1.构造函数法(最值法)证明单变量不等式

合集下载

高中数学:利用导数证明不等式的常见题型

高中数学:利用导数证明不等式的常见题型

利用导数证明不等式的常见题型题型一构造函数法把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键.这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。

题型二通过对函数的变形,利用分析法,证明不等式【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:题型三求最值解决任意、存在性变量问题解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:题型四分拆成两个函数研究【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质题型五设而不求当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.【启示】设而不求,整体代换是一种常用的方法,在解析几何中体现很多.在本例第(2)问中,只设出了零点而没有求出零点,这是一种非常好的方法,同学们一定要认真体会,灵活应用.题型六估值法题型七利用图象的特点,证明不等式题型八证明数列不等式题型九利用放缩法证明不等式【注意】在解决第(2)问时,用构造函数法证不出来,又试着分开两个函数仍然不行,正当我一筹莫展时,忽然想到与第一问题的切线联系,如果左边的函数的图像在切线的上方,右边函数的图像在切线的下方,这样问题不就得证了吗?心里非常高兴,马上付诸行动。

高中数学恒成立问题

高中数学恒成立问题

高中数学不等式的恒成立问题不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。

一、构造函数法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例1 已知不等式对任意的都成立,求的取值范围.解:由移项得:.不等式左侧与二次函数非常相似,于是我们可以设则不等式对满足的一切实数恒成立对恒成立.当时,即解得故的取值范围是.注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x为参数,以为变量,令则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。

二、分离参数法在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法.例2已知函数(为常数)是实数集上的奇函数,函数在区间上是减函数.(Ⅰ)若对(Ⅰ)中的任意实数都有在上恒成立,求实数的取值范围.解:由题意知,函数在区间上是减函数.在上恒成立注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数都有恒成立,则;若对于取值范围内的任一个数都有恒成立,则.三、数形结合法如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围.例 3 已知函数若不等式恒成立,则实数的取值范围是 .解:在同一个平面直角坐标系中分别作出函数及的图象,由于不等式恒成立,所以函数的图象应总在函数的图象下方,因此,当时,所以故的取值范围是注:解决不等式问题经常要结合函数的图象,根据不等式中量的特点,选择适当的两个函数,利用函数图像的上、下位置关系来确定参数的范围.利用数形结合解决不等式问题关键是构造函数,准确做出函数的图象.如:不等式,在时恒成立,求的取值范围.此不等式为超越不等式,求解时一般使用数形结合法,设然后在同一坐标系下准确做出这两个函数的图象,借助图象观察便可求解.四、最值法当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解.例4 已知函数(Ⅰ)当时,求的单调区间;(Ⅱ)若时,不等式恒成立,求实数的取值范围.解(Ⅱ)当时,不等式即恒成立.由于,,亦即,所以.令,则,由得.且当时,;当时,,即在上单调递增,在上单调递减,所以在处取得极大值,也就是函数在定义域上的最大值.因此要使恒成立,需要,所以的取值范围为.例5 对于任意实数x,不等式│x+1│+│x-2│>a恒成立,求实数a的取值范围.分析①:把左边看作x的函数关系,就可利用函数最值求解.解法1:设f(x)=│x+1│+│x-2│=-2x+1,(x≤1)3,(-1<x≤2)2x-1,(x>2)∴f(x)min=3.∴a<3.分析②:利用绝对值不等式│a│-│b│<│a±b│<│a│+│b│求解f(x)=│x+1│+│x-2│的最小值.解法2:设f(x)=│x+1│+│x-2│,∵│x+1│+│x-2│≥│(x+1)-(x-2)│=3,∴f(x)min=3. ∴a<3.分析③:利用绝对值的几何意义求解.解法3:设x、-1、2在数轴上的对应点分别是P、A、B,则│x+1│+│x-2│=│PA│+│PB│,当点P在线段AB上时,│PA│+│PB│=│AB│=3,当点P不在线段AB上时,│PA│+│PB│>3,因此不论点P在何处,总有│PA│+│PB│≥3,而当a<3时,│PA│+│PB│>a恒成立,即对任意实数x,不等式│x+1│+│x-2│>a 恒成立.∴实数a的取值范围为(-∞,3).小结求“恒成立问题”中参数范围,利用函数最值方便自然,利用二次不等式恒为正(负)的充要条件要分情况讨论,利用图象法直观形象.综上,恒成立问题多与参数的取值范围问题联系在一起,是近几年高考的一个热门题型,它以“参数处理”为主要特征,以“导数”为主要解题工具.往往与函数的单调性、极值、最值等有关,所以解题时要善于将这类问题与函数最值联系起来,通过函数最值求解相关问题.不等式恒成立问题,因题目涉及知识面广,解题方法灵活多样,技巧性强,难度大等特点,要求有较强的思维灵活性和创造性、较高的解题能力,上述方法是比较常用的,但因为问题形式千变万化,考题亦常考常新,因此在备考的各个阶段都应渗透恒成立问题的教与学,在平时的训练中不断领悟和总结,教师也要介入心理辅导和思想方法指导,从而促使学生在解决此类问题的能力上得到改善和提高.。

