初中数学突破中考压轴题几何模型之旋转模型
初三数学培优旋转模型及解题方法探究
【模型概述初三数学旋转之半角模型及解题方法探究】全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。
【模型解读】过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.【经典例题】——方法整合,对接中考1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,M N →的长比路线M A N →→的长少_________m (结果取整数,参考数据:1.7≈).2.(2022·河北邢台·模拟演练)学完《旋转》,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF=45°,求证:EF=BE+DF.”小明同学的思路:∵四边形ABCD 是正方形,∴AB=AD,∠B=∠ADC=90°.把△ABE 绕点A 逆时针旋转到ADE '△的位置,然后证明AFE AFE '≌△△,从而可得=EF E F '.E F E D DF BE DF ''=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB=AD,∠B=∠D=90°,12EAF BAD ∠=∠,直接写出EF,BE,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB=AD,∠B+∠D=180°,12EAF BAD ∠=∠,求证:EF=BE+DF.(3)【知识迁移】如图4,四边形ABPC 是O 的内接四边形,BC 是直径,AB=AC,请直接写出PB+PC 与AP 的关系.3.(2022·福建·龙岩九年级模拟)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF ∠=︒,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系(不要求证明).②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF ∠=︒,则EF ,BE ,DF 之间的数量关系是(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,35AE =AF 的长.【讲练结合】——开发思维,熟能生巧【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD 中,E、F 分别是AB、BC 边上的点,且∠EDF=45°,探究图中线段EF,AE,FC 之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD 中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE 的长.【拓展提高】(3)如图3,在四边形ABCD 中,AB=AD,∠ABC 与∠ADC 互补,点E、F 分别在射线CB、DC 上,且∠EAF=12∠BAD.当BC=4,DC=7,CF=1时, CEF 的周长等于.(4)如图4,正方形ABCD 中, AMN 的顶点M、N 分别在BC、CD 边上,AH⊥MN,且AH=AB,连接BD 分别交AM、AN 于点E、F,若2EF 的长.(5)如图5,已知菱形ABCD 中,∠B=60°,点E、F 分别是边BC,CD 上的动点(不与端点重合),且∠EAF=60°.连接BD 分别与边AE、AF 交于M、N,当∠DAF=15°时,求证:MN 2+DN 2=BM 2.【专项训练】——举一反三,巩固提高1.(2022·江西九江·一模)如图(2),在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,以点A 为顶点作EAF ∠,且12EAF BAD ∠=∠,连接EF.(1)【观察猜想】如图(2),当90BAD B D ∠=∠=∠=︒时,①四边形ABCD 是______(填特殊四边形的名称);②BE,DF,EF 之间的数量关系为______.(2)【类比探究】如图(1),线段BE,DF,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)【问题解决】如图(3),在ABC 中,90BAC ∠=︒,4AB AC ==,点D,E 均在边BC 上,且45DAE ∠=︒,若2BD =,求DE 的长.2.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=12∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.3.(2022·重庆市育才中学二模)(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.。
中考数学压轴题之旋转(中考题型整理,突破提升)含答案解析
一、旋转 真题与模拟题分类汇编(难题易错题)1.在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。
(1)如图1,直接写出∠ABD 的大小(用含α的式子表示); (2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。
【答案】(1)1302α︒-(2)见解析(3)30α=︒【解析】解:(1)1302α︒-。
(2)△ABE 为等边三角形。
证明如下:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60︒得到线段BD , ∴BC=BD ,∠DBC=60°。
又∵∠ABE=60°,∴1ABD 60DBE EBC 302α∠=︒-∠=∠=︒-且△BCD 为等边三角形。
在△ABD 与△ACD 中,∵AB=AC ,AD=AD ,BD=CD ,∴△ABD ≌△ACD (SSS )。
∴11BAD CAD BAC 22α∠=∠=∠=。
∵∠BCE=150°,∴11BEC 180(30)15022αα∠=︒-︒--︒=。
∴BEC BAD ∠=∠。
在△ABD 和△EBC 中,∵BEC BAD ∠=∠,EBC ABD ∠=∠,BC=BD , ∴△ABD ≌△EBC (AAS )。
∴AB=BE 。
∴△ABE 为等边三角形。
(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=︒-︒=︒。
又∵∠DEC=45°,∴△DCE 为等腰直角三角形。
∴DC=CE=BC 。
∵∠BCE=150°,∴(180150)EBC 152︒-︒∠==︒。
而1EBC 30152α∠=︒-=︒。
∴30α=︒。
(1)∵AB=AC ,∠BAC=α,∴180ABC 2α︒-∠=。
旋转中常见的几何模型初中数学模型
旋转中常见的几何模型
九年级上册
专
题
目
录
专
题
剖
析
类型1 “手拉手”模型
模型特征:两个等边三角形或等腰直角三角形或正方形共顶点.
专
题
剖
析
图①:△AMC和△BNC都是等边
三角形,点A,B,C共线.
结论:
①△ACN≌△MCB,AN=MB;
②FC平分∠AFB.
专
题
剖
析
图②:△ABD和△ACE都是等腰直
专
题
剖
析
4.如图,已知正方形ABCD的边长为3,E,F分别是AB,BC边上的点,
且∠EDF=45°,将△DAE绕点D逆时针旋转90°得到△DCM.
(1)求证:EF=MF;
(1)证明:∵将△DAE绕点D逆时针旋转90°得到△DCM,
∴DE=DM,∠EDM=90°.
∵∠EDF=45°,
∴∠MDF=45°,
∴∠ACB+∠ACE=∠DCE+∠ACE,
即∠BCE=∠ACD.
在△BCE和△ACD中,
= ,
∠ = ∠,
= ,
∴△BCE≌△ACD(SAS),∴BE=AD.
60°
60° 60°
专
题
剖
析
2.如图①,C为线段AB上一点,分别以AC,BC为边在线段AB的同侧
作正方形ACDE和BCFG,连接AF,BD.
C
F
AO=2 3
BD=AF=2 3 +2
AO=2 3
BD=AF=2 3-2
专
题
剖
析
类型2 旋转中的半角模型
模型特征:大角含半角+相等的边,通过旋转使
中考数学解答题压轴题突破 重难点突破八 几何综合题 类型六:旋转在几何综合题中的应用
(2)证明:BE=AH+DF.
(2)证明:将△ABH绕着点B顺时针旋转90° 得到△BCM,∵四边形ABCD是正方形, ∴AD=BC,∠ADC=∠C=90°,∴∠ADF=∠C, ∵AF∥BE,∴∠F=∠BEC,∴△ADF≌△BCE(AAS), ∴DF=CE.又由旋转可知AH=CM,∠AHB=∠M,∠BAH=∠BCM=90°, ∵∠BCD=90°,∴∠BCD+∠BCM=180°, ∴点E,C,M在同一直线.∴AH+DF=EC+CM=EM.
类型六:旋转在几何综合 题中的应用
模型一:旋转构造基本图形 【解题方法模型构建】 若题干中出现“共顶点、等线段(相邻等线段)”这一特征.常考虑构造 旋转,通过旋转可以将线段转移,将已知条件集中,从而解决问题.
1.遇60°旋转60°,构造等边三角形(等边三角形旋转模型).
通过旋转可将线段AP,BP,CP转移在同一个三角形中(△CPP′). 注:根据“旋转的相互性”也可绕A点旋转△APC,或绕B,C点旋转相应 三角形(还有5种构造方法).
模型二:旋转构造模型 【解题方法模型构建】 1.如图,在△OAB中,OA=OB,在△OCD中,OC=OD,∠AOB=∠COD=
α,将△OCD绕点O旋转一定角度后,连接AC,BD,相交于点E.简记 为:双等腰,共顶点,顶角相等,旋转得全等.
【结论】(1)△AOC≌△BOD(SAS); (2)AC=BD; (3)两条拉手线AC,BD所在直线的夹角与∠AOB相等或互补.
【结论】△ABD≌△AEC;△ABE∽△ADC.
2.请阅读下列材料: 问题:如图①,在等边三角形ABC内有一点P,且PA=2,PB= 3 ,PC= 1,求∠BPC度数的大小和等边三角形ABC的边长. 李明同学的思路:将△BPC绕点B逆时针旋转60°,画出旋转后的图形 (如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角 三角形(由勾股定理的逆定理可证),∴∠AP′B=150°,而∠BPC=∠ AP′B=150°,进而求出等边角形ABC的边长为 7,问题得到解决.
初中数学《几何旋转》重难点模型汇编(四大题型)含解析
专题旋转重难点模型汇编【题型1手拉手模型】【题型2“半角”模型】【题型3构造旋转模型解题】【题型4奔驰模型】【题型5费马点模型】【题型1手拉手模型】1如图1,在△ABC中,∠A=90°,AB=AC=2,点D、E分别在边AB、AC上,且AD=AE=2-2,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α0°<α<360°,分别连接CE、BD.(1)如图2,当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)连接CD,在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【答案】(1)见解析(2)见解析(3)△BCD的面积的最大值为3-2,旋转角α=135°【详解】(1)证明:由题意得,AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,AC =AB∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD SAS ,∴CE =BD ;(2)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,在△ACE 和△ABD 中,AC =AB∠CAE =∠BAD AE =AD∴△ACE ≌△ABD SAS ,∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,∴BC =AB 2+AC 2=2,CD =AC +AD =2,∴BC =CD , ∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解: 在△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时,△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,DG ⊥BC ,∴AG =12BC =1,∠GAB =45°,∴DG =AG +AD =3-2,∠DAB =180°-45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12×2×3-2 =3-2,此时旋转角α=135°.【点睛】本题是几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,垂直平分线的判定和性质等知识,寻找全等三角形,利用数形结合的思想解决问题是解题关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC =2,D ,E分别为AC ,BC 的中点,将△CDE 绕点C 逆时针方向旋转得到△CD E (如图2),使直线D E 恰好过点B ,连接AD .(1)判断AD 与BD 的位置关系,并说明理由;(2)求BE 的长;(3)若将△CDE绕点C逆时针方向旋转一周,当直线D E 过Rt△ABC的一个顶点时,请直接写出BE 长的其它所有值.【答案】(1)AD ⊥BD ,见详解(2)14-22(3)2+142或14-2 2【详解】(1)解:AD 与BD 的位置关系为AD ⊥BD .∵AC=BC,D,E分别为AC,BC的中点,∴CD=CE,即CD =CE ,∵∠C=90°,即∠BCA=∠D CE =90°,∴∠ACD =∠BCE ,∴△CD A≌△CE B,∴∠CE B=∠CD A,∵∠C=90°,CD =CE ,AC=BC,∴∠CD E =∠CE D =∠CAB=∠CBA=45°,∴∠CE B=∠CD A=135°,∴∠AD B=135°-45°=90°,即:AD ⊥BD .(2)解:Rt△ACB中,AC=BC=2,∴BA=AC2+BC2=22,同理可求D E =2,∵△CD A≌△CE B,∴AD =BE ,设AD =BE =x,在Rt△AD B中,由勾股定理得:x2+2+x2=222,解得:x=14-22(舍负),∴BE =14-22.(3)解:①经过点B 时,题(2)已求BE =14-22;②经过点A 时,如图所示,同理可证:△CD A ≌△CE B ,∴∠D AC =∠E BC ,BE =AD∵∠1=∠2,∴∠AE B =∠BCA =90°,设BE =AD =x ,在Rt △AE B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;③再次经过点B 时,如下图:同理可证:△CD A ≌△CE B ,AD ⊥BE ,设BE =AD =x ,在Rt △AD B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;综上所述:BE =2+142或BE =14-22.