三角形相似.故选B.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.试题9答案:x≥5 .【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数是非负数列出方程,解方程即可.【解答】解:根据题意得:x﹣5≥0,解得x≥5.故答案为:x≥5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.试题10答案:2.【考点】二次根式的乘除法.【分析】直接利用二次根式的乘法运算法则求出答案.【解答】解:原式===2.故答案为:2.【点评】此题主要考查了二次根式的乘法,正确化简二次根式是解题关键.试题11答案:(x﹣2)2=7 .【考点】解一元二次方程-配方法.【分析】移项后两边都加上一次项系数一半的平方可得.【解答】解:∵x2﹣4x=3,∴x2﹣4x+4=3+4,即(x﹣2)2=7,故答案为:(x﹣2)2=7.【点评】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的基本步骤是解题的关键.试题12答案:3 .【考点】三角形的重心.【分析】根据重心的性质三角形的重心到一顶点的距离等于到对边中点距离的2倍,直接求得结果.【解答】解:∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,∴DG=AG=3.故答案为:3.【点评】此题考查三角形重心问题,掌握三角形的重心的性质:三角形的重心到顶点的距离是其道对边中点的距离的2倍.运用三角形的中位线定理即可证明此结论.试题13答案:7000(1+x)2=8470 .【考点】由实际问题抽象出一元二次方程.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据2014年投入7000万元,预计2016年投入8470万元即可得出方程.【解答】解:设教育经费的年平均增长率为x,则2015的教育经费为:7000×(1+x)2016的教育经费为:7000×(1+x)2.那么可得方程:7000(1+x)2=8470.故答案为:7000(1+x)2=8470.【点评】本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.试题14答案:4 .【考点】菱形的性质.【分析】根据菱形的对角线平分一组对角可得∠1=∠2,然后求出△AFN和△AEM相似,再利用相似三角形对应边成比例列出求解即可.【解答】解:在菱形ABCD中,∠1=∠2,又∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°,∴△AFN∽△AEM,∴=,即=,解得AN=4.故答案为:4.【点评】本题考查了菱形的对角线平分一组对角的性质,相似三角形的判定与性质,关键在于得到△AFN和△AEM相似.试题15答案:(﹣1,).【考点】坐标与图形变化-旋转.【分析】在RT△AOB中,求出AO的长,根据旋转的性质可得AO=CD=4、OB=BD、△OBD是等边三角形,进而可得RT△COE 中∠COE=60°、CO=2,由三角函数可得OE、CE.【解答】解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).【点评】本题主要考查在旋转的情况下点的坐标变化,熟知旋转过程中图形全等即对应边相等、对应角相等、旋转角都相等的应用是解题的切入点也是关键.试题16答案:①②④【考点】相似三角形的判定与性质;矩形的性质;解直角三角形.【分析】①正确.四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB.②正确由AE=AD=BC,又AD∥BC,所以==.③错误.设CF=a,AF=2a,由DF2=AF•CF=2a2,得DF=a,AD==a,可得sinCAD===.④正确.连接AE,由∠ABE+∠AFE=90°,推出A、B、E、F四点共圆,推出∠AFB=∠AEB,由△ABE≌△CDE,推出∠AEB=∠CED,由∠BAF+∠BEF=180°,∠BEF+∠CED=180°,推出∠BAF=∠CED,推出∠BAF=∠BFA,即可证明.【解答】解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ADC=90°,AD=BC,BE⊥AC于点F,∴∠DAC=∠ECF,∠ADC=∠CFE=90°,∴△CEF∽△ADC,故①正确;∵AD∥BC,∴△CEF∽△ADF,∴=,∵CE=BC=AD,∴==2,∴AF=2CE,故②正确,设CF=a,AF=2a,由DF2=AF•CF=2a2,得DF=a,AD== a ∴sinCAD===,故③错误.连接AE,∵∠ABE+∠AFE=90°,∴A、B、E、F四点共圆,∴∠AFB=∠AEB,∵AB=CD,BE=EC,∠CDE,∴△ABE≌△CDE,∴∠AEB=∠CED,∵∠BAF+∠BEF=180°,∠BEF+∠CED=180°,∴∠BAF=∠CED,∴∠BAF=∠BFA,∴BA=BF,故④正确.故答案为①②④.【点评】本题考查了相似三角形的判定和性质,矩形的性质,全等三角形的判定和性质、四点共圆等知识,正确的作出辅助线是解题的关键,学会利用此时解决问题,属于中考常考题型.试题17答案:原式=2﹣2×+1﹣=2﹣+1﹣=1;试题18答案:△=62﹣4×1×(﹣1)=40,x==﹣3±,所以x1=﹣3+,x2=﹣3﹣.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.也考查了实数的运算.试题19答案:【考点】二次根式的化简求值.【分析】利用二次根式的混合运算法则求出x+y、xy,利用提公因式法把原式变形,代入计算即可.【解答】解:∵x=﹣,y=+,∴x+y=(﹣)+(+)=2,xy=(﹣)(+)=1,∴x2y+xy2=xy(x+y)=2.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则、提公因式法的应用是解题的关键.试题20答案:【考点】列表法与树状图法.【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有9种等可能性结果,再找出小华和小敏诵读两个不同材料的结果数,然后根据概率公式求解.【解答】解:(1)小华诵读《弟子规》的概率=;故答案为.(2)列表得:A B C小华小敏A (A,A)(A,B)(A,C)B (B,A)(B,B)(B,C)C (C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小华和小敏诵读两个不同材料的结果有6种,所以P(小华和小敏诵读两个不同材料)=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.试题21答案:【考点】一元二次方程的应用.【分析】设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.【解答】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,由已知得:(30﹣3x)•(24﹣2x)=480,整理得:x2﹣22x+40=0,解得:x1=2,x2=20,当x=20时,30﹣3x=﹣30,24﹣2x=﹣16,不符合题意,故人行通道的宽度为2米.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.试题22答案:【考点】相似三角形的判定与性质.【分析】(1)要证明FB2=FE•FA,只要证明△FBE∽△FAB即可,根据题目中的条件可以找到两个三角形相似的条件,本题得以解决;(2)根据(1)中的结论可以得到AE的长,然后根据△ABE与△BEF如果底边分别为AE和EF,则底边上的高相等,面积之比就是AE和EF的比值.