数学分析中几类证明不等式的方法

数学分析中几类证明不等式的方法

㊀㊀解题技巧与方法㊀㊀152㊀数学分析中几类证明不等式的方法数学分析中几类证明不等式的方法Һ郭㊀鑫㊀(天津师范大学,天津㊀300222)㊀㊀ʌ摘要ɔ在学习数学分析时我们常会见到一些不等式,当然,其中有一些著名的不等式无论是在解题还是在实际应用中都有重要的作用.笔者认为解决这些不等式的证明应该先找到对应的数学分析知识点,所以,本文中结合数学分析的知识点列举了四种常用的证明不等式的思路.本文中在每一种方法后附加了例题及解答,一些题目是选择了教材上的典型例题,还有一些是考研题目及其改编.不等式的证明往往有多种证明方法,还望读者多思考出更多不同的证明方法.ʌ关键词ɔ不等式;数学分析;积分;证明为了加深对数学分析中不等式证明的理解和掌握,本文在数学分析的基础上研究并整理了几种证明不等式的方法,也节选了典型例题辅助讲解.本文属于综述型论文,归纳总结了前人的理论成果并加上自己的理解与补充,希望本文可以帮助读者对于不等式问题有初步的解题思路,并借此探索更多的关于不等式的证明方法.一㊁几个著名不等式(一)Jensen不等式如果f(x)为[a,b]上的凸函数,那么对任何xiɪ[a,b],λi>0(i=1,2, ,n),ðni=1λi=1有f(ðni=1λixi)ɤðni=1λifxi().证明㊀当n=1时,结论显然成立;当n=2时,由凸函数的定义可以知道f(λ1x1+λ2x2)ɤλ1f(x1)+λ2f(x2)成立.假设n-1时命题成立,则对任意x1,x2, ,xnɪ[a,b],以及λi>0,ðni=1λi=1,令μi=λi1-λn>0(i=1,2, ,n-1),可以得到μ1+μ2+ +μn-1=1,由归纳假设得fðn-1i=1μixi()ɤðn-1i=1μif(xi),所以ðni=1λixi()=f((1-λn)㊃λ1x1+λ2x2+ +λn-1xn-11-λn+λnxn)ɤ(1-λn)㊃fλ1x1+λ2x2+ +λn-1xn-11-λnæèçöø÷+λnf(xn)ɤ(1-λn)㊃[μ1f(x1)+μ2f(x2)+ +μn-1f(xn-1)]+λnf(xn)=λ1f(x1)+λ2f(x2)+ +λnf(xn).由数学归纳法可知原命题成立.例1㊀求证:(abc)a+b+c3ɤaabbcc,其中a,b,c均为正数.提示㊀令f(x)=xlnx,运用Jensen不等式即证.(二)平均值不等式任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1 anɤa1+a2+ +ann.证明㊀设f(x)=lnx,则fᵡ(x)<0,从而f(x)为凹函数,所以由Jensen不等式可得fa1+a2+ +annæèçöø÷ȡf(a1)+f(a2)+ +f(an)n,即lnna1a2 an=1n(lna1+lna2+ +lnan)ɤlna1+a2+ +ann.因为f(x)为增函数,所以na1a2 anɤa1+a2+ +ann,同理n1a1㊃1a2㊃ ㊃1anȡ1a1+1a2+ +1ann,即得结论.注:此题还可运用条件极值证明.(三)Schwarz不等式若f(x)和g(x)在[a,b]上可积,则ʏbaf(x)g(x)dx()2ɤʏbaf2(x)dx㊃ʏbag2(x)dx.证明㊀因为f(x),g(x)在[a,b]上可积,所以f(x)+tg(x)在[a,b]上可积,从而ʏba(f(x)+tg(x))2dx=ʏbaf2(x)dx+ʏba2tf(x)g(x)dx+ʏbat2g2(x)dxȡ0,(∗)将(∗)式看作自变量t的一元二次函数,则Δ=4ʏbaf(x)g(x)dx()2-4ʏbaf2(x)dx㊃ʏbag2(x)dxɤ0,结论得证.推论㊀(柯西不等式)对任意ai,bi有ðni=1aibi()2ɤðni=1ai2㊃ðni=1bi2.例2㊀若f(x),g(x)都在[a,b]上可积,则有闵可夫斯基(Minkowski)不等式:ʏba(f(x)+g(x))2dx[]12ɤʏbaf2(x)dx[]12+ʏbag2(x)dx[]12.提示㊀不等式两边平方,化简,利用Schwarz不等式.(四)Hadamard不等式设f(x)为[a,b]上的连续凸函数.求证:fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.提示㊀利用凸函数的性质,证明详细过程见下页.二㊁利用函数单调性与极值解决不等式问题(一)利用单调性解决不等式问题函数的单调性是较为简单直接的证明不等式的方法,对于可导函数f(x)可以通过fᶄ(x)的正负判断f(x)的增减性,从而利用具体自变量的取值得到不等式.此类题目的关键在于构建合适的f(x).(例题中涉及几类常用的构造函数的方法)㊀㊀㊀解题技巧与方法153㊀㊀例3㊀(若尔当不等式)设0<xɤπ2,则2πɤsinxx<1.证明㊀设f(x)=sinxx,则fᶄ(x)=xcosx-sinxx2;再令g(x)=xcosx-sinx,则gᶄ(x)=-xsinx<0,从而g(x)递减.又因为g(0)=0,所以g(x)<0,则有fᶄ(x)<0,即f(x)递减.又因为limxң0f(x)=1,且fπ2()=π2,所以,由f(x)的单调性可得2πɤsinxx<1.(二)利用极值与最值解决不等式问题对于在定义域内不单调的函数,极值和最值是解决这类函数不等式的一个突破口,构造合适的函数利用极值的定义来证明.例4㊀(利用条件极值)任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1a2 anɤa1+a2+ +ann.证明㊀下面只证明na1a2 anɤa1+a2+ +ann(另一不等号的证明见上一页).设x1+x2+ +xn=a(∗),f(x1,x2, ,xn)=x1x2 xn,则只需证在条件(∗)下f(x)的最大值为annn.令L(x1,x2, ,xn,λ)=x1x2 xn+λ(x1+x2+ +xn-a),则Lxi=x1 xi-1xi+1 xn+λ=0,Lλ=x1+x2+ +xn-a=0,{解得λ=-na(x1x2 xn);xi=an.又因为f(x)有上界,所以所求点为最大值点,即最大值为annn,结论得证.三㊁利用微分中值定理和泰勒公式解决不等式问题(一)利用拉格朗日定理解决不等式问题拉格朗日定理可以将函数在区间端点的函数值与导函数在某一点的值联系起来,从而利用单调性或已知条件得到不等式.例5㊀求证:b-ab<lnba<b-aa,其中0<a<b.证明㊀原不等式等价于1b<lnb-lnab-a<1a,由拉格朗日定理,得lnb-lnab-a=1ξ,其中ξɪ(a,b).因为1b<1ξ<1a,所以1b<lnb-lnab-a<1a.(二)利用柯西定理解决不等式问题对于已知两个函数的端点函数值问题可利用柯西定理转换成导数比值形式,从而化简不等式.例6㊀设x>0,求证:2arctanx<3ln(1+x).证明㊀原不等式等价于arctanxln(1+x)<32;∀x>0,在[0,x]上由柯西中值定理,得∃ξɪ(0,x),使得arctanxln(1+x)=arctanx-arctan0ln(1+x)-ln(1+0)=1+ξ1+ξ2,设f(x)=1+x1+x2,则fᶄ(x)=1-2x-x2(1+x2)2,所以f(x)在x=2-1时取极大值(最大值),2+12<32,所以1+ξ1+ξ2<32,即arctanxln(1+x)<32,结论得证.(三)利用泰勒公式解决不等式问题对于一些不等式中涉及高阶导数及其范围的问题,可尝试利用泰勒公式的近似展开式,而利用泰勒公式的重点在于找到一个合适的点展开.四㊁函数凹凸性(一)函数凹凸性的简单推论推论1㊀f(x)为凸函数的充要条件为:对于定义域上,任意x1<x2<x3,则有f(x2)-f(x1)x2-x1ɤf(x3)-f(x1)x3-x1ɤf(x3)-f(x2)x3-x2.推论2㊀(此推论及其变形适用于许多涉及一阶导数的不等式证明)可导函数为凸(凹)函数当且仅当任意x1,x2有f(x2)ȡf(x1)+fᶄ(x1)(x2-x1)(f(x2)ɤf(x1)+fᶄ(x1)(x2-x1)).推论3㊀若f(x)为二阶可导函数,则f(x)是凸函数的充分必要条件为fᵡ(x)ȡ0.(此命题适用于涉及二阶导数的不等式证明)推论4㊀f(x)为[a,b]上的凸函数,则f(x)ȡ2fa+b2()-f(a)-f(b).(二)运用函数凹凸性证明不等式例7㊀证明Hadamard不等式.证明㊀设x=(1-t)a+tb=(b-a)t+a,则1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dt.同理可得1b-aʏbaf(x)dx=ʏ10f[ta+(1-t)b]dt.因为f(x)为凸函数,所以1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dtɤʏ10(1-t)f(a)+tf(b)dt=f(a)+f(b)2,且1b-aʏbaf(x)dx=12ʏ10f[(1-t)a+tb]dt+12ʏ10f[ta+(1-t)b]dt=ʏ1012f[(1-t)a+tb]+12f[ta+(1-t)b]dtȡʏ10f[12(1-t)a+t2b+t2a+12(1-t)b]dt=fa+b2(),所以fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.不等式的解法有许多,以上几种方法需要在数学分析的基础上研究不等式.在学习过程中抓住每种方法的要点并掌握相应的数学分析的基础知识才是关键.ʌ参考文献ɔ[1]华东师范大学数学系.数学分析(上册):第4版[M].北京:高等教育出版社,2010.[2]陈守信.考研数学分析总复习:精选名校真题:第5版[M].北京:机械工业出版社,2018.[3]徐利治,王兴华.数学分析的方法及例题选讲:第2版[M].北京:高等教育出版社,2015.[4]蒙诗德.数学分析中证明不等式的常用方法[N].赤峰学院学报(自然科学版),2009(09):20-22.[5]舒斯会.数学分析选讲[M].北京:北京大学出版社,2007.[6]林源渠,方企勤.数学分析解题指南[M].北京:北京大学出版社,2003.。

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。

它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。

而构造函数则是数学中一种非常常见的证明不等式的方法。

本文将介绍一些常用的导数和构造函数证明不等式的技巧。

一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。

因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。

例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。

由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。

2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。

因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。

3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。

例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。

例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。

例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。

例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。

7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。

例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法一、构造函数法是一种常用的数学证明方法,通过巧妙地构造函数,并对其性质进行分析,可以证明各种数学不等式。

下面就列举八种常用的构造函数法证明不等式的方法。

1.构造平方函数法:对于形如x^2≥0的不等式,可以构造f(x)=x^2,然后通过分析f(x)的性质,来证明不等式的成立。

2.构造递增函数法:对于形如a≥b的不等式,可以构造f(x)=x,然后通过分析f(x)的性质,来证明不等式的成立。

3.构造递减函数法:对于形如a≤b的不等式,可以构造f(x)=-x,然后通过分析f(x)的性质,来证明不等式的成立。

4.构造两个函数之差法:对于形如a-b≥0的不等式,可以构造f(x)=x^2和g(x)=(x-a)(x-b),然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

5. 构造函数的和法:对于形如(a+b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2+b^2+2ab,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

6.构造函数的积法:对于形如(a·b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2·b^2,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

7.构造函数的倒数法:对于形如1/(a·b)≥0的不等式,可以构造f(x)=1/x和g(x)=a·b,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

8.构造指数函数法:对于形如e^x≥1的不等式,可以构造f(x)=e^x 和g(x)=1,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

以上就是八种常用的构造函数法证明不等式的方法。

在实际证明过程中,需要注意选择合适的函数,并结合函数的性质进行分析,以确定不等式的成立情况。

此外,还需要注意构造的函数在给定范围内是否满足所要求的性质,以确保证明的正确性。

单变量不等式的三种证明方法

单变量不等式的三种证明方法

单变量不等式的三种证明方法方法一 移项作差构造法证明不等式[例1] 已知函数f (x )=1-ln x x ,g (x )=a e e x +1x-bx (e 为自然对数的底数),若曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直.(1)求a ,b 的值;(2)求证:当x ≥1时,f (x )+g (x )≥2x .[解] (1)因为f (x )=1-ln x x ,所以f ′(x )=ln x -1x 2,f ′(1)=-1. 因为g (x )=a e e x +1x -bx ,所以g ′(x )=-a e e x -1x 2-b . 因为曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直, 所以g (1)=1,且f ′(1)·g ′(1)=-1,即g (1)=a +1-b =1,g ′(1)=-a -1-b =1,解得a =-1,b =-1.(2)证明:由(1)知,g (x )=-e e x +1x +x , 则f (x )+g (x )≥2x ⇔1-ln x x -e e x -1x +x ≥0. 令h (x )=1-ln x x -e e x -1x +x (x ≥1), 则h ′(x )=-1-ln x x 2+e e x +1x 2+1=ln x x 2+e e x+1. 因为x ≥1,所以h ′(x )=ln x x 2+e e x +1>0, 所以h (x )在[1,+∞)上单调递增,所以h (x )≥h (1)=0,即1-ln x x -e e x -1x +x ≥0, 所以当x ≥1时,f (x )+g (x )≥2x .【方法小结】待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.方法二 隔离审查分析法证明不等式[例2] (2019·长沙模拟)已知函数f (x )=e x 2-x ln x .求证:当x >0时,f (x )<x e x +1e. [证明] 要证f (x )<x e x +1e ,只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x. 令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x 2, 易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,则h (x )min =h ⎝⎛⎭⎫1e =0,所以ln x +1e x≥0. 再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0.因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x,故原不等式成立. 【方法小结】若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个都便于求导的函数,从而找到可以传递的中间量,达到证明的目标.方法三 放缩法证明不等式[例3] 已知函数f (x )=ax -ln x -1.(1)若f (x )≥0恒成立,求a 的最小值;(2)求证:e -x x+x +ln x -1≥0; (3)已知k (e -x +x 2)≥x -x ln x 恒成立,求k 的取值范围.[解] (1)f (x )≥0等价于a ≥ln x +1x. 令g (x )=ln x +1x (x >0),则g ′(x )=-ln x x 2, 所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1,则a ≥1, 所以a 的最小值为1.(2)证明:当a =1时,由(1)得x ≥ln x +1,即t ≥ln t +1(t >0).令e -x x =t ,则-x -ln x =ln t ,所以e -x x≥-x -ln x +1, 即e -x x+x +ln x -1≥0. (3)因为k (e -x +x 2)≥x -x ln x 恒成立,即k ⎝⎛⎭⎫e -x x +x ≥1-ln x 恒成立, 所以k ≥1-ln x e -x x +x =-e -x x +x +ln x -1e -x x +x+1, 由(2)知e -x x +x +ln x -1≥0恒成立,所以-e -x x +x +ln x -1e -x x +x+1≤1,所以k ≥1. 故k 的取值范围为[1,+∞).【方法小结】导数的综合应用题中,最常见就是e x 和ln x 与其他代数式结合的难题,对于这类问题,可以先对e x 和ln x 进行放缩,使问题简化,便于化简或判断导数的正负.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号;(2)e x ≥e x ,当且仅当x =1时取等号;(3)当x ≥0时,e x ≥1+x +12x 2, 当且仅当x =0时取等号; (4)当x ≥0时,e x ≥e 2x 2+1, 当且仅当x =0时取等号; (5)x -1x ≤ln x ≤x -1≤x 2-x ,当且仅当x =1时取等号;(6)当x ≥1时,2(x -1)x +1≤ln x ≤x -1x ,当且仅当x =1时取等号.。

