第七章光的量子性光电效应爱因斯坦的量子解释
高中物理必备知识点:光的粒子性总结
17.2 科学的转折:光的粒子性(一)知识巩固:1.光电效应概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。
发射出来的电子叫做光电子。
2.光电效应的实验规律(1)光电效应实验光线经石英窗照在阴极上,便有电子逸出,光电子在电场作用下形成光电流。
概念:遏止电压将开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。
当 K 、A 间加反向电压,光电子克服电场力作功,当电压达到某一值 U c 时,光电流恰为0。
U c 称遏止电压。
根据动能定理,有 (2)光电效应实验规律① 光电流与光强的关系饱和光电流强度与入射光强度成正比。
② 截止频率νc ----极限频率对于每种金属材料,都相应的有一确定的截止频率νc 。
当入射光频率ν>νc 时,电子才能逸出金属表面;当入射光频率ν <νc 时,无论光强多大也无电子逸出金属表面。
③ 光电效应是瞬时的。
从光开始照射到光电子逸出所需时间<10-9s 。
3.光电效应解释中的疑难经典理论无法解释光电效应的实验结果。
为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。
4.爱因斯坦的光量子假设(1)内容光不仅在发射和吸收时以能量为h ν的微粒形式出现,而且在空间传播时也是如此。
也就是说,频率为ν 的光是由大量能量为 E =h ν的光子组成的粒子流,这些光子沿光的传播方向以光速 c 运动。
(2)爱因斯坦光电效应方程在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子逸出功W 0,另一部分变为光电子逸出后的动能 E k 。
由能量守恒可得出:(3)爱因斯坦对光电效应的解释:①光强大,光子数多,释放的光电子也多,所以光电流也大。
②电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。
③从方程可以看出光电子初动能和照射光的频率成线性关系 ④从光电效应方程中,当初动能为零时,可得极限频率:hW c 0=ν 5.康普顿效应221c e v m c eU =0W E h k +=ν(1)光的散射光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射。
光电效应 爱因斯坦的光量子论
二、爱因斯坦光量子假设
爱因斯坦对光电效应的解释
金属中的电子吸收一个光子能量h以后,一部分
用于电子从金属表面逸出所需的逸出功A,一部分转
化为光电子的动能,即 Kmax h。v A
光电效应物理图像
二、光爱子因和斯电坦子光量碰子撞假过设程
h
1 2
mvm2
h
A
1 2
mvm2
eK
eUc
1. 只有当入射光频率v大于一定的频率v0时, 才会产生光电子。 A 称为逸0 出A/功h 。红限频
一、光电效应的实验规律
经典理论解释的困难:
经典电磁理论认为光强越大,饱和电流应该大,光电子的初动能也该
大。但实验上饱和电流不仅与光强有关而且与频率有关,光电子初动能 也与频率有关。
只要频率高于红限,既使光强很弱也有光电流;频率低于红限时,无
论光强再大也没有光电流。而经典认为有无光电效应不应与频率有关。
Cs
金属种类有关的恒量。
1.0
Na Ca
1 2
mvm2
eK
eU0
0.0 4.0 6.0 8.0 10.0 (1014Hz) 红限频率不同,斜率不变
一、光电效应的实验规律
4)弛豫时间——当频率超过截止频率的入射光照射到阴极上,无 论光多弱,几乎照射的同时就产生光电流,弛豫时间不超过10-9s。
实验结果总结:
1 2
mvm2
eK
eU0
1.只有当入射光频率 v大于一定的频率v0 时,才会产生光 电子。当光频率低于这个值,不论多强的光都不会有光
电子产生;
2.光电子的最大初动能与照射光的频率有关,与光强无关, 照射光频率越高,出射电子能量越大,光强只影响发射
爱因斯坦的光量子假说及其对光电效应实验规律的解释
爱因斯坦的光量子假说及其对光电效应实验规律的解释
爱因斯坦光量子假说的主要内容是,光不仅在发射或吸收时具有粒子性,光在真空中传播也具有粒子性。
光可以看作是一粒一粒以光速运动的粒子流,这些光粒子称为光量子,简称光子。
每一光子的能量是hv =ε,式中ε为光子的能量,h 为普朗克常数,v 为光的频率。
按照光子假说,当光子照射到金属表面时,一次被金属中的电子全部吸收,而无须积累时间。
电子把光子能量的一部分转变成它逸出金属表面所需的功0w ,另一部分转化为光电子的动能,用公式表示022
1w mv hv +=,此即爱因斯坦方程。
用此方程就能够直接解释光电效应的三个实验性质。
①由爱因斯坦方程可以直接看出,光电子的动能只与入射光的频率有关,同入射光的强度无光;②由于每一种金属都存在一个逸出功,如果光子的能量小于逸出功,由爱因斯坦方程可知,则不能发生光电效应。