【解答】(1)证明:∵AB∥CD,∴∠A=∠D.又∵∠CBF=∠D,∴∠A=∠CBF,∵∠BFE=∠AFB,∴△FBE∽△FAB,∴∴FB2=FE•FA;(2)∵FB2=FE•FA,BF=3,EF=2∴32=2×(2+AE)∴∴,∴△ABE与△BEF的面积之比为5:4.【点评】本题考查相似三角形的判定与性质,解题的关键是明确题意,找出所求问题需要的条件.试题23答案:【考点】根与系数的关系;根的判别式.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)利用根与系数的关系可以得到x1+x2=2m﹣1,x1•x2=m2+1,再把x12+x22=x1x2+10利用完全平方公式变形为(x1+x2)2﹣3x1•x2=10,然后代入计算即可求解.【解答】解:(1)由题意有△=(2m﹣1)2﹣4(m2+1)≥0,解得m≤﹣,所以实数m的取值范围是m≤﹣;(2)由根与系数的关系得:x1+x2=2m﹣1,x1•x2=m2+1,∵x12+x22=x1x2+10,∴(x1+x2)2﹣2x1•x2=x1x2+10,∴(2m﹣1)2﹣3(m2+1)=10,∴2m2+9m﹣5=0,解得m1=6,m2=﹣2,∵m≤﹣,∴m=6舍去,∴m=﹣2.【点评】本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.试题24答案:【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】(1)根据题意得出∠BEF=45°,解直角△BDF,求出BF,DF,进而得出EF的长,即可得出答案;(2)利用在Rt△DPA中,DP=AD,以及PA=AD•cos30°进而得出DM的长,利用HM=DM•tan30°得出即可.【解答】解:(1)∵修建的斜坡BE的坡角为45°,∴∠BEF=45°,∵∠DAC=∠BDF=30°,AD=BD=40,∴BF=EF=BD=20,DF=,∴DE=DF﹣EF=20﹣20,∴平台DE的长为(20﹣20)米;(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=AD=×40=20,PA=AD•cos30°=20,在矩形DPGM中,MG=DP=20,DM=PG=PA+AG=20+36.在Rt△DMH中,HM=DM•tan30°=(20+36)×=20+12,则GH=HM+MG=20+12+20=40+12.答:建筑物GH高为(40+12)米.【点评】此题主要考查了解直角三角形的应用﹣坡度坡角问题以及仰角俯角问题,根据图形构建直角三角形,进而利用锐角三角函数得出是解题关键.试题25答案:【考点】四边形综合题;一元二次方程的解;三角形的面积;相似三角形的判定与性质.【分析】(1)根据勾股定理求出AC,根据PQ∥AB,得出关于t的比例式,求解即可;(2)过点P作PD⊥BC于D,根据△CPD∽△CBA,列出关于t的比例式,表示出PD的长,再根据S△QMC=QC•PD,进行计算即可;(3)过点M作ME⊥BC的延长线于点E,根据△CPD∽△CBA,得出,,再根据△PDQ∽△QEM,得到,即PD•EM=QE•DQ,进而得到方程=,求得或t=0(舍去),即可得出当时,PQ⊥MQ.【解答】解:(1)如图所示,AB=3cm,BC=5cm,AC⊥AB,∴Rt△ABC中,AC=4,若PQ∥AB,则有,∵CQ=PA=t,CP=4﹣t,QB=5﹣t,∴,即20﹣9t+t2=t2,解得,当时,PQ∥AB;(2)如图所示,过点P作PD⊥BC于点D,∴∠PDC=∠A=90°,∵∠PCD=∠BCA∴△CPD∽△CBA,∴,当t=3时,CP=4﹣3=1,∵BA=3,BC=5,∴,∴,又∵CQ=3,PM∥BC,∴;(3)存在时刻,使PQ⊥MQ,理由如下:如图所示,过点M作ME⊥BC的延长线于点E,∵△CPD∽△CBA,∴,∵BA=3,CP=4﹣t,BC=5,CA=4,∴,∴,.∵PQ⊥MQ,∴∠PDQ=∠QEM=90°,∠PQD=∠QME,∴△PDQ∽△QEM,∴,即PD•EM=QE•DQ.∵,,,∴=,即2t2﹣3t=0,∴或t=0(舍去),∴当时,PQ⊥MQ.【点评】此题属于四边形综合题,主要考查了相似三角形的判定与性质、勾股定理、平行线的性质、三角形的面积计算的综合应用,解决问题的关键是根据题意画出图形,作出辅助线,构造相似三角形.。

四川省宜宾市九年级上学期数学期末考试试卷

四川省宜宾市九年级上学期数学期末考试试卷

四川省宜宾市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八下·盐城开学考) 满足下列条件的△ABC,不是直角三角形的是()A . BC=1,AC=2,AB=B . BC:AC:AB=12:13:5C . ∠A+∠B=∠CD . ∠A:∠B:∠C=3:4:52. (2分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A . 逐渐变小B . 逐渐变大C . 时大时小D . 保持不变3. (2分) (2019九上·南关期末) 如图,在平面直角坐标系中,垂直于x轴的直线分别交抛物线y=x2(x≥0)和抛物线y= x2(x≥0)于点A和点B ,过点A作AC∥x轴交抛物线y= x2于点C ,过点B作BD∥x轴交抛物线y=x2于点D ,则的值为()A .B .C .D .4. (2分)下面两个三角形一定相似的是()A . 两个等腰三角形B . 两个直角三角形C . 两个钝角三角形D . 两个等边三角形5. (2分)如图,D、E分别是△ABC的边AB、AC上的点,DE∥BC,若DE:BC=1:3,则S△AED:S△BCA的值为()A .B .C .D .6. (2分)如果α是锐角,且sinα=,那么cos(90°-α)的值为()A .B .C .D .7. (2分)如图,四条平行直线l1 , l2 , l3 , l4被直线l5 , l6所截,AB:BC:CD=1:2:3,若FG=3,则线段EF和线段GH的长度之和是()A . 5B . 6C . 7D . 88. (2分) (2017九上·杭州月考) 已知抛物线y=ax2+bx+c的顶点为(-3,-6),有以下结论:①当a>0时,b2>4ac;②当a>0时,ax2+bx+c≥-6;③若点(-2,m) ,(-5,n) 在抛物线上,则m<n;④若关于 x 的一元二次方程ax2+bx+c=-4的一根为-5,则另一根为-1.其中正确的是()A . ①②B . ①③C . ②③④D . ①②④9. (2分)如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF .设BE=x , DF=y ,则y是x的函数,函数关系式是()A . y=x+1B . y=x-1C . y=x2-x+1D . y=x2-x-110. (2分)如果六边形ABCDEF∽六边形A′B′C′D′E′F′,∠B=62°,那么∠B′等于()A . 28°B . 118°C . 62°D . 54°二、填空题 (共4题;共5分)11. (1分)如图,林林在A时测得某树的影长为2 m,B时又测得该树的影长为8 m,若两次日照的光线互相垂直,则该树的高度为________12. (1分)已知,则________ .13. (1分) (2016九上·苏州期末) 如图,已知A、B两点的坐标分别为(-4,0)、(0,2),⊙C的圆心坐标为(0,-2),半径为2.若D是⊙C上的一个动点,射线AD与轴交于点E,则△ABE面积的最大值是________.14. (2分)如图,已知直线y=﹣ x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣ x2+2x+5上的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣ x+3于点Q,则当PQ=BQ时,a的值是________.