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等的应用,正确熟练掌握知识点是解题的关键.3如图,△ABC 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD 的数量关系是,位置关系是;(2)【探究】:把△DCE 绕点C 旋转到如图2的位置,连接AD ,BE ,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE 绕点C 在平面内自由旋转,若AC =6,CE =22,当A ,E ,D 三点在同一直线上时,直接写出BE的长.【答案】(1)BE=AD,BE⊥AD(2)(1)中的结论成立,理由见解析(3)42-2或42+2【详解】(1)解:∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴BC=AC,EC=DC,∠ACB=90°,∴BC-EC=AC-DC,∴BE=AD,∵∠ACB=90°,∴BE⊥AD,故答案为:BE=AD,BE⊥AD;(2)解:(1)中结论仍然成立,理由:由旋转知,∠BCE=∠ACD,∵BC=AC,EC=DC,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠ACB=90°,∴∠CBE+∠BHC=90°,∴∠CAD+∠BHC=90°,∵∠BHC=∠AHG,∴∠CAD+∠AHG=90°,∴∠AGH=90°,∴BE⊥AD;(3)解:①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,DE=2,∴CM=EM=12在Rt△ACM中,AC=6,∴AM=AC2-CM2=42,∴AE=AM-EM=42-2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42+2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,DE=2,∴CN=EN=12在Rt△ACN中,AC=6,∴AN=AC2-CN2=42,∴AE=AN+NE=42+2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42-2;综上,BE的长为42-2或42+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.4已知:如图1,△ABC中,AB=AC∠BAC=60°,D、E分别是AB、AC上的点,AD=AE,不难发现BD、CE的关系.(1)将△ADE绕A点旋转到图2位置时,写出BD、CE的数量关系;(2)当∠BAC=90°时,将△ADE绕A点旋转到图3位置.①猜想BD与CE有什么数量关系和位置关系?请就图3的情形进行证明;②当点C、D、E在同一直线上时,直接写出∠ADB的度数.【答案】(1)BD=CE(2)①BD=CE,BD⊥CE,证明见解析,②45°或135°【详解】(1)∵∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,水不撩不知深浅∴△BAD≌△CAE SAS∴BD=CE;(2)①BD=CE,BD⊥CE,证明:如图,BD交AC于点F,交CE于点M,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE SAS∴BD=CE,∠ABD=∠ACE,在△BAF和△CMF中,∵∠ABD=∠ACE,∠AFB=∠MFC,∴∠FMC=∠FAB,∵∠BAC=90°,∴∠FMC=90°,∴BD⊥CE,因此BD=CE,BD⊥CE;②如图,当点 C、D、E 在同一直线上,且点D在线段CE上时,如图I所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB=∠EDB-∠ADE=45°;当点 C、D、E 在同一直线上,且点E在线段DE上时,如图II所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB =∠EDB +∠ADE =135°;故∠ADB 的度数为:45°或135°.5△ABC是等腰直角三角形,点D 是△ABC 外部的一点,连接AD ,AB =AC =2AD =6,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED ,CE ,BD .(1)如图1,当点D 在线段EC 上时,线段EC 与线段BD 的数量关系是,位置关系是;(2)如图2,线段EC 交BD 于点P ,此时(1)中线段EC 与线段BD 的关系是否依然成立,请说明理由;(3)如图3,线段EC 交BD 于点P ,点Q 是AC 边的中点,连接DC ,PQ ,当DC =32时,求PQ 的长.【答案】(1)BD =CE ,BD ⊥CE(2)(1)中线段EC 与线段BD 的关系是否依然成立,理由见解析(3)PQ 的长为32【详解】(1)解:BD =CE ,BD ⊥CE ,理由如下:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转90°得到线段AE ,∴∠DAE =90°,AE =AD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE ,∴∠ACE +∠DBC +∠ACB =∠ABD +∠DBC +∠ACB =∠ABC +∠ACB =90°,∴∠BDC =90°,∴BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;(2)解:(1)中线段EC 与线段BD 的关系依然成立;理由:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转 90° 得到线段AE ,∴∠DAE=90°,AE=AD,∴∠BAD=∠CAE,在△ABD与△ACE中,AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∴∠ACE+∠DBC+∠ACB=∠ABD+∠DBC+∠ACB=∠ABC+∠ACB=90°,∴∠BPC=90°,∴BD⊥CE;(3)解:连接PQ,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴∠DAE=90°,AE=AD=3,∴DE=2AD=32,∵DC=32,∴DE=CD,由(2)知BD⊥CE,∴EP=CP,∵点Q是AC边的中点,∴PQ=12AE=32.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形性质,旋转的性质,三角形中位线定理,熟练掌握全等三角形的判定和性质定理是解题的关键.【题型2“半角”模型】6如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且∠MAN=45°,我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法,如图①,将△ADM绕点A顺时针旋转90°,点D与点B重合,连接AM、AN、MN.(1)试判断DM,BN,MN之间的数量关系;(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,∠MAN=45°,连接MN,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B +∠D =180°,点N ,M 分别在边BC ,CD 上,∠MAN =60°,请直接写出BN ,DM ,MN 之间数量关系.【答案】(1)MN =DM +BN (2)MN =BN -DM ,证明见解析(3)MN =DM +BN【详解】(1)解:MN =DM +BN ,证明如下:如图:∵四边形ABCD 是正方形,∴∠ABC =∠BAD =∠D =90°,,由旋转的性质可得:AE =AM ,BE =DM ,∠ABE =∠D =90°,∠DAM =∠BAE ,∴∠ABE +∠ABC =180°,∴点E 、B 、C 共线,∵∠DAM +∠BAM =90°,∴∠BAE +∠BAM =90°=∠EAM ,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MANAN =AN∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BE +BN ,∴MN =DM +BN ;(2)解:MN =BN -DM ,证明如下:如图,在BC 上取BE =MD ,连接AE ,,∵四边形ABCD 是正方形,∴∠ABC =∠ADC =∠BAD =90°,AB =AD ,∵∠ADC +∠ADM =180°,∴∠ADC =∠ADM =∠ABE =90°,在△ABE 和△ADM 中,AB =AD∠ABE =∠ADM BE =DM,∴△ABE≌△ADM SAS ,∴AE =AM ,∠BAE =∠MAD ,∵∠BAE +∠EAD =∠BAD =90°,∴∠DAM +∠EAD =∠EAM =90°,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MAN AN =AN,∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BN -BE ,∴MN =BN -DM ;(3)解:如图,将△ABN 绕点A 逆时针旋转120°得△ADE , ∴∠B =∠ADE ,AB =AD ,AE =AN ,∴∠B +∠ADC =180°,∴∠ADE +∠ADC =180°,∴点E 、D 、C 共线,∵∠BAN +∠NAD =∠BAD =120°,∴∠DAE +∠NAD =∠NAE =120°,∵∠MAN =60°,∴∠EAN =∠EAM -∠MAN =60°=∠MAN ,在△EAN 和△MAN 中,AE =AN∠EAM =∠NAM AM =AM,∴△EAM ≌△NAM SAS ,∴EM =MN ,∴MN =DM +BN .【点睛】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,全等三角形的判定与性质,利用旋转构造全等三角形是解题的关键.7如图,已知在△ABC 中,AB =AC ,D 、E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD,连接D E .(1)当∠BAC =120°,∠DAE =60°时,求证:DE =D E ;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D EC是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析(2)∠DAE=12∠BAC,理由见解析(3)DE=2BD【详解】(1)证明:∵△ABD绕点A旋转得到△ACD ,∴AD=AD ,∠CAD =∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D AE=∠CAD +∠CAE=∠BAD+∠CAE=∠BAC-∠DAE=120°-60°=60°,∴∠DAE=∠D AE,在△ADE和△AD E中,∵AD=AD∠DAE=∠D AE AE=AE,∴△ADE≌△AD E(SAS),∴DE=D E;(2)解:∠DAE=12∠BAC.理由如下:在△ADE和△AD E中,AD=AD AE=AE DE=D E,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=12∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD =45°,∴∠D CE=45°+45°=90°,∵△D EC是等腰直角三角形,∴D E=2CD ,由(2)DE=D E,∵△ABD绕点A旋转得到△ACD ,∴BD=C D ,∴DE=2BD.【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.8学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到△ADE 的位置,然后证明△AFE ≌△AFE ,从而可得EF =E F .E F =E D +DF =BE +DF ,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠EAF =12∠BAD ,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,∠EAF =12∠BAD ,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是⊙O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.【答案】(1)BE +DF =EF (2)证明见解析(3)PB +PC =2PA【详解】(1)解:结论:BE +DF =EF ,理由如下:证明:将△ABE 绕点A 逆时针旋转,旋转角等于∠BAD ,使得AB 与AD 重合,点E 转到点E 的位置,如图所示,可知△ABE≌△ADE ,∴BE=DE .由∠ADC+∠ADE =180°知,C、D、E 共线,∠BAD,∵∠EAF=12∴∠BAF+∠DAF=∠EAF,∴∠DAE +∠DAF=∠EAF=∠E'AF,∴△AEF≌△AE F,∴EF=E F=BE+DF.(2)证明:将△ABE绕点A逆时针旋转,旋转角等于∠BAD,使得AB与AD重合,点E转到点E 的位置,如图所示,由旋转可知△ABE≌△ADE ,∴BE=DE ,∠B=∠ADE ,∠BAE=∠DAE ,AE=AE .∴∠ADC+∠ADE =180°,∴点C,D,E 在同一条直线上.∠BAD,∵∠EAF=12∴∠BAE+∠DAF=1∠BAD,2BAD,∴∠DAE +∠DAF=12∠BAD,∴∠FAE =12∴∠EAF=∠FAE .∵AF=AF,∴△FAE ≌△FAE,∴FE=FE ,即BE+DF=EF.(3)结论:PB+PC=2PA,理由如下:证明:将△ABP绕点A逆时针旋转90°得到△ACP ,使得AB与AC重合,如图所示,由圆内接四边形性质得:∠ACP +∠ACP=180°,即P,C,P 在同一直线上.∴BP=CP ,AP=AP ,∵BC为直径,∴∠BAC=90°=∠BAP+∠PAC=∠CAP +∠PAC=∠PAP ,∴△PAP 为等腰直角三角形,∴PP =2PA,即PB+PC=2PA.【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.9阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC =2,求DE的长.【答案】(1)见解析(2)∠B+∠ADC=180°(3)5【详解】(1)解:如图所示,将△ABE绕着点A逆时针旋转90°得到△ADG,∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=∠BAD=90°,由旋转的性质可得AE=AG,BE=DG,∠BAE=∠DAG,∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF;(2)解:当∠B+∠ADC=180°时,仍有EF=BE+DF,理由如下:如图所示,将△ABE绕点A逆时针旋转90°得到△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠B=∠ADG∵∠B+∠ADC=180°,∠B=∠ADG,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAD=90°∴∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF,故答案为:∠B+∠ADC=180°;(3)解:如图所示,将△ABD绕点A逆时针旋转90°得到△ACG,∴∠B=∠ACG,BD=CG=1,AD=AG,∵∠BAC=90°,∴∠B+∠ACB=90°,∠BAD+∠CAD=90°,∴∠CAG+∠CAD=90°,∠ACG+∠ACB=90°,即∠ECG=90°,∠DAG=90°,∵∠DAE=45°,∴∠GAE=45°=∠DAE,又∵AE=AE,∴△ADE≌△AGE SAS,∴GE=DE,在Rt△CEG中,由勾股定理得GE=CE2+CG2=5,∴DE=GE=5.