这就说明每一种金属表面都存在特征截止频率0v ,当入射光的频率小于0v 时,不管光的强度有多大,都不能发生光电效应。
③光子照射到金属表面时,一次为金属中的电子全部吸收,因此,只要入射光的频率大于截止频率0v ,则无论它多么微弱,都会立即引起光电子发射,不存在滞后时间。
§2-2 光电效应 爱因斯坦光子理论
无关的普适常量。U0则是由阴极金
属材料决定的量。
ν
eU a
1 mv2 2
30 40 60 80 (1013Hz)
1 2
mv2
eK
eU0
3. 截止频率(红限频率) 设想当光电子刚脱离金
属表面的束缚就停止了,这 种现象应该是金属内的自由 电子从入射光那里获得的能 量仅够使电子克服金属表面 的逸出功,换句话说,这个 电子刚脱离金属表面它的初 动能就等于零了。
外电2场力所做的功,即:
eU a
1 2
mv2
实验发现:(1)光电子的最大初动能与入射光 强无关,无论光有多强,遏止电势差都等于Ua。
(2)保持饱和电流不变的条件下,改变入射光频
率ν,遏止电势差Ua是不同的。当入射光频率增大
时,遏止电势差Ua与将随之线性增加。
Ua K U0
Ua (ν)
式中K是直线的斜率,与金属种类
(3) 瞬时性问题
按照光的经典电磁理论,产生光电子应该 有一定的时间间隔,而不应该是瞬时的。因为 自由电子从入射光那里获得能量需要一个积累 过程,特别是当入射光的强度较弱时,积累能 量需要的时间较长。
但实验结果并非如此,当物体受到光的照 射时,一般地说,不论光怎样弱,只要频率大 于截止频率,光电子几乎是立刻发射出来的。
则:p h h ( c )
c
将上式称为普朗克—爱因斯坦关系式
再由:E mc2 m E h
c2 c2
m为以光速运动的光子的质量(运动质量)。
引入光子概念后,光电效应得到了圆满的解释。
金属中的自由电子从入射光中吸收一个光子后,能量
变为h,能量一部分消耗于逸出金属表面时所必须的
逸出功A,另一部分转变为光电子的初动能,由能量
光的量子性
解(1) C (1 cos ) C(1 cos90 ) C
2.431012 m
(2) 反冲电子的动能
Ekmc 2 Nhomakorabea0c2
hc
0
hc
hc
0
(1
0
)
295 eV
(3) 光子损失的能量=反冲电子的动能
解 (1) E h hc 4.421019 J 2.76eV
p h E 1.471027 kg m s1 2.76eV / c
c (2) Ek E A(2.762.28)eV0.48eV (3) hc 5.18107 m 518nm
21.2 光的量子性
1、光电效应(photoelectric effect) (1)光电效应实验的规律
①实验装置
光照射至金属表面,电子从金 属表面逸出,称其为光电子。
②实验规律
截止频率(cutoff frequency) 0 仅当 0才发生光电效应,
截止频率与材料有关与光强无关。
A V
0 0(红限)
Ua k U0
③经典理论遇到的困难
红限问题 按经典理论,无论何种频率的入射光,只要其强度 足够大,就能使电子具有足够的能量逸出金属 .与实 验结果不符。
最大初动能问题 按经典理论,光电子最大初动能取决于光强,应
该和光的频率 无关。与实验结果不符。
瞬时性问题 按经典理论,电子逸出金属所需的能量,需要有 一定的时间来积累,一直积累到足以使电子逸出金属 表面为止.与实验结果不符。
E
3、康普顿效应(Compton effect) 1920年,美国物理学家康普顿在观察X射线被物质
光学教程第三版(姚启钧著)课后题答案下载
光学教程第三版(姚启钧著)课后题答案下载《光学教程》以物理光学和应用光学为主体内容。
以下是为大家的光学教程第三版(姚启钧著),仅供大家参考!点击此处下载???光学教程第三版(姚启钧著)课后题答案???本教程以物理光学和应用光学为主体内容。
第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统;第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展。
第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。
绪论0.1光学的研究内容和方法0.2光学发展简史第1章光的干涉1.1波动的独立性、叠加性和相干性1.2由单色波叠加所形成的干涉图样1.3分波面双光束干涉1.4干涉条纹的可见度光波的时间相干性和空间相干性1.5菲涅耳公式1.6分振幅薄膜干涉(一)——等倾干涉1.7分振幅薄膜干涉(二)——等厚干涉视窗与链接昆虫翅膀上的彩色1.8迈克耳孙干涉仪1.9法布里一珀罗干涉仪多光束干涉1.10光的干涉应用举例牛顿环视窗与链接增透膜与高反射膜附录1.1振动叠加的三种计算方法附录1.2简谐波的表达式复振幅附录1.3菲涅耳公式的推导附录1.4额外光程差附录1.5有关法布里一珀罗干涉仪的(1-38)式的推导附录1.6有同一相位差的多光束叠加习题第2章光的衍射2