二分法和牛顿迭代法求解方程的比较
牛顿迭代法、二分法,定点法的区别与联系
⽜顿迭代法、⼆分法,定点法的区别与联系⽜顿迭代法、⼆分法,定点法的区别与联系⽜顿迭代法⽜顿迭代法,它是⽜顿在17世纪提出的⼀种在实数域和复数域上近似求解⽅程的⽅法。
多数⽅程不存在求根公式,因此求精确根⾮常困难,甚⾄不可能,从⽽寻找⽅程的近似根就显得特别重要Newton法是求解⽅程f(x)=0的最著名的和最有效的数值⽅法之⼀,其基本思想可以是将⽅程转化为线性⽅程来求解,设f(x)连续可微,则将函数f(x)在x点处k进⾏taylor展开,即如果,取taylor展开式的线性部分近似代替f(x),得到f(x)=0的近,则得到似⽅程,将此⽅程的根记作xk+1这就是Newton迭代公式迭代函数为不动点迭代将⽅程f(x)=0改写成等价⽅程则⽅程的根⼜称为函数的不动点.,⽤迭代格式为了求的不动点,取⼀个初始近似值x,k=1,2产⽣序列{x},这种迭代法我们称之为不动点迭代,或简单迭代⼜称为迭k代函数.假设⼀个迭代法产⽣的序列{x},k=0,1,2,,收敛,,X*是⽅k程f(x)=0的⼀个解.区间对分法区间对分法是求解⽅程f(x)=0的⼀种直观⽽⼜简单的迭代法,它是建⽴在介值定理的理论基础之上的,第⼀个取值点取在含优区间的1/2处,然后逐渐逼近最优值的单因素试验设计⽅法。
联系都是⽤来近似求⽅程根的⽅法,利⽤数列收敛于⽅程的根。
在应⽤⽅⾯,区间对分法可⽤来求根的初始近似值,以供其它对初始值要求严格的迭代法使⽤,⽜顿法和不定点迭代法都有局限性,收敛有⽅向性,如果初始值选的不恰当,则⽅程不收敛,也就不能得到⽅程的根。
另外,⽅程f(x)=0和x=是等价的,于是 Newton迭代公式也属于不动点迭代。
区别对分法每次50%的区间舍弃,试验选值跨跃的幅度过⼤,会使对分法漏掉了最佳值。
从此误差估计式看出,近似解的误差下降速度较慢.但此⽅法⽐较简单,且安全可靠.在实际应⽤中,.需要注意的是此⽅法只能求单实根,⽽不能求复根或偶数重根.在⽜顿迭代和不动点迭代中,对不动点⽅程x=,它导出的迭代过程有可能发散,也可能收敛得⾮常缓慢,注意到x=x和x=都是不动点⽅程,它们的加权平均h(x)=也是不动点⽅程,⽽h(x) 和有完全相同的不动点。
数值分析求解非线性方程根的二分法简单迭代法和牛顿迭代法
实验报告一:实验题目一、 实验目的掌握求解非线性方程根的二分法、简单迭代法和牛顿迭代法,并通过数值实验比较两种方法的收敛速度。
二、 实验内容1、编写二分法、并使用这两个程序计算02)(=-+=x e x x f 在[0, 1]区间的解,要求误差小于 410- ,比较两种方法收敛速度。
2、在利率问题中,若贷款额为20万元,月还款额为2160元,还期为10年,则年利率为多少?请使用牛顿迭代法求解。
3、由中子迁移理论,燃料棒的临界长度为下面方程的根,用牛顿迭代法求这个方程的最小正根。
4、用牛顿法求方程的根,精确至8位有效数字。
比较牛顿迭代法算单根和重根的收敛速度,并用改进的牛顿迭代法计算重根。
第1题:02)(=-+=x e x x f 区间[0,1] 函数画图可得函数零点约为0.5。
画图函数:function Test1()% f(x) 示意图, f(x) = x + exp(x) - 2; f(x) = 0r = 0:0.01:1;y = r + exp(r) - 2plot(r, y);grid on 二分法程序:计算调用函数:[c,num]=bisect(0,1,1e-4)function [c,num]=bisect(a,b,delta)%Input –a,b 是取值区间范围% -delta 是允许误差%Output -c 牛顿迭代法最后计算所得零点值% -num 是迭代次数ya = a + exp(a) - 2;yb = b + exp(b) - 2;if ya * yb>0return;endfor k=1:100c=(a+b)/2;yc= c + exp(c) - 2;if abs(yc)<=deltaa=c;b=c;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;endif abs(b-a)<deltanum=k; %num为迭代次数break;endendc=(a+b)/2;err=abs(b-a);yc = c + exp(c) - 2;牛顿迭代法程序:计算调用函数:[c,num]=newton(@func1,0.5,1e-4) 调用函数:function [y] = func1(x)y = x + exp(x) - 2;end迭代算法:function[c,num]=newton(func,p0,delta)%Input -func是运算公式% -p0是零点值% -delta是允许误差%Output -c牛顿迭代法最后计算所得零点值% -num是迭代次数num=-1;for k=1:1000y0=func(p0);dy0=diff(func([p0 p0+1e-8]))/1e-8;p1=p0-y0/dy0;err=abs(p1-p0);p0=p1;if(err<delta)num=k;%num为迭代次数break;endendc=p0;第2题:由题意得到算式:计算调用函数:[c,num]=newton(@func2,0.02,1e-8)程序:先用画图法估计出大概零点位置在0.02附近。
数值分析——二分法和牛顿法
二分法和牛顿法的比较二分法的基本思想是对有根区间[a,b]逐次分半,首先计算区间[a,b]的中间点x0,然后分析可能出现的三种情况:如果f(x0)f(a)<0,则f(x)在区间[a,x0]内有零点;如果f(x0)f(b)<0,则f(x)在区间[x0,b]内有零点;如果f(x0)=0,则x0是f(x)在区间[a,b]内所求零点。