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,旋转的性质,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.10如图1,E,F分别是正方形ABCD的边CD,BC上的动点,且满足∠EAF=45°,试判断线段BF,EF,ED之间的数量关系,并说明理由.小聪同学的想法:将△DAE顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小聪同学的思路完成下面的问题.(1)线段BF,EF,ED之间的数量关系是.(2)如图2,在正方形ABCD中,∠EAF=45°,连接BD,分别交AF,AE于点M,N,试判断线段BM,MN,ND之间的数量关系,并说明理由.【答案】(1)EF=BE+DF(2)MN2=BM2+DN2【详解】(1)解:结论:EF=BE+DF理由:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,由旋转的性质可知:AH=AE,∠ADE=∠ABH=90°,HB=DE,∠EAH=90°,∵∠EAF=45°,∴∠FAH=45°,∴∠FAH=∠EAF,∵∠ABF+∠ABH=90°+90°=180°,∴F、B、H三点共线,又∵AF=AF,∴△AFE≌△AFH SAS,∴EF=FH,∵FH=BF+BH=BF+DE,∴EF=BE+DF.(2)结论:MN2=BM2+DN2,证明如下:如图所示,将△ADN绕点A顺时针旋转90°得到△BAG.∵BA=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,由旋转的性质可知:AN=AG,∠ABG=∠ADB=45°,∠GAE=90°,∴∠MBG=∠ABG+∠ABD=90°,∵∠EAF=45°,∴∠GAM=∠BAG+∠BAM=90°-∠EAF=45°,∴∠MAG=∠MAN,∵AM=AM,∴△AGM≌△ANM SAS,∴MN=GM,∵∠MBG=90°,∴BM2+BG2=GM2,∴MN2=BM2+DN2.【点睛】本题涉及了旋转变换,正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形,属于中考常考题型.【题型3构造旋转模型解题】11如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③BE=2,DF=3,则S△AEF=15;④若AB=62,BM=3,则MN=5.其中结论正确的个数是()A.4B.3C.2D.1【答案】A【分析】根据旋转的性质得到BH=DF,AH=AF,∠BAH=∠DAF,得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∠AEB=∠AEF,于是得到BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,根据全等三角形的性质得到AB=AG,于是得到点A到线段EF的距离一定等于正方形的边长,故②正确;求出EF=BE+DF=5,设BC=CD=n,根据勾股定理即可得到S△AEF=15,故③正确;把△ADN绕点A顺时针旋转90°得到△ABQ,再证明△AMQ≌△AMN(SAS),从而得MQ=MN,再证明∠QBM=∠ABQ+∠ABM=90°,设MN=x,再由勾股定理求出x即可.【详解】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,AH=AF∠EAH=∠EAF=45oAE=AE,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,∴∠AGE=∠ABE=90°,在△ABE与△AGE中,∠ABE=∠AGE∠AEB=∠AEGAE=AE,∴△ABE≌△AGE(AAS),∴AB=AG,∴点A到线段EF的距离一定等于正方形的边长;故②正确;∵BE=2,DF=3,∴EF=BE+DF=5,设BC=CD=n,∴CE=n-2,CF=n-3,∴EF2=CE2+CF2,∴25=(n-2)2+(n-3)2,∴n=6(负值舍去),∴AG=6,∴S△AEF=12×6×5=15.故③正确;如图,把△ADN 绕点A 顺时针旋转90°得到△ABQ ,连接QM ,由旋转的性质得,BQ =DN ,AQ =AN ,∠BAQ =∠DAN ,∠ADN =∠ABQ =45°,∵∠EAF =45°,∴∠MAQ =∠BAQ +∠BAE =∠DAN +∠BAE =90°-∠EAF =45°,∴∠MAQ =∠MAN =45°,在△AMQ 和△AMN 中,AQ =AN∠MAQ =∠MAN AM =AM,∴△AMQ ≌△AMN (SAS ),∴MQ =MN ,∵∠QBM =∠ABQ +∠ABM =90°,∴BQ 2+MB 2=MQ 2,∴ND 2+MB 2=MN 2,∵AB =62,∴BD =2AB =12,设MN =x ,则ND =BD -BM -MN =9-x ,∴32+(9-x )2=x 2,解得:x =5,∴MN =5,故④正确,故选A .【点睛】本题主要考查了旋转的性质,正方形的性质,全等三角形的性质与判定,勾股定理等等,解题的关键是旋转三角形ADF 和三角形AND .12如图,已知点P 是正方形ABCD 内的一点,连接PA 、PB 、PC .若PA =4,PB =2,∠APB =135°,则PC 的长为.【答案】26【分析】先根据正方形的性质得BA=BC,∠ABC=90°,则可把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,根据旋转的性质得BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB= 135°,于是可判断△PBE为等腰直角三角形,所以PE=2PB=22,∠PEB=45°,则∠PEC=90°,然后在Rt△PEC中利用勾股定理计算PC的长.【详解】解:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,∴BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴PE=2PB=22,∠PEB=45°,∴∠PEC=135°-45°=90°,在Rt△PEC中,∵PE=22,CE=4,∴PC=42+(22)2=26.故答案为:26.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.13(1)问题发现:如图1,△ABC和△DCE均为等边三角形,当△DCA应转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD,则①∠BEC=;②线段AD,BE之间的数量关系;(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,若AE=12,DE=7,求AB的长度;(3)如图3,P为等边三角形ABC内一点,且∠APC=150°,∠APD=30°,AP=4,CP=3,DP=7,求BD的长.【答案】(1)①120°;②AD=BE;(2)13;(3)229【分析】本题主要考查了全等三角形的判定及性质和勾股定理的应用,(1)证明△ACD≌△BCE(SAS).得到∠ADC=∠BEC.利用△DCE为等边三角形,得到∠CDE=∠CED=60°,再利用点A,D,E在同一直线上,可得∠ADC=120°,即可得∠BEC=120°;(2)证明△ACD≌△BCE(SAS),可得AD=BE=AE-DE=15-7=8,∠ADC=∠BEC,再证明∠AEB=∠BEC-∠CED=90°,利用勾股定理求解即可;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,可得△BEC≌△APC,证明△PCE是等边三角形,证明∠BED=90°,再证明D、P、E在同一条直线上,求出DE,利用勾股定理求解即可.【详解】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:①120°;②AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE=AE-DE=12-7=5,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC-∠CED=90°.∴AB=AE2+BE2=144+25=13;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:AP=4,CP=3,DP=7则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=4,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=3,∴∠BED=∠BEC-∠PEC=90°,∵∠APD=30°,∴∠DPC=150°-30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=7+3=10,在Rt△BDE中,BD=BE2+DE2=229,即BD的长为229.【点睛】本题涉及全等三角形的判定及性质,等边三角形的性质,勾股定理,旋转的性质等知识点,解题的关键是利用旋转构造全等三角形,把分散的已知条件集中到同一个三角形中.【题型4奔驰模型】14如图,已知点D是等边△ABC内一点,且BD=3,AD=4,CD=5.(1)求∠ADB的度数;以下是甲,乙,丙三位同学的谈话:甲:我认为这道题的解决思路是借助旋转,我选择将△BCD绕点B顺时针旋转60°或绕点A逆时针旋转60°;乙:我也赞成旋转,不过我是将△ABD进行旋转;丙:我是将△ACD进行旋转.请你借助甲,乙,丙三位同学的提示,选择适当的方法求∠ADB的度数;(2)若改成BD=6,AD=8,CD=10,∠ADB的度数=°,点A到BD的距离为;类比迁移:(3)已知,∠ABC=90°,AB=BC,BE=1,CE=3,AE=5,求∠BEC的度数.【答案】(1)∠ADB=150°(2)150,4.(3)∠BEC=135°【详解】(1)解:(1)选择甲:如图1,作∠DBE=60°,且BE=BD,连接DE,AE,则△BDE是等边三角形,∴DE=BD=3,∠BDE=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD=5,∵AD2+DE2=42+32=52=AE2,∴∠ADE=90°,∴∠ADB=∠ADE+∠BDE=90°+60°=150°;乙:如图2,同理可得,∠BFD=60°,∠DFC=90°,∴∠ADB=∠BFC=∠BFD+∠DFC=60°+90°=150;丙:如图3同理可得,∠AGD=60°,∠BDG=90°,∴∠ADB=∠ADG+∠BDG=60°+90°=150;(2)同理(1)可得:AD2+BD2=CD2,∴∠ADB=150°,如图4,过点A作BD的垂线AH,垂足为H,∴∠ADH=30°,AD=4,∴AH=12故答案为:150,4.(3)如图5,将△ABE绕着点B顺时针旋转90°,得到△CBF,连接EF,∴△ABE≌△CBF,∴BE=BF=1,AE=CF=5,∴∠FBE=∠BEF=45°,∴EF2=BE2+BF2=2∵EF2+EC2=2+3=5=AE2,∴∠FEC=90°,∴∠BEC=∠BEF+∠FEC=45°+90°=135°【点睛】本题属于四边形综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.15(1)问题发现:如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A逆时针旋转60°到△ACP 处,这样就可以将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB的度数.请按此方法求∠APB的度数,写出求解过程;(2)拓展研究:请利用第(1)题解答的思想方法,解答下面的问题:①如图2,△ABC中,AB=AC,∠BAC=90°,点E,F为BC边上的点,且∠EAF=45°,判断BE,EF,CF 之间的数量关系并证明;②如图3,在△ABC中,∠ABC=30°,AB=4,BC=6,在△ABC内部有一点P,连接PA,PB,PC,直接写出PA+PB+PC的最小值.【答案】(1)150°,见解析;(2)①BE2+CF2=EF2,见解析;②213【分析】(1)连接PP ,根据题意得到AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,进而得到△APP '为等边三角形,PP =AP=3,∠AP P=60°,根据勾股定理逆定理证明△PP C是直角三角形,且∠PP C=90°,即可求出∠APB=∠AP C=150°;(2)①证明∠B=∠ACB=45°,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,得到∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,进而得到∠DCE=90°,根据勾股定理得到DF2=CF2 +CD2=CF2+BE2 ,证明△AEF≌△ADF,得到EF=DF,即可得到BE2+CF2=EF2;②将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,即可得到∠ABA =∠PBP =60°,A B= AB=4,BP=BP ,A P =AP,从而得到△BPP 为等边三角形,∠A BC=90°,BP=PP ,根据两点之间线段最短得到PA+PB+PC=A P +PP +CP≥A C ,即可得到当且仅当A ,P ,P,C四点共线时,PA +PB+PC的值最小为 A C的长,根据勾股定理求出A C=213,即可得到PA+PB+PC的最小值为213 .【详解】解:(1)连接PP ,∵将△APB绕顶点 A 逆时针PP 旋转60°到△ACP ,∴AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,∴△APP '为等边三角形,∴PP =AP=3,∠AP P=60°,∵P P2+P C=32+42=25,PC2=52=25,∴P P2+P C=PC2,∴△PP C是直角三角形, 且∠PP C=90°,∴∠AP C=∠AP P+∠CP P=150°,∴∠APB=∠AP C=150°;(2)①BE2+CF2=EF2.