.1惠更斯一菲涅耳原理2.2菲涅耳半波带菲涅耳衍射视窗与链接透镜与波带片的比较2.3夫琅禾费单缝衍射2.4夫琅禾费圆孔衍射2.5平面衍射光栅视窗与链接光碟是一种反射光栅2.6晶体对X射线的衍射视窗与链接与X射线衍射有关的诺贝尔奖附录2.1夫琅禾费单缝衍射公式的推导附录2.2夫琅禾费圆孔衍射公式的推导附录2.3平面光栅衍射公式的推导习题第3章几何光学的基本原理3.1几个基本概念和定律费马原理3.2光在平面界面上的反射和折射光导纤维视窗与链接光导纤维及其应用3.3光在球面上的反射和折射3.4光连续在几个球面界面上的折射虚物的概念3.5薄透镜3.6近轴物近轴光线成像的条件3.7共轴理想光具组的基点和基面视窗与链接集成光学简介附录3.1图3-6中P1和JP1点坐标的计算附录3.2棱镜最小偏向角的计算附录3.3近轴物在球面反射时物像之间光程的计算附录3.4空气中的厚透镜物像公式的推导习题第4章光学仪器的基本原理4.1人的眼睛4.2助视仪器的放大本领4.3目镜4.4显微镜的放大本领4.5望远镜的放大本领视窗与链接太空实验室——哈勃太空望远镜 4.6光阑光瞳4.7光度学概要——光能量的传播视窗与链接三原色原理4.8物镜的聚光本领视窗与链接数码相机4.9像差概述视窗与链接现代投影装置4.10助视仪器的像分辨本领视窗与链接扫描隧显微镜4.11分光仪器的色分辨本领习题第5章光的偏振5.1自然光与偏振光5.2线偏振光与部分偏振光视窗与链接人造偏振片与立体电影5.3光通过单轴晶体时的双折射现象5.4光在晶体中的波面5.5光在晶体中的传播方向5.6偏振器件5.7椭圆偏振光和圆偏振光5.8偏振态的实验检验5.9偏振光的干涉5.10场致双折射现象及其应用视窗与链接液晶的电光效应及其应用5.11旋光效应5.12偏振态的矩阵表述琼斯矢量和琼斯矩阵附录5.1从沃拉斯顿棱镜出射的两束线偏振光夹角公式(5-15)的推导习题第6章光的吸收、散射和色散6.1电偶极辐射对反射和折射现象的解释6.2光的吸收6.3光的散射视窗与链接光的散射与环境污染监测6.4光的色散6.5色散的经典理论习题第7章光的量子性7.1光速“米”的定义视窗与链接光频梳7.2经典辐射定律7.3普朗克辐射公式视窗与链接xx年诺贝尔物理学奖7.4光电效应7.5爱因斯坦的量子解释视窗与链接双激光束光捕获7.6康普顿效应7.7德布罗意波7.8波粒二象性附录7.1从普朗克公式推导斯忒藩一玻耳兹曼定律附录7.2从普朗克公式推导维恩位移定律习题第8章现代光学基础8.1光与物质相互作用8.2激光原理8.3激光的特性8.4激光器的种类视窗与链接激光产生106T强磁场8.5非线性光学8.6信息存储技术8.7激光在生物学中的应用视窗与链接王淦昌与惯性的束核聚变习题主要参考书目基本物理常量表习题答案1.阳光大学生网课后答案下载合集2.《光学》赵凯华钟锡华课后习题答案高等教育出版社3.光学郭永康课后答案高等教育出版社4.阳光大学生网课后答案下载求助合集。
深刻理解光电效应
第七章:光电效应属于爱因斯坦的桂冠今天这一章我们来讲讲光电效应。
光电效应是指光束照射在金属表面会使其发射出电子的物理效应。
发射出来的电子称为“光电子”。
要发生光电效应,光的频率必须超过金属的特征频率。
1887年,德国物理学者海因里希·赫兹发现,紫外线照射到金属电极上,可以帮助产生电火花。
1905年,阿尔伯特·爱因斯坦发表论文《关于光产生和转变的一个启发性观点》,给出了光电效应实验数据的理论解释。
爱因斯坦主张,光的能量并非均匀分布,而是负载于离散的光量子(光子),而这光子的能量和其所组成的光的频率有关。
这个突破性的理论不但能够解释光电效应,也推动了量子力学的诞生。
由于“他对理论物理学的成就,特别是光电效应定律的发现”,爱因斯坦获1921年诺贝尔物理学奖。
光照射到金属上,引起物质的电性质发生变化。
这类光变致电的现象被人们统称为光电效应。
光电效应分为光电子发射、光电导效应和阻挡层光电效应,又称光生伏特效应。
前一种现象发生在物体表面,又称外光电效应。
后两种现象发生在物体内部,称为内光电效应。
光束里的光子所拥有的能量与光的频率成正比。
假若金属里的电子吸收了一个光子的能量,而这能量大于或等于某个与金属相关的能量阈值(称为这种金属的逸出功),则此电子因为拥有了足够的能量,会从金属中逃逸出来,成为光电子;若能量不足,则电子会释出能量,能量重新成为光子离开,电子能量恢复到吸收之前,无法逃逸离开金属。
增加光束的辐照度(光束的强度)会增加光束里光子的密度,在同一段时间内激发更多的电子,但不会使得每一个受激发的电子因吸收更多的光子而获得更多的能量。
换言之,光电子的能量与辐照度无关,只与光子的能量、频率有关。
逸出功 W 是从金属表面发射出一个光电子所需要的最小能量。
如果转换到频率的角度来看,光子的频率必须大于金属特征的极限频率,才能给予电子足够的能量克服逸出功。
逸出功与极限频率 v0之间的关系为:W=h*v0。
光电效应爱因斯坦的光量子论
2)光波的能量分布在波面上,电子积累能量需要 一段时间,光电效应不可能瞬时发生!