三、解答题 (共9题;共80分)15. (5分)(2017九下·宜宾期中) 计算:(1)(2)16. (5分)如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.17. (5分)如图,在正方形网格纸中有一条美丽可爱的小金鱼,其中每个小正方形的边长为1.(1)在同一网格纸中,在y轴的右侧将原小金鱼图案以原点O为位似中心放大,使它们的位似比为1:2,画出放大后小金鱼的图案;(2)求放大后金鱼的面积.18. (10分) (2017九上·上城期中) 已知抛物线,其中是常数,该抛物线的对称轴为直线.(1)求该抛物线的函数解析式.(2)把该抛物线沿轴向上平移多少个单位后,得到的抛物线与轴只有一个公共点.19. (10分) (2019九下·桐乡月考) 如图,抛物线y=ax2+bx经过点A(7,0),B(-1,4),经过点B的直线与抛物线的另一个交点C在第四象限.已知△ABC的面积为14.(1)求抛物线的函数关系式;(2)求点C的坐标#(3)设P是线段BC延长线上的点,作直线PD∥x轴,交抛物线于点D、E(点D在点E的左侧).若DE=PE,求点P的横坐标.20. (10分)(2018·绍兴模拟) 阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.21. (10分) (2019九上·黔南期末) 已知△ABC是边长为4的等边三角形.边AB点D是射线0M上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE (1)如图1,求证:△CDE是等边三角形.(2)如图2,设OD=t①当6<t<10时,△BDE的周长是否存在最小值?若存在,求Rt△BDE周长的最小值:若不存在,请说明理由。

宜五中九(上)期末数学试题

宜五中九(上)期末数学试题

宜宾市五中2015~2016学年九年级上期教学质量检测数学试卷本试题卷共4页.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效.满分120分,考试时间120分钟. 考试结束,将本试题卷和答题卡一并交回.注意事项:1.答题前,考生在答题卷上务必将自己的姓名、学校、班级、考号填写清楚,并贴好条形码.请认真核准条形码上的考号、姓名和科目.2.解答选择题时,每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.解答填空题、解答题时,请在答题卷上各题的答题区域内作答.一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. (注意..:在试题卷上作答无效.........) 1.若32-x 在实数范围内有意义,则x 的取值范围是( ▲ ) A .32≥x B .32≤x C . 23≥x D . 23≤x 2.如图,为了测量池塘边A 、B 之间的距离,在A 、B 的同侧取一点C ,连结CA 、CB 并延长分别至点D 、E ,使得A 、B 分别是CD 、CE 的中点,若DE =18m ,则AB 的长度为( ▲ ) A .9m B . 12m C . 8m D .10m 3.下列方程中,以-3,5为两根的一元二次方程是( ▲ )A .01522=--x xB .01522=-+x xC .01522=+-x xD . 01522=++x x 4.抛掷一枚硬币三次,掷得三个正面的概率是( ▲ ) A .31 B . 61 C . 81 D . 91 5.如图,,900AB CD ACB ⊥=∠AC =3,BC =6,则AD 的长是 ( ▲ ) A .1 B .552 C .553 D .554 6.如图,为了测量大树的高度AB ,在离大树30m 的E 处,用1m 高的测角仪DE 测得树的顶端A 的仰角为300,则大树的高度为( ▲ )A .31mB .(310+1)mC .16 mD .(315+1)m 7.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每 盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆 多植x 株,则可以列出的方程是( ▲ )第16题图A .15)5.04)(3(=-+x xB .15)5.04)(3(=++x xC .15)5.03)(4(=-+x xD .(15)5.04)(1(=-+x x8.如图,P 为正△ABC 内任意一点,过点P 分别作三边的垂线PD ,PE ,PF ,则BCPFPE PD ++的值是( ▲ )A .33 B . 23 C .1 D .332二、填空题(本大题共8个小题,每小题3分,共24分).注意事项:用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.9.化简=45 ▲ .10.方程x x 632=的两个根分别是 ▲ .11. “水中捞月”是 事件.(填“确定”或“随机”)12. 在一个直角三角形中,斜边上的中线长为5,一直角边长为8,则另一条直角边的长为 ▲ . 13.如图,在坡度3:1=i 的斜坡上有两棵树,其坡面距离(即AC 的长度)为50m ,则这两棵树的水平距离AB 为 ▲ m .(结果保留根号) 14.若α为锐角,且23cos sin =+αα,则ααcos sin ⋅= ▲ . 15.如图,在等边ΔABC 中,点D 、E 分别在边BC 、AC 上,∠ADE =600,若BD =1,CE =32,则这个正三角形的边长是 ▲ .16. 如图, ,直线L 1与L 2的距离为2,直线L 2与L 3的距离为1,△ABC 为等腰三角形,AC =BC ,∠ACB =0120,则AC = ▲ .第2题图 C D B直线L 1∥L 2∥L 3 ACBL 1 L 2 L3CE第15题图第13题图第5题图 第8题图第6题图 ABC三、解答题(本大题8个小题,共72分)解答应写出文字说明,证明过程或演算步骤. 注意事项:用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 17. 计算(每题5分,共10分) ⑴.36123)32015(0--+- ⑵.2)2(-+ 0245cos 4)12(--18. 解方程(每题5分,共10分)⑴.0432=--x x ⑵.22)2(25)3(4x x -=+ 19.(本题6分)如图,在平面直角坐标系xoy 中, 点A(-3,-1),B (-1,-3)⑴直接写出AB 的长,AB = .⑵以O 为位似中心,在第一象限内将△OAB 放大到两倍.20.(本题8分)2015年暑期,小刚参观昆明园艺博览馆,由于仅有一天的时间,他上午从A —中国馆、B —日本馆、 C —美国馆中任意选择一处参观;下午从D —韩国馆、E —英国馆、F —德国馆中任意选择一处参观.(1)请用画树状图或列表的方法,分析并写出小刚所有可能的参观方式(用字母表示即可); (2)求小刚上午和下午恰好都参观亚洲国家博览馆的概率.21.(本题8分)如图,在Rt △ABC 中,∠ACB =090,过点A 作∠CAE =∠B ⑴求证:△CAE ∽△CBA ⑵若AC =3,BC =4,求AE 的长.22.(本题8分)已知关于x 的方程0)()23(22=+++-k k x k x 求:⑴k 为何值时,方程有两个不相等的实数根? ⑵若21,x x 为方程两个不相等的实数根,是否存在k ,使21121=+x x ,若存在,求出k 的值;若不存在,请说明理由。

2016-2017学年人教版初三数学第一学期期末试卷含答案