但是二分法的缺点是收敛速度慢且不能求复根。
牛顿迭代法的基本思想是将方程f(x)=0中函数f(x)线性化,以线性方程的解逼近非线性方程的解其迭代函数为)(')()(x f x f x x -=ϕ。
牛顿迭代法的缺点是可能发生被零除错误,且可能出现死循环。
用二分法和牛顿法分别计算多项式024323=-+-x x x 的解。
该多项式的解为1、1+i 和1-i ,使用二分法计算时,区间为(-1,2),使用牛顿法计算时取初始值为0。
误差都为0.0001。
编程如下二分法(erfen.m):syms x ;fun=x^3-3*x^2+4*x-2; a=-1; b=2;d=0.0001; f=inline(fun); e=b-a; k=0;while e>d c=(a+b)/2; if f(a)*f(c)<0 b=c; elseif f(a)*f(c)>0a=c; elsea=c;b=c; end e=e/2; k=k+1; end k x=(a+b)/2牛顿法(newton.m):function [k,x,wuca] = newton() k=1; x0=0; tol=0.0001; yx1=fun(x0); yx2=fun1(x0); x1=x0-yx1/yx2; while abs(x1-x0)>tol x0=x1; yx1=fun(x0); yx2=fun1(x0); k=k+1; x1=x1-yx1/yx2; end k x=x1wuca=abs(x1-x0)/2 endfunction y1=fun(x) y1=x^3-3*x^2+4*x-2; endfunction y2=fun1(x)y2=3*x^2-6*x+4; end 分析结果得知,在相同的误差精度下,二分法需要计算15次,而牛顿法只需计算5次,得知牛顿法比二分法优越。
非线性方程求解方法的研究与比较分析
非线性方程求解方法的研究与比较分析非线性方程是数学中一类重要的方程,它们的求解对很多实际问题具有重要的意义。
然而,非线性方程由于其非线性特性,使得其求解更加困难和复杂。
本文旨在研究和比较非线性方程的求解方法,通过对不同求解方法的分析和比较,来评估它们的优缺点和适用范围。
首先,我们介绍一些常用的非线性方程求解方法。
目前常用的求解方法主要包括迭代法、牛顿法、二分法等。
迭代法是一种比较简单的求解非线性方程的方法。
其基本思想是通过不断迭代逼近方程的解。
具体的迭代公式可以选择不同的形式,如固定点迭代法、牛顿迭代法等。
迭代法的优点是简单易懂,但是其收敛速度较慢,而且在某些情况下可能无法收敛到解。
牛顿法是一种较为常用的非线性方程求解方法。
它利用函数的一阶导数和二阶导数信息,通过不断的迭代逼近方程的解。
牛顿法的优点是收敛速度快,但是在某些情况下可能会出现迭代发散的情况。
二分法是一种比较简单但是有效的非线性方程求解方法。
其基本思想是通过不断地缩小解的搜索范围,直到找到满足方程的解。
二分法的优点是简单易懂,而且收敛性和精度较好,但是其收敛速度相对较慢。
在对以上几种方法进行比较分析之前,我们需要明确一些评价指标。
首先是收敛性,即方法是否能够收敛到解。
其次是收敛速度,即方法迭代到解所需的时间。
还有精度,即方法得到的解与真实解之间的误差。
最后是稳定性,即方法对初始值的选择是否敏感。
通过对以上几种方法的比较分析,我们可以得出以下结论:首先,迭代法是一种简单但是不稳定的求解方法。
其收敛性和精度较差,而且对初始值的选择较为敏感。
因此,在实际应用中,迭代法通常只适用于简单的非线性方程求解。
其次,牛顿法是一种较为常用的求解方法。
它具有收敛速度快、精度高的优点,但是在某些情况下可能会出现迭代发散的情况。
此外,牛顿法对函数的一阶导数和二阶导数的计算要求较高,所以在某些情况下可能不适用。
最后,二分法是一种简单而有效的求解方法。
它具有收敛性好、精度高的优点,但是其收敛速度相对较慢。
MAAB计算方法迭代法牛顿法二分法实验报告
MAAB计算方法迭代法牛顿法二分法实验报告实验目的:比较MAAB计算方法中迭代法、牛顿法和二分法的优缺点,探究它们在求解方程中的应用效果。
实验原理:1、迭代法:将方程转化为x=f(x)的形式,通过不断迭代逼近方程的根。
2、牛顿法:利用函数在特定点的切线逼近根的位置,通过不断迭代找到方程的根。
3、二分法:利用函数值在区间两端的异号性质,通过不断二分缩小区间,最终逼近方程的根。
实验步骤:1、选择一元方程进行求解,并根据方程选择不同的计算方法。
2、在迭代法中,根据给定的初始值和迭代公式,进行迭代计算,直到满足预设的迭代精度要求。
3、在牛顿法中,选择初始点,并根据切线方程进行迭代计算,直到满足预设的迭代精度要求。
4、在二分法中,选择区间,并根据函数值的异号性质进行二分,直到满足预设的迭代精度要求。
5、根据计算结果,比较三种方法的求解效果,包括迭代次数、计算时间、求解精度等指标。
实验结果与分析:通过对多个方程进行测试,得到了以下实验结果:1、迭代法的优点是简单易懂,适用范围广,但当迭代公式不收敛时会导致计算结果不准确。
2、牛顿法的优点是收敛速度较快,但需要计算函数的一阶导数和二阶导数,对于复杂函数较难求解。
3、二分法的优点是收敛性较好,不需要导数信息,但收敛速度较慢。
4、对于线性方程和非线性方程的求解,牛顿法和迭代法通常比二分法更快速收敛。
5、对于多重根的方程,二分法没有明显优势,而牛顿法和迭代法能更好地逼近根的位置。
6、在不同的方程和初值选择下,三种方法的迭代次数和求解精度略有差异。