不等式的几种证明方法及其应用

不等式的几种证明方法及其应用

不等式的几种证明方法及其应用不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用.1 利用构造法证明不等式“所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”)52](1[P 在证明不等式的问题中,构造思想方法常有以下几种形式:1.1 构造函数证明不等式构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式.1.1.1 利用判别式在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法.例1 设R z y x ∈,,,证明0)(322≥+++++z y x z y xy x 成立. 解 令22233)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2222)(3)33(4)3(z y z yz y z y +-=++-+=∆知0≤∆,所以0)(≥x f . 故0)(322≥+++++z y x z y xy x 恒成立.对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2)(n n b x a -,由0)(≥x f 得出0≤∆,从而即可得出所需证的不等式.例2 设+∈R d c b a ,,,,且1=+++d c b a ,求证614141414<+++++++d c b a )18](2[P .证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2=4)14141414(282++++++++-x d c b a x (因为1=+++d c b a ).由0)(≥x f 得0≤∆ 即0128)14141414(42≤-+++++++d c b a .所以62414141414<≤+++++++d c b a .1.1.2 利用函数有界性若题设中给出了所证不等式中各个变量的变化范围,可考虑利用函数的有界性来证明,具体做法是将所证不等式视为某个变量的函数.例3 设,1,1,1<<<c b a 求证1->++ca bc ab )18](2[P . 证明 令1)()(+++=ac x c a x f 为x 的一次函数. 因为,1,1<<c a 所以0)1)(1(1)1(>++=+++=c a ac c a f ,0)1)(1(1)()1(>--=+++-=-c a ac c a f .即∀)1,1(-∈x ,恒有0)(>x f .又因为)1,1(-∈b ,所以0)(>b f , 即01>+++ca bc ab . 1.1.3 利用函数单调性在某些问题中,若各种式子出现统一的结构,这时可根据这种结构构造函数,把各种式子看作同一函数在不同点的函数值,再由函数的单调性使问题得到解决.例4 求证121212121111n n n na a a a aa a a a a a a +++≤++++++++++)53](1[P .分析 通过观察可发现式中各项的结构均相似于式子M M +1,于是构造函数xxx f +=1)()0(≥x .证明 构造函数xxx f +=1)( )0(≥x . 因为0)1(1)(2'>+=x x f , 所以)(x f 在),0[+∞上严格递增.令n a a a x +++= 211,n a a a x +++= 212. 因为21x x ≤,所以)()(21x f x f ≤. 所以≤+++++++nn a a a a a a 21211nn a a a a a a +++++++ 21211=+++++na a a a 2111++++++ n a a a a 2121nna a a a ++++ 211nna a a a a a ++++++≤1112211 .1.1.4 利用函数奇偶性 例5 求证221xx x <-)0(≠x .证明 设)(x f 221x x x --=,对)(x f 进行整理得)(x f )21(2)21(xx x -+=, )(x f -=)21(2)21(xx x ---+-=)12(2)12(-+-x x x =)21(2)21(x x x -+=)(x f , 所以)(x f 是偶函数.当0>x 时,12>x ,所以021<-x,所以0)(<x f . 由偶函数的图象关于y 轴对称知,当0<x 时,0)(<x f . 即 当0≠x 时,恒有0)(<x f ,即221xx x <- )0(≠x . 注意 由以上几种情况可以看出,如何构造适当的函数并利用函数的性质来证明不等式是解题的关键.1.2 构造几何图形证明不等式构造几何图形,就是把题中的元素用一些点或线来取代,使题中的各种数量关系得以在图中表现出来,然后借助几何图形的直观性或几何知识来寻求问题的解答.一般是在问题的条件中数量关系有明显的几何意义,或可以通过某种方式与几何形(体)建立联系时宜采用此方法.)52](1[P 这种方法十分巧妙且有效,它体现了数形结合的优越性.下面将具体介绍用几何法证明不等式的几种途径:1.2.1 构造三角形)1](3[P例6 已知z y x ,,为正数,求证22y xy x +++22z xz x ++>22z yz y ++.分析 注意到︒-+=++120cos 22222xy y x y xy x ,于是22y xy x ++可看作是以y x ,为两边,夹角为︒120的三角形的第三边,由此,易得出下面的证明:证 如图1 ,在BC A ∆内取一点O ,分别连接OC OB OA ,,,使图1B︒=∠=∠=∠120COA BOC AOB ,z OC y OB x OA ===,,则22y xy x AB ++=,22z xz x AC ++=,22z yz y BC ++=.由BC AC AB >+, 即得所要证明的不等式.注 该题可做如下推广:已知z y x ,,为正数,πα<<0,πβ<<0,πγ<<0,且πγβα2=++,求证++-22cos 2y xy x α>+-22cos 2z xz x β22cos 2z yz y +-γ,令γβα,,为满足条件的特殊角可设计出一系列的不等式.例7 已知正数k n m c b a ,,,,,满足p k c n b m a =+=+=+,求证2p cm bk an <++. 证明 如图2,构造边长为p 的正三角形ABC ,在边BC AB ,,上依次截取 n FA b CF k EC c BE m DB a AD ======,,,,,.因为ABC FEC DBE ADF S S S S ∆∆∆∆<++所以243434343p bk cm an <++, 即2p cm bk an <++. 1.2.2 构造正方形)1](3[P例8 已知+∈R x ,d c b a ,,,均是小于x 的正数,求证+-+22)(b x a +-+22)(c x b +-+22)(d x c x a x d 4)(22<-+.分析 观察不等式的左边各式,易联想到用勾股定理,每个式子代表一直角三角形的一斜边,且)()()()(d x d c x c b x b a x a -+=-+=-+=-+,所以可构造边长为x 的正方形.证明 如图3,构造边长为x 的正方形ABCD ,在边DA CD BC AB ,,,上 依次截取,a AE =,a x EB -=,d BF =c CG d x FC =-=,,b DHc x GD =-=,,b x HA -=.则四边形EFGH 的周长为+-+22)(b x a +-+22)(c x b +-+22)(d x c 22)(a x d -+.由三角形两边之和大于第三边知,四边形EFGH 的周长小于正方形ABCD 的周长, 从而命题得证.1.2.3 构造矩形图2x-c 图3例9 已知z y x ,,为正数,证明))((z y y x yz xy ++≤+.分析 两个数的乘积,可看作以这两个数为边长的矩形的面积,也可以看成以这两个数为直角边长的三角形面积的两倍.证明 如图4 ,造矩形ABCD ,使,y CD AB ==,x BE =,z EC =设α=∠AED .由AED ECD ABE ABCD S S S S ∆∆∆++=矩形知 =+)(z x y ++yz xy 2121αsin ))((21z y y x ++. 化简得αsin ))((z y y x yz xy ++=+.因为1sin 0≤<α,所以))((z y y x yz xy ++≤+(当且仅当︒=90α时,等号成立).1.2.4 构造三棱锥例10 设,0,0,0>>>z y x 求证22y xy x +->+-+22z yz y 22x zx z +-)129](4[P .分析 注意到22y xy x +-︒-+=60cos 222xy y x ,可以表示以y x ,为边, 夹角为︒60的三角形的第三边,同理22z yz y +-,22x zx z +-也有类似意义.证明 如图5,构造顶点为O 的四面体ABC O -,使︒=∠=∠=∠60AOC BOC AOB ,z OC y OB x OA ===,,,则有22y xy x AB +-=,22z yz y BC +-=,22x xz z AC +-=.在ABC ∆中AC BC AB >+,即得原不等式成立.注 该题还可做如下推广:已知z y x ,,为正数,,0πα<<,0πβ<<πγ<<0时πγβα20<++<且,βαγβα+<<-求证22cos 2y xy x +-α+22cos 2z xz x +-β>22cos 2z yz y +-γ.例10便是当︒===60γβα时的特殊情况.1.3 构造对偶式证明不等式对偶思想是根据矛盾双方既对立又统一的二重性,巧妙地构造对偶数列,从而将问题解决的一种思想.⌒ADCBE y x +图4图5OAC例11 求证1212124321+<-⨯⨯⨯n nn .分析 令=P nn 2124321-⨯⨯⨯ ,由于P 中分子为奇数、分母为偶数,则由奇数的对偶数为偶数可构造出关于P 的一个对偶式Q ,1225432+⨯⨯⨯=n nQ .证明 设=P n n 2124321-⨯⨯⨯ ,构造P 的对偶式Q ,1225432+⨯⨯⨯=n nQ .因为Q P <<0,所以=<PQ P 2)2124321(n n -⨯⨯⨯ 121)1225432(+=+⨯⨯⨯n n n .所以121+<n P ,即原不等式成立.注 构造对偶式的途径很多,本题是利用奇偶性来构造对偶式,此外,还可利用倒数关系、相反关系、对称性关系等来构造对偶式.1.4 构造数列证明不等式这种方法一般用于与自然数有关的不等式证明,当问题无法从正面入手时,可考虑将它转化为数列,然后利用数列的单调性来证明.例12 求证:不等式!21n n ≤-,对任何正整数n 都成立)55](1[P .分析 不等式可变形为,1!21≤-n n n 是正整数,所以可构造数列{},n a 其中1,!211==-a n a n n ,则只需证1a a n ≤即可.对于任意正整数n ,=-+=--+!2)!1(211n n a a n n n n 0)!1(2)1()!1()1(2211≤+-=++---n n n n n n n , 所以{}n a 是递减数列.所以1a a n ≤,即原命题成立.1.5 构造向量证明不等式向量由于其自身的形与数兼备的特性,使得它成了数形结合的桥梁,也是解决一些问题的有利工具.对于某些不等式的证明,若能借助向量模的意义、数量积的性质等,可使不等式得到较易的证明.1.5.1 利用向量模的性质 例13 已知,,,,R d c b a ∈求证++++2222c b b a 2222a d d c +++)(2d c b a +++≥.证明 在原点为O 的直角坐标系内取四个点:()(),,,,c b b a B b a A ++(),,d c b c b a C ++++(),,a d c b d c b a D ++++++则原问题可转化为+,该不等式显然成立.1.5.2 利用向量的几何特征例14 设{}n a 是由正数组成的等比数列,n S 是前n 项和,求证)31](5[12.022.02.0log 2log log P n n n S S S ++>+. 分析 可将上述不等式转化为,212++<⋅n n n S S S 构造向量,用平行四边形的几何特征来证明.证明 设该等比数列的公比为q ,如图6,构造向量(),,11a a OA =(),,1n n qS qS OB +=()()12111,,+++=++=n n n n S S qS a qS a OC ,则OB OA OC +=,故B C A O ,,,构成平行四边形.由于OB OA ,在对角线OC 的两侧,所以斜率OB OA k k ,中必有一个大于OC k ,另一个小于OC k .因为{}n a 是由正数组成的等比数列,所以OA n n OC k S S k =<=++121, 所以OC OB k k <, 即<+1n n S S 21++n n S S . 所以212++<⋅n n n S S S . 此外,还可以利用向量的数量积证明不等式,一般是根据向量的数量积公式θb a =⋅找出不等关系,如b a ≤⋅≤等,然后利用不等关系证明不等式,在此对这种方法不再举例说明.综上所述,利用构造思想证明不等式时,需对题目进行全面分析,抓住可构造的因素,并借助于与之相关的知识,构造出所求问题的具体形式或是与之等价的新问题,通过解决所构造的问题使原问题获得解决.就构造的对象来说它的表现形式是多样的,这就需要我们牢固的掌握基础知识和解题技巧,综合运用所学知识将问题解决.2 利用换元法证明不等式换元法是数学解题中的一种重要方法,换元的目的是通过换元达到减元,或通过换元得到熟悉的问题形式.换元法主要有以下几种形式:图6O xyABC2.1 三角换元法例15 已知,122≤+y x 求证2222≤-+y xy x .证明 设θθsin ,cos r y r x ==()10≤≤r ,则=-+222y xy x θθθθ22222sin sin cos 2cos r r r -+θθθ222sin 2sin cos -+=r224sin 22sin 2cos 222≤≤⎪⎭⎫ ⎝⎛+=+=r r r πθθθ.注 这种方法一般是已知条件在结构上与三角公式相似时宜采用.若题设为,12=+y x 可设;sin 2,cos θθ==y x 题设为,122=-y x 可设θθtan ,sec ==y x 等.2.2 均值换元法例16 设,1,,,=++∈z y x R z y x 求证31222≥++z y x )12](2[P .证明 设,31α+=x ,31β+=y ,31γ+=z 其中0=++γβα 则 =++222z y x ++2)31(α++2)31(β=+2)31(γ31)(231222≥++++++γβαγβα(当且仅当γβα==时取等号).2.3 增量换元法这种方法一般用于对称式(任意互换两个字母顺序,代数式不变)和给定字母顺序的不等式的证明.例17 已知,0>>y x 求证 yx y x -<-)55](6[P .证明 由,0>>y x 可令t y x += )0(>t . 因为2)(2t y yt t y t y +=++<+, 所以t y t y +<+, 即y x y x -<-.总之,证明不等式时适当的引进换元,可以比较容易的找到解题思路,但具体使用何种代换,则因题而异,总的目的是化繁为简.3 利用概率方法证明不等式)51](7[P利用概率方法证明不等式,主要是根据实际问题,构造适当的概率模型,然后利用有关结论解决实际问题.3.1利用概率的性质:对任意事件A ,1)(0≤≤A P ,证明不等式例18 证明若,10,10≤≤≤≤b a 则1+≤+≤ab b a ab .分析 由,10,10≤≤≤≤b a 可把a 看做事件A 发生的概率,b 看做事件B 发生的概率. 证明 设事件A 与B 相互独立,且,)(,)(b B P a A P ==则ab b a B A P B P A P B A P -+=-+=)()()()( .因为,1)(0≤≤B A P 所以10≤-+≤ab b a ,所以1+≤+≤ab b a ab .3.2 利用Cauchy-Schwarz 不等式:2))((ξηE ≤22ηξE E 例19 设0>i a ,0>i b ,,2,1=i …n ,, 则 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .证明 设随机变量ξηηξ,,满足下列要求ξ概率分布:P (ξ=i a )=n 1(n i ,,2,1 =),η概率分布:P (η=i b )=n1(n i ,,2,1 =),ξη概率分布:⎪⎩⎪⎨⎧≠=== )(0)(1)(j i j i nb a P j i ξη, 则 2ξE =∑=n i i a n 121,2ηE =∑=n i i b n 121,)(ξηE =∑=n i i i b a n 11.由2))((ξηE ≤22ηξE E 得 212)(1∑=n i i i b a n ≤)1)(1(1212∑∑==n i i n i i b n a n .即 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .用概率证明不等式比较新颖,开辟了证明不等式的又一途径.但该法用起来不太容易,因为读者必须对概率这部分知识熟悉掌握,才能选择适当的结论加以利用,因此对这种方法只做简单了解即可.4 用微分方法证明不等式在高等数学中我们接触了微分, 用微分方法讨论不等式,为不等式证明方法开辟了新的视野. 4.1利用微分中值定理微分中值定理包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,下面仅给出拉格朗日中值定理、泰勒定理的应用:拉格朗日中值定理)120](8[P 若函数)(x f 在[]b a ,上连续,()b a ,内可导,则在()b a ,内至少存在一点ξ,使得)('ξf =ab a f b f --)()(.例20 已知0>b ,求证b b bb<<+arctan 12. 证明 函数x arctan 在[]b ,0上满足拉格朗日中值定理的条件,所以有b arctan -0arctan =)0()(arctan '-=b x x ξ=21ξ+b,),0(b ∈ξ. 而b bx b <+<+2211ξ, 故原不等式成立.泰勒定理)138](8[P 若函数)(x f 在[]b a , 上有直至n 阶的连续导数,在()b a ,内存在()1+n 阶导函数,则对任意给定的0,x x ()b a ,∈,使得10)1(00)(200''00'0)()!1()()(!)()(!2)())(()()(++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ 该式又称为带有拉格朗日余项的泰勒公式.例21 设函数)(x f 在[]b a ,上二阶可导,且M x f ≤)('',,1,0)2(=-=+a b ba f 试证 4)()(M b f a f ≤+)69](9[P .证明 将函数)(x f 在点20ba x +=展成二阶泰勒公式 ++-+++=)2)(2()2()('b a x b a f b a f x f 2'')2)((21b a x f +-ξ=)2)(2('ba xb a f +-++2'')2)((21b a x f +-ξ. 将b a x ,=代入上式得)21)(2()('b a f a f +-=+)(811''ξf ,)(81)21)(2(')(2''ξf b a f b f ++=. 相加得))()((81)()(2''1''ξξf f b f a f +=+. 取绝对值得))()((81)()(2''1''ξξf f b f a f +≤+≤4M .4.2 利用极值例22 设12ln ->a 为任一常数,求证xeax x <+-122()0>x )188](10[P .证明 原问题可转化为求证012)(2>-+-=ax x e x f x)0(>x .因为0)0(=f ,所以只需证022)('>+-=a x e x f x.由02)(''=-=xe xf 得)('x f 的稳定点2ln =x .当2ln <x 时,0)(''<x f . 当2ln >x 时,0)(''>x f . 所以 02)2ln 1(222ln 22)2(ln )(min ''>+-=+-==>a a f x f x .所以原不等式成立.4.3 利用函数的凹凸性定义)193](10[P )(x f 在区间I 上有定义,)(x f 称为I 上的凸(凹)函数,当且仅当:21,x x ∀∈I ,有)2(21x x f +≤2)()(21x f x f + ()2(21x x f +≥2)()(21x f x f +). 推论)201](10[P 若)(x f 在区间I 上有二阶导数,则)(x f 在I 上为凸(凹)函数的充要条件是:0)(''≥x f (0)(''≤x f ).例23 证明na a a n +++ 21≥n n a a a 21 ),,2,1,0(n i a i =>)125](11[P .证明 令,ln )(x x f =则01)(,1)(2'''<-==xx f x x f ,所以 x x f ln )(=在()+∞,0上是凹函数,对),0(,,,21+∞∈n a a a 有)ln ln (ln 1ln 2121n n a a a nn a a a +++≥⎪⎭⎫ ⎝⎛+++ ,所以na a a n +++ 21≥nn a a a 21.例24 对任意实数,,b a 有)(212b ab a e e e+≤+)80](12[P .证明 设xe xf =)(,则),(,0)(''+∞-∞∈>=x e x f x,所以)(x f 为),(+∞-∞上凸函数.从而对b x a x ==21,有2)()()2(b f a f b a f +≤+. 即)(212b ab a e e e+≤+. 5 利用几个著名的不等式来证明不等式5.1 均值不等式)133](4[P定理 1 设n a a a ,,,21 是n 个正数,则)()()()(n Q n A n G n H ≤≤≤称为均值不等式,其中,111)(21na a a nn H +++=,)(21n n a a a n G =,)(21na a a n A n+++=na a a n Q n22221)(+++=分别称为n a a a ,,,21 的调和平均值,几何平均值,算术平均值,均方根平均值.例25 已知,10<<a ,02=+y x 求证812log )(log +≤+a yx a a a . 证明 由,10<<a ,0,0>>yxa a 有y x y x y x a a a a a +=⋅≥+22,从而得22log )2(log )(log yx a a a a y x a y x a ++=≤++, 故现在只需证812≤+y x 或 41≤+y x 即可. 而4141)21(22≤+--=-=+x x x y x (当21=x 时取等号),所以812log )(log +≤+a yx a a a .5.2 Cauchy 不等式 定理2)135](4[P 设),,2,1(,n i R b a i i =∈,则∑∑∑===≥⋅n i ni i i ni ii b a ba 121122,)(当且仅当nn a b a b a b === 2211时等号成立. 例26 证明三角不等式 2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ≤2112⎪⎭⎫ ⎝⎛∑=ni i a +2112⎪⎭⎫ ⎝⎛∑=ni i b )33](12[P .证明 因为∑=+ni i ib a12)(=∑=+ni i i i a b a 1)(+∑=+ni i i i b b a 1)(根据Cauchy 不等式,可得∑=+ni i i ia b a1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i n i i i a b a . (1)∑=+ni i i i b b a 1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i ni i ib b a . (2) 把(1)(2)两个式子相加,再除以2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ,即得原式成立.5.3 Schwarz 不等式Cauchy 不等式的积分形式称为Schwarz 不等式. 定理3)271](10[P )(),(x g x f 在[]b a ,上可积,则⎰⎰⎰≤b ababadx x g dx x f dx x g x f .)()())()((222若)(),(x g x f 在[]b a ,上连续,其中等号当且仅当存在常数βα,,使得)()(x g x f βα≡时成立(βα,不同时为零).例27 已知)(x f 在[]b a ,上连续,,1)(=⎰badx x f k 为任意实数,求证2)cos )((⎰bakxdx x f 1)sin )((2≤+⎰b akxdx x f )272](10[P .证明 上式左端应用Schwarz 不等式得2)cos )((⎰bakxdx x f 2)cos )(()(⎥⎦⎤⎢⎣⎡=⎰badx kx x f x f⎰⎰⋅≤babakxdx x f dx x f 2cos )()(⎰=bakxdx x f 2cos )(. (1)同理2)sin )((⎰bakxdx x f ⎰≤bakxdx x f 2sin )(. (2)由(1)+(2)即得原不等式成立. 5.4 利用W.H.Young 不等式 定理4)288](10[P 设)(x f 单调递增,在),0[+∞上连续,,0)0(=f )(,0,1x fb a ->表示)(x f 的反函数,则⎰⎰-+≤bady y f dx x f ab 010,)()(其中等号当且仅当b a f =)(时成立.例28 设,0,>b a ,1>p ,111=+qp 试证q b p a ab q p +≤)290](10[P .证明 因为,1>p 所以1)(-=p xx f 单调递增且连续 (当0≥x 时),1111)(---==q p y yy f )111(-=-q p . 应用W.H.Young 不等式有 qb p a dy y f dx x f ab qp ba+=+≤⎰⎰-01)()(.。