2016-2017学年人教版初三数学第一学期期末试卷含答案

2016-2017学年九年级(上)期末数学试卷一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:273.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x26.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于______.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=______.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为______.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=______.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为______;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为______.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为______.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c >0;③a>b;④4ac﹣b2<0.其中正确结论有______.24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为______.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为______.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).28.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2016-2017学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限【考点】反比例函数的性质.【分析】根据反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:∵k=﹣1,∴图象在第二、四象限,故选:C.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数图象的性质.2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)【考点】反比例函数图象上点的坐标特征.【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选B.【点评】此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x2【考点】根的判别式.【分析】分别求出各个选项中一元二次方程的根的判别式,进而作出判断.【解答】解:A、x2﹣8=0,△=32>0,方程有两个不相等的实数根,此选项错误;B、2x2﹣4x+3=0,△=42﹣4×2×3=﹣8<0,方程没有实数根,此选项错误;C、9x2﹣6x+1=0,△=(﹣6)2﹣4×9×1=0,方程有两个相等的实数根,此选项正确;D、5x+2=3x2=,△(﹣5)2﹣4×3×(﹣2)=49>0,方程有两个不相等的实数根,此选项错误;故选C.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)【考点】位似变换;坐标与图形性质.【分析】由两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD,根据位似的性质,即可求得答案.【解答】解:∵A(4,6),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴点A的对应点C的坐标为:(2,3).故选A.【点评】此题考查了位似变换的性质.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选B.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CBP,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 【考点】由实际问题抽象出一元二次方程.【分析】此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.【解答】解:由题意可列方程是:200×(1﹣x)2=168.故选A.【点评】此题考查一元二次方程的应用最基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格.10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】根据平移规律:“左加右减,上加下减”,直接代入函数解析式求得平移后的函数解析式.【解答】解:抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,得y=(x+2)2﹣3,故选:B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于.【考点】比例的性质.【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=,得a=.当a=时,===,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质,分式的性质.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=2.【考点】锐角三角函数的定义.【分析】由正切的定义可知tanB=,代入计算即可.【解答】解:∵∠C=90°,AC=4,BC=2,∴tanB===2,故答案为:2.【点评】本题主要考查三角函数的定义,掌握正切的定义是解题的关键.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为1.【考点】反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△POD的面积为矩形面积的一半,即|k|.【解答】解:由于点P是反比例函数y=﹣图象上的一点,所以△POD的面积S=|k|=|﹣2|=1.故答案为:1.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可直接求解.【解答】解:∵DE∥AC,∴,即,解得:EC=.故答案为:.【点评】本题考查了平行线分线段成比例定理,理解定理内容是解题的关键.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.【考点】实数的运算;解一元二次方程-因式分解法.【分析】(1)方程利用因式分解法求出解即可;(2)原式利用零指数幂、负整数指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:(1)分解得:(x﹣3)(x+1)=0,可得x﹣3=0或x+1=0,解得:x1=3,x2=﹣1;(2)原式=1+2﹣3﹣=3﹣4.【点评】此题考查了实数的运算,以及解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.【考点】相似三角形的判定.【分析】根据相似三角形的判定,解题时要认真审题,选择适宜的判定方法.