证明:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,如图,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,则:∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,∴∠DCE=∠ACB+∠ACD=90°,∴DF2=CF2+CD2=CF2+BE2 ,∵∠EAF=45°,∠EAD=90°,∴∠DAF=∠EAF=45°,又∵AE=AD,AF=AF ,∴△AEF≌△ADF,∴EF=DF,∴BE2+CF2=EF2;②PA+PB+PC的最小值为 213如图,将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,则:∠ABA =∠PBP =60°,A B=AB=4,BP=BP ,A P =AP,∴△BPP 为等边三角形,∠A BC=∠A BA+∠ABC=90°,∴BP=PP ,∴PA+PB+PC=A P +PP +CP≥A C ,∴当且仅当A ,P ,P,C四点共线时,PA+PB+PC的值最小为 A C的长,∵∠A BC=90°,∴A C=A B2+BC2=42+62=213,∴PA+PB+PC的最小值为213 .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,勾股定理及其逆定理,全等三角形的判定与性质等知识,综合性较强,熟知相关知识并根据题意灵活应用是解题关键.16(2023•崂山区模拟)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于150°.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于135°,正方形的边长为 ;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于120°,正六边形的边长为 .【答案】见试题解答内容【解答】解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,水不撩不知深浅∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=22,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=2PA=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=172=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故,∠APB=∠AP′D=135°,∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=12PP′=12×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===13;(2)如图4,∵正六边形的内角为16×(6-2)•180°=120°,∴把△APB绕点A逆时针旋转120°得到△AFP′,由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,∴∠APP′=∠AP′P=12(180°-120°)=30°,过点A作AM⊥PP′于M,设PP′与AF相交于N,则AM=12PA=12×2=1,P′M=PM===3,∴PP′=2PM=23,∵PP′2+P′F2=(23)2+12=13,PF2=132=13,水不撩不知深浅∴PP′2+P′F2=PF2,∴∠PP′F=90°,∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,故,∠APB=∠AP′F=120°,∵P′F=AM=1,∵△AMN和△FP′N中,,∴△AMN≌△FP′N(AAS),∴AN=FN,P′N=MN=12P′M=32,在Rt△AMN中,AN===7 2,∴AF=2AN=2×72=7.故答案为:150°;(1)135°,13;(2)120°,7.【题型5费马点模型】17如图,四边形ABCD是菱形,AB=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为.【答案】63【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,AB=3,AH=3BH=33,∴BH=12∴AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.18如图,在等边三角形ABC内有一点P.(1)若PA=2,PB=3,PC=1,求∠BPC的度数;(2)若等边三角形边长为4,求PA+PB+PC的最小值;(3)如图,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1,求正方形ABCD的边长.【答案】(1)∠BPC=150°,(2)43(3)5【详解】(1)解: 如图所示,将线段BP绕点B逆时针旋转60°得到线段B P ,连接A P 、P P ,∴△BPC≌△BP A,∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B=∠BPC,∴△B P P是等边三角形,∴∠B P P=∠PB P =60°,P P =BP=3,∵AP 2+PP 2=1+3=4=AP2,∴△A P P是直角三角形,∠A P P=90°,∴∠A P B=∠AP P +∠B P P=150°,∴∠BPC=150°,(2)解:如图所示,将△ABP绕点A顺时针旋转60°得到△ACD,则△ABP≌△ACD,PA=DA,∠PAD=60°,则△APD是等边三角形,∴AP=PD,再将△APC绕点A顺时针旋转60°得到△ADE,则△APC≌△ADE∴PC=DE,∠CAE=60°,CA=EA,∴PA+PB+PC=BP+PD+DE≥BE当B,P,D,E四点共线时,PA+PB+PC取得最小值,即BE的长,设BE,AC交于点F,∵AB=AC=AE,∠BAF=∠EAF,∠BAE=∠BAF+∠EAF=120°,BE ,∴BE⊥AF,BF=EF=12∴∠ABF=30°,AB=2 ,∴AF=12在Rt△ABF中,BF=AB2-AF2=23 ,∴BE=2BF=43,即PA+PB+PC的最小值为43;(3)如图,将△BPC绕点B逆时针旋转90°,得到△BEA,∴△BPC≌△BEA,∴BE=BP=2,AE=PC=1,∠PBE=90°,∠AEB=∠BPC,∴△BEP是等腰直角三角形,∴∠BEP=∠EPB=45°,PE=2PB=2,∵AE2+PE2=1+4=5=AP2,∴△AEP是直角三角形,∠AEP=90°,如图,延长AE,过点B作BF⊥AE于F,则∠F=90°,∵∠AEP=90°,∠BEP=45°,∴∠BEF=45°=∠EBF,∴BF=EF=1,∴AF=AE+EF=2,∴AB=AF2+BF2=22+1=5,即正方形的边长为5.【点睛】此题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理及其逆定理,熟练掌握旋转的性质是解题的关键.19背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,当∠APB=∠APC=∠CPB=120°时,则PA+PB+PC取得最小值.(1)如图2,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数,为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP 处,此时△ACP ≌△ABP这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与△ABC的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,△ABC三个内角均小于120°,在△ABC外侧作等边三角形△ABB ,连接CB ,求证:CB 过△ABC的费马点.(3)如图4,在RT△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为△ABC的费马点,连接AP、BP、CP,求PA+PB+PC的值.(4)如图5,在正方形ABCD中,点E为内部任意一点,连接AE、BE、CE,且边长AB=2;求AE+BE+ CE的最小值.【答案】(1)150°;(2)见详解;(3)7;(4)6+2.【详解】(1)解:连结PP′,∵△ABP≌△ACP ,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC为等边三角形,。
中考数学常见的几种旋转模型
旋转常见模型一、遇60°旋转60°, 构造等边三角形1.点P是等边△ABC内一点, 且PC=3, PB=4, PA=5。
求∠BPC的度数。
2.如图6-2, 是等边外一点, 若, 求的度数。
图6-23.(2018年广州市节选)如图, 在四边形ABCD 中,∠B ( 60( ,∠D ( 30( ,AB ( BC.(1)∠A ∠C= °(2)连接BD , 探究AD , BD , CD 三者之间的数量关系, 并说明理由.二、遇90°旋转90°, 构造等腰直角三角形1.如图, 在正方形ABCD内部有一点P, PA= , PB= , PC=1, 求∠BPC的度数。
2.在△ABC中,∠BAC=90°,AB=AC,P是△ABC内一点,PA=2,PB=1,PC=3,求∠APB的度数.三、遇等腰旋转顶角, 构造旋转全等FED CBA GABCDEABCDEF1.在 中, , ( ), 将线段 绕点 逆时针旋转60°得到线段 . (1)如图1, 直接写出 的大小(用含 的式子表示); (2)如图2, , 判断 的形状并加以证明; (3)在(2)的条件下, 连结 , 若 , 求 的值.四、半角模型说明: 旋转半角的特征是相邻等线段所成角含一个二分之一角, 通过旋转将另外两个和为二分之一的角拼接在一起, 成对称全等。
秘籍: 角含半角要旋转: 构造两次全等FED CBAG FED CBA1.如图, 在正方形ABCD 中, E 、F 分别在BC.CD 上, 且∠EAF=45°连接EF. 求证:EF=BE+DF.如图, 在正方形ABCD中, E、F分别在BC.CD上, 且∠EAF=45°连接AD, 与AE、AF分别交于M、N,求证: MN2=BM2+DM23.如图, 在正方形ABCD 的边长为2, 点E, 点F分别在边AD,CD上, 若∠EBF=45°,则△EDF的周长等于。
备战中考数学二轮专题归纳提升真题几何模型—三角形中的旋转模型(解析版)
专题11 几何模型(1)—三角形中的旋转模型【问题引入】当题中出现等腰三角形的条件但是不好使用时,可以考虑利用旋转构造辅助线,通过构造等腰三角形得到手拉手全等,利用全等转移边角进行解题旋转三要素:旋转中心、旋转角、旋转方向旋转对象:一般是含已知条件或问题相关的边角所在三角形如何转:确定旋转三角形后,考虑由旋转三角形中的腰旋转至与另一腰重合,整个三角形进行同样的旋转旋转后的图形分析:1、从新构造的全等三角形进行分析;2、从新得到的等腰三角形进行分析【题型一:常见旋转模型之邻补模型】条件构成:有两邻边相等的四边形,且四边形对角互补,且一般等腰三角形顶角为特殊角。
∠DAB+∠DCB=180°,AD=AB常见结论:1、有角平分线;2、有线段和差的倍数关系解题方法:1、作双垂;2、构造旋转全等①90°相关结论:1、AC平分∠BCD2、BC+CD=√2AC②60°相关结论:1、AC平分∠BCD2、BC+CD=AC③120°相关结论:1、AC平分∠BCD2、BC+CD=√3AC补充说明:对角互补、邻边相等、角平分线三个条件知到其中两个就可求另外第三个,辅助线的构造与三角形全等相同,但是全等判定会有差异,需要根据具体情况判断【例】如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=30°,BD=4√3,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.【答案】4√3+4.【解析】将△ACN绕点A逆时针旋转,得到△ABE,如图:由旋转得:∠NAE=90°,AN=AE,∠ABE=∠ACD,∠EAB=∠CAN,∵∠BAC=∠D=90°,∴∠ABD+∠ACD=360°﹣90°﹣90°=180°,∴∠ABD+∠ABE=180°,∴E,B,M三点共线,∵∠MAN=45°,∠BAC=90°,∴∠EAM=∠EAB+∠BAM=∠CAN+∠BAM=∠BAC﹣∠MAN=90°﹣45°=45°,∴∠EAM=∠MAN,在△AEM和△ANM中,{AE=AN∠EAM=∠NAMAM=AM,∴△AEM≌△ANM(SAS),∴MN=ME,∴MN=CN+BM,∵在Rt△BCD中,∠BDC=90°,∠CBD=30°,BD=4√3,CD=BD×tan∠CBD=4,∴△DMN的周长为DM+DN+MN=DM+DN+BM+CN=BD+DC=4√3+4,故答案为:4√3+4.【练1】如图,在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OA=OB,点C在第一象限,OC=3,连接BC,AC,若∠BCA=90°,则BC+AC的值为_________.【答案】3√2【解析】解:将△OBC绕O点旋转90°,∵OB=OA∴点B落在A处,点C落在D处且有OD=OC=3,∠COD=90°,∠OAD=∠OBC,在四边形OACB中∵∠BOA=∠BCA=90°,∴∠OBC+∠OAC=180°,∴∠OAD+∠OAC=180°∴C、A、D三点在同一条直线上,∴△OCD为等要直角三角形,根据勾股定理CD2=OC2+OD2即CD2=32+32=18解得CD=3√2即BC+AC=3√2.【练2】如图,P是等边三角形ABC内一点,将线段BP绕点B逆时针旋转60°得到线段BQ,连接AQ.若PA=4,PB=5,PC=3,则四边形APBQ的面积为_______.【答案】5√34+6【解析】解:如图,连接PQ,由旋转的性质可得,BP=BQ,又∵∠PBQ=60°,∴△BPQ是等边三角形,∴PQ=BP,在等边三角形ABC中,∠CBA=60°,AB=BC,∴∠ABQ=60°-∠ABP∠CBP=60°-∠ABP∴∠ABQ=∠CBP在△ABQ与△CBP中{BQ=BP∠ABQ=∠CBPAB=CB∴△ABQ≌△CBP(SAS),∴AQ=PC,又∵PA=4,PB=5,PC=3,∴PQ=BP=5,PC=AQ=3,在△APQ中,AQ2=9,AP2=16,PQ2=25,25=16+9,∴由勾股定理的逆定理可知△APQ是直角三角形,∴S 四边形APBQ =S △BPQ +S △APQ =√34×52+12×3×4=5√34+6, 故答案为:5√34+6【练3】如图,在△ABC 中,∠ACB =120°,BC >AC ,点E 在BC 上,点D 在AB 上,CE =CA ,连接DE ,180ACB ADE ∠+∠=︒,CH ⊥AB ,垂足为H .证明:DE AD +=.【答案】见解析【解析】证明:如图,延长BA 到点F ,使AF=DE ,连接CF 、CD ,∵∠ACB+∠ADE=180°∴∠CAD+∠CED=360°-180°=180°∵∠CAD+∠CAF=180°∴∠CAF=∠CED∵AC=EC ,AF=ED∴△AFC ≌△EDC∴CF=CD ,∠ACF=∠ECD∴∠FCD=∠ACF+∠ACD=∠ECD+∠ACD=∠ACB=120°∵CF=CD ,CH ⊥DF∴FH=DH=12DF =12(DE+AD),∠HCD=12∠FCD=60°∴tan ∠HCD=DH CH =√3∴DH=√3CH∴DE+AD=2DH=2√3CH【题型二:旋转与三角形全等的构造】【例】问题背景:如图①设P 是等边△ABC 内一点,PA =6,PB =8,PC =10,求∠APB 的度数.