构造函数法证明不等式的八种方法冷世平整理

构造函数法证明不等式的八种方法冷世平整理

构造函数法证明不等式的八种方法冷世平整理1.构造多项式函数法:通过构造一个多项式函数来证明不等式。

例如,要证明当$x>0$时,$x^3+x^2+x+1>0$,我们可以构造多项式$f(x)=x^3+x^2+x+1$,然后证明$f(x)$的系数全为正数,从而得到结论。

2. 构造变形函数法:通过构造一个特定的变形函数来证明不等式。

例如,要证明当$x>0$时,$x+\frac{1}{x}>2$,我们可以构造变形函数$f(x)=x+\frac{1}{x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。

3. 构造反函数法:通过构造一个特定的反函数来证明不等式。

例如,要证明当$x>0$时,$\frac{1}{x}+\frac{1}{1-x}>2$,我们可以构造反函数$f(x)=\frac{1}{x}+\frac{1}{1-x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。

4. 构造积分函数法:通过构造一个特定的积分函数来证明不等式。

例如,要证明当$x>0$时,$\int_{0}^{x}\sqrt{t}dt<x$,我们可以构造积分函数$f(x)=\int_{0}^{x}\sqrt{t}dt-x$,然后证明$f(x)$的取值范围为负数,从而得到结论。

5. 构造递推函数法:通过构造一个特定的递推函数来证明不等式。

例如,要证明$n$个正实数的算术平均数大于等于它们的几何平均数,我们可以构造递推函数$f(n)=\frac{a_1+a_2+\dots+a_n}{n}-\sqrt[n]{a_1a_2\dots a_n}$,然后证明$f(n)$关于$n$的递推关系为非负数,从而得到结论。

6. 构造交换函数法:通过构造一个特定的交换函数来证明不等式。

例如,要证明当$x,y,z>0$时,$(x+y)(y+z)(z+x)\geq 8xyz$,我们可以构造交换函数$f(x,y,z)=(x+y)(y+z)(z+x)-8xyz$,然后证明$f(x,y,z)$在$x,y,z$的任意交换下都保持不变或增加,从而得到结论。

解不等式的几种常见思路

解不等式的几种常见思路

解不等式的几种常见思路一、证明不等式常用思路:不等式的证明思路和方法有:比较法、综合法、分析法、放缩法、反证法;换元法、常数代换法、几何法、数学归纳法、构造函数法等。

(换元法是一个需要专门讨论的方法,这里暂不举例)1、比较法:比较法证明不等式的一般步骤:作差(作商)—变形—判断—结论.作差法:差与“0”比较。

为了判断作差后的符号,经常需要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,判断其正负.作商法:商与“1”相比较。

作商时,需要满足两者均为正数。

2、综合法(顺推):综合法是指从已知条件出发,经过逐步的逻辑推理,最后得到结论,其特点是“执因索果”,即由“已知”,利用已经证明过的不等式或不等式的性质逐步推向“未知”。

综合法证明不等式的逻辑关系是:A B1B2…Bn B,及从已知条件A 出发,逐步推演不等式成立的必要条件,推导出所要证明的结论B.3、分析法(逆推):从求证的结论出发,分析使这个结论成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”.即从“未知”看“需知”,逐步靠拢“已知”。

4、放缩法:要证明不等式A<B 成立,借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法.放缩法证明不等式的理论依据主要有:①不等式的传递性;②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.常用的放缩技巧有:①应用均值不等式进行放缩;②舍掉(或加进)一些项;③在分式中放大或缩小分子或分母。

5、反证法:即从正难则反的角度去思考,要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B. 凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不可能”、“不存在”等词语时,可以考虑用反证法.6、常数代换法常数代换是指利用某些带有常数项的恒等式,把常量化为变量代入到所求证的式子中,以到达化繁为简的目的。

证明不等式的方法

证明不等式的方法

证明不等式的方法1.比较法。

在证明不等式的方法中,比较法是最基本、最重要的方法。

比较法是利用不等式两边的差是正还是负来证明不等关系的。

利用不等式的性质对不等式进行变形,变形目的在于判断差的符号,而不考虑值是多少。

2.综合法。

综合法是由已知条件出发,推导出所要证明的不等式成立,即由已知逐步推演不等式成立的必要条件得到结论。

综合法是“由因导果”。

3.分析法。

分析法也是证明不等式的一种常用的基本方法,当证题不知从何入手时,有时可以用分析法获得解决。

分析法是和综合法对立统一的两种方法,它是由结果步步寻求不等式成立的充分条件,找寻已知,是“执果索因”。

分析法和综合法常常是不能分离的,如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程。

4.作商法。

将不等式左右两端作商、变形化简商式到最简形式,判断商与1的大小,应用范围一般是被证式的两端都是正数,被证式子两端都是乘积形式或指数形式时常用此法。

5.判别式法,对于含有两个或两个以上字母的不等式,在使用比较法无效时,若能整理成一边为零,而另一边为某个字母的二次式时,这时候可用判别式法。

6.代换法。

代换法中常用的有两种:一种是三角代换法,一种是增量代换法。

三角代换法多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时候可考虑三角代换,将两个变量都用同一个参数表示。

此法可以把复杂的代数问题转化为三角问题。

要注意的是可能对引入的角有一定的限制,这一点要根据已知来定。

增量代换法一般是在对称式(任意互换两个字母,代数式不变)和给定字母顺序的不等式,常用增量法进行代换,代换的目的是通过代换达到减元的目的,使问题化难为易,化繁为简。

7.构造函数法。

函数思想是中学数学重要的思想方法之一,有些数学问题只要将其中某些变化的量建立起联系,构造出函数,再利用函数的性质,就能解决问题。

8.反证法。

用直接法证明不等式困难时,可考虑用反证法。

利用导数证明不等式 高考数学大一轮复习(新高考地区)(解析版)

利用导数证明不等式 高考数学大一轮复习(新高考地区)(解析版)

3.5 利用导数证明不等式【题型解读】【知识储备】1.导数证明不等式方法:(1)构造单函数求最值证明不等式; (2)构造双函数比较最值证明不等式; (3)参变分离转化为具体函数最值证明不等式; (4)不等式放缩证明不等式;(5)双变量不等式证明转化为单变量不等式证明。