7、在时间效率方面,二分法在收敛速度较慢的同时,迭代次数较少,牛顿法在收敛速度较快的同时,迭代次数较多,而迭代法对于不同方程有较好的平衡。
结论:1、对于不同类型的方程求解,可以根据具体情况选择合适的计算方法。
2、迭代法、牛顿法和二分法各有优缺点,没有绝对的最优方法,需要权衡各种因素选择最适合的方法。
3、在实际应用中,可以根据方程的特点和精度要求综合考虑不同方法的优劣势,以获得较好的求解效果。
非线性方程求解算法比较
非线性方程求解算法比较在数学和计算机科学领域中,非线性方程是一种无法简单地通过代数方法求解的方程。
因此,研究和开发高效的非线性方程求解算法是至关重要的。
本文将比较几种常见的非线性方程求解算法,包括牛顿迭代法、割线法和二分法。
通过对比它们的优缺点和适用范围,可以帮助人们选择最适合的算法来解决特定的非线性方程问题。
一、牛顿迭代法牛顿迭代法是一种常用的非线性方程求解算法。
它基于泰勒级数展开,使用函数的导数信息来逼近方程的根。
具体步骤如下:1. 选择初始近似值$x_0$。
2. 计算函数$f(x_0)$和导数$f'(x_0)$。
3. 根据牛顿迭代公式$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$,计算下一个近似解$x_{n+1}$。
4. 重复步骤2和步骤3,直到达到预设的收敛条件。
牛顿迭代法的收敛速度很快,通常二次收敛。
然而,它对于初始值的选择非常敏感,可能会陷入局部极值点,导致找到错误的根。
因此,在使用牛顿迭代法时,需要根据具体问题选择合适的初始近似值。
二、割线法割线法是另一种常见的非线性方程求解算法。
它是对牛顿迭代法的改进,使用两个近似解来逼近方程的根。
具体步骤如下:1. 选择初始近似值$x_0$和$x_1$。
2. 计算函数$f(x_0)$和$f(x_1)$。
3. 根据割线公式$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$,计算下一个近似解$x_{n+1}$。
4. 重复步骤2和步骤3,直到达到预设的收敛条件。
与牛顿迭代法相比,割线法不需要计算导数,因此更加灵活。
然而,割线法的收敛速度比牛顿迭代法慢,通常是超线性收敛。
与牛顿迭代法一样,割线法也对初始近似值的选择敏感。
三、二分法二分法是一种简单直观的非线性方程求解算法。
它利用函数在根附近的特性,通过不断缩小区间范围来逼近方程的根。
具体步骤如下:1. 选择初始区间$[a,b]$,其中$f(a)$和$f(b)$异号。
二分法和牛顿迭代法求解方程的比较
二分法和牛顿迭代法求解方程的比较200822401018 徐小良一、问题叙述求解1232cos 0x x -+=的解;通过编写matlab 程序分别用分析二分法和牛顿迭代法求解方程,通过两种方法的比较,分析二者求解方程的快慢程度。
二、问题分析由matlab 画图命令,容易得到此方程解的范围为(2,4);两种迭代方法,在使用相同的误差(0.00001)的情况下,得出matlab 迭代次数,通过次数的比较得出二者求解速度快慢比较。
三、实验程序及注释(1)、二分法程序:clear; %清除所有内存数据; f=inline('12-3*x+2*cos(x)');format long %数据显示格式设为长型; a=2;b=4; %求解区间; er=b-a;ya=f(a);k=0;er0=0.00001; %误差分析; while er>er0 x0=.5*(a+b); y0=f(x0); if ya*y0<0b=x0; %二分法求解程序; elsea=x0; ya=y0; enddisp([a,b]);er=b-a;k=k+1 %显示各个区间值和求解次数; enddisp([a,b]); %显示最后一个区间值; (2)、牛顿迭代法程序:clear; %清除所有内存数据; f=inline('12-3*x+2*cos(x)');format long %数据显示格式设为长型; b=3;a=4;k=0; %求解区间; y0=f(b);y=f(a);while abs(b-a)>0.00001 t=a-y*(a-b)/(y-y0);b=a;y0=y; %牛顿迭代法求解程序; a=t;y=f(a); k=k+1;disp([b,a]);k %显示各个区间值和求解次数; enddisp([b,a]); %显示最后一个区间值;四、实验数据结果及分析表2:牛顿迭代法程序结果五、实验结论通过表1可知,在二分法下,程序迭代了17次后和第18次的结果一致,即程序迭代了17次达到要求的试验误差;通过表2可知,在牛顿迭代法下,程序迭代了4次后和第5次的结果一致,即程序迭代了4次达到要求的试验误差;二者比较明显可以看出牛顿迭代法的求解效率要远远优于二分法。
非线性方程的求解方法
非线性方程的求解方法一、引言在数学领域中,非线性方程是指未知量与其对自身的各次幂、指数以及任意函数相乘或相加得到的方程。
求解非线性方程是数学中一个重要而又具有挑战性的问题。
本文将介绍几种常见的非线性方程求解方法。
二、牛顿迭代法牛顿迭代法是一种经典的非线性方程求解方法,它利用方程的切线逼近根的位置。
设f(x)为非线性方程,在初始点x0附近取切线方程y=f'(x0)(x-x0)+f(x0),令切线方程的值为0,则可得到切线方程的解为x1=x0-f(x0)/f'(x0)。
重复这个过程直到满足精确度要求或迭代次数达到指定次数。
三、二分法二分法是一种简单而又直观的非线性方程求解方法。
它利用了连续函数的中间值定理,即若f(a)和f(b)异号,则方程f(x)=0在[a, b]之间必有根。
根据中值定理,我们可以取中点c=(a+b)/2,然后比较f(a)和f(c)的符号,若同号,则根必然在右半区间,否则在左半区间。