【解答】证明:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,又∵∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由转盘A获胜的有5种情况,转盘B获胜的有4种情况,即可求得其概率,继而求得答案.【解答】解:(1)画树状图得:则共有9种等可能的结果;(2)选择转盘A.理由:∵转盘A获胜的有5种情况,转盘B获胜的有4种情况,∴P(转盘A)=,P(转盘B)=,∴选择转盘A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),可以求得k的值,从而可以求得点A的坐标,从而可以求出一次函数y=x+b中b 的值,本题得以解决;(2)将第一问中求得的两个解析式联立方程组可以求得点B的坐标,进而可以求得△AOB 的面积;(3)根据函数图象可以解答本题.【解答】解;(1)∵反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),∴,解得,k=2,∴点A(1,2),∴2=1+b,得b=1,即这两个函数的表达式分别是:,y=x+1;(2)解得,或,即这两个函数图象的另一个交点B的坐标是(﹣2,﹣1);将y=0代入y=x+1,得x=﹣1,∴OC=|﹣1|=1,∴S△AOB=S△AOC+S△BOC=,即△AOB的面积是;(3)根据图象可得反比例函数值大于一次函数值的x的取值范围是x<﹣2或0<x<1.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为cm或20cm;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.【考点】相似三角形的判定与性质.【分析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ 对应成比例以及AP和BC对应成比例两种情况来求x的值;(3)当S△BCQ:S△ABC=1:3时,=,于是得到,通过相似三角形的性质得到,即可得到结论.【解答】解:(1)由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x∴=∴x=;(2)假设两三角形可以相似,情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,即有=解得x=,经检验,x=是原分式方程的解.此时AP=cm,情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,即有=解得x=5,经检验,x=5是原分式方程的解.此时AP=20cm.综上所述,AP=cm或AP=20cm;故答案为:cm或20cm;(3)当S△BCQ:S△ABC=1:3时,=,∴,由(1)知,PQ∥BC,∴△APQ∽△ABC,∴,∴S△APQ:S△ABQ=2.【点评】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为2014.【考点】根与系数的关系.【分析】根据一元二次方程的解的定义得到a2﹣2015a=﹣1,a2=2015a﹣1,再根据根与系数的关系得到a+b=2015,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2﹣2015x+1=0的根,∴a2﹣2015a+1=0,∴a2﹣2015a=﹣1,a2=2015a﹣1,∵a,b是方程x2﹣2015x+1=0的两根,∴a+b=2015,∴a2﹣2014a+b=a2﹣2015a+a+b=﹣1+2015=2014;故答案为:2014.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与得出他们“心有灵犀”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,得出他们“心有灵犀”的有10种情况,∴得出他们“心有灵犀”的概率为:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c >0;③a>b;④4ac﹣b2<0.其中正确结论有①③④.【考点】二次函数图象与系数的关系.【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣=﹣,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣=﹣,∴b=3a,又∵a<0,b<0,∴a>b,故③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,故④正确;综上,可得正确结论有3个:①③④.故答案为①③④.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义;平移的性质.【分析】利用平行四边形的面积公式得出M的值,进而利用反比例函数图象上点的性质得出k的值.【解答】解:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为:2.【点评】此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?【考点】二次函数的应用;一次函数的应用.【分析】(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.【解答】解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元).故答案为:300,360;(2)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,当x=5.5时,当日可获得利润最大,最大利润为112.5元.【点评】此题主要考查了一次函数的应用以及二次函数的应用,得出y与x的函数关系式是解题关键.27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【考点】一次函数综合题.【分析】(Ⅰ)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(Ⅱ)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S 的代数式即可;(Ⅲ)把S=代入解答即可.【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年四川省宜宾市九年级(上)期末数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.(3分)下列二次根式中,是最简二次根式的为()A.B. C. D.2.(3分)已知方程x2+mx+3=0的一个根是1,则m的值为()A.4 B.﹣4 C.3 D.﹣33.(3分)已知,则的值为()A.B.C.D.4.(3分)“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件5.(3分)在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值为()A.B.C.D.6.(3分)如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE :S△COA=1:25,则的值为()A.B.C.D.7.(3分)已知m、n是方程x2+3x﹣2=0的两个实数根,则m2+4m+n+2mn的值为()A.1 B.3 C.﹣5 D.﹣98.(3分)如图1,在三角形纸片ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有()A.