小君研究这个问题的思路是:将△ACP 绕点A 逆时针旋转60°得到△ABP ',易证:△APP'是等边三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.简单应用:(1)如图2,在等腰直角△ABC中,∠ACB=90°.P为△ABC内一点,且PA =5,PB=3,PC=2√2,则∠BPC=°(2)如图3,在等边△ABC中,P为△ABC内一点,且PA=5,PB=12,∠APB=150°,则PC=.拓展廷伸:①如图4,∠ABC=∠ADC=90°,AB=BC.求证:√2BD=AD+DC.②若图4中的等腰直角△ABC与Rt△ADC在同侧如图5,若AD=2,DC=4,请直接写出BD的长.【答案】(1)135°(2)PC=13;拓展延伸①:证明见解析②:BD=√2【解析】解:简单应用:(1)如图2,∵△ABC是等腰直角三角形,∴∠ACB=90°,AC=BC,将△ACP绕点C逆时针旋转90°得到△CBP',连接PP',∴BP'=AP=5,∠PCP'=90°,CP'=CP=2√2,∴∠CPP'=∠CP'P=45°,根据勾股定理得,PP'=√2CP=4,∵BP'=5,BP=3,∴PP'2+BP2=BP',∴△BPP'是以BP'为斜边的直角三角形,∴∠BPP'=90°,∴∠BPC=∠BPP'+∠CPP'=135°,(2)如图3,∵△ABC是等边三角形,∴∠BAC=60°,AC=AB,将△ACP绕点A逆时针旋转60°得到△ABP',连接PP',∴BP'=CP,AP'=AP=5,∠PAP'=60°,∴△APP'是等边三角形,∴PP'=AP=5,∠APP'=60°,∵∠APB=150°,∴∠BPP'=∠APB﹣∠APP'=90根据勾股定理得,BP'=√BP2+PP′2=13,∴CP=13,拓展廷伸:①如图4,在△ABC中,∠ABC=90°,AB=BC,将△ABD绕点B顺时针旋转90°得到△BCD',∴BD'=BD,CD'=AD,∠BCD'=∠BAD,∵∠ABC=∠ADC=90°,∴∠BAD+∠BCD=180°,∴∠BCD+∠BCD'=180°,∴点D'在DC的延长线上,∴DD'=CD+CD'=CD+AD,在Rt△DBD'中,DD'=√2BD,∴√2BD=CD+AD;②如图5,在△ABC中,∠ABC=90°,AB=BC,将△CBD绕点B顺时针旋转90°得到△ABD',∴BD'=BD,CD=AD',∠DBD'=90°,∠BCD=∠BAD',AB与CD的交点记作G,∵∠ADC=∠ABC=90°,∴∠DAB+∠AGD=∠BCD+∠BGC=180°,∵∠AGD=∠BGC,∴∠BAD=∠BCD,∴∠BAD=∠BAD',∴点D'在AD的延长线上,∴DD'=AD'﹣AD=CD﹣AD=2,在Rt△BDD'中,BD=√22DD'=√2.【练1】如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数;(3)若BD=1,求AD,CD的长.【答案】(1)见解析(2)90°(3)√3【解析】(1)证明:∵将△ABD绕点A逆时针旋转60°得△ACE∴△ABD≌△ACE,∠BAC=∠DAE,∴AD=AE,BD=CE,∠AEC=∠ADB=120°,∵△ABC为等边三角形∴∠BAC=60°∴∠DAE=60°∴△ADE为等边三角形,∴AD=DE,(2)∠ADC=90°,∠AEC=120°,∠DAE=60°∴∠DCE=360°﹣∠ADC﹣∠AEC﹣∠DAE=90°,(3)∵△ADE为等边三角形∴∠ADE=60°∴∠CDE=∠ADC﹣∠ADE=30°又∵∠DCE=90°∴DE=2CE=2BD=2,∴AD=DE=2在Rt△DCE中,DC=√DE2−CE2=√22−12=√3.【练2】如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)请求出旋转角的度数;(2)请判断AE与BD的位置关系,并说明理由;(3)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.【答案】(1)90°(2)证明见解析(3)BD=√22【解析】解:(1)∵将△BCD绕点C顺时针旋转得到△ACE ∴△BCD'≌△ACE∴AC=BC,又∵∠ABC=45°,∴∠ABC=∠BAC=45°∴∠ACB=90°故旋转角的度数为90°(2)AE⊥BD.理由如下:在Rt△BCM中,∠BCM=90°∴∠MBC+∠BMC=90°∵△BCD'≌△ACE∴∠DBC=∠EAC即∠MBC=∠NAM又∵∠BMC=∠AMN∴∠AMN+∠CAE=90°∴∠AND=90°∴AE⊥BD(3)如图,连接DE,由旋转图形的性质可知CD=CE,BD=AE,旋转角∠DCE=90°∴∠EDC=∠CED=45°∵CD=3,∴CE=3在Rt△DCE中,∠DCE=90°∴DE=√CD2+CE2=√9+9=3√2∵∠ADC=45°∴∠ADE=∠ADC+∠EDC=90°在Rt△ADE中,∠ADE=90°∴EA=√AD2+DE2=√18+4=√22∴BD=√22【练3】如图1,已知:已知:等边△ABC,点D是边BC上一点(点D不与点B、点C重合),求证:BD+DC>AD.下面的证法供你参考:把△ACD绕点A顺时针旋转60°得到△ABE,连接ED,则有△ACD≌△ABE,DC=EB,∵AD =AE,∠DAE=60°,∴△ADE是等边三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD实践探索:(1)请你仿照上面的思路,探索解决下面的问题:如图3,点D是等腰直角三角形△ABC边上的点(点D不与B、C重合).求证:BD+DC>√2AD.(2)如果点D运动到等腰直角三角形△ABC外或内时,BD、DC和AD之间又存在怎样的数量关系?直接写出结论.创新应用:(3)已知:如图4,等腰△ABC中,AB=AC,且∠BAC=α(α为钝角),D是等腰△ABC外一点,且∠BDC+∠BAC=180°,BD、DC与AD之间存在怎样的数量关系?写出你的猜想,并证明.【答案】(1)证明见解析(2)BD+DC≥√2AD;(3)猜想:BD+DC<2AD;证明见解析【解析】解:(1)证明:把△ACD绕点A顺时针旋转90°得到△ABE,连接ED则有△ACD≌△ABE,DC=EB∵AD=AE,∠DAE=90°∴△ADE是等腰直角三角形∴DE=√2AD在△DBE中,BD+EB>DE,即:BD+DC>√2AD;(2)把△ABD旋转,使AB与AC AC旋转,得到△ACD′,则BD=CD′,在△CDD′中,CD+CD′>DD′,即BD+CD>DD′,∵△ADD′是钝角三角形,则DD′>√2AD当D运动到B的位置时,DD′=BC=√2AD.∴BD+DC≥√2AD;(3)猜想1:BD+DC<2AD证明:把△ACD绕点A顺时针旋转α,得到△ABE则有△ACD≌△ABE,DC=EB,∠ACD=∠ABE∵∠BAC+∠BDC=180°∴∠ABD+∠ACD=180°∴∠ABD+∠ABE=180°即:E、B、D三点共线.∴在△ADE中,AE+AD>ED,即BD+DC<2AD.【题型三:旋转与相似三角形的构造】【例】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,给出下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S△ABF:S四边形CDEF=2:5,其中正确的结论有()A.1个B.2个C.3个D.4个【答案】D【解析】解:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∴△AEF ∽△CBF ,∴AE BC =AF CF ,∵AE =12AD =12BC ,∴AF CF =12,∴CF =2AF ,故②正确,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC ,∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DF =DC ,故③正确;∵△AEF ∽△CBF ,∴EF BF =AE BC =12,∴S △AEF =12S △ABF ,S △ABF =16S 矩形ABCD ,∴S △AEF =112S 矩形ABCD ,又∵S 四边形CDEF =S △ACD ﹣S △AEF =12S 矩形ABCD ﹣112S 矩形ABCD =512S 矩形ABCD ,∴S △ABF :S 四边形CDEF =2:5,故④正确;【练1】如图,正方形ABCD 的边长为8,线段CE 绕着点C 逆时针方向旋转,且CE =3,连接BE ,以BE 为边作正方形BEFG ,M 为AB FM 的长最小时,tan ∠ECB =______.【答案】13【解析】解:连接BD ,BF ,FD ,如图,∵BD BC =BF BE =√2,∴BD BF =BC BE ,∵∠FBD+∠DBE=45°,∠EBC+∠DBE=45°,∴∠FBD=∠EBC,∴△EBC∽△FBD,∴∠FDB=∠ECB,DFCE =BDBC=√2,∴DF=√2CE=3√2,由题意知:FM、DF、DM三条线段满足FM+DF≥MD,其中DM、DF的值一定,∴当M,F,D三点一线时,FM最小,过点M作MN⊥BD,垂足为G,∵∠MBN=45°,BM=12AB=4,∴MN=BN=2√2,∵MD=√AM2+AD2=√42+82=4√5,∴DG=√MD2−MG2=√(4√5)2−(2√2)2=6√2,∴tan∠ECB=tan∠FDG=MGDG =√26√2=13,故答案为:13.【练2】如图,在△ABC中,AB=5,D为边AB上-动点,以CD为一边作正方形CDEF,当点D从点B运动到点A时,点E运动的路径长为_________.【答案】5√2【解析】解:如图,作GB⊥BC于B,取GB=BC,当点D与点B重合时,则点E与点G重合,∴∠CBG=90°,∴CG=√2BC,∠GCB=45°,∵四边形CDEF是正方形,∴CE=√2DC,∠ECD=45°,∴∠BCD+∠DCG =∠GCE+∠DCG =45°,∴∠BCD =∠GCE,且CGBC =CEDC=√2,∴△CGE∽△CBD,∴GEBD =CEDC=√2,即GE=√2BD,∵BD=5,∴点E运动的路径长为GE=√2BD=5√2.【练3】在△ABC和△ADE中,BA=BC,DA=DE,且∠ABC=∠ADE=α,点E在△ABC的内部,连接EC,EB,EA和BD,并且∠ACE+∠ABE=90°.(观察猜想)(1)如图①,当α=60°时,线段BD与CE的数量关系为__________,线段EA,EB,EC的数量关系为__________.(探究证明)(2)如图②,当α=90°时,(1)中的结论是否依然成立?若成立,请给出证明,若不成立,请说明理由;(拓展应用)(3)在(2)的条件下,当点E在线段CD上时,若BC=2√5,请直接写出△BDE的面积.【答案】(1)BD=CE,EB2+EC2=EA2;(2)不成立,理由见解析;(3)2【解析】(1)如图①中,∵BA=BC,DA=DE.且∠ABC=∠ADE=60°,∴△ABC,△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,∴△DAB≌△EAC(SAS),∴BD=EC,∠ABD=∠ACE,∵∠ACE+∠ABE=90°,∴∠ABD+∠ABE=90°,∴∠DBE=90°,∴DE2=BD2+BE2,∵EA=DE,BD=EC,∴EA2=BE2+EC2.故答案为:BD=EC,EA2=EB2+EC2.(2)结论:EA2=EC2+2BE2.理由:如图②中,∵BA =BC ,DA =DE .且∠ABC =∠ADE =90°, ∴△ABC ,△ADE 都是等腰直角三角形, ∴∠DAE =∠BAC =45°,∴∠DAB =∠EAC , ∵AD AE =√22,AB AC =√22, ∴AD AE =ABAC ,∴△DAB ∽△EAC ,∴DB EC =AB AC =√22,∠ACE =∠ABD , ∵∠ACE +∠ABE =90°,∴∠ABD +∠ABE =90°,∴∠DBE =90°,∴DE 2=BD 2+BE 2,∵EA =√2DE ,BD =√22EC , ∴12EA 2=12EC 2+BE 2,∴EA 2=EC 2+2BE 2.(3)如图③中,∵∠AED =45°,D ,E ,C 共线, ∴∠AEC =135°,∵△ADB ∽△AEC ,∴∠ADB =∠AEC =135°,∵∠ADE =∠DBE =90°,∴∠BDE =∠BED =45°,∴BD =BE ,∴DE =√2BD ,∵EC =√2BD ,∴AD =DE =EC ,设AD =DE =EC =x ,在Rt△ABC中,∵AB=BC=2√5,∴AC=2√10,在Rt△ADC中,∵AD2+DC2=AC2,∴x2+4x2=40,∴x=2√2(负根已经舍弃),∴AD=DE=2√2,∴BD=BE=2,×2×2=2.∴S△BDE=12。
2025年中考数学二轮复习几何模型突破课件:模型4几何图形中的旋转模型
类型二
半角模型
模型描述 一个角包含着该角的半角,这两个角共顶点,且大角的两边相等
类型
已知
等腰直角三角
正方形
等边三角形
菱形
形半角模型
半角模型
半角模型
半角模型
∠BAC=
正方形
△ABC为等边三角
四边形ABCD为
90°,
ABCD,
形,∠BDC=
菱形,∠BAD
AB=AC,
∠EAF=
120°,BD=CD, =120°,
6 2.∵∠BCA=∠DCE=90°,∴∠BCD=∠ACE.∵∠BAC=∠DEC,
3
2
∴ = ,∴△BCD∽△ACE,∴ = ,∴ = ,∴AE=4
6 2
D.
2.故选
2.如图,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点
A,D,E在同一条直线上,CM为△DCE的边DE上的高,连接BE.
点F在AB上,∠EDF=120°.若AB=5,求BE+BF的值.
解:如答图,过点D作DG∥BC交AB于点G.
∵△ABC是等边三角形,
∴AB=AC=BC,∠A=∠B=∠ACB=60°.
1
∵DG∥BC,D为AC的中点,∴AD=DC= AC,
2
DG是△ABC的中位线,∴AG=BG.
∵DG∥BC,
∴∠AGD=∠B=∠ADG=∠ACB=60°,
∴∠DAF+∠BAE=45°.
如答图,将△ADF绕点A顺时针旋转90°,
使AD与AB重合,得到△ABG.
由正方形及旋转的性质得DF=BG,AF=AG,∠DAF=∠BAG,
∠ADF=∠ABG=∠ABE=90°,
2023年九年级数学中考复习:旋转综合压轴题(角度问题)附答案