2.常用不等式的生成在不等式“改造”或证明的过程中,可借助题目的已知结论、均值不等式、函数单调性、与e x 、ln x 有关的常用不等式等方法进行适当的放缩,再进行证明.下面着重谈谈与e x 、ln x 有关的常用不等式的生成. (1)生成一:利用曲线的切线进行放缩设e x y =上任一点P 的横坐标为m ,则过该点的切线方程为()e e m my x m -=-,即()e 1e m m y x m =+-,由此可得与e x 有关的不等式:()e e1e xmm x m ≥+-,其中x ∈R ,m ∈R ,等号当且仅当x m=时成立.特别地,当0m =时,有e 1x x ≥+;当1m =时,有e e x x ≥. 设ln y x =上任一点Q 的横坐标为n ,则过该点的切线方程为()1ln y n x n n -=-,即11ln y x n n=-+,由此可得与ln x 有关的不等式:1ln 1ln x x n n≤-+,其中0x >,0n >,等号当且仅当x n =时成立.特别地,当1n =时,有ln 1x x ≤-;当e n =时,有1ln ex x ≤.利用切线进行放缩,能实现以直代曲,化超越函数为一次函数. 生成二:利用曲线的相切曲线进行放缩由图1可得1ln x x x -≥;由图2可得1ln e x x≥-;由图3可得,()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);由图4可得,11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).综合上述两种生成,我们可得到下列与e x 、ln x 有关的常用不等式: 与e x 有关的常用不等式: (1)e 1x x ≥+(x ∈R ); (2)e e x x ≥(x ∈R ). 与ln x 有关的常用不等式:(1)1ln 1x x x x -≤≤-(0x >); (2)11ln e ex x x -≤≤(0x >);(3)()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);(4)11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).用1x +取代x 的位置,相应的可得到与()ln 1x +有关的常用不等式.【题型精讲】【题型一 构造单函数证明不等式】方法技巧 构造单函数证明不等式待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证. 例1 (2022·山东济南历城二中高三月考)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-34a-2. 【解析】(1)f ′(x )=2ax 2+(2a +1)x +1x =(2ax +1)(x +1)x .当a ≥0时,f ′(x )≥0,则f (x )在(0,+∞)单调递增.若a <0,则f (x )在⎝⎛⎭⎫0,-12a 单调递增,在⎝⎛⎭⎫-12a ,+∞单调递减. (2)第一次构造辅助函数g (x )=f (x )+34a+2. 要证原不等式成立,需证g (x )max ≤0,即证f (x )max +34a +2≤0.由(1)知,当a <0时,f (x )max =f ⎝⎛⎭⎫-12a .即证ln ⎝⎛⎭⎫-12a +12a+1≤0 不妨设t =-12a >0,则证ln t -t +1≤0,令h (t )=ln t -t +1,求导得h ′(t )=1t -1.h ′(t )>0时,t ∈(0,1);h ′(t )<0时,t ∈(1,+∞).所以h (t )在(0,1)单调递增,在(1,+∞)单调递减,则h (t )max =h (1)=0.故f (x )≤-34a -2.【题型精练】1.(2022·天津·崇化中学期末)已知函数()ln 1a x bf x x x=++,曲线()y f x =在点()()1,1f 处的切线方程为230x y +-=.(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,()ln 1xf x x >-. 【解析】(1)()()221ln 1x a x bx f x x x +⎛⎫- ⎪⎝⎭'=-+. 由于直线230x y +-=的斜率为12-,且过点()1,1,所以()()11112f f ⎧=⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. (2)由(1)知()ln 11x f x x x =++,所以()ln ln 1ln 111x x xf x x x x x >⇔+>-+- ()222ln 12110ln 0112x H x x x x x x x ⎡⎤⎛⎫⇔+>⇔=--> ⎪⎢⎥--⎝⎭⎣⎦.构造函数()11ln 2h x x x x ⎛⎫=-- ⎪⎝⎭(0x >),则()()22211111022x h x x x x -⎛⎫'=-+=-≤ ⎪⎝⎭,于是()h x 在()0,+∞上递减.当01x <<时,()h x 递减,所以()()10h x h >=,于是()()2101H x h x x=>-;当1x >时,()h x 递减,所以()()10h x h <=,于是()()2101H x h x x=>-.综上所述,当0x >,且1x ≠时,()ln 1xf x x >-. 2. (2022·山东济南高三期末)设函数()f x alnx x=,a R ∈.(1)讨论函数()f x 的单调性;(2)当1a =且1x >时,证明:213()2x x f x -+>.【解析】解:(1)函数()f x alnx x=+,定义域为(0,)+∞,1()a x f x x x-'=,① 当a ≤0时,()0f x '<,则()f x 在(0,)+∞上单调递减; ②当0a >时,令()0f x '=,解得21x a =, 当21(0,)x a ∈时,()0f x '<, 当21(x a∈,)+∞时,()0f x '>, 所以()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . 综上所述,当a ≤0时,()f x 的单调递减区间为(0,)+∞; 当0a >时,()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . (2)证明:当1a =时,令21()3(1)2h x lnx x x x x =+-+->, 则2211(1)(1)()1x x x x xx x x x h x x x x xx xx x--+---'=--+==,因为1x >,则()0h x '<,所以()h x 在(1,)+∞上单调递减, 故()h x h <(1)102=-<,则21302lnx x x x +-+-<,故213()2x x f x -+>. 【题型二 构造双函数比较最值证明不等式】方法技巧 构造双函数比较最值证明不等式若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.例2(2022·山东青岛高三期末)设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+(I )求,;a b (II )证明:() 1.f x >【解析】(1)因为()1e f '=,()12f =,而()()12e e e ln x x a x bx bf x a x x-+-'=+,所以()()1e e 12f a f b '⎧==⎪⎨==⎪⎩,解得1a =,2b =.(2)由(1)知,()12e e ln x xf x x x -=+,于是()12e 1e ln 1x xf x x x ->⇔+>,将不等式改造为2ln e ex x x x +>. 令()2ln e m x x x =+,则()1ln m x x '=+.由()0m x '>可得1e x >,由()0m x '<可得10ex <<,所以()m x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e⎛⎫+∞ ⎪⎝⎭上递增,所以()min11e em x m ⎛⎫⎡⎤== ⎪⎣⎦⎝⎭.令()e x x n x =,则()1ex xn x -'=.由()0n x '<可得1x >,由()0n x '> 可得01x <<,所以()n x 在()0,1上递增,在()1,+∞上递减,所以()()max11en x n ⎡⎤==⎣⎦. 两个函数的凸性相反.此时,我们可以寻找与两个曲线都相切的公切线1ey =,将两个函数进行隔离,又因为等号不能同时成立,所以2ln e e xx x x +>. 【题型精练】1.(2022·天津市南开中学月考)已知函数f (x )=a ln x +x . (1)讨论f (x )的单调性; (2)当a =1时,证明:xf (x )<e x .【解析】(1) f (x )的定义域为(0,+∞), f ′(x )=ax +1=x +a x .当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0; 若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. 综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. (2)当a =1时,要证xf (x )<e x , 即证x 2+x ln x <e x ,即证1+ln x x <e x x 2.令函数g (x )=1+ln x x,则g ′(x )=1-ln xx 2.令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, 所以g (x )max =g (e)=1+1e ,令函数h (x )=e xx 2,则h ′(x )=e x (x -2)x 3.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 所以h (x )min =h (2)=e 24.因为e 24-⎝⎛⎭⎫1+1e >0,所以h (x )min >g (x )max ,即1+ln x x <e xx2,从而xf (x )<e x 得证.2. (2022·安徽省江淮名校期末)已知函数f (x )=eln x -ax (a ∈R ). (1)讨论函数f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 【解析】(1)f ′(x )=ex-a (x >0),①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ②若a >0,则当0<x <ea 时,f ′(x )>0;当x >ea时,f ′(x )<0.故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫ea ,+∞上单调递减. (2)因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 所以f (x )max =f (1)=-e.设g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减; 当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx-2e.故不等式xf (x )-e x +2e x ≤0得证. 【题型三 放缩法证明不等式】方法技巧 放缩法证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号.(2)ln x ≤x -1,当且仅当x =1时取等号. 例3 (2022·河南高三期末)已知函数f (x )=a e x -1-ln x -1. (1)若a =1,求f (x )在(1,f (1))处的切线方程; (2)证明:当a ≥1时,f (x )≥0.【解析】(1)当a =1时,f (x )=e x -1-ln x -1(x >0), f ′(x )=e x -1-1x,k =f ′(1)=0,又f (1)=0,∴切点为(1,0).∴切线方程为y -0=0(x -1),即y =0. (2)∵a ≥1,∴a e x -1≥e x -1,∴f (x )≥e x -1-ln x -1. 方法一 令φ(x )=e x -1-ln x -1(x >0),∴φ′(x )=e x -1-1x ,令h (x )=e x -1-1x ,∴h ′(x )=e x -1+1x 2>0,∴φ′(x )在(0,+∞)上单调递增,又φ′(1)=0,∴当x ∈(0,1)时,φ′(x )<0;当x ∈(1,+∞)时,φ′(x )>0, ∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴φ(x )min =φ(1)=0,∴φ(x )≥0,∴f (x )≥φ(x )≥0,即f (x )≥0. 方法二 令g (x )=e x -x -1,∴g ′(x )=e x -1.当x ∈(-∞,0)时,g ′(x )<0; 当x ∈(0,+∞)时,g ′(x )>0,∴g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴g (x )min =g (0)=0,故e x ≥x +1,当且仅当x =0时取“=”. 同理可证ln x ≤x -1,当且仅当x =1时取“=”. 由e x ≥x +1⇒e x -1≥x (当且仅当x =1时取“=”), 由x -1≥ln x ⇒x ≥ln x +1(当且仅当x =1时取“=”), ∴e x -1≥x ≥ln x +1, 即e x -1≥ln x +1,即e x -1-ln x -1≥0(当且仅当x =1时取“=”),即f (x )≥0. 【题型精练】1.(2022·广东·高三期末)已知函数1()1x e f x lnx-=+.(1)求函数()f x 的单调区间; (2)解关于x 的不等式11()()2f x x x>+【解析】(1)函数1()1x e f x lnx -=+.定义域为:11(0,)(,)ee+∞. 121(1)()(1)x e lnx x f x lnx -+-'=+,f '(1)0=. 令1()1g x lnx x =+-,211()0g x x x'=+>, ∴函数()g x 在定义域上单调递增. ∴10x e <<,11x e<<.()0f x '<,函数()f x 单调递减.1x >时,()0f x '>,函数()f x 单调递增. (2)不等式11()()2f x x x>+,即111()12x e x lnx x ->++.10x e <<,()0f x <,舍去.当1x =时,不等式的左边=右边,舍去.1x e∴>,且1x ≠.①11x e <<时,由1x e x ->,要证不等式111()12x e x lnx x ->++.