三、爱因斯坦的光子理论
普朗克把能量量子化的概念只局限于物体内振子 的发射或吸收上,并未涉及辐射在空间的传播。 相反,当时认为在空间传播的电磁辐射,其能量 仍是连续分布的。这显然是不协调的。
1.爱因斯坦光子假说
爱因斯坦指出了上述不协调性。1905年提出了光 子假说:
(1)若光子和外层电子相碰撞,光子有一部分能 量传给电子,散射光子的能量减少,于是散射光 的波长大于入射光的波长。
(2) 若光子和束缚很紧的内层电子相碰撞,光子 将与整个原子交换能量,由于光子质量远小于原 子质量,根据碰撞理论,碰撞前后光子能量几乎 不变,波长不变。
(3) 在重原子中,内层电子比轻原子多,而内 层电子束缚很紧,所以原子量大的物质,康普 顿效应比原子量小的弱。
2.实验装置
GD
K
A
A V
GD为光电管;光通过石英窗口照射阴极K,光电
子从阴极表面逸出。光电子在电场加速下向阳极
A运动,形成光电流。
3.实验规律
在一定强度的单色光照射下,光电流随加速电压
的增加而增大,但当加速电压增加到一定量值时,光
电流达饱和值is.
加速电压为零时,光电流不 为零,说明光电子从金属表面
6.光电效应在近代技术中的应用
利用光电效应中光电流与入射光强成正比 的特性,可以制造光电转换器----实现光信号与 电信号之间的相互转换。这些光电转换器如光 电管等,广泛应用于光功率测量、光信号记录、 电影、电视和自动控制等诸多方面。
光电控制电路、自动报警、自动计数、光电 倍增管、鼠标器等等。
光电倍增管
2)但只有当入射光的频率足够高,以致每个光子 的能量 h足够大时,电子才有可能克服逸出功Φ 逸出金属表面。
物理学史7.3 光电效应的研究
7.3光电效应的研究爱因斯坦最早明确地认识到,普朗克的发现标志了物理学的新纪元。
1905年,爱因斯坦在著名论文:《关于光的产生和转化的一个试探性观点》中①,发展了普朗克的量子假说,提出了光量子概念,并应用到光的发射和转化上,很好地解释了光电效应等现象。
后来,爱因斯坦称这篇论文是非常革命的,因为它为研究辐射问题提出了崭新的观点。
7.3.1爱因斯坦的光量子理论爱因斯坦在那篇论文中,总结了光学发展中微粒说和波动说长期争论的历史,揭示了经典理论的困境,提出只要把光的能量看成不是连续分布,而是一份一份地集中在一起,就可以作出合理的解释。
他写道:“在我看来,如果假定光的能量在空间的分布是不连续的,就可以更好地理解黑体辐射、光致发光、紫外线产生阴极射线(按:即光电效应),以及其他有关光的产生和转化的现象的各种观测结果。
根据这一假设,从点光源发射出来的光束的能量在传播中将不是连续分布在越来越大的空间之中,而是由一个数目有限的局限于空间各点的能量子所组成。
这些能量子在运动中不再分散,只能整个地被吸收或产生。
”也就是说,光不仅在发射中,而且在传播过程中以及在与物质的相互作用中,都可以看成能量子。
爱因斯坦称之为光量子,也就是后来所谓的光子(photon)。
光子一词则是1926年由路易斯(G.N.Lewis)提出的。
作为一个事例,爱因斯坦提到了光电效应。
他解释说①:“能量子钻进物体的表面层,……,把它的全部能量给予了单个电子……,一个在物体内部具有动能的电子当它到达物体表面时已经失去了它的一部分动能。
此外还必须假设,每个电子在离开物体时还必须为它脱离物体做一定量的功P(这是物体的特性值——按:即逸出功)。
那些在表面上朝着垂直方向被激发的电子,将以最大的法线速度离开物体。
”这样一些电子离开物体时的动能应为:hν-P爱因斯坦根据能量转化与守恒原理提出,如果该物体充电至正电位V,并被零电位所包围(V也叫遏止电压),又如果V正好大到足以阻止物体损失电荷,就必有:eV=hν-P,其中e即电子电荷。
光电效应:爱因斯坦的光子假设
光电效应:爱因斯坦的光子假设
三、爱因斯坦的光子假设
光子:光是一粒一粒以光速运动着的粒子流, 这些粒子称为光量子,简称光子。
光子的能量 h
爱因斯坦方程 h 1 mv2 A
2
几种金属的逸出功
逸出功与 材ቤተ መጻሕፍቲ ባይዱ有关
金属
A/ eV
钠 铝锌铜银铂 2.28 4.08 4.31 4.70 4.73 6.35
光电倍增管
光电效应:爱因斯坦的光子假设
思考
关于光电效应有下列说法其中正确的是( )
1 任何波长的可见光照射到任何金属表面都能产
生光电效应;
2 对同一金属如有光电子产生,则入射光的频率不 同, 光电子的最大初动能也不同;
3 对同一金属由于入射光的波长不同, 单位时间 内产生的光电子的数目不同;
4 对同一金属,若入射光频率不变而强度大, 则饱 和光电流也增大.