2023年九年级数学中考复习:旋转综合压轴题(角度问题)附答案1.在正方形ABCD 中,AB =4,O 为对角线AC 、BD 的交点.(1)如图1,延长OC ,使CE=OC ,作正方形OEFG ,使点G 落在OD 的延长线上,连接DE 、AG .求证:DE=AG ;(2)如图2,将问题(1)中的正方形OEFG 绕点O 逆时针旋转α°(0<α<180),得到正方形OE F G ''',连接AE E G '''、.①当α=30时,求点A 到E G ''的距离;①在旋转过程中,直接写出AE G ∆''面积的最小值为 ,并写出此时的旋转角α= .2.已知在矩形ABCD 中,①ADC 的平分线DE 与BC 交于点E ,点P 是线段DE 上一定点(其中EP <PD )(1)如图1,若点F 在CD 边上(不与C ,D 重合),将①DPF 绕点P 逆时针旋转90°后,角的两边PD ,PF 分别交射线DA 于点H ,G .①直接写出PG 与PF 之间的数量关系;①猜想DF ,DG ,DP 的数量关系,并证明你的结论.(2)如图2,若点F 在CD 的延长线上(不与D 重合),将PF 绕点P 逆时针旋转90°,交射线DA 于点G ,判断(1)①中DF ,DG ,DP 之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请直接写出它们所满足的数量关系式.3.在平面直角坐标系中,直线l 与x 轴、y 轴分别交于A (a ,0)、B (0,b )两点,且a +2b ﹣5)2=0(1)求A 、B 两点坐标;(2)如图1,把线段BA 绕B 点顺时针旋转,点A 的对应点为C 点,使BC ①y 轴,E 为线段AC 上一点,EN ①AB 于N ,EM ①BC 于M ,求EM +EN 的值.(3)如图2,点D 为y 轴上点B 上方一点,DE ①AD 交直线CB 于点E ,①DEC 的平分线EF 与①DAO 的邻补角的平分线AF 交点F ,请问:D 点在运动的过程中①AFE 的大小是否变化,若不变,求出其值;若变化,请说明理由.4.(1)发现:如图1,点B 是线段AD 上的一点,分别以AB BD ,为边向外作等边三角形ABC 和等边三角形BDE ,连接AE ,CD ,相交于点O .①线段AE 与CD 的数量关系为:___________;AOC ∠的度数为__________.②CBD ∆可看作ABE ∆经过怎样的变换得到的?____________________________. (2)应用:如图2,若点A B D ,,不在一条直线上,(1)的结论①还成立吗?请说明理由;(3)拓展:在四边形ABCD 中,=AB AC ,=90BAC ∠︒,=45ADC ∠︒,若8AD =,6CD =,请直接写出B ,D 两点之间的距离.5.【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出①APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将①BPC绕点B逆时针旋转90°,得到①BP′A,连接PP′,求出①APB的度数;思路二:将①APB绕点B顺时针旋转90°,得到①CP′B,连接PP′,求出①APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC11①APB的度数.6.在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究:如图1,在四边形ABCD中,AB=AD,①BAD=60°,①ABC=①ADC =90°,点E、F分别在线段BC、CD上,①EAF=30°,连接EF.(1)如图2,将①ABE绕点A逆时针旋转60°后得到①A′B′E′(A′B′与AD重合),请直接写出①E′AF=度,线段BE、EF、FD之间的数量关系为.(2)如图3,当但点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸:如图4,在等边①ABC中,E、F是边BC上的两点,①EAF=30°,BE =1,将①ABE绕点A逆时针旋转60°得到①A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM①BC于点M,连接MN,求线段MN的长度.7.已知①AOB,将①AOB绕O点旋转到①COD位置,使C点落在OB边上,连接AC、BD.(1)若①AOB=90°(如图1),小亮发现①BAC=①BDC,请你证明这个结论;(2)若①AOB=60°(如图2),小亮发现的结论是否仍然成立?说明理由;(3)若①AOB为任意角α(如图3),小亮发现的结论还成立吗?说明理由;8.把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a角,旋转后的矩形记为矩形EDCF.在旋转过程中,(1)如图①,当点E在射线CB上时,E点坐标为;(2)当△CBD是等边三角形时,旋转角a的度数是(a为锐角时);(3)如图①,设EF与BC交于点G,当EG=CG时,求点G的坐标;(4)如图①,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.9.把一副三角板如图(1)放置,其中①ACB=①DEC=90°,①A=45°,①D=30°,斜边AB=12cm,DC=14cm,把三角板DCE绕点C逆时针旋转15°得到①(如图2).这时AB与相交于点O,与相交于点F.(1)填空:①= °; (2)请求出①的内切圆半径; (3)把①绕着点C 逆时针再旋转度()得①,若①为等腰三角形,求的度数(精确到0.1°).10.“数学建模”是中学数学的核心素养,平时学习过程中能归纳一些几何模型,解决几何问题就能起到事半功倍的作用.(1)如图1,正方形ABCD 中,45EAF ∠=︒,且DE BF =,求证:EG AG =; (2)如图2,正方形ABCD 中,45EAF ∠=︒,延长EF 交AB 的延长线于点G ,(1)中的结论还成立吗?请说明理由;(3)如图3在(2)的条件下,作GQ AE ⊥,垂足为点Q ,交AF 于点N ,连结DN ,求证:45NDC ∠=︒.11.在学习利用旋转解决图形问题时,老师提出如下问题:(1)如图1,点P 是正方形ABCD 内一点,1PA =,2PB =,3PC =,你能求出APB ∠的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将PBC 绕点B 逆时针旋转90︒,得到P BA '△,连接PP ',可求出APB ∠的度数;思路二:将PAB △绕点B 顺时针旋转90︒,得到P CB '△,连接PP ',可求出APB ∠的度数;请参照小明的思路,任选一种写出完整的解答过程;(2)如图2,若点P 是等边三角形ABC 内一点,若150APB ∠=︒,则线段PA ,PB ,PC 满足怎样的等量关系?请参考小明上述解决问题的方法进行探究,直接写出线段PA ,PB ,PC 满足的等量关系.12.把两个等腰直角ABC 和ADE 按如图1所示的位置摆放,将ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角为α(0360α︒<<︒).(1)如图1,BD 与EC 的数量关系是___________,BD 与EC 的位置关系是___________;(2)如图2,(1)中BD 和EC 的数量关系和位置关系是否仍然成立,若成立,请证明;若不成立请说明理由.(3)如图3,当点D 在线段BE 上时,BEC ∠=___________.(4)当旋转角α=__________时,ABD △的面积最大.13.如图1,在Rt ABC △中,90ACB ∠=︒,60A ∠=︒,直线MN 经过C 点垂直于AB ,垂足为D .(1)求证:ADC BDC ∽△△; (2)若直线MN 从图1的位置绕M 点逆时针旋转,如图2,设旋转的角度为()0180αα<<,作AP MN ⊥,垂足为P ,BQ MN ⊥,垂足为Q .①当α的度数为______时,点A ,P ,B ,Q 构成的四边形为平行四边形;①当α的度数为______时,点A ,P ,B ,Q 构成的四边形为矩形.14.已知①ABC 和①ADE 都是等腰三角形,AB =AC ,AD =AE ,①DAE =①BAC .【初步感知】(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB EC .(填>、<或=)(2)发现证明:如图①,将图①中①ADE 的绕点A 旋转,当点D 在①ABC 外部,点E 在①ABC 内部时,求证:DB =EC .【深入研究】(3)如图①,①ABC 和①ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则①CDB 的度数为 ;线段CE ,BD 之间的数量关系为 .(4)如图①,①ABC 和①ADE 都是等腰直角三角形,①BAC =①DAE =90°,点C 、D 、E 在同一直线上,AM 为①ADE 中DE 边上的高,则①CDB 的度数为 ;线段AM ,BD ,CD 之间的数量关系为 .15.把两个等腰直角①ABC 和①ADE 按如图1所示的位置摆放,将①ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角α(0°<α<360°).(①)当DE ①AC 时,旋转角α= 度,AD 与BC 的位置关系是 ,AE 与BC 的位置关系是 ;(①)当点D 在线段BE 上时,求①BEC 的度数;(①)当旋转角α= 时,①ABD 的面积最大.16.如图①,在ABC 中,①ACB =90°,①ABC =30°,AC =1,D 为ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证:BDA ①BFE ;(2)当CD +DF +FE 取得最小值时,求证:AD ∥BF .(3)如图①,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断①MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.17.已知ABC 是等腰三角形,AB AC =,将ABC 绕点B 逆时针旋转得到''A BC ,(1)感知:如图①,当'BC 落在AB 边上时,'A AB ∠与'C CB ∠之间的数量关系是 _____(不需要证明);(2)探究:如图①,当'BC 不落在AB 边上时,'A ∠AB 与'C CB ∠是否相等?如果相等;如果不相等,请说明理由;(3)应用:如图①,若90BAC ∠=︒,'AA 、'CC 交于点E ,则'A EC ∠=_____度.18.如图,已知正方形ABCD ,点E 为AB 上的一点,EF AB ⊥,交BD 于点F .(1)如图1,直按写出DF AE的值_______; (2)将①EBF 绕点B 顺时针旋转到如图2所示的位置,连接AE 、DF ,猜想DF 与AE 的数量关系,并证明你的结论;(3)如图3,当BE =BA 时,其他条件不变,①EBF 绕点B 顺时针旋转,设旋转角为(0360)αα︒<<︒,当α为何值时EA =ED ?请在图3或备用图中画出图形并求出α的值.19.(1)观察猜想:如图①,在Rt △ABC 和Rt △BDE 中,①ABC =①EBD =90°,AB =BC ,BE =BD ,连接AE ,点F 是AE 的中点,连接CD 、BF ,当点D 、B 、C 三点共线时,线段CD 与线段BF 的数量关系是_____,位置关系是_____(2)探究证明:在(1)的条件下,将Rt △BDE 绕点B 顺时针旋转至图①位置时,(1)中的结论是否仍然成立?如果成立,请你就图①的情形进行证明;如果不成立,请说明理由;(3)拓展延伸:如图①,在Rt△ABC和Rt△BDE中,①ABC=①EBD=90°,BC=2AB=8,BD=2BE=4,连接AE,点F是AE的中点,连结CD、BF,将△BDE绕点B在平面内自由旋转,请直接写出BF的取值范围,20.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图①位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置①CDG=37°,求正方形EFGH从图①位置旋转至图①位置时,旋转角的度数.(2)旋转至如图①位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.参考答案:1.(2)①点A 到E G ''的距离为3①在旋转过程中,直接写出AE G ∆''面积的最小值为1682-α=135°.2.(1)①DG +DF 2;(2)不成立,数量关系式应为:DG -DF 2,3.(1)A (﹣3,0)、B (0,4);(2)4;(3)不变,45° 4.(1)①AE CD =,60︒;(2)依然成立,(3)416.(一)(1)30,BE +DF =EF ;(2)BE ﹣DF =EF ;3 8.(1)E (4,13;(2)60°;(3)13(4,)3G ; (4)点H 不在此抛物线上.9.(1)120°;(2)2;(3)37.7°、50.6°10.(1)见解析;(2)结论依然成立11.(1)135,APB 证明见解析;(2)222PC PA PB =+, 12.(1)BD EC =,BD EC ⊥;(2)成立,(3)90︒;(4)90︒或270︒13.(2)①30°或90°;①90°.14.(1)=;(3)60︒,DB CE =;(4)90︒,2AM BD CD += 15.(①)45;垂直;平行;(①)90BEC ∠=︒;(①)90︒或270︒16. ①MPN 的值为定值,30°.17.(1)相等;(2)相等;(3)135︒.18.2(2)2DF =,(3)α的值为30°或150°,19.(1) CD =2BF BF ①CD(2)CD =2BF , BF ①CD 成立,(3)13BF ≤≤20.(1)16°(2)DL =EN +GM ,。
中考数学旋转专题中的常见模型
旋转专题1、图形的旋转(1)在平面内,将一个图形绕一个定点沿某个方向旋转一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角度称为旋转角.(2)性质:①在图形旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同角度;②注意每一对对应点与旋转中心的连线所成的角度都叫旋转角,旋转角都相等; ③对应点到旋转中心的距离相等.2、图形的中心对称(1)把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称,该点叫做对称中心. (2)①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分; ③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等.1、三垂直全等模型三垂直全等构造方法:从等腰直角三角形的两个锐角顶点出发向过直角顶点的直线作垂线。
CBE D CAB2、手拉手全等模型CCCABDEABBA方法技巧提炼高频核心考点EDCBAEDCBAEDCBAABCDEEDCBA3、等线段、共端点 (1) 中点旋转(旋转180°)(2) 等腰直角三角形(旋转90°)A'DCBAF'D'FEDCA(3) 等边三角形旋转(旋转60°)(4) 正方形旋转(旋转90°)②①FEDCBAPFEDCBAGFEDCBA例1、如图,设P 是等边△ABC 内的一点,PA=3,PB=4,PC=5,则∠APB 的度数是________。
类型一旋60°,造等边精题精讲精练例2、(1)如图,P是等边△ABC内一点,∠APB、∠BPC、∠CPA的大小之比为5:6:7,则以PA、PB、PC为边的三角形三内角大小之比(从小到大)是().A.2:3:4B.3:4:5C.4:5:6D.以上结果都不对(2)在等边△ABC中,P为BC边上一点,设以AP、BP、CP为边组成的新三角形的最大内角为θ,则() A. θ≥90° B.θ≤120° C.θ=120° D.θ=135°例3、如图所示.△ABD是等边三角形,在△ABC中,BC=a,CA=b,问:当∠ACB为何值时,C,D 两点的距离最大?最大值是多少?例4、(1)如图,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,证明:BC+DC=AC.(2)如图,四边形ABCD中,AB=BC,∠ABC=60°,P为四边形ABCD内一点,且∠APD=120°.证明:PA+PD+PC≥BD.如图,P 为等边△ABC 内一点,∠APB =113°,∠APC =123°求证:以AP ,BP ,CP 为边可以构成一个三角形,并确定所构成的三角形的各内角的度数.如图,在四边形ABCD 中,∠ABC=30°,∠ADC =60°,AD=DC.证明:BD 2=AB 2+BC 2.例5、如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=62,那么AC 的长等于________。