①②③B.①②④C.①③④D.②③④二、填空题:本大题共8个小题,每小题3分,共24分.请把答案直接填在答题卡对应题中横线上.(注意:在试题卷上作答无效)9.(3分)二次根式有意义,则x的取值范围是.10.(3分)计算的结果为.11.(3分)将方程x2﹣4x﹣3=0配方成(x﹣h)2=k的形式为.12.(3分)如图,在△ABC中,G是重心.如果AG=6,那么线段DG的长为.13.(3分)为进一步发展基础教育,自2014年以来,某区加大了教育经费的投入,2014年该区投入教育经费7000万元,2016年投入教育经费8470万元.设该区这两年投入教育经费的年平均增长率为x,则可列方程为.14.(3分)如图,菱形ABCD中,点M,N在AC上,ME⊥AD于点E,NF⊥AB 于点F.若ME=3,NM=NF=2,则AN 的长为.15.(3分)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x 轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.16.(3分)如图,在矩形ABCD中,E是BC边的中点,DE⊥AC,垂足为点F,连接BF,下列四个结论:①△CEF∽△ACD;②=2;③sin∠CAD=;④AB=BF.其中正确的结论有(写出所有正确结论的序号).三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)计算:﹣2sin60°+(1﹣)0﹣|﹣|.(2)解方程:x2+6x﹣1=0.18.(8分)若x=﹣,y=+,求x2y+xy2的值.19.(8分)我市某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A、B、C依次表示这三个诵读材料),将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小华和小敏参加诵读比赛,比赛时小华先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小敏从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小华诵读《弟子规》的概率是;(2)请用列表法或画树状图法求小华和小敏诵读两个不同材料的概率.20.(8分)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?21.(8分)如图,已知AB∥CD,AD、BC相交于点E,点F在ED上,且∠CBF=∠D.(1)求证:FB2=FE•FA;(2)若BF=3,EF=2,求△ABE与△BEF的面积之比.22.(8分)关于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.(1)若方程有实数根,求实数m的取值范围;(2)设x1,x2分别是方程的两个根,且满足x12+x22=x1x2+10,求实数m的值.23.(10分)如图,已知斜坡AB长为80米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA 的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为45°,求平台DE的长;(结果保留根号)(2)一座建筑物GH距离A处36米远(即AG为36米),小明在D处测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高度.(结果保留根号)24.(12分)已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿着CB方向匀速移动,速度为1cm/s;当△PNM停止平移时,点Q也停止移动,如图②.设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.解答下列问题:(1)当t为何值时,PQ∥AB?(2)当t=3时,求△QMC的面积;(3)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.2016-2017学年四川省宜宾市九年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.(3分)(2016秋•宜宾期末)下列二次根式中,是最简二次根式的为()A.B. C. D.【分析】根据各个选项中的式子,进行化简,则不能化简的选项中式子即为所求.【解答】解:是最简二次根式,故选项A正确,,故选项B错误,,故选项C错误,,故选项D错误,故选A.【点评】本题考查最简二次根式,解题的关键是明确二次根式化简的方法.2.(3分)(2016秋•宜宾期末)已知方程x2+mx+3=0的一个根是1,则m的值为()A.4 B.﹣4 C.3 D.﹣3【分析】根据一元二次方程的解把x=1代入一元二次方程得到还有m的一次方程,然后解一次方程即可.【解答】解:把x=1代入x2+mx+3=0得1+m+3=0,解得m=﹣4.故选B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.(3分)(2016秋•宜宾期末)已知,则的值为()A.B.C.D.【分析】根据分比性质,可得答案.【解答】解:,则==,故选:D.【点评】本题考查了比例的性质,利用分比性质是解题关键.4.(3分)(2016•沈阳)“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)(2016秋•宜宾期末)在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB 的值为()A.B.C.D.【分析】根据余弦函数的定义即可求解.【解答】解:cosB==.故选A.【点评】本题考查了余弦的定义,在直角三角形中,余弦为邻边比斜边.6.(3分)(2016秋•宜宾期末)如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE :S△COA=1:25,则的值为()A.B.C.D.【分析】根据相似三角形的判定定理得到△DOE∽△COA,根据相似三角形的性质定理得到答案.【解答】解:∵DE∥AC,∴△DOE∽△COA,又S△DOE :S△COA=1:25,∴=,∵DE∥AC,∴==,∴=,【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.7.(3分)(2016秋•宜宾期末)已知m、n是方程x2+3x﹣2=0的两个实数根,则m2+4m+n+2mn的值为()A.1 B.3 C.﹣5 D.﹣9【分析】根据根与系数的关系以及一元二次方程的解即可得出m+n=﹣3、mn=﹣2、m2+3m=2,将其代入m2+4m+n+2mn中即可求出结论.【解答】解:∵m、n是方程x2+3x﹣2=0的两个实数根,∴m+n=﹣3,mn=﹣2,m2+3m=2,∴m2+4m+n+2mn=m2+3m+m+n+2mn=2﹣3﹣2×2=﹣5.故选C.【点评】本题考查了根与系数的关系以及一元二次方程的解,熟练掌握x1+x2=﹣、x1x2=是解题的关键.8.(3分)(2016秋•宜宾期末)如图1,在三角形纸片ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有()A.①②③B.①②④C.①③④D.②③④【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似;C、两三角形的对应边不成比例,故两三角形不相似;D、两三角形对应边成比例且夹角相等,故两三角形相似.故选B.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.