光电效应:爱因斯坦的光子假设
解释实验 爱因斯坦方程
h
1
mv2
A
2
1.截止频率 逸出功 A h0
产生光电效应条件条件
0
A h
2.饱和电流与入射光强度成正比
光强越大,光子数目越多,即单位时间内产生光电
子数目越多,光电流越大.( 0 时)
光电效应:爱因斯坦的光子假设
3.遏止电势差与入射光的频率成正比。
h 1 mv2 A
2
A h0
U0
1 2
mv2
h
h 0
Ekmax eU0
U0
h e
(
0 )
0
4.光电子的逸出几乎是瞬时
光子射至金属表面,一个光子携带的能量 h 将一 次性被一个电子吸收,若 0 ,电子立
光电效应讲义
实验三 光电效应【实验目的】1. 加深对光的量子性的认识。
2. 验证爱因斯坦方程,测定普朗克常数。
3. 测定光电管的伏安特性曲线。
【实验原理】当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应.所产生的电子,称为光电子。
光电效应是光的经典电磁理论所不能解释的。
1905年爱因斯坦依照普朗克的量子假设,提出了光子的概念。
他认为光是一种微粒 — 光子;频率为ν 的光子具有能量h ν,h 为普朗克常数,目前国际公认值为h =(6.6260755±0.0000040)×10-34J ·s 。
当金属中的电子吸收一个频率为ν 的光子时,便获得这光子的全部能量h ν,如果这能量大于电子摆脱金属表面的约束所需要的逸出功W ,电子就会从金属中逸出.按照能量守恒原理有:W v m h m +=221ν (3.1)上式称为爱因斯坦方程,其中m 和v m 是光电子的质量和最大速度,221m v m 是光电子逸出表面后所具有的最大动能.它说明光子能量h ν小于W 时,电子不能逸出金属表面,因而没有光电效应产生;产生光电效应的入射光最低频率ν0=W /h ,称为光电效应的极限频率(又称红限)。
不同的金属材料有不同的逸出功,因而ν0也是不同的。
用光电管进行光电效应实验,测量普朗克常数的实验原理如图3.1所示。
图中K 为图3.1光电效应实验原理图光电管的阴极,A 为阳极,微安表用于测量微小的光电流,电压表用于测量光电管两极间的电压,E 为电源,R 提供的分压可以改变光电管两极间的电势差。
当单色光入射到光电管的阴极K 上时,如有光电子逸出,则当阳极A 加正电势,K 加负电势时,光电子就被加速;而当K 加正电势,A 加负电势时,光电子就被减速。
当A 、K 之间所加电压U 足够大时,光电流达到饱和值I m ,当U ≤-U 0,并满足方程eU 0 =221m v m (3.2)时,光电流将为零,此时的U 0称为截止电压。
爱因斯坦对光电效应的解释
爱因斯坦对光电效应的解释
爱因斯坦对光电效应的解释是指他在1905年提出的一个理论,该理论揭示了光电效应的本质。
光电效应是指当光照射到某些物质表面时,会使其放出电子的现象。
在此之前的经典物理学中,人们认为光波只能转移能量,但无法以粒子的形式传递。
然而,爱因斯坦提出了光子概念,即光也具有粒子性质,可以以固定能量的光子形式传递能量。
他指出,当光子能量足够强时,可以克服物质中的束缚力,将电子从原子中释放出来,从而产生光电效应。
这项理论不仅解释了光电效应,而且也为量子力学的发展奠定了基础。
- 1 -。
2023年大学_光学教程第三版(姚启钧著)课后题答案下载
2023年光学教程第三版(姚启钧著)课后题答案下载2023年光学教程第三版(姚启钧著)课后题答案下载本教程以物理光学和应用光学为主体内容。
第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统;第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展。
第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。