可以证明:11()12x x lnx x >++.等价于证明:22211x lnx x >++.令222()(1)1x F x lnx x =-++. 2222(1)()0(1)x F x x x --'=<+,∴函数()F x 在1(,1)e上单调递减,()F x F ∴>(1)0=. ②当1x >时,不等式⇔12211x e lnxx x -+>+. 令122()1x e h x x -=+,1()lnxu x x+=. 12222(1)()0(1)x e x h x x --'=>+,函数()h x 在(1,)+∞上单调递增, ()h x h ∴>(1)1=.由1lnx x <-,()1u x ∴<.∴不等式12211x e lnxx x-+>+成立. 综上可得:不等式11()()2f x x x >+的解集为:1(,1)(1,)e +∞.【题型四 双变量不等式证明】方法技巧 双变量不等式证明对于两个未知数的函数不等式问题,其关键在于将两个未知数化归为一个未知数,常见的证明方法有以下4种:方法1:利用换元法,化归为一个未知数方法2:利用未知数之间的关系消元,化归为一个未知数 方法3:分离未知数后构造函数,利用函数的单调性证明 方法4:利用主元法,构造函数证明例4 (2022·黑龙江工农·鹤岗一中高三期末)已知函数()1ln f x x a x x=-+. ⑴讨论()f x 的单调性;⑵若()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.【解析】(1)定义域为()0,+∞,()222111a x ax f x x x x -+'=--+=-. ①若0a ≤,则()0f x '<,()f x 在()0,+∞上递减.②若240a ∆=-≤,即02a <≤时,()0f x '≤,()f x 在()0,+∞上递减.③若240a ∆=->,即2a >时,由()0f x '>2244a a a a x --+-<,由()0f x '<,可得240a a x --<<或24a a x +->,所以()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.综上所述,当2a ≤时,()f x 在()0,+∞上递减;当2a >时,()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.【证明】(2)法1:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,所以12x x a +=,121x x =,不妨设1201x x <<<.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()()()()21121212121212121212ln ln ln ln ln ln 112x x x x a x x a x x a x x x x x x x x x x x x ---+---=--+=-+---,于是()()()121212212121222ln ln ln ln 2ln 222111f x f x a x x x x x a a x x x x x x x x ----<-⇔-+<-⇔<⇔<⇔----22212ln 0x x x +-<.构造函数()12ln g x x x x =+-,1x >,由(1)知,()g x 在()1,+∞上递减,所以()()10g x g <=,不等式获证.法2:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,不妨设1201x x <<<,则2214x x a --,121x x =.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()22111122122*********ln ln ln14124a a x x x x a x x a a x x x x a a x x x x x x a -----++-=--+=----,于是()()22212222124ln44222444a a a f x f x a a a a a a a x x a a a ---+-+-<-⇔-<-⇔----- 22222444ln 4ln 222a a a a a a ⎛-+--⇔-< ⎪⎝⎭.设242a t -=,则244a t +,构造函数())2ln1t t t tϕ=-+,0t >,则()22212111011t t t t t ϕ++'==->+++,所以()t ϕ在()0,+∞上递增,于是()()00t ϕϕ>=,命题获证.法3:仿照法1,可得()()12121212ln ln 21f x f x x x a x x x x --<-⇔<--,因为121x x =,所以1212121121212122211212ln ln ln ln 1ln ln ln x x x x x x xx x x x x x x x x x x x x --<⇔⇔->⇔>--令()120,1x t x =,构造函数()12ln h t t t t=+-,由(1)知,()h t 在()0,1上递减,所以()()10h t h >=,不等式获证.【题型精练】1.(2022·全国高三课时练习)已知函数f (x )=ln x -2(x -1)x +1,g (x )=x ln x -m (x 2-1)(m ∈R ). (1)若函数f (x ),g (x )在区间(0,1)上均单调且单调性相反,求实数m 的取值范围; (2)若0<a <b ,证明:ab <a -b ln a -ln b<a +b2.【解析】 (1)f ′(x )=1x -4(x +1)2=(x -1)2x (x +1)2>0,所以f (x )在(0,1)上单调递增.由已知f (x ),g (x )在(0,1)上均单调且单调性相反,得g (x )在(0,1)上单调递减. 所以g ′(x )=ln x +1-2mx ≤0在(0,1)上恒成立,即2m ≥ln x +1x,令φ(x )=ln x +1x (x ∈(0,1)),φ′(x )=-ln xx 2>0,所以φ(x )在(0,1)上单调递增,φ(x )<φ(1)=1,所以2m ≥1,即m ≥12.(2)由(1)f (x )=ln x -2(x -1)x +1在(0,1)上单调递增,f (x )=ln x -2(x -1)x +1<f (1)=0,即ln x <2(x -1)x +1,令x =a b ∈(0,1)得ln a b <2⎝⎛⎭⎫a b -1a b +1=2(a -b )a +b ,∵ln ab <0,∴a -b ln a -ln b<a +b 2.在(1)中,令m =12,由g (x )在(0,1)上均单调递减得g (x )>g (1)=0,所以x ln x -12(x 2-1)>0,即ln x >12⎝⎛⎭⎫x -1x , 取x =ab∈(0,1)得ln a b >12⎝⎛⎭⎫a b-b a ,即ln a -ln b >a -b ab, 由ln a -ln b <0得:ab <a -b ln a -ln b ,综上:ab <a -b ln a -ln b <a +b2.总结提升 两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bab L a b +≤≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立.2. (2022·全国高三课时练习)已知函数f (x )=ax 2-x -ln 1x.(1)若f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,求f (x )的图象在点(1,f (1))处的切线方程; (2)若函数f (x )在定义域内有两个极值点x 1,x 2,求证:f (x 1)+f (x 2)<2ln2-3.【解析】(1)∵f (x )=ax 2-x -ln 1x =ax 2-x +ln x ,x ∈(0,+∞),∴f ′(x )=2ax -1+1x ,∴k =f ′(1)=2a .∵f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,∴2a =2,即a =1. ∴f (1)=0,故切点坐标为(1,0).∴切线方程为y =2x -2. (2)∵f ′(x )=2ax -1+1x =2ax 2-x +1x,∴由题意知方程2ax 2-x +1=0在(0,+∞)上有两个不等实根x 1,x 2, ∴Δ=1-8a >0,x 1+x 2=12a >0,x 1x 2=12a >0,∴0<a <18.f (x 1)+f (x 2)=ax 21+ax 22-(x 1+x 2)+ln x 1+ln x 2=a (x 21+x 22)-(x 1+x 2)+ln(x 1x 2)=a [(x 1+x 2)2-2x 1x 2]-(x 1+x 2)+ln(x 1x 2)=ln 12a -14a-1,令t =12a ,g (t )=ln t -t 2-1,则t ∈(4,+∞),g ′(t )=1t -12=2-t 2t<0,∴g (t )在(4,+∞)上单调递减.∴g (t )<ln4-3=2ln2-3,即f (x 1)+f (x 2)<2ln2-3. 【题型五 数列不等式证明】例5 (2022·辽宁省实验中学分校高三期末)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值(2)设m 为整数,且对于任意正整数,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭,求m 的最小值. 【解析】(1)()f x 的定义域为()0,+∞. ①当1x =时,有()10f =,成立.②当1x >时,11ln 0ln x x a x a x ---≥⇔≤,令()1ln x h x x-=,则()21ln 1ln x x h x x -+'=,令()1ln 1k x x x=-+,则()210x k x x-'=>,所以()k x 在()1,+∞上递增,于是()()10k x k >=,所以()0h x '>,所以()h x 在()1,+∞上递增.由洛必达法则可得1111lim lim 11ln x x x x x++→→-==,所以1a ≤. ③当01x <<时,11ln 0ln x x a x a x ---≥⇔≥,令()1ln x h x x-=,仿照②可得()h x 在()0,1上递增.由洛必达法则可得1111lim lim 11ln x x x x x--→→-==,所以1a ≥. 综上所述,1a =. (2)当1a =时()1ln 0f x x x =--≥,即ln 1x x ≤-,则有()ln 1x x +≤,当且仅当0x =时等号成立,所以11ln 122k k ⎛⎫+< ⎪⎝⎭,*k ∈N ,于是2111ln 1ln 1ln 1222n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21111112222n n+++=-<,所以2111111e222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭.当3n =时,23111359135111222224864⎛⎫⎛⎫⎛⎫+++=⨯⨯=> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,于是m 的最小值为3.【题型精练】1. (2022·江苏·昆山柏庐高级中学期末)设函数()()ln 1f x x =+,()()g x xf x '=,0x ≥,其中()f x '是()f x 的导函数. (1)若()()f x ag x ≥恒成立,求实数a 的取值范围;(2)设*n ∈N ,比较()()()12g g g n +++与()n f n -的大小,并加以证明.【解析】(1)()11f x x '=+,所以()1xg x x=+. 法1:(分离参数法)当0x =时,()()f x ag x ≥恒成立.当0x >时,()()f x ag x ≥在()0,+∞上恒成立()()()()()1ln 1f x x x a Fx g x x++⇔≤==在()0,+∞上恒成立.()()2ln 1x x F x x -+'=,令()()ln 1G x x x =-+,则()01xG x x'=>+,所以()G x 在()0,+∞上递增,于是()()00G x G >=,即()0F x '>,所以()F x 在()0,+∞上递增. 由洛必达法则,可得()()()001ln 11ln 1lim lim 11x x x x x x++→→++++==,所以1a ≤,于是实数a 的取值范围为(],1-∞.法2:(不猜想直接用最值法)令()()()()ln 11axh x f x ag x x x=-=+-+,则()()()()22111111a x ax x a h x x x x +--+'=-=+++,令()0h x '=,得1x a =-. ①当10a -≤,即1a ≤时,()0h x '≥在[)0,+∞上恒成立,所以()h x 在[)0,+∞上递增,所以()()00h x h >=,所以当1a ≤时,()0h x ≥在[)0,+∞上恒成立.②当10a ->,即1a >时,()h x 在()0,1a -上递减,在()1,a -+∞上递增,所以当1x a =-时()h x 取到最小值,于是()()1ln 1h x h a a a ≥-=-+.设()ln 1a a a ϕ=-+,1a >,则()110a aϕ'=-<,所以函数()a ϕ在()1,+∞上递减,所以()()10a ϕϕ<=,即()10h a -<,所以()0h x ≥不恒成立.综上所述,实数a 的取值范围为(],1-∞. (2)()()()1212231ng g g n n +++=++++,()()ln 1n f n n n -=-+,比较结果为:()()()()12g g g n n f n +++>-.证明如下.上述不等式等价于()111ln 1231n n +>++++.为证明该式子,我们首先证明11ln 1i i i +>+. 法1:在(1)中取1a =,可得()ln 11x x x +>+,令1x i =,可得11ln 1i i i +>+.令1,2,,i n =可得21ln 12>,31ln 23>,…,11ln 1n n n +>+,相加可得()111ln 1231n n +>++++,命题获证. 法2:令1t i =,则()11ln ln 111i t t i i t +>⇔+>++,构造函数()()ln 11tF t t t=+-+,01t <<,则()()()22110111t F t t t t '=-=>+++,于是()F t 在()0,1上递增,所以()()00F t F >=,于是11ln 1i i i +>+. 下同法1.。