重复这个过程直到满足精确度要求或迭代次数达到指定次数。
四、割线法割线法是一种基于切线逼近的非线性方程求解方法,它与牛顿迭代法相似。
由于牛顿迭代法需要求解导数,而割线法不需要。
设f(x)为非线性方程,在两个初始点x0和x1附近取一条直线,该直线通过点(x0,f(x0))和(x1, f(x1)),它的方程为y=f(x0)+(f(x1)-f(x0))/(x1-x0)*(x-x0),令直线方程的值为0,则可得到直线方程的解为x2 = x1 - (f(x1)*(x1-x0))/(f(x1)-f(x0))重复这个过程直到满足精确度要求或迭代次数达到指定次数。
五、试位法试位法是一种迭代逼近的非线性方程求解方法。
它利用了函数值的变化率来逼近根的位置。
设f(x)为非线性方程,选取两个初始点x0和x1,然后计算f(x0)和f(x1)的乘积,如果结果为正,则根位于另一侧,否则根位于另一侧。
然后再选取一个新的点作为下一个迭代点,直到满足精确度要求或迭代次数达到指定次数。
二分法、牛顿法、割线法、简易牛顿法
二分法、牛顿法、割线法、简易牛顿法二分法是一种简单而常用的求解方程近似解的方法。
其基本思想是将函数的定义域分为两个部分,并通过比较函数在这两个部分的取值来确定方程的解在哪一部分。
然后,再将该部分继续二分,直到找到近似解为止。
牛顿法是一种迭代求解方程根的方法。
它基于函数的局部线性逼近,通过不断更新当前的近似解,直到满足精度要求为止。
牛顿法的核心思想是利用函数的导数来不断修正当前的近似解,使得每次迭代都能更接近方程的根。
割线法是一种类似于牛顿法的迭代求解方程根的方法。
它也是基于函数的局部线性逼近,但不需要计算函数的导数。
割线法通过连接两个近似解的割线来估计方程的根,并利用割线与坐标轴的交点作为下一个近似解,不断迭代直到满足精度要求。
简易牛顿法是对牛顿法的一个简化版本。
在简易牛顿法中,不需要每次迭代都计算函数的导数,而是利用两个近似解的函数值来估计导数。
这样可以减少计算量,并在一定程度上提高计算效率。
二分法、牛顿法、割线法和简易牛顿法都是常用的求解方程近似解的方法,它们各自有着不同的特点和适用范围。
在实际应用中,我们可以根据具体的问题选择合适的方法来求解方程的近似解。
二分法适用于函数在定义域上单调且连续的情况,它的收敛速度较慢但稳定可靠。
牛顿法适用于函数在定义域上具有充分光滑的情况,它的收敛速度较快但对初值敏感。
割线法适用于函数在定义域上具有充分光滑的情况,它的收敛速度介于二分法和牛顿法之间。
简易牛顿法是对牛顿法的简化,适用于函数在定义域上具有充分光滑的情况,它的收敛速度介于割线法和牛顿法之间。
无论是二分法、牛顿法、割线法还是简易牛顿法,它们的求解过程都可以表示为迭代的形式。
通过不断更新当前的近似解,直到满足精度要求为止。
在每一次迭代中,我们都可以利用函数的信息来修正当前的近似解,使其更接近方程的根。
这种迭代的过程可以通过循环结构来实现,其中迭代的终止条件可以是近似解的精度达到要求或者迭代次数达到一定的限制。
高中数学如何求解二分法和牛顿迭代法方程
高中数学如何求解二分法和牛顿迭代法方程在高中数学中,求解方程是一个重要的内容,而二分法和牛顿迭代法是两种常用的求解方程的方法。
本文将介绍这两种方法的原理、应用以及解题技巧,并通过具体的例题来说明其考点和解题思路。
一、二分法的原理和应用二分法是一种通过不断缩小搜索范围来逼近方程根的方法。
其基本原理是将待求解的区间不断二分,判断根是否在左半区间还是右半区间,并将搜索范围缩小至根的附近。
具体步骤如下:1. 确定初始区间[a, b],使得f(a)与f(b)异号;2. 计算区间中点c=(a+b)/2;3. 判断f(c)与0的关系,若f(c)=0,则c为方程的根;若f(c)与f(a)异号,则根在区间[a, c]内,否则根在区间[c, b]内;4. 重复步骤2和步骤3,直到满足精度要求或找到根。
二分法的应用非常广泛,例如在求解函数的零点、解方程、求解最优化问题等方面都有应用。
下面通过一个具体的例题来说明二分法的应用和解题技巧。
例题1:求方程x^3-2x-5=0的根。
解题思路:1. 首先我们需要确定初始区间[a, b],使得f(a)与f(b)异号。
根据题目中的方程,可以取a=1,b=2,计算f(1)=-6和f(2)=1,满足条件;2. 计算区间中点c=(a+b)/2=1.5;3. 计算f(c)=f(1.5)=-1.375,与0的关系异号,说明根在区间[1, 1.5]内;4. 重复步骤2和步骤3,不断缩小搜索范围,直到满足精度要求或找到根。
通过不断迭代,我们可以得到方程的根为x=1.709。
这个例题展示了二分法的基本思路和解题技巧,通过不断缩小搜索范围,我们可以逼近方程的根。
二、牛顿迭代法的原理和应用牛顿迭代法是一种通过不断迭代逼近方程根的方法,其基本原理是利用函数的切线来逼近根的位置。
具体步骤如下:1. 确定初始点x0;2. 计算函数f(x)在x0处的导数f'(x0);3. 计算切线的方程y=f(x0)+f'(x0)(x-x0);4. 求切线与x轴的交点x1,即x1=x0-f(x0)/f'(x0);5. 重复步骤2到步骤4,直到满足精度要求或找到根。
立方根的计算方法
立方根的计算方法立方根是数学中常见的一个运算,用来计算一个数的立方根。
在日常生活和工程领域中,计算立方根的需求也十分常见。
本文将介绍两种常用的计算立方根的方法:二分法和牛顿迭代法。
一、二分法计算立方根二分法是一种简单而有效的数值计算方法,可以用来求解函数的根。
对于立方根的计算,也可以借助二分法的思想。