二、填空题:本大题共8个小题,每小题3分,共24分.请把答案直接填在答题卡对应题中横线上.(注意:在试题卷上作答无效)9.(3分)(2015•沛县二模)二次根式有意义,则x的取值范围是x≥5.【分析】根据二次根式的意义,被开方数是非负数列出方程,解方程即可.【解答】解:根据题意得:x﹣5≥0,解得x≥5.故答案为:x≥5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.10.(3分)(2016秋•宜宾期末)计算的结果为2.【分析】直接利用二次根式的乘法运算法则求出答案.【解答】解:原式===2.故答案为:2.【点评】此题主要考查了二次根式的乘法,正确化简二次根式是解题关键.11.(3分)(2016秋•宜宾期末)将方程x2﹣4x﹣3=0配方成(x﹣h)2=k的形式为(x﹣2)2=7.【分析】移项后两边都加上一次项系数一半的平方可得.【解答】解:∵x2﹣4x=3,∴x2﹣4x+4=3+4,即(x﹣2)2=7,故答案为:(x﹣2)2=7.【点评】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的基本步骤是解题的关键.12.(3分)(2016秋•宜宾期末)如图,在△ABC中,G是重心.如果AG=6,那么线段DG的长为3.【分析】根据重心的性质三角形的重心到一顶点的距离等于到对边中点距离的2倍,直接求得结果.【解答】解:∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,∴DG=AG=3.故答案为:3.【点评】此题考查三角形重心问题,掌握三角形的重心的性质:三角形的重心到顶点的距离是其道对边中点的距离的2倍.运用三角形的中位线定理即可证明此结论.13.(3分)(2016秋•宜宾期末)为进一步发展基础教育,自2014年以来,某区加大了教育经费的投入,2014年该区投入教育经费7000万元,2016年投入教育经费8470万元.设该区这两年投入教育经费的年平均增长率为x,则可列方程为7000(1+x)2=8470.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据2014年投入7000万元,预计2016年投入8470万元即可得出方程.【解答】解:设教育经费的年平均增长率为x,则2015的教育经费为:7000×(1+x)2016的教育经费为:7000×(1+x)2.那么可得方程:7000(1+x)2=8470.故答案为:7000(1+x)2=8470.【点评】本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.14.(3分)(2016秋•宜宾期末)如图,菱形ABCD中,点M,N在AC上,ME ⊥AD于点E,NF⊥AB于点F.若ME=3,NM=NF=2,则AN 的长为4.【分析】根据菱形的对角线平分一组对角可得∠1=∠2,然后求出△AFN和△AEM 相似,再利用相似三角形对应边成比例列出求解即可.【解答】解:在菱形ABCD中,∠1=∠2,又∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°,∴△AFN∽△AEM,∴=,即=,解得AN=4.故答案为:4.【点评】本题考查了菱形的对角线平分一组对角的性质,相似三角形的判定与性质,关键在于得到△AFN和△AEM相似.15.(3分)(2016•普宁市模拟)如图,在平面直角坐标系xOy中,直线y=x 经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为(﹣1,).【分析】在RT△AOB中,求出AO的长,根据旋转的性质可得AO=CD=4、OB=BD、△OBD是等边三角形,进而可得RT△COE中∠COE=60°、CO=2,由三角函数可得OE、CE.【解答】解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).【点评】本题主要考查在旋转的情况下点的坐标变化,熟知旋转过程中图形全等即对应边相等、对应角相等、旋转角都相等的应用是解题的切入点也是关键.16.(3分)(2016秋•宜宾期末)如图,在矩形ABCD中,E是BC边的中点,DE ⊥AC,垂足为点F,连接BF,下列四个结论:①△CEF∽△ACD;②=2;③sin ∠CAD=;④AB=BF.其中正确的结论有①②④(写出所有正确结论的序号).【分析】①正确.四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB.②正确由AE=AD=BC,又AD∥BC,所以==.③错误.设CF=a,AF=2a,由DF2=AF•CF=2a2,得DF=a,AD==a,可得sinCAD===.④正确.连接AE,由∠ABE+∠AFE=90°,推出A、B、E、F四点共圆,推出∠AFB=∠AEB,由△ABE≌△CDE,推出∠AEB=∠CED,由∠BAF+∠BEF=180°,∠BEF+∠CED=180°,推出∠BAF=∠CED,推出∠BAF=∠BFA,即可证明.【解答】解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ADC=90°,AD=BC,BE⊥AC于点F,∴∠DAC=∠ECF,∠ADC=∠CFE=90°,∴△CEF∽△ADC,故①正确;∵AD∥BC,∴△CEF∽△ADF,∴=,∵CE=BC=AD,∴==2,∴AF=2CE,故②正确,设CF=a,AF=2a,由DF2=AF•CF=2a2,得DF=a,AD==a ∴sinCAD===,故③错误.连接AE,∵∠ABE+∠AFE=90°,∴A、B、E、F四点共圆,∴∠AFB=∠AEB,∵AB=CD,BE=EC,∠CDE,∴△ABE≌△CDE,∴∠AEB=∠CED,∵∠BAF+∠BEF=180°,∠BEF+∠CED=180°,∴∠BAF=∠CED,∴∠BAF=∠BFA,∴BA=BF,故④正确.故答案为①②④.【点评】本题考查了相似三角形的判定和性质,矩形的性质,全等三角形的判定和性质、四点共圆等知识,正确的作出辅助线是解题的关键,学会利用此时解决问题,属于中考常考题型.三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(10分)(2016秋•宜宾期末)(1)计算:﹣2sin60°+(1﹣)0﹣|﹣|.(2)解方程:x2+6x﹣1=0.【分析】(1)根据零指数幂、负整数指数幂和特殊角的三角函数值进行计算;(2)利用公式法解方程.【解答】解:(1)原式=2﹣2×+1﹣=2﹣+1﹣=1;(2)△=62﹣4×1×(﹣1)=40,x==﹣3±,所以x1=﹣3+,x2=﹣3﹣.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.也考查了实数的运算.18.(8分)(2016秋•宜宾期末)若x=﹣,y=+,求x2y+xy2的值.【分析】利用二次根式的混合运算法则求出x+y、xy,利用提公因式法把原式变形,代入计算即可.【解答】解:∵x=﹣,y=+,∴x+y=(﹣)+(+)=2,xy=(﹣)(+)=1,∴x2y+xy2=xy(x+y)=2.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则、提公因式法的应用是解题的关键.19.(8分)(2016秋•宜宾期末)我市某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A、B、C依次表示这三个诵读材料),将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小华和小敏参加诵读比赛,比赛时小华先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小敏从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小华诵读《弟子规》的概率是;(2)请用列表法或画树状图法求小华和小敏诵读两个不同材料的概率.