中考数学图形旋转难?用5个模型就能搞定
中考数学图形旋转难?用5个模型就能搞定旋转的定义在平面内,将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形变换称为旋转,这个定点叫旋转中心,转动的角度叫旋转角。
旋转变换不改变图形的形状和大小通过旋转,图形上的每一点都绕旋转中心沿相同的方向转动同样大小的角度旋转变换前后的图形有下列性质:(1)对应点到旋转中心的距离相等,(2)对应点与旋转中心的连线所成的角等于旋转角;(3)对应线段相等,对应线段的夹角等于旋转角,对应线段的垂直平分线都经过旋转中心。
常见的几种模型旋转类型题目举例1、正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转60°,使得AB与AC重合。
经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP 中,此时ΔP'AP也为正三角形。
例1如图(1-1),设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.2、正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转90°,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。
例2如图(2-1),P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。
求正方形ABCD面积。
3、等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°,P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转90°,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。
例3如图,在ΔABC中,∠ACB=90°,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。
旋转两种解题模型(学生版)-初中数学
旋转两种解题模型目录解题知识必备压轴题型讲练题型一:奔驰模型题型二:费马点模型压轴能力测评模型一:奔驰模型旋转是中考必考题型,奔驰模型是非常经典的一类题型,且近几年中考中经常出现。
我们不仅要掌握这类题型,提升利用旋转解决问题的能力,更重要的是要明白一点:旋转的本质是把分散的条件集中化,从而解决问题模型二:费马点模型最值问题是中考常考题型,费马点属于几何中的经典题型,目前全国范围内的中考题都是从经典题改编而来,所以应熟练掌握费马点等此类最值经典题。
题型一:奔驰模型一.选择题(共1小题)1.(2020秋•顺平县期中)如图,P是等边三角形ABC内的一点,且P A=3,PB=4,PC=5,将ΔABP绕点B顺时针旋转60°到ΔCBQ位置.连接PQ,则以下结论错误的是()A.∠QPB=60°B.∠PQC=90°C.∠APB=150°D.∠APC=135°二.填空题(共4小题)2.(2023秋•北屯市校级期中)如图,在平面直角坐标系中,已知ΔAOB是等边三角形,点A的坐标是(0,6),点B在第一象限,∠OAB的平分线交x轴于点P,把ΔAOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到ΔABD,连接DP.则DP=,D点坐标为.(如图),把ΔABC绕3.(2023秋•长宁区校级期中)已知在ΔABC中,∠ACB=90°,AB=20,sin B=55着点C按顺时针方向旋转α°(0<α<360),将点A、B的对应点分别记为点A 、B ,如果△AA′C为直角三角形,那么点A与点B′的距离为.线上的点E处时,∠BED的度数为.5.(2021秋•盘龙区校级期中)如图,P是等边三角形ABC内的一点,且P A=3,PB=4,PC=5,以BC为边在ΔABC外作ΔBQC≅ΔBP A,连接PQ,则以下结论中正确有(填序号)①ΔBPQ是等边三角形②ΔPCQ是直角三角形③∠APB=150°④∠APC=135°三.解答题(共6小题)6.(2022秋•西湖区校级期中)如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到ΔCDE的位置,使A,C,D三点在同一直线上,连接AE,求∠DEA的度数.7.(2021秋•长乐区期中)在RtΔABC中,∠ACB=90°,∠ABC=30°,AC=4,将ΔABC绕点B顺时针旋转一定的角度得到ΔDBE,点A,C的对应点分别是D,E,连接AD.(1)如图1,当点E恰好在边AB上时,求∠ADE的大小;(2)如图2,若F为AD中点,求CF的最大值.8.(2022秋•东胜区校级期中)(原题初探)(1)小明在数学作业本中看到有这样一道作业题:如图1,P是正方形ABCD内一点,连结P A,PB,PC现将ΔP AB绕点B顺时针旋转90°得到的△P′CB,连接PP′.若P A=2,PB=3,∠APB=135°,则PC的长为,正方形ABCD的边长为.(变式猜想)(2)如图2,若点P是等边ΔABC内的一点,且P A=3,PB=4,PC=5,请猜想∠APB的度数,并说明理由.(拓展应用)(3)聪明的小明经过上述两小题的训练后,善于反思的他又提出了如下的问题:如图3,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长度为.9.(2023秋•梁山县期中)如图,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10.若将ΔP AC绕点A逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的度数.10.(2020秋•黄石期中)下面是一道例题及其解答过程,请补充完整.(1)如图1,在等边三角形ABC内部有一点P,P A=3,PB=4,PC=5,求∠APB的度数.11.(2023秋•罗山县期中)阅读与理解:如图1,等边ΔBDE(边长为a)按如图所示方式设置.操作与证明:(1)操作:固定等边ΔABC(边长为b),将ΔBDE绕点B按逆时针方向旋转120°,连接AD,CE,如图2;在图2中,请直接写出线段CE与AD之间具有怎样的大小关系.(2)操作:若将图1中的ΔBDE,绕点B按逆时针方向旋转任意一个角度α(60°<α<180°),连接AD,CE,AD与CE相交于点M,连BM,如图3;在图3中线段CE与AD之间具有怎样的大小关系?∠EMD的度数是多少?证明你的结论.猜想与发现:(3)根据上面的操作过程,请你猜想在旋转过程中,当α为多少度时,线段AD的长度最大,最大是多少?当α为多少度时,线段AD的长度最小,最小是多少?题型二:费马点模型一.选择题(共1小题)1.(2023秋•萧山区期中)如图,已知∠BAC=60°,AB=4,AC=6,点P在ΔABC内,将ΔAPC绕着点A逆时针方向旋转60°得到ΔAEF.则AE+PB+PC的最小值为()A.10B.219C.53D.213二.解答题(共2小题)2.(台州期中)(1)知识储备①如图1,已知点P为等边ΔABC外接圆的BC上任意一点.求证:PB+PC=P A.②定义:在ΔABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为ΔABC的费马点,此时P A+PB+PC的值为ΔABC的费马距离.(2)知识迁移如图2,在ΔABC 的外部以BC 为边长作等边ΔBCD 及其外接圆,根据(1)的结论,易知线段AD 的长度即为ΔABC 的费马距离.②在图3中,用不同于图2的方法作出ΔABC 的费马点P (要求尺规作图).(3)知识应用①判断题(正确的打√,错误的打×):ⅰ.任意三角形的费马点有且只有一个;ⅱ.任意三角形的费马点一定在三角形的内部.②已知正方形ABCD ,P 是正方形内部一点,且P A +PB +PC 的最小值为6+2,求正方形ABCD 的边长.3.(宿豫区校级期中)探究问题:(1)阅读理解:①如图(A ),在已知ΔABC 所在平面上存在一点P ,使它到三角形顶点的距离之和最小,则称点P 为ΔABC 的费马点,此时P A +PB +PC 的值为ΔABC 的费马距离;②如图(B ),若四边形ABCD 的四个顶点在同一圆上,则有AB ⋅CD +BC ⋅DA =AC ⋅BD .此为托勒密定理;(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C ),已知点P 为等边ΔABC 外接圆的BC上任意一点.求证:PB +PC =P A ;②根据(2)①的结论,我们有如下探寻ΔABC (其中∠A 、∠B 、∠C 均小于120°)的费马点和费马距离的方法:第一步:如图(D ),在ΔABC 的外部以BC 为边长作等边ΔBCD 及其外接圆;第二步:在BC 上任取一点P ′,连接P ′A 、P ′B 、P ′C 、P ′D .易知P ′A +P ′B +P ′C =P ′A +(P ′B +P ′C )=P ′A +;第三步:请你根据(1)①中定义,在图(D )中找出ΔABC 的费马点P ,并请指出线段的长度即为ΔABC 的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A 、B 、C 构成了如图(E )所示的ΔABC (其中∠A 、∠B 、∠C 均小于120°),现选取一点P 打水井,使从水井P 到三村庄A 、B 、C 所铺设的输水管总长度最小,求输水管总长度的最小值.1.(连城县期中)(1)如图1,点P 是等边ΔABC 内一点,已知P A =3,PB =4,PC =5,求∠APB 的度数.要直接求∠A 的度数显然很困难,注意到条件中的三边长恰好是一组勾股数,因此考虑借助旋转把这三边集中到一个三角形内,如图2,作∠P AD =60°使AD =AP ,连接PD ,CD ,则ΔP AD 是等边三角形.∴=AD =AP =3,∠ADP =∠P AD =60°∵ΔABC 是等边三角形∴AC =AB ,∠BAC =60°∴∠BAP =∴ΔABP ≅ΔACD∴BP =CD =4,=∠ADC ∵在ΔPCD 中,PD =3,PC =5,CD =4,PD 2+CD 2=PC 2∴∠PDC =°(2)如图3,在ΔABC 中,AB =BC ,∠ABC =90°,点P 是ΔABC 内一点,P A =1,PB =2,PC =3,求∠APB 的度数.2.(西城区校级期中)如图,P 是等边ΔABC 内的一点,且P A =5,PB =4,PC =3,将ΔAPB 绕点B 逆时针旋转,得到ΔCQB .求:(1)点P 与点Q 之间的距离;(2)求∠BPC 的度数.3.(汉阳区期中)如图,P 是等腰ΔABC 内一点,AB =BC ,连接P A ,PB ,PC .(1)如图1,当∠ABC =90°时,将ΔP AB 绕B 点顺时针旋转90°,画出旋转后的图形;(2)在(1)中,若P A =2,PB =4,PC =6,求∠APB 的大小;(3)当∠ABC =60°时,且P A =3,PB =4,PC =5,则ΔAPC 的面积是943+3(直接填答案)4.(汉阳区期中)(1)阅读证明①如图1,在ΔABC 所在平面上存在一点P ,使它到三角形三顶点的距离之和最小,则称点P 为ΔABC 的费马点,此时P A +PB +PC 的值为ΔABC 的费马距离.②如图2,已知点P 为等边ΔABC 外接圆的BC 上任意一点.求证:PB +PC =P A .(2)知识迁移根据(1)的结论,我们有如下探寻ΔABC (其中∠A ,∠B ,∠C 均小于120°)的费马点和费马距离的方法:第一步:如图3,在ΔABC 的外部以BC 为边长作等边ΔBCD 及其外接圆;第二步:在BC 上取一点P 0,连接P 0A ,P 0B ,P 0C ,P 0D .易知P 0A +P 0B +P 0C =P 0A +(P 0B +P 0C )=P 0A +;第三步:根据(1)①中定义,在图3中找出ΔABC 的费马点P ,线段的长度即为ΔABC 的费马距离.(3)知识应用已知三村庄A ,B ,C 构成了如图4所示的ΔABC (其中∠A ,∠B ,∠C 均小于120°),现选取一点P 打水井,使水井P 到三村庄A ,B ,C 所铺设的输水管总长度最小.求输水管总长度的最小值.5.(当涂县校级期中)如图,点P 是等边ΔABC 外一点,P A =3,PB =4,PC =5(1)将ΔAPC 绕点A 逆时针旋转60°得到△P 1AC 1,画出旋转后的图形;(2)在(1)的图形中,求∠APB 的度数.。
中考数学旋转五大模型专题
中考数学旋转五大模型专题
目录
一、旋转的性质与手拉手模型
相比平移、对称,旋转无疑是三大变换中最难的一个,一方面在于图形构造较为复杂,另一方面旋转本身的故事就很多,本节从性质开始,介绍旋转经典模型之一:手拉手模型。
二、三垂直模型
同样作为模型,但“三垂直模型”的定位和“手拉手模型”完全不同,“手拉手模型”是在讲旋转本身,而“三垂直”模型本身并不复杂,更多地是作为一种方法来解决其他问题,了解模型需了解其定位与应用,会帮助我们更准确地把握模型。
三、半角模型
如果说手拉手侧重在旋转本身,三垂直侧重在模型构造,半角模型则更多地体现在题型变化,半角模型一般条件如下:
(1)角含半角:
(2)邻边相等;
(3)对角互补,
其中邻边相等与对角互补,以正方形为背景即可,至于角含半角,是明面上的半角模型,可替换为其他条件,模型条件的等价条件,亦是模型的重点。
四、手连心模型与对补四边形
旋转本身或许并不难,难的是构造旋转,确定旋转的一个必要前提:邻边相等,再加入其它的料,会有不同的结果。
五、共顶点旋转模型
所谓共点旋转,是旋转构造的一种,即图形绕着自身某个顶点作旋转,常见为等边三角形共点旋转和正方形共点旋转,有着一般性的条件、结论及推广应用,即可视为模型。
人教版初三数学压轴题解题模型之旋转模型(含解析)
面.
(三)等腰直角三角形类型
在等腰直角三角形 中, , 为 内一点,将 绕 点按逆时针方向旋转 ,使得 与 重合。经过这样旋转变化,在图(3-1-b)中的一个 为等腰直角三角形。
(1)求∠1的度数;
(2)判断△GMH的形状。
【分析】:等边三角形是旋转对称图形,且每个角都是60°,∠1是△BCH的外角,可知∠1=∠2+∠3。
而∠2=∠4
∴∠1=∠4+∠3=60°,从而得证。
【解析】:(1)∵等边△ABC是旋转对称图形,且AE=BF=CD
所以,△ABC绕旋转中心旋转120°后,△AEC、△BFA、△CDB能够重合
(1)如图(1),两三角尺的重叠部分为 ,则重叠部分的面积为,周长为.
(2)将图(1)中的 绕顶点 逆时针旋转 ,得到图(2),此时重叠部分的面积为,周长为.
(3)如果将 绕 旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为.
3、如图,P是等边△ABC内一点,PA=2, ,PC=4,求BC的长。
【例题】如图,在 中,∠ACB =900,BC=AC,P为 内一点,且PA=3,PB=1,PC=2。求 的度数。
典型例题
利用旋转的特征,可巧妙解决很多数学问题,如
一.求线段长.