光学教程第三版(姚启钧著):内容简介绪论0.1 光学的研究内容和方法0.2 光学发展简史第1章光的干涉1.1 波动的独立性、叠加性和相干性1.2 由单色波叠加所形成的干涉图样1.3 分波面双光束干涉1.4 干涉条纹的可见度光波的时间相干性和空间相干性 1.5 菲涅耳公式1.6 分振幅薄膜干涉(一)——等倾干涉1.7 分振幅薄膜干涉(二)——等厚干涉视窗与链接昆虫翅膀上的彩色1.8 迈克耳孙干涉仪1.9 法布里一珀罗干涉仪多光束干涉1.10 光的干涉应用举例牛顿环视窗与链接增透膜与高反射膜附录1.1 振动叠加的三种计算方法附录1.2 简谐波的表达式复振幅附录1.3 菲涅耳公式的推导附录1.4 额外光程差附录1.5 有关法布里一珀罗干涉仪的(1-38)式的推导附录1.6 有同一相位差的多光束叠加习题第2章光的衍射2.1 惠更斯一菲涅耳原理2.2 菲涅耳半波带菲涅耳衍射视窗与链接透镜与波带片的比较2.3 夫琅禾费单缝衍射2.4 夫琅禾费圆孔衍射2.5 平面衍射光栅视窗与链接光碟是一种反射光栅2.6 晶体对X射线的'衍射视窗与链接与X射线衍射有关的诺贝尔奖附录2.1 夫琅禾费单缝衍射公式的推导附录2.2 夫琅禾费圆孔衍射公式的推导附录2.3 平面光栅衍射公式的推导习题第3章几何光学的基本原理3.1 几个基本概念和定律费马原理3.2 光在平面界面上的反射和折射光导纤维视窗与链接光导纤维及其应用3.3 光在球面上的反射和折射3.4 光连续在几个球面界面上的折射虚物的概念 3.5 薄透镜3.6 近轴物近轴光线成像的条件3.7 共轴理想光具组的基点和基面视窗与链接集成光学简介附录3.1 图3-6中P1和JP1点坐标的计算附录3.2 棱镜最小偏向角的计算附录3.3 近轴物在球面反射时物像之间光程的计算附录3.4 空气中的厚透镜物像公式的推导习题第4章光学仪器的基本原理4.1 人的眼睛4.2 助视仪器的放大本领4.3 目镜4.4 显微镜的放大本领4.5 望远镜的放大本领视窗与链接太空实验室——哈勃太空望远镜4.6 光阑光瞳4.7 光度学概要——光能量的传播视窗与链接三原色原理4.8 物镜的聚光本领视窗与链接数码相机4.9 像差概述视窗与链接现代投影装置4.10 助视仪器的像分辨本领视窗与链接扫描隧显微镜4.11 分光仪器的色分辨本领习题第5章光的偏振5.1 自然光与偏振光5.2 线偏振光与部分偏振光视窗与链接人造偏振片与立体电影 5.3 光通过单轴晶体时的双折射现象 5.4 光在晶体中的波面5.5 光在晶体中的传播方向5.6 偏振器件5.7 椭圆偏振光和圆偏振光5.8 偏振态的实验检验5.9 偏振光的干涉5.10 场致双折射现象及其应用视窗与链接液晶的电光效应及其应用5.11 旋光效应5.12 偏振态的矩阵表述琼斯矢量和琼斯矩阵附录5.1 从沃拉斯顿棱镜出射的两束线偏振光夹角公式(5-15)的推导习题第6章光的吸收、散射和色散6.1 电偶极辐射对反射和折射现象的解释6.2 光的吸收6.3 光的散射视窗与链接光的散射与环境污染监测6.4 光的色散6.5 色散的经典理论习题第7章光的量子性7.1 光速“米”的定义视窗与链接光频梳7.2 经典辐射定律7.3 普朗克辐射公式视窗与链接诺贝尔物理学奖7.4 光电效应7.5 爱因斯坦的量子解释视窗与链接双激光束光捕获7.6 康普顿效应7.7 德布罗意波7.8 波粒二象性附录7.1 从普朗克公式推导斯忒藩一玻耳兹曼定律附录7.2 从普朗克公式推导维恩位移定律习题第8章现代光学基础8.1 光与物质相互作用8.2 激光原理8.3 激光的特性8.4 激光器的种类视窗与链接激光产生106T强磁场8.5 非线性光学8.6 信息存储技术8.7 激光在生物学中的应用视窗与链接王淦昌与惯性的束核聚变习题主要参考书目基本物理常量表光学教程第三版(姚启钧著):目录点击此处下载光学教程第三版(姚启钧著)课后题答案。
光的量子性
光子的动量
p h h cc
引入 h 2
k 2 n
2
h
p h n k
11
光子具有动量,显示其有粒子性; 光子具有波长,又说
明其有波动性;这说明,光具有波粒二象性,即在传播过程中
显示它的波动性(如干涉,衍射等),而在光与实物粒子相互
作用时,又显示它的粒子特性。光的波粒二重特性,充分地包
答[ D ]
25
例 15 - 5 设用频率为1,2的两种单色光,先后照射同一种 金属均能产生光电效应,已知金属的红限频率为0 ,测得两次照 射时的遏止电压 |Ua2|=2| Ua1| ,则这两种单色光的频率有如下 关系:
(A)2 10, (B) 2 1+0, (C)2 210, (D) 2 120,
在光子流中,光的能量集中在光子上,电子与光子相遇, 只要hv足够大,电子就可以立刻吸收一个光子的能量而逸出金 属表面,因而不会出现滞后效应。
10
四、光的波粒二象性
描述光的波动性:波长λ,频率ν
描述光的粒子性:能量ε,动量 P
每个光子的能量
h
按照相对论的质能关系 光子无静质量 m0=0
2 p2c2 m02c4
一、光电效应
金属及其化合物在光波的照射下 发射电子的现象称为光电效应,所发 射的电子称为光电子。