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。

2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。

【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。

构造函数法证明不等式的八种方法.doc

构造函数法证明不等式的八种方法.doc

构造函数法证明不等式的八种方法.doc构造函数法是一种证明不等式的有效方法。

构造函数法是通过构造函数来证明不等式的真实性。

构造函数是函数的一种特殊形式,它是根据不等式中的条件和限制而构造出来的函数。

构造函数法的基本思路是,通过构造函数将原不等式转化为更容易证明的形式,进而通过对构造函数的研究来证明原不等式的真实性。

本文将介绍构造函数法证明不等式的八种方法。

一、线性函数法线性函数法是基于线性函数的构造函数法,它是构造函数法中最简单的方法之一。

线性函数法的思路是,构造一个线性函数,使得该函数在不等式限制下达到最大值或最小值。

例如,证明如下不等式:$$\frac{a}{b+1}+\frac{b}{c+1}+\frac{c}{a+1}\geq\frac{3}{2}$$将不等式两边都乘以$2(b+1)(c+1)(a+1)$得:$$2a(c+1)(b+1)+2b(a+1)(c+1)+2c(b+1)(a+1)\geq 3(a+1)(b+1)(c+1)$$此时,可以构造如下的线性函数$f(x,y,z)$:容易发现,$f(x,y,z)$在限制条件$x,y,z\geq 0$,$xy+yz+zx=3$下,达到最大值$\frac{3}{2}$。