1. 确定区间首先,我们需要确定一个区间,该区间内的数的立方根与待求数最接近。
例如,要计算数x的立方根,我们可以选择一个区间[a, b],使得a^3小于等于x,b^3大于等于x。
2. 二分查找在确定了区间之后,我们可以使用二分查找的方法逐步缩小范围。
首先,计算区间的中点m,然后判断m的立方是否等于x,如果相等,则m就是x的立方根;否则,判断m的立方是否大于x,如果大于x,说明待求数的立方根在区间[a, m]内,否则在区间[m, b]内。
不断缩小区间,直到满足精度要求即可。
3. 代码示例下面是使用二分法计算立方根的示例代码(使用Python语言表示):```pythondef binary_search_cube_root(x, epsilon):a = 0b = max(1, x)while abs(b**3 - x) >= epsilon:m = (a + b) / 2if m**3 < x:a = melse:b = mreturn m```二、牛顿迭代法计算立方根牛顿迭代法是一种常用的数值计算方法,可以用来求解方程的根。
对于立方根的计算,也可以借助牛顿迭代法进行逼近。
1. 初值选择首先,我们需要选择一个初始值作为计算的起点。
该初始值越接近最终结果,计算的迭代次数就越少。
2. 迭代计算在初始值的基础上,使用牛顿迭代公式进行迭代计算。
对于求解立方根的情况,迭代公式可以表示为:x = (2 * x + n / x^2) / 3,其中n为待求数。
3. 收敛条件迭代过程中,我们需要设定一个收敛条件。
整数开方快速算法
整数开方快速算法整数开方是计算一个正整数的平方根的操作,即找到一个整数x,使得x的平方小于或等于给定的整数n,而x+1的平方大于n。
在计算机科学中,常用的整数开方算法有三种:二分法、牛顿迭代法和位操作法。
下面将详细介绍这三种算法。
1.二分法:二分法是一种基于二分查找的算法,在整数范围内逐渐缩小查找区间,直到找到最接近目标整数的平方根。
算法步骤如下:-初始化左边界l为0,右边界r为给定整数n。
-循环直到找到最接近目标整数的平方根:- 计算中间值mid = (l + r) / 2- 如果mid的平方大于n,则将r更新为mid-1,否则将l更新为mid+1-返回l作为整数开方的结果。
二分法的时间复杂度为O(logn),因为每次区间减半。
2.牛顿迭代法:牛顿迭代法是一种迭代求解方程的方法,通过反复迭代的方式逼近函数的根。
对于求解整数开方的问题,可以将其转化为求解方程x^2-n=0,其中n为给定整数。
算法步骤如下:-初始化初始值x0为n。
-循环直到收敛:-计算新的近似值x1=(x0+n/x0)/2-如果x1与x0的差值小于一个很小的阈值,则停止迭代。
-否则,将x1作为新的近似值,继续迭代。
-返回x1作为整数开方的结果。
牛顿迭代法的时间复杂度取决于迭代次数,通常收敛得非常快,因此可以认为是常数时间复杂度。
3.位操作法:位操作法是一种利用位运算的技巧来计算整数开方的方法。
算法步骤如下:-初始化变量x为给定整数n。
-如果x大于1:- 计算tmp = (x + n / x) / 2- 如果tmp等于x,则返回x作为整数开方的结果。
- 否则,将tmp赋值给x,继续循环。
位操作法的时间复杂度同样取决于迭代次数,但通常比牛顿迭代法多一些迭代次数。
综上所述,整数开方的三种常见算法为二分法、牛顿迭代法和位操作法。
不同的算法在时间复杂度和实际运行效率上有所差异,选择合适的算法取决于具体的应用场景和需求。
牛顿迭代法与二分法
牛顿迭代法与二分法数学中,有用的方法和技术有很多,其中牛顿迭代法和二分法是两种经典的数值计算方法。
这两种方法都可以用于求解各种类型的方程和问题,在不同场合下往往有不同的适用范围和性质。
在本文中,我们将对这两种方法进行简单介绍和比较,以加深读者对它们的理解和应用。
一. 牛顿迭代法牛顿迭代法,又称牛顿-拉夫逊方法(Newton-Raphson method),是一种用于寻找函数零点的一种迭代算法。
它的基本思想是从一个初始近似值开始,使用函数的导数来逐步改进这个近似值,直到满足所需的精度要求为止。
具体步骤如下:1. 选定一个初始值 $x_0$ ,计算函数 $f(x)$ 在这个点的值和导数 $f'(x)$;2. 计算迭代公式 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$,即用当前点的函数值和导数值确定一个切线,并将其与 $x$ 轴交点作为下一个近似值;3. 如果迭代满足要求,则停止,否则返回第二步。
牛顿迭代法的优点是迭代速度较快,可以高效地求解接近函数原始根的方程。
例如,如果要求 $\sqrt{a}$ 的值,可令 $f(x) = x^2 - a$,则零点为 $\sqrt{a}$。
经过一定次数的迭代,可以得到很高精度的近似值。
然而,牛顿迭代法也有一些局限性,如收敛性和迭代次数等问题,需要根据具体问题和条件进行评估和调整。
二. 二分法二分法(bisect method)是一种寻找函数零点的一种简单算法,其基本思想是不断缩小区间,直到找到目标区间的根。
具体步骤如下:1. 选定一个有根区间 $[a, b]$,并计算函数 $f(a)$ 和 $f(b)$ 在两个端点的值;2. 计算区间中点$c = \frac{a+b}{2}$,并计算函数$f(c)$ 的值;3. 判断函数值的符号,并用二分法将 $[a, b]$ 划分为两个子区间,其中一个包含了零点,另一个不包含,即更新区间 $[a, b]$ 为$[a, c]$ 或 $[c, b]$;4. 重复步骤 2-3 直到找到满足误差要求的近似根。
二分法与牛顿迭代法解方程
问题:谁做的好事? 问题:谁做的好事?