1 、实验装置
2 、光电效应的实验规律 ( 1 )饱和光电流强度 Im 与入射 光强成正比(ν不变)。
当光电流达到饱和时,阴极 K 上 逸出的光电子全部飞到了阳极上。
单位时间内从金属表面逸出的光电子 数和光强成正比
4
二、经典物理学所遇到的困难
1、逸出功,初动能与光强、频率的关系
按照经典的物理理论,金属中的自由电子是处在晶格上正电
爱因斯坦光电效应公式的物理意义
爱因斯坦光电效应公式的物理意义爱因斯坦光电效应公式:揭示光的粒子性与金属的电子能级结构一、引言在物理学的发展历程中,光电效应的研究具有里程碑式的意义。
它不仅为量子力学的发展奠定了基础,而且深入揭示了光与物质相互作用的本质。
尤其是爱因斯坦提出的公式,成功地解释了光电效应的现象,为人类打开了微观世界的一扇窗。
本文将深入探讨爱因斯坦光电效应公式的物理意义,从光的粒子性与金属的电子能级结构两个角度进行阐述。
二、光的粒子性与光电效应1. 光的粒子性:爱因斯坦的光电效应公式提出,光不仅具有波动性,还具有粒子性。
当光子与金属表面的电子相互作用时,光子的能量能够传递给电子,使其获得足够的能量逃离金属表面。
这一过程揭示了光的粒子性特征,即光是由粒子(光子)组成的,且这些粒子具有一定的能量。
2. 光子能量与电子能量:在光电效应中,光子的能量等于电子逃逸能与电子在金属中的束缚能之差。
当入射光子的能量大于或等于电子束缚能与逃逸能之差时,电子才能从金属表面逸出。
这一结论进一步证实了光的粒子性,并建立了光子能量与电子能量之间的联系。
三、金属的电子能级结构与光电效应1. 金属的电子能级:金属的电子能级结构是指金属中电子在不同能量状态的分布情况。
在金属中,电子存在于一系列分立的能级上,各能级间的能量差值较小。
当光子与金属相互作用时,高能级上的电子可吸收光子的能量跃迁至低能级,并可能从金属表面逸出。
2. 光电效应中的能级差:在光电效应中,入射光子的能量必须大于或等于金属的功函数(即最高占据能级与费米能级之差)才能使电子从金属表面逸出。
这一条件揭示了光电效应与金属的电子能级结构之间的紧密联系。
通过研究光电效应,我们可以深入了解金属的电子能级结构,进而探索其他物质的光电行为。
四、光电效应的应用与发展随着科技的不断进步,光电效应的应用越来越广泛。
基于光电效应的光电传感器已在诸多领域得到广泛应用,如太阳能电池、光谱分析、生物医学检测等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电倍增管由光窗、光电阴极、电子光学系统、电 子倍增系统和阳极五个主要部分组成。 如图
Hamamatsu R3896光电倍增管
10
在光电阴极脱出的电子在加速电场的作用下,以提高的 能量打在第一阴极上,一个电子可以打出几个电子,称 为次发射,然后再打在第二阴极上,可打出更多电子, 如此下去,一级级放大,可放大105~106倍。
2
二. 爱因斯坦光电效应方程
把光子的概念应用于光电效应上,当照射金属表面时, 金属中的电子吸收一个光子后,把能量的一部分用来挣 脱金属对它的束缚,余下的一部分就成为从金属表面脱 出后的初动能。根据能量守恒有:
1 h m 2 A 2
上式称为爱因斯坦光电效应方程,A为电子从金属表面 脱出所需要的能量(所作的功)。
8
阴极可用多种材料制成, 常用的阴极材料有银氧铯 光电阴极、锑铯光电阴极、 铋银氧铯光电阴极等。不 同的阴极材料用于不同波 长范围的光。
为了提高真空光电管的灵敏度,通常在玻璃泡内充入 某种低压惰性气体,光电子在飞向阳极的过程中与气 体分子碰撞,使气体电离,这样可增大光电流,使灵 敏度增加。
9
2. 光电倍增管
在狭义相对论中,质量和速度之间的关系为: m0 m 1 2 / c2 m0为静止质量,光子以光速c运动,因此其静止质 量为零。
12
在狭义相对论中,任何物体的能量和动量的关系为:
2 4 E 2 p 2c 2 m0 c
而光子的静止质量m0=0,故光子的动量为:
E h p c c
由于金属内部的电子可处于不同的能量状态,从金 属中脱出时所作的功也各不相同。
3
通常把A的最小值A0称为脱出功(或逸出功),对于A= A0的电子来说,脱出后的初动能最大,则有:
1 2 h m m A0 2
三. 对光电效应的解释
1. 因为入射光的强度是由单位时间到达金属表面的 光子数目决定的,即E光强=Nh,而逸出的光电子 的数目又与光子的数目成正比,这些逸出的光电子 全部到达阳极便形成了饱和电流I0。由此可见,饱 和光电流与入射光强成正比。