【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有9种等可能性结果,再找出小华和小敏诵读两个不同材料的结果数,然后根据概率公式求解.【解答】解:(1)小华诵读《弟子规》的概率=;故答案为.(2)列表得:A B C小华小敏A(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小华和小敏诵读两个不同材料的结果有6种,所以P(小华和小敏诵读两个不同材料)=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(8分)(2016秋•宜宾期末)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?【分析】设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.【解答】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,由已知得:(30﹣3x)•(24﹣2x)=480,整理得:x2﹣22x+40=0,解得:x1=2,x2=20,当x=20时,30﹣3x=﹣30,24﹣2x=﹣16,不符合题意,故人行通道的宽度为2米.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.21.(8分)(2016秋•宜宾期末)如图,已知AB∥CD,AD、BC相交于点E,点F 在ED上,且∠CBF=∠D.(1)求证:FB2=FE•FA;(2)若BF=3,EF=2,求△ABE与△BEF的面积之比.【分析】(1)要证明FB2=FE•FA,只要证明△FBE∽△FAB即可,根据题目中的条件可以找到两个三角形相似的条件,本题得以解决;(2)根据(1)中的结论可以得到AE的长,然后根据△ABE与△BEF如果底边分别为AE和EF,则底边上的高相等,面积之比就是AE和EF的比值.【解答】(1)证明:∵AB∥CD,∴∠A=∠D.又∵∠CBF=∠D,∴∠A=∠CBF,∵∠BFE=∠AFB,∴△FBE∽△FAB,∴∴FB2=FE•FA;(2)∵FB2=FE•FA,BF=3,EF=2∴32=2×(2+AE)∴∴,∴△ABE与△BEF的面积之比为5:4.【点评】本题考查相似三角形的判定与性质,解题的关键是明确题意,找出所求问题需要的条件.22.(8分)(2016秋•宜宾期末)关于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.(1)若方程有实数根,求实数m的取值范围;(2)设x1,x2分别是方程的两个根,且满足x12+x22=x1x2+10,求实数m的值.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)利用根与系数的关系可以得到x1+x2=2m﹣1,x1•x2=m2+1,再把x12+x22=x1x2+10利用完全平方公式变形为(x1+x2)2﹣3x1•x2=10,然后代入计算即可求解.【解答】解:(1)由题意有△=(2m﹣1)2﹣4(m2+1)≥0,解得m≤﹣,所以实数m的取值范围是m≤﹣;(2)由根与系数的关系得:x1+x2=2m﹣1,x1•x2=m2+1,∵x12+x22=x1x2+10,∴(x1+x2)2﹣2x1•x2=x1x2+10,∴(2m﹣1)2﹣3(m2+1)=10,∴2m2+9m﹣5=0,解得m1=6,m2=﹣2,∵m≤﹣,∴m=6舍去,∴m=﹣2.【点评】本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.23.(10分)(2016秋•宜宾期末)如图,已知斜坡AB长为80米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为45°,求平台DE的长;(结果保留根号)(2)一座建筑物GH距离A处36米远(即AG为36米),小明在D处测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高度.(结果保留根号)【分析】(1)根据题意得出∠BEF=45°,解直角△BDF,求出BF,DF,进而得出EF的长,即可得出答案;(2)利用在Rt△DPA中,DP=AD,以及PA=AD•cos30°进而得出DM的长,利用HM=DM•tan30°得出即可.【解答】解:(1)∵修建的斜坡BE的坡角为45°,∴∠BEF=45°,∵∠DAC=∠BDF=30°,AD=BD=40,∴BF=EF=BD=20,DF=,∴DE=DF﹣EF=20﹣20,∴平台DE的长为(20﹣20)米;(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=AD=×40=20,PA=AD•cos30°=20,在矩形DPGM中,MG=DP=20,DM=PG=PA+AG=20+36.在Rt△DMH中,HM=DM•tan30°=(20+36)×=20+12,则GH=HM+MG=20+12+20=40+12.答:建筑物GH高为(40+12)米.【点评】此题主要考查了解直角三角形的应用﹣坡度坡角问题以及仰角俯角问题,根据图形构建直角三角形,进而利用锐角三角函数得出是解题关键.24.(12分)(2016秋•宜宾期末)已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿着CB方向匀速移动,速度为1cm/s;当△PNM停止平移时,点Q也停止移动,如图②.设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.解答下列问题:(1)当t为何值时,PQ∥AB?(2)当t=3时,求△QMC的面积;(3)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.【分析】(1)根据勾股定理求出AC,根据PQ∥AB,得出关于t的比例式,求解即可;(2)过点P作PD⊥BC于D,根据△CPD∽△CBA,列出关于t的比例式,表示出PD的长,再根据S=QC•PD,进行计算即可;△QMC(3)过点M作ME⊥BC的延长线于点E,根据△CPD∽△CBA,得出,,再根据△PDQ∽△QEM,得到,即PD•EM=QE•DQ,进而得到方程=,求得或t=0(舍去),即可得出当时,PQ⊥MQ.【解答】解:(1)如图所示,AB=3cm,BC=5cm,AC⊥AB,∴Rt△ABC中,AC=4,若PQ∥AB,则有,∵CQ=PA=t,CP=4﹣t,QB=5﹣t,∴,即20﹣9t+t2=t2,解得,当时,PQ∥AB;(2)如图所示,过点P作PD⊥BC于点D,∴∠PDC=∠A=90°,∵∠PCD=∠BCA∴△CPD∽△CBA,∴,当t=3时,CP=4﹣3=1,∵BA=3,BC=5,∴,∴,又∵CQ=3,PM∥BC,∴;(3)存在时刻,使PQ⊥MQ,理由如下:如图所示,过点M作ME⊥BC的延长线于点E,∵△CPD∽△CBA,∴,∵BA=3,CP=4﹣t,BC=5,CA=4,∴,∴,.∵PQ⊥MQ,∴∠PDQ=∠QEM=90°,∠PQD=∠QME,∴△PDQ∽△QEM,∴,即PD•EM=QE•DQ.∵,,,∴=,即2t2﹣3t=0,∴或t=0(舍去),∴当时,PQ⊥MQ.【点评】此题属于四边形综合题,主要考查了相似三角形的判定与性质、勾股定理、平行线的性质、三角形的面积计算的综合应用,解决问题的关键是根据题意画出图形,作出辅助线,构造相似三角形.。

相关文档
最新文档