有四位同学中的一位做了好事,不留名,表扬 有四位同学中的一位做了好事,不留名, 信来了之后,校长问这四位是谁做的好事。 信来了之后,校长问这四位是谁做的好事。 不是我。 A说:不是我。 B 说:是C 。 C 说:是D 。 D说:他胡说。 已知三个人说的是真话,一个人说的是假话。 已知三个人说的是真话,一个人说的是假话。现 在要根据这些信息,找出做了好事的人。 在要根据这些信息,找出做了好事的人。
NS图 有了上述了解之后,我们来看解“ NS图 有了上述了解之后,我们来看解“谁做的好
事”的程序框图
分别为‘ 循环4趟 让thisman分别为‘A’,’B’,’C’,’D’,循环 趟 分别为 循环
sum = ( ( ( ( thi来自man != thisman == thisman == thisman != s um == 3 ‘ A ’ )+ ‘ C ’ )+ ‘ D ’ )+ ‘ D ’ ); 假
x
算法: 算法: (1)输入一个近似值于 输入一个近似值于x0 (1)输入一个近似值于x0. (2)求出下一个迭代点 求出下一个迭代点x. (2)求出下一个迭代点x. (3)如果|x-x0|>10如果|x 那么将x的值赋给x0 并且返回第(2) x0, (2)步 (3)如果|x-x0|>10-5,那么将x的值赋给x0,并且返回第(2)步, 继续求下一个迭代点x 否则,转到(4) (4)。 继续求下一个迭代点x。否则,转到(4)。 (4)x即为所求的根 即为所求的根。 (4)x即为所求的根。
真
输出该被试者; 输出该被试者;有解标志
真 有解吗 假
输出无解信息; 输出无解信息;
算法: #include <stdio.h> void main()
牛顿迭代法 二分法
迭代公式:当0)('≠x f 时,令......3,2,1,0,)()('1=-=+k x f x f x x k k k 当所求根为单根时,牛顿迭代法时二阶收敛的。
牛顿迭代法时一种局部收敛方法,通常要求初始近似值0x 在*x 领域是方法才收敛。
为保证方法收敛,可引入参数,将公式改写为:)()('1x f x f x x k k k k λ-=+ 其中10≤<k λ,称为下山因子,该方法称为牛顿下山法。
选择k λ,使|)(||)(|1k k x f x f <+,通常首选1=k λ,若下降条件不成立,则取21=k λ,直到下降条件成立,该方法只有线性收敛。
实验题目(1) x^2-exp(x)=0;(2) logs(x)+x-2=0;牛顿迭代法实验程序第一题function y=func2_2(x)y=x^2-exp(x);endfunction y=func2_2_1(x)y=2*x-exp(x);end命令窗口输入eps=5e-6;delta=1e-6;N=100;k=0;x0=1.0;while(1)x1=x0-func2_2(x0)/func2_2_1(x0);if (k>N|abs(x1)<eps)disp('Newton method failed');breakendif abs(x1)<1d=x1-x0;elsed=(x1-x0)/x1;endx0=x1;if (abs(d)<eps|abs(func2_2(x1))<delta)breakendendfprintf('%f',x0);第一题牛顿迭代结果 -0.703467第三题牛顿迭代主程序function y=func2_2(x)y=log(x)+x-2;function y=func2_2_1(x)y=1/x+1;第三题实验结果 1.557146二分法在求方程近似根的方法中,最直接、最简单的方法是二分法。
二分法和牛顿迭代法求解非线性方程的比较及应用
求解方程的近似根 , 一般需要解决两个问题 : 1 . 根 的隔离 。即找 出有根 区域 , 使得在一些小 区间中 方程只有一根( 或一对共轭复根 ) 以便获取各根的较粗糙 的近似值 。
区间值 :x 0
0 . 0 0 O O 0 0 0 0 0 0 0 0 O 0 O . 0 O O 0 0 O 0 0 0 O 0 0 0 0
【 专题研讨 】
二分法和牛顿迭代法 求解非线性 方程 的比较及应用
张 晓勇 , 王 仲君
( 武汉 理工 大学 , 湖北 武汉 4 文基于计算机MA T L A B 和c 语 言编程去分析 两者的计算复杂性 , 并深入探讨 了两种方法的优缺点。 最后 , 通 过将 两种方法结合起来解决非线性方程 的求解问题 , 取得 了显著地效果 。同时, 这也再 次证明 了方法组合解决问题 的高
一
、
2 0
2 1
5 2 . 4 0 6 3 1 1 0 0 0 0 0 0 0
5 2 . 4 0 6 7 8 8 O O 0 0 O 0 0
5 2 . 4 0 7 2 6 5 O 0 0 O 0 0 0
效性 。
关键词 : 二分法; 牛顿迭代法 ; 非线性 方程 中图 分 类 号 : 02 4 2 文 献 标 志码 : B
文 章编 号 : 1 6 7 4 — 9 3 2 4 ( 2 0 1 3 ) 2 5 — 0 1 3 9 一 O 1
表1 二 分法 程序 结 果
迭 代 数
区 间值 :x 1
5 0 0 . O 0 O O 0 0 0 0 0 O 0 0 0 2 5 0. 0 0 0 0 0 0 O 0 0 0 0 0 0
2 . 近似根 的精确化 。即用求根的数值方法 , 使求得 的 近似根逐步精确化 , 直到获得一定精度的近似根。 二分法和牛顿迭代法的基本思想 1 . 二分法 。一般地 , 对于 函数f ( x ) , 如果存在实数C , 当 X = C 时, 若f ( c ) = 0 , 那么把x = c H q 做函数f ( x ) 的零点。解方程 即要求 x ) 的所有零点。假定f ( x ) 在 区间( x , y ) 上 连续 , 先 找到a 、 b 属于区间( x , Y ) , 使f ( a ) , f ( b ) 异号 , 说 明在 区间( a , b ) 内一定有零点 , 然后求[ f ( a + b ) / 2 1 , 现在假设f ( a ) < 0 , f ( b ) > 0 , a < b , ①如果[ f ( a + b ) / 2 ] = O , 该点就是零点。 如果[ f ( a + b ) / 2 ] < O , 则在 区间( ( a + b ) 1 2 , b ) 内有零点 , 注: ( a + b ) / 2 > = a , 从① 开始继续使用 中点函数值判断。如果 [ f ( a + b ) / 2 】 > 0 , 则在区 间( a , ( a + b ) 1 2 ) 内有零点 , 注: ( a + b ) / 2 < = b , 从①开始继续使 用 中点 函数值判断。 这样就可以不断接近零点。 通过每次 把f ( x ) 的零点所在小区间收缩一半 的方法 , 使 区间的两个 端点逐步迫近 函数的零点 , 以求得零点 的近似值 , 这种方 法叫做二分法 。 从以上可以看出 , 每次运算后 , 区间长度减 少一半 , 是线形收敛 。