15
4
2. 由爱因斯坦方程
1 2 h m m A0 2
可以看出,对于给定的金属,逸出功A0一定,则最 大初动能1/2mv2m与频率成线性关系。 3. 红限存在的解释。如果入射光的频率过低,以致 h<A0,则电子就不能克服金属的束缚而脱出金属 表面。即使入射光很强,也就是这种光子的数目很 多,但仍不会产生光电效应。只有>0=A0/h时,才 会有光电效应产生。 4. 当一个光子与一个电子发生碰撞时,电子立即 得到光子的全部能量,无需能量的积累时间,故 光电效应的驰豫时间很短。
因此,光电倍增管的灵敏度比普通光电管高几百万倍, 微弱的光照就可产生很大的电流。
11
五. 光子的质量和动量
光子不仅具有能量,也具有动量和质量。但光子又是 以光速运动,牛顿力学便不适用。按照狭义相对论的 观点,:
E h m 2 2 c c
6
但是在当时条件下,实验是很难实现 的。直到1916年美国物理学家密立根 (R. A. Millikan ,1868-1953) 经过非 常仔细的实验,证实了爱因斯坦光电 效应方程的正确性。
最初密立根对爱因斯坦的光子假设和 方程,持有保守态度,企图通过精密 的光电效应实验否定它。 经过近十年的艰苦努力,实验结果总是和自己的预料相反, 而与爱因斯坦的假设一致,于1916年密立根决然宣布了他的 实验结果,使爱因斯坦方程得到了完全的证实。 爱因斯坦由于光电效应方面的工作,于1921年获得诺贝尔 物理学奖。两年后,密立根也由于在这方面的实验工作而 获得诺贝尔物理学奖。
§7.4 光电效应 §7.5爱因斯坦的量子解释
Photoelectric Effect and Einstein’s quantum Explanation
为了解释光电效应,1905 年,爱因斯坦将普朗克的 能量子概念加以推广,进 一步提出了关于光的本性 的光子假说。
Einstein visiting the USA in 1921 with his second wife Elsa。
例题(P313 例7.4) 若一个光子的能量等于一个电子的静止能量,试问 该光子的动量和波长是多少?在电磁波谱中它属于 何种射线?
13
若一个光子的能量等于一个电子的静止能量,试问 该光子的动量和波长是多少?在电磁波谱中它属于 何种射线? 解:一个电子的静止能量为m0c2,按题意:
h m0c 2 2 m c E 则光子的动量为: p 0 c c
从光子具有动量这一假设出发,还可以解释光压的 作用。即当光子流遇到任何障碍物时,在障碍物上 施加压力,就好像气体分子在容器壁上的碰撞形成 气压的一样。 光压就是光子流产生的压强。 俄罗斯科学家门捷列夫首先 于1900年做了光压的实验, 证实了光压的存在。 光压的存在的事实说明,光不但有能量,而且确实有动 量。这有力地证明了光的物质性,证明了光和电子、原 子、分子等实物一样,是物质的不同形式。
7
四. 光电效应的应用
光电效应在农业、工业、科学技术和国防中应用十分广 泛。由于它可以把光能直接转换成电能并且这种转换关 系很简单。主要被用于测光、计数、自动控制等方面。 下面主要介绍两种器件。
1. 真空光电管
真空光电管是光电效应最简单的应用 器件。将玻璃泡抽成真空,在内表面 涂上光电材料作为阴极,阳极一般作 成圆环状。使用时在两极间加上一定 的直流电压,就可把照射在阴极上的 光信号转换成电信号。
m0c 9.111031 3108 2.731022 kg m / s
光子的波长为:
h 6.6310 0.0024 nm 22 p 2.7310
34
在整个电磁波谱中,射线的波长在0.01nm一下, 14 所以该光子在电子波谱中属于射线。
六. 光压
5
爱因斯坦的光子假设和方程对光电效应的成功解释, 说明了它的正确性。但当初人们受经典电磁理论的束 缚较重,实验上又未能获得全面的验证,所以爱因斯 坦的假设并没有立即得到人们的承认。
爱因斯坦曾经说过:“倘若光电方 程正确无误,取直角坐标系将遏止 电压表征为入射光频率的函数,则 遏止电压必定是一条直线,他的斜 率与金属材料性质无关。”
1
一. 光子
普朗克把能量子的概念只局限于谐振子及其发射 或吸收的机制上,对于辐射场,仍然认为只是一 种电磁波。 爱因斯坦指出,光不仅具有波动性,也具有粒子性。 光是一粒一粒以光速c运动的粒子流,这些光粒子称 光量子,简称光子。每个光子的能量为:
h
不同频率的光其光子能量不同,光子只能整个地被 吸收或发射。