例1.如图,已知长方形ABCD的周长为20,AB=4,点E在BC上,且AE⊥EF,AE=EF,求CF的长。
【解析】:将△ABE以点E为旋转中心,顺时针旋转90°,此时点B旋转到点B'处,AE与EF重合,由旋转特征知:B'E⊥BC,
初中几何旋转模型(实例)
初中几何旋转模型(实例)
在初中几何学中,旋转模型是一个常见的概念。
旋转模型指的是一个二维图形沿着旋转轴进行旋转形成的立体图形。
本文将介绍一个关于旋转模型的实例。
实例
假设我们有一个矩形,长为10厘米,宽为5厘米。
我们想要通过将该矩形沿着一条边进行旋转,生成一个立体图形。
首先,我们选择将矩形沿着长的一边进行旋转。
这条边将成为旋转轴。
根据旋转模型的原理,我们可以将旋转后的立体图形看作是一系列平行的矩形组成的。
每一个平行矩形都是由原始矩形在旋转过程中的一个截面形成的。
在旋转的过程中,矩形的长度不变,而宽度则会发生变化。
旋转后,矩形的宽度将成为立体图形在旋转轴方向的高度。
以原始矩形的一个截面为例,当矩形的一个顶点位于旋转轴上时,该顶点对应的高度为0。
当矩形的另一个顶点位于旋转轴上时,该顶点对应的高度为5厘米,即矩形的宽度。
依次将原始矩形的每一个截面相连,我们可以得到旋转后的立
体图形,即一个圆柱体。
由于旋转过程中矩形的每一个截面都是平行的,所以它们的形
状是相同的,只是大小不同。
这就可以简化计算,只需要计算一个
截面的面积,然后乘以截面的数量,就可以得到整个旋转后立体图
形的表面积和体积。
这个实例展示了初中几何学中的旋转模型的基本原理和应用。
通过理解旋转模型,学生可以更好地理解立体图形的形成和性质,
有助于他们在几何学的研究中的深入理解和运用。
以上就是关于初中几何旋转模型的一个实例的介绍。
通过这个
实例,希望能够帮助学生更好地理解和应用旋转模型的概念。
(完整)圆和旋转压轴题解题技巧与近几年中考试题汇总,推荐文档
如何短时间突破数学压轴题还有不到一个月的时间就要进行期中考试了,期中考试的重要性不必多说。
各区期中考试的范围相信学生们都已经非常清楚。
个人觉得现在大部分学生的困难在于旋转、圆,由于时间比较紧张,给大家一些复习资料和学习方法,希望能够帮到大家。
一、旋转:纵观几年的数学试卷,最难的几何题几乎都是旋转,在此给出旋转中最常见的几何模型和一些解题技巧。
旋转模型: 1、三垂直全等模型三垂直全等构造方法:从等腰直角三角形的两个锐角顶点出发向过直角顶点的直线作垂线。
EDCABE D CAB2、手拉手全等模型 手拉手全等基本构图:CCCABDEABDEEDBAEDCBAEDCBAABCDEEDCBAEDCBA3、等线段、共端点 (1) 中点旋转(旋转180°)(2) 等腰直角三角形(旋转90°)A'DCBAF'D'FEDCA(3) 等边三角形旋转(旋转60°)(4) 正方形旋转(旋转90°)②①FEDCBAPFEDCBAGFEDCBA4、半角模型半角模型所有结论:在正方形ABCD 中,已知E 、F 分别是边BC 、CD 上的点,且满足∠EAF =45°,AE 、AF 分别与对角线BD 交于点M 、N .求证:NM FEDC BAGO AHN MFEDCB(1) BE +DF =EF ;(2) S △ABE +S △ADF =S △AEF ; (3) AH =AB ; (4) C △ECF =2AB ; (5) BM 2+DN 2=MN 2;(6) △DNF ∽△ANM ∽△AEF ∽△BEM ;相似比为1:2(由△AMN 与△AEF 的高之比AO : AH =AO :AB =1:2而得到);M E DC BA(7) S △AMN =S 四边形MNFE ;(8) △AOM ∽△ADF ,△AON ∽△ABE ;(9) ∠AEN 为等腰直角三角形,∠AEN =45°.(1. ∠EAF =45°;2.AE :AN =1:2)解题技巧:1.遇中点,旋180°,构造中心对称例:如图,在等腰ABC △中,AB AC =,ABC α∠=,在四边形BDEC 中,DB DE =,2BDE α∠=,M 为CE 的中点,连接AM ,DM .⑴ 在图中画出DEM △关于点M 成中心对称的图形; ⑵ 求证:AM DM ⊥;⑶ 当α=___________时,AM DM =.[解析]⑴ 如图所示;⑵ 在⑴的基础上,连接AD AF ,由⑴中的中心对称可知,DEM FCM △≌△,∴DE FC BD ==,DM FM =,DEM FCM ∠=∠, ∵360ABD ABC CBD BDE DEM BCE α∠=∠+∠=+︒-∠-∠-∠360DEM BCE α=︒--∠-∠,360360ACF ACE FCM BCE FCM α∠=︒-∠-∠=︒--∠-∠, ∴ABD ACF ∠=∠,∴ABD ACF △≌△,∴AD AF =, ∵DM FM =,∴AM DM ⊥.⑶ 45α=︒.2.遇90°。
初中数学突破中考压轴题几何模型之旋转模型(5、26)
以上给出了各种图形连续变化图形,图中出现的两个阴影部分的三角形是全等三角形,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化二利用旋转思想构造辅助线(1)根据相等的边先找出被旋转的三角形 (2)根据对应边找出旋转角度(3)根据旋转角度画出对应的旋转的三角形 三 旋转变换前后具有以下性质:(1)对应线段相等,对应角相等 (2)对应点位置的排列次序相同(3)任意两条对应线段所在直线的夹角都等于旋转角θ.【例题精讲】例1.在四边形ABCD 中,∠ADC=∠ABC=90°,AD=CD ,DP ⊥AB 于P ,若S ABCD =25,求DP 的长。
例2.如图,四边形ABCD 是正方形,ABE ∆是等边三角形,M 为对角线BD 上任意一点,将BM绕点B 逆时针旋转60︒得到BN ,连接AM 、CM 、EN .⑴求证:AMB ENB ∆∆≌⑵①当M 点在何处时,AM CM +的值最小;②当M 点在何处时,AM BM CM ++的值最小,并说明理由; ⑶当AM BM CM ++的最小值为31+时,求正方形的边长.ENMDCB A2.如图,正方形ABCD 边长为3,点E 、F 分别在边BC 、CD 上且EAF=45°,求△CEF 的周长。
知识点三(知识点名称) 【例题精讲】1.例2.1.FECBDA2.3.旋转的性质,利用旋转构造全等,利用全等构造特殊三角形。
额外拓展:如图,已知抛物线322--=x x y 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,该抛物线顶点为D ,对称轴交x 轴于点H 。
(1)求A,B 两点的坐标;(2)设点P 在x 轴下方的抛物线上,当∠ABP=∠CDB 时,求出点P 的坐标;(3)以OB 为边在第四象限内作等边△OBM ,设点E 为x 轴的正半轴上一动点(OE>OH ),连接ME ,把线段ME 绕点M 顺时针旋转60°得MF ,求线段DF 的长的最小值。
中考复习之二次函数中问题综合-几何旋转问题[1]
最短距离问题分析最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。
利用一次函数和二次函数的性质求最值。
一、“最值”问题大都归于两类基本模型:Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值Ⅱ、归于几何模型,这类模型又分为两种情况:(1)归于“两点之间的连线中,线段最短”。
凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。
(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。
一)、已知两个定点:1、在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:A、A’是关于直线m的对称点。
2、在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。
(1)两个点都在直线外侧:mmABmAB mnmn(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.二)、一个动点,一个定点:n mAnnnm(一)动点在直线上运动:点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧:2、两点在直线同侧:(二)动点在圆上运动点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧:2、点与圆在直线同侧:m n Am nm nmmmmA m(1)点A 、B 在直线m 同侧:(2)点A 、B 在直线m 异侧:过B 作关于直线m 的对称点B ’,连接AB ’交点直线m 于P,此时PB=PB ’,PA-PB 最大值为AB ’如图1,正方形ABCD 的边长为2,E 为AB 的中点, P 是AC 上一动点.连结BD ,由正方形对称性可知, B 与D 关于直线AC 对称.连结ED 交AC 于P ,则 PB PE +的最小值是___________;2.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A .B .C .3 DBAm A B E CBD 图1A D EPB C二次函数常见压轴y=322--x x (以下几种分类的函数解析式就是这个)和最小,差最大 在对称轴上找一点P ,使得PB+PC 的和最小,求出P 点坐标在对称轴上找一点P ,使得PB-PC 的差最大,求出P 点坐标求面积最大 连接AC,在第四象限找一点P ,使得ACP ∆面积最大,求出P 坐标讨论直角三角连接AC,在对称轴上找一点P ,使得ACP ∆为直角三角形,求出P 坐标 或者在抛物线上求点P ,使△ACP 是以AC 为直角边的直角三角形.因动点产生的三角形相似问题例1.(2013•南平)如图,已知点A(0,4),B(2,0).(1)求直线AB的函数解析式;(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.①求线段AC的长;(用含m的式子表示)②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.例2.如图,直线3y x=-+与x轴,y轴分别相交于点B,点C,经过B C,两点的抛物线2y ax bx c=++与x轴的另一交点为A,顶点为P,且对称轴是直线2x=.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连结AC.请问在x轴上是否存在点Q,使得以点P B Q,,为顶点的三角形与ABC△相似,若存在,请求出点Q的坐标;若不存在,请说明理由.练习:如图,在直角坐标系中,O为原点,抛物线23y x bx=++与x轴的负半轴交于点A,与y轴的正半轴交于点B,tan∠ACO=31.(1)求抛物线的解析式;(2)若直线:(0)l y kx k=≠与线段BC交于点D(不与点B C,重合),则是否存在这样的直线l,使得以B O D,,为顶点的三角形与BAC△相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由.A BCPOxy2x=AOBCxy和最小差最大如图,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD 于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.面积问题:例题1:如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,3-),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式;(2)若设点P的横坐标为m,试用含m的代数式表示线段PF的长;(3)求△PBC面积的最大值,并求此时点P的坐标.yxBA FPx=1CO例题2:在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.例3:已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.讨论直角三角例1:已知:如图一次函数y =21x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =21x2+bx +c 的图象与一次函数y =21x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0) (1)求二次函数的解析式; (2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.例2:如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标;(2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.二次函数中四边形存在问题研究一、已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足)例1.【08湖北十堰】已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C .⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标;⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.解:1.如图,抛物线y =-x 2+bx +c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为)27 3(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F . (1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由.PEOFCDBAxyOCDBA 备用图yx二、已知两个定点,再找两个点构成平行四边形①确定两定点连接的线段为一边,则两动点连接的线段应和已知边平行且相等)例1.【09福建莆田】已知,如图抛物线23(0)=++>与y轴交于C点,与x轴交于A、By ax ax c a两点,A点在B点左侧。
(简略版)中考数学旋转模型及例题
(简略版)中考数学旋转模型及例题本文档旨在介绍中考数学中的旋转模型及相关例题。
以下是一些常见的旋转模型及其解题方法。
1. 点绕原点旋转当一个点绕原点进行旋转时,可以利用坐标系中点的坐标变化来解题。
假设有点P(x, y)绕原点逆时针旋转α角后得到的点为P'(x', y'),则有以下结论:- P'的横坐标x' = x * cosα - y * sinα- P'的纵坐标y' = x * sinα + y * cosα下面是一个例子:例题:点A(2, 3)绕原点逆时针旋转90°,求旋转后点的坐标。
解题思路:根据上述结论,带入坐标值可得:- A'的横坐标x' = 2 * cos90° - 3 * sin90° = -3- A'的纵坐标y' = 2 * sin90° + 3 * cos90° = 2因此,点A旋转90°后得到的点为A'(-3, 2)。
2. 图形绕原点旋转当一个图形绕原点进行旋转时,可以先找出图形中的点坐标,然后通过点的旋转来确定旋转后整个图形的形状和位置。
下面是一个例子:例题:如图所示的三角形ABC绕原点逆时针旋转60°,连接旋转后的点A', B', C',求旋转后的三角形ABC'的面积。
解题思路:- 首先,可以求出点A(2, 3)、B(4, 5)、C(6, 1)绕原点逆时针旋转60°后的点坐标。
- 然后,连接旋转后的点A', B', C'得到旋转后的三角形。
- 最后,计算旋转后的三角形ABC'的面积。
通过上述步骤可以得到旋转后的三角形ABC'的面积。
以上是中考数学旋转模型的一些例题和解题思路。
旋转模型在中考数学中经常出现,掌握了旋转模型的解题方法,可以更好地应对考试中的相关问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点一旋转构造全等
几何变换——旋转
(一)共顶点旋转模型(证明基本思想“SAS”)
以上给出了各种图形连续变化图形,图中出现的两个阴影部分的三角形是全等三角形,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化
二利用旋转思想构造辅助线
(1)根据相等的边先找出被旋转的三角形
(2)根据对应边找出旋转角度
2.如图,正方形ABCD边长为3,点E、F分别在边BC、CD上且EAF=45°
,求△CEF的周长。
知识点三(知识点名称)
【例题精讲】1.
例2.
1.
2.
3.
旋转的性质,利用旋转构造全等,利用全等构造特殊三角形。
额外拓展:
如图,已知抛物线 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,该抛物线顶点为D,对称轴交x轴于点H。
例2.如图,四边形 是正方形, 是等边三角形, 为对角线 上任意一点,将 绕点 逆时针旋转 得到 ,连接 、 、 .
⑴求证:
⑵①当 点在何处时, 的值最小;
②当 点在何处时, 的值最小,并说明理由;
⑶当 的最小值为 时,求正方形的边长.
方法总结:
1、共顶点的等线段中,最常用旋转思路,但也不可以思维定势,辅助线叙述中用一般语言
2、旋转变换还用于处理:
①几何最值问题:几何最值两个重要公理依据是:两点之间线段最短和垂线段最短;
②有关线段的不等关系;
③自己构造绕某点旋转某角度(特别是60度),把共顶点的几条线段变为首尾相接的几条线段,再变为共线取得最小值问题,计算中常用到等腰三角形或勾股定理等知识。
【课堂练习】
1.如图1,已知边长为a的正方形ABCD和边长为b的正方形AEFG有一个公共点A,(a≥2b),且点F在AD上。(以下结果可以用含a、b的代数式表示)
知识点二利用全等构造特殊三角形
【例题精讲】
例1.点P为等边△ABC内一点,若PA=2,PB=,PC=1,求BPC的度数。
例2.图,点P为正方形ABCD内一点,若PA=2,PB=4,APB=135°,求PC的长。
1.如图,在△ABC中,A=90°,AB=AC,D是斜边BC上一点,求证:BD2+CD2=2AD2
(1)求证:AD=CF
(2)AD与CF垂直吗说说你的理由;
(3)当正方形ODEF绕O点在平面内旋转时,(1)、(2)的结论是否有变化为什么
2.已知菱形ABCD中,B=60°,若EAF=60°.求证:△AEF是等边三角形。
3.已知正方形ABCD内一点,P到A、B、C三点的距离之和最小值为+,求此正方形的边长。
(1)求A,B两点的坐标;
(2)设点P在x轴下方的抛物线上,当∠ABP=∠CDB时,求出点P的坐标;
(3)以OB为边在第四象限内作等边△OBM,设点E为x轴的正半轴上一动点(OE>OH),连接ME,把线段ME绕点M顺时针旋转60°得MF,求线段DF的长的最小值。
1、如图,四边形OABC和ODEF都是正方形,CF交OA于点P,交DA于点Q.
(1)求S△DBF;
(2)把正方形AEFG绕点A逆时针旋转45°,得到图2,求图2中的S△DBF;
(3)把正方形AEFG绕点A旋转任意角度,在旋转的过程中,S△DBF是否存在最大值、最小值如果存在,试求出最大值、最小值;若不存在,请说明理由。
图1图2
2.四边形ABCD中,DAB=BCD=90°,CD=CB,AC=,求四边形ABCD的面积。
(3)据旋转角度画出对应的旋转的三角形
三旋转变换前后具有以下性质:
(1)对应线段相等,对应角相等
(2)对应点位置的排列次序相同
(3)任意两条对应线段所在直线的夹角都等于旋转角 .
【例题精讲】
例1.在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P,若SABCD=25,求DP的长。