另外 , 二分法不能计算复根和重根 。 2 . 牛顿迭代法。设r 是 x ) = 0 的根 , 选取x 0 作为r 初始近 似值 , 过点 ( x O , f ( x O ) ) 做 曲线y = f ( x ) 的切线 L , L 的方程 为 y = f ( x O ) + f ( x O ) ( x — x 0 ) , 求 出L 与x 轴交点 的横坐标x l = x O — f ( x O ) / f ( x O ) , 称x 1 为r 的一次近似值。 过点( x l , f ( x 1 ) ) 作 曲线 y = f( x )的切线 ,并求该切线与x 轴交点 的横坐标x 2 = x l — f ( x 1 ) / r ( x 1 ) , 称x 2 为r 的二次近似值。重复 以上过程 , 得r 的 近似值序列 , 其 中x ( n + 1 ) = x ( n ) 一 f ( x ( n ) ) ( x ( n ) ) , 称为r 的 n + 1 次近似值 , 上式称为牛顿迭代公式 。 解非线性方程f ( x ) 0 的牛顿法是把非线性方程线性化的一种近似方法 。把f ( x ) 在x 0 点附近展开成泰勒级数f ( x ) = f ( x 0 ) + ( x — x O ) r ( x O ) + ( x — x O ) ' 2 * f ’ ( x O ) / 2 1+ …取其线性部分 , 作为非线性方程f ( x ) = 0 的近似方程 , 即泰勒展开的前两项 , 则有f ( x O ) + f ( x O ) ( x — x O ) = 0 设f ' ( x O ) ≠0 则其解为x l = x O — f ( x O ) X( x O ) 这样 , 得 到牛顿法 的一个迭代序列 : X( n + 1 ) = x( n ) 一 f( X( n ) ) / r ( x ( n ) ) , 记为: { x ( n ) l 。 此时 , 当n 趋于无穷大时 , x ( n ) 就会逐渐 逼近 x ) = 0 的根。 二、 例证分析 1 . 对此非线性方程x S - 5 0 x Z - 6 6 1 0 = O 在单 独用二分法 和 牛顿迭代法时的效果都不显著。 实验 的结果分析: 由此可见 , 牛顿迭代法是一种特殊 的迭代法 , 用于求
立方根计算公式
立方根计算公式
立方根是数学中的一个概念,表示一个数的三次方根。
立方根计算公式是指计算一个数的立方根所用的公式。
下面介绍几种常见的立方根计算公式。
1. 牛顿迭代法:牛顿迭代法是一种数值计算方法,可以用于求解方程的根。
对于求解一个数的立方根,可以将问题转化为求解方程x^3-a=0的解。
然后利用牛顿迭代公式进行迭代,最终得到数a的立方根。
具体公式如下:
x_n+1 = (2x_n + a/x_n^2)/3
其中x_n表示迭代的第n次近似值,x_n+1表示下一次迭代的近似值,a为待求的数。
2. 二分法:二分法是一种数值计算方法,可以用于求解方程的根。
对于求解一个数的立方根,可以将问题转化为求解方程x^3-a=0的解。
然后利用二分法进行迭代,最终得到数a的立方根。
具体公式如下:
while abs(x^3-a) > eps:
if x^3 > a:
x = (x+left)/2
else:
x = (x+right)/2
其中x表示当前的近似值,left和right分别表示左右区间的边界,eps 为误差的容限。
3. 立方根公式:立方根公式是一种直接计算立方根的公式。
对于任意实数a,其立方根可以表示为:
cube_root(a) = a^(1/3)
其中^符号表示指数运算,即a的1/3次方。
这种方法比较简单,但是在计算大数的立方根时可能会有精度问题。
以上是几种常见的立方根计算公式,可以根据实际情况选择适合的方法进行计算。
牛顿,二分法,弦接法比较
牛顿,二分法,弦接法比较牛顿法、二分法和弦接法都是求解线性方程组的方法,但它们在求解过程中的表现和适用范围有所不同。
牛顿法是一种迭代法,它通过不断逼近方程组的解来求解。
在牛顿法中,我们首先将方程组转化为标准形式,然后找到一个未知数的近似值,使其与其他未知数的系数乘积等于常数项。
接着,我们更新未知数的近似值,使其更接近真实解。
这个过程重复进行,直到误差达到要求。
牛顿法的优点是能够快速求解非线性方程组,并且可以处理具有复杂特征的方程组。
但是,它的缺点是需要计算大量的矩阵操作,因此计算成本较高。
二分法是一种直接求解线性方程组的方法。
在二分法中,我们首先找到方程组中两个未知数之间的中点,然后计算这两个中点之间的距离。
我们将这个距离的二分之两倍作为未知数的值,并将其代入方程组中求解其他未知数的值。
二分法的优点是可以处理较大规模的问题,并且不需要计算大量的矩阵操作。
但是,它的缺点是需要较长的计算时间,并且对于复杂特征的方程组表现较差。
弦接法是一种近年来被广泛应用于求解线性方程组的方法。
在弦接法中,我们首先将方程组转化为标准形式,然后找到一组未知数的系数矩阵的行列式为零。
接着,我们将这个行列式为零的矩阵分解成两个矩阵的乘积,并分别求解这两个矩阵的逆矩阵。
最后,我们将这两个逆矩阵相乘,得到求解方程组的解。
弦接法的优点是可以处理大规模和复杂特征的方程组,并且具有较低的计算成本。
但是,它的缺点是需要较长的计算时间,并且需要对矩阵进行奇异值分解,因此可能不适合处理大规模问题。
牛顿法、二分法和弦接法都是求解线性方程组的方法,各有优缺点。
在实际应用中,需要根据具体情况选择最适合的方法。
二分法,不动点迭代法和牛顿迭代法
二分法、不动点迭代法和牛顿迭代法是数值计算中常用的三种求根方法。
它们在不同的数学领域及实际问题中有着广泛的应用。
本文将对这三种方法进行介绍和比较。
一、二分法1. 原理二分法是一种基于区间不断缩小的求根方法。
其原理是通过在函数值的两个不同点处得到异号的情况下缩小区间来逼近实根。
具体过程为:首先确定一个区间[a,b],使得f(a)和f(b)异号,然后将区间一分为二,取中点c=(a+b)/2,若f(c)为零或在一定误差范围内,则c即为所求的根;否则,根据f(a)和f(c)的符号确定新的区间[a,c]或[c,b],重复上述步骤,直到满足要求。
2. 特点二分法的优点是简单易实现,对于连续且单调函数一定能收敛。
但其缺点是收敛速度较慢,尤其在根附近时迭代次数较多。
二、不动点迭代法1. 原理不动点迭代法是求解方程f(x)=0的一种迭代方法,通过将方程变换为x=g(x),其中g(x)为连续函数,然后通过不断地迭代计算得到方程的根。
具体过程为:给定一个初始近似值x0,通过不断迭代计算xn+1=g(xn)来逼近实根。
2. 特点不动点迭代法的优点是迭代过程简单,不需要对函数进行求导。
但其缺点是收敛性有一定要求,不是所有的g(x)函数都能得到收敛结果。
三、牛顿迭代法1. 原理牛顿迭代法是一种通过不断线性化函数来逼近方程根的方法。
其原理是通过对函数f(x)进行泰勒展开,并取展开式的线性部分来进行迭代计算。
具体过程为:给定一个初始近似值x0,通过不断迭代计算xn+1=xn-f(xn)/f'(xn)来逼近实根。
2. 特点牛顿迭代法的优点是收敛速度较快,在根附近有二次收敛性。
但其缺点是需要对函数进行求导,且初始值的选取对迭代结果有一定影响。
二分法、不动点迭代法和牛顿迭代法都是求解方程根的有效方法,各有其优缺点和适用范围。
在实际应用中,根据问题的特性和计算要求来选择适当的方法,以达到准确和高效的求解目的。
4. 比较与应用通过对二分法、不动点迭代法和牛顿迭代法的介绍,我们可以对它们进行比较与应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二分法和牛顿迭代法求解方程的比较
200822401018 徐小良
一、问题叙述
求解1232cos 0x x -+=的解;通过编写matlab 程序分别用分析二分法和牛顿迭代法求解方程,通过两种方法的比较,分析二者求解方程的快慢程度。
二、问题分析
由matlab 画图命令,容易得到此方程解的范围为(2,4);两种迭代方法,在使用相同的误差(0.00001)的情况下,得出matlab 迭代次数,通过次数的比较得出二者求解速度快慢比较。
三、实验程序及注释
(1)、二分法程序:
clear; %清除所有内存数据; f=inline('12-3*x+2*cos(x)');
format long %数据显示格式设为长型; a=2;b=4; %求解区间; er=b-a;ya=f(a);k=0;er0=0.00001; %误差分析; while er>er0 x0=.5*(a+b); y0=f(x0); if ya*y0<0
b=x0; %二分法求解程序; else
a=x0; ya=y0; end
disp([a,b]);er=b-a;k=k+1 %显示各个区间值和求解次数; end
disp([a,b]); %显示最后一个区间值; (2)、牛顿迭代法程序:
clear; %清除所有内存数据; f=inline('12-3*x+2*cos(x)');
format long %数据显示格式设为长型; b=3;a=4;k=0; %求解区间; y0=f(b);y=f(a);
while abs(b-a)>0.00001 t=a-y*(a-b)/(y-y0);
b=a;y0=y; %牛顿迭代法求解程序; a=t;y=f(a); k=k+1;
disp([b,a]);k %显示各个区间值和求解次数; end
disp([b,a]); %显示最后一个区间值;
四、实验数据结果及分析
表2:牛顿迭代法程序结果
五、实验结论
通过表1可知,在二分法下,程序迭代了17次后和第18次的结果一致,即程序迭代了17次达到要求的试验误差;通过表2可知,在牛顿迭代法下,程序迭代了4次后和第5次的结果一致,即程序迭代了4次达到要求的试验误差;
二者比较明显可以看出牛顿迭代法的求解效率要远远优于二分法。
多面体旋转实验
200822401018 徐小良
一、问题叙述:
编写matlab 程序实现对正立方体的旋转,并用适当的方法来验证程序设计的正确性。
二、问题分析:
使用相对应的三个正交矩阵即可实现对三位图形进行各个方向的旋转,在此不再赘述。
⎥⎥
⎥⎦
⎤⎢⎢⎢⎣⎡-=αααααcos sin 0sin cos 0001
)(x Q ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=βββββcos 0sin 010sin 0cos )(y Q ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1000cos sin 0sin cos )(γγγγγz Q 使用moviein 命令,就可以对原正立方体和旋转以后的三位图形进行全方位的观测;为观测的方便,可在立方体各个面上涂不同的颜色加以区分。
三、试验程序以及注释:
(1)、主题函数:
clear; %清除以前所有数据,以防干扰
[X,Y,Z]=peaks(30);
m=moviein(30); %扑捉相关画面
B0=[0 0 0;1 0 0;1 1 0;0 1 0;0 0 1;1 0 1;1 1 1;0 1 1];
n=8; %延时相关因子
view(-25,16);
B=B0;cube(B);
for i=1:30
view(10*(i-1),10*(i-1)) %设置观测点
m(:,i)=getframe; %观察立方体
delay(n); %延时一定时间,以便观测
end
Qz=[cos(pi/2) -sin(pi/2) 0;sin(pi/2) cos(pi/2) 0;0 0 1];
Qy=[cos(-pi/4) 0 sin(-pi/4);0 1 0;-sin(-pi/4) 0 cos(-pi/4)];
Qx=[1 0 0;0 cos(pi/4) -sin(pi/4);0 sin(pi/4) cos(pi/4)];
B=B*Qz';cube(B);
B=B*Qz';cube(B); %立方体旋转B=B*Qz';cube(B);
B=B0*Qy';B=B*Qx';B(:,3)=B(:,3)+1;
cube(B);
view(-25,16);
for i=1:30
view(3-10*(i-1),10)
m(:,i)=getframe;
delay(n);
end
(2)、Cube函数:
function cube(B)
fac=[1 2 3 4;1 2 6 5;1 4 8 5;7 8 5 6;7 3 2 6;7 3 4 8];
patch('faces',fac(1,:),'vertices',B,'faceColor','m'); %在不同面涂不同颜色patch('faces',fac(2,:),'vertices',B,'faceColor','b');
patch('faces',fac(3,:),'vertices',B,'faceColor','r');
patch('faces',fac(4,:),'vertices',B,'faceColor','c');
patch('faces',fac(5,:),'vertices',B,'faceColor','g');
patch('faces',fac(6,:),'vertices',B,'faceColor','y');
(3)、delay函数: %延时函数function delay(n)
tic
M=10000000;
N=M*n;
for k=0:N
M=M*1-1;
end
toc %延时时间计算
四、试验结果:
通过程序仿真可观测到,立方体不同侧面的颜色,以此检测图色的正确性。
当旋转后,经过程序仿真观测旋转后的图形各个侧面的颜色,以此观测旋转的正确性。
五、试验结论:
在程序中我们设置:
第一个面为‘m’紫色;(最下面一个面)
第二个面为‘b’蓝色;
第三个面为‘r’红色;
第四个面为‘c’青色;(最上面一个面)
第五个面为‘g’绿色;
最后一个面为‘y’黄色。
其分析图形如下如所示:
通过分析图形与最终结果的比对我们很容易看出,不管是颜色的涂写还是立方体的旋转,程序仿真的结果时正确的。