因此,原不等式成立。

二、对数函数法对数函数法是基于对数函数的构造函数法,它常用于证明形如$a^x+b^y+c^z\geq k$的不等式,其中$a,b,c,x,y,z,k$均为正实数。

对数函数法的思路是,构造一个对数函数,使得该函数满足$g(x,y,z)\leq\ln(a^x+b^y+c^z)$,进而证明$g(x,y,z)\leq\ln k$,从而得到原不等式的证明。

例如,证明如下不等式:考虑构造如下的对数函数:$$g(x)=\ln\left(\frac{4a^3x+6}{5a^2x+2ax+5}\right)-\frac{3}{4}\ln x$$不难证明,$g(x)$在$x\geq 1$时单调递减且$g(1)=0$,因此$g(x)\leq 0$。

导数证明单变量不等式—教学设计【教学参考】

导数证明单变量不等式—教学设计【教学参考】

导数证明单变量不等式—教学设计【教学参考】导数证明单变量不等式【考情分析】通过对近几年的高考命题的分析,发现高考对导数的考查常以函数为依托,将导数内容和传统内容中有关不等式和函数的单调性、方程根的分布、曲线的切线问题等内容有机的结合在一起,设计综合试题,从而考查函数、导数的基础知识和基本方法。

解决这类有关的问题,需要借助构造函数,那么怎样合理的构造函数就是问题的关键。

【教学目标】1.掌握导数证明单变量不等式的方法及其应用;2.渗透数学思想。

【教学重点】导数证明单变量不等式的方法【教学难点】导数证明单变量不等式方法的应用【教学过程】一.变形构造函数证明不等式步骤:1.对不等式合理变形(移项,乘除,平方,开放,取对数等);2.构造函数;3.利用导数确定函数的单调性与最值;4.获得不等式的结论。

例1.求证(1)当时,证法1:令求导得再求导得所以时,因此在区间为增函数,所以,因此在区间为增函数,所以即因此当时,小结:直接作差构造函数,两次求导,利用函数单调性证明。

证法2. 当时,令求导得因此在区间为增函数,所以即因此当时,小结:指数找朋友,对含指数的不等式,将变量集中到指数上既可减少求导分析的次数,也可以避免导函数零点不可求。

例1.求证(2)当时,证明. 当时,令求导得因此在区间为增函数,所以即因此当时,小结:指数找朋友,对含指数的不等式,将变量集中到指数上既可减少求导分析的次数,也可以避免导函数零点不可求。

过关训练:1.求证:分析:二.换元构造函数证明不等式步骤:1.对不等式合理变形(移项,乘除,平方,开放,取对数等);2.代数式换元;3.构造函数;4.利用导数确定函数的单调性与最值;5.获得不等式的结论。

例2.求证:证明:因为所以原不等式即为因此只需证,只需证,令,故只需证设因此在区间为减函数,所以即设因此在区间为减函数,所以即综上,所以成立故得证。

过关训练:2.求证:分析:三.切线放缩法证明不等式步骤:1.对不等式合理变形(移项,乘除,平方,开放,取对数等);2.切线放缩;3.构造函数;4.利用导数确定函数的单调性与最值;5.获得不等式的结论。

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法

导数之构造函数法证明不等式 1、移项法构造函数 【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=, 则xx x x F 12)(2--='=x x x x )12)(1(2++-当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <, 故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。

构造函数证明不等式

构造函数证明不等式

突破疑难点1构造函数证明不等式构造法证明不等式是指在证明与函数有关的不等式时,根据所要证明的不等式,构造与之相关的函数,利用函数单调性、极值、最值加以证明.常见的构造方法有:(1)直接构造法:证明不等式f(x)>g(x)(f(x)<g(x))转化为证明f(x)-g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x);(2)适当放缩构造法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x≤x-1,e x≥x+1,ln x<x<e x(x>0),xx+1≤ln(x+1)≤x(x>-1);(3)构造“形似”函数:稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数:若直接构造函数求导难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数f(x)和g(x),利用其最值求解.突破疑难点2利用分类讨论法确定参数取值范围一般地,若a>f(x)对x∈D恒成立,则只需a>f(x)max;若a<f(x)对x∈D恒成立,则只需a<f(x)min.若存在x0∈D,使a>f(x0)成立,则只需a>f(x)min;若存在x0∈D,使a<f(x0)成立,则只需a<f(x0)max.由此构造不等式,求解参数的取值范围.常见有两种情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另外一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.突破疑难点3两法破解函数零点个数问题两类零点问题的不同处理方法:利用零点存在性定理的条件为函数图象在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0.①直接法:判断一个零点时,若函数为单调函数,则只需取值证明f(a)·f(b)<0;②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明f(a)·f(b)<0.突破疑难点4两法破解由零点个数确定参数问题已知函数有零点求参数范围常用的方法:(1)分离参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分类讨论法:一般命题情境为没有固定区间,求满足函数零点个数的参数范围,通常解法为结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.。

专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题5 构造函数证明不等式函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.(一) 把证明()f x k >转化为证明()min f x k>此类问题一般简单的题目可以直接求出()f x 的最小值,复杂一点的题目是()f x 有最小值,但无法具体确定,这种情况下一般是先把()f x 的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围【例1】(2024届黑龙江省哈尔滨市三中学校高三下学期第五次模拟)已知函数()()21ln f x a x x x =+--(a ÎR ).(1)讨论()f x 的单调性;(2)当102a <£时,求证:()1212f x a a³-+.【解析】(1)由题意可知,函数2()(1)ln f x a x x x =+--的定义域为(0,)+¥,导数1(1)(21)()2(1)1x ax f x a x x x+-¢=+--=,当0a £时,,()0x Î+¥,()0f x ¢<;当0a >时,1(0,)2x a Î,()0f x ¢<;1(,),()02x f x a¢Î+¥>;综上,当0a £时,函数()f x 在区间(0,)+¥上单调递减;当0a >时,函数()f x 在区间1(0,2a 上单调递减,在区间1(,)2a+¥上单调递增.(2)由(1)可知,当102a <£时,函数()f x 在区间1(0,)2a 上单调递减,在区间1(,)2a+¥上单调递增.所以函数211111()()(1)ln()1ln(2)22224f x f a a a a a a a a³=+--=+-+,要证1()212f x a a ³-+,需证111ln(2)2142a a a a a+-+³-+,即需证11ln(2)0,(0,]42a a a a +-³Î恒成立.令1()ln(2)4g a a a a =+-,则()2222111()1044a g a a aa -=--+=-£¢,所以函数()g a 在区间1(0,2单调递减,故111()()00222g a g ³=+-=,所以11ln(2)0,(0,]42a a a a +-³Î恒成立,所以当102a <£时,1()212f x a a³-+.【例2】(2024届重庆市南开中学高三上学期第一次质量检测)已知函数()()sin ln 1f x x x =-+.(1)求证:当π1,2x æöÎ-ç÷èø时,()0f x ³;(2)求证:()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L .【解析】(1)证明:因为()()sin ln 1f x x x =-+,则()0sin 0ln10f =-=,()1cos 1f x x x =-+¢,当(]1,0x Î-时,cos 1x £,111x ³+,()0f x ¢£,函数()f x 单调递减,则()()00f x f ³=成立;当π0,2x æöÎç÷èø时,令()1cos 1p x x x =-+,则()()21sin 1p x x x ¢=-+,因为函数()211y x =+、sin y x =-在π0,2æöç÷èø上均为减函数,所以,函数()p x ¢在π0,2æöç÷èø上为减函数,因为()010p ¢=>,2π1102π12p æö¢=-<ç÷èøæö+ç÷èø,所以存在π0,2x æöÎç÷èø,使得()00p x ¢=,且当00x x <<时,()0p x ¢>,此时函数()f x ¢单调递增,当0π2x x <<时,()0p x ¢<,此时函数()f x ¢单调递减,而()00f ¢=,所以()00f x ¢>,又因为π02f æö¢<ç÷èø,所以存在10π,2x x æöÎç÷èø,使得()10f x ¢=,当10x x <<时,()0f x ¢>,此时函数()f x 单调递增,当1π2x x <<时,()0f x ¢<,此时函数()f x 单调递减,因为π1e 2+<,所以,ππ1ln 11ln e 022f æöæö=-+>-=ç÷ç÷èøèø,所以,对任意的π0,2x æöÎç÷èø时,()0f x >成立,综上,()0f x ³对任意的π1,2x æöÎ-ç÷èø恒成立.(2)证明:由(1),对任意的n *ÎN ,11022n <£,则111sin ln 10222f n n n æöæö=-+>ç÷ç÷èøèø,即1121sinln 1ln 222n n n n +æö>+=ç÷èø,对任意的n *ÎN ,()()()()22122221221022*******n n n n n n n n n n n +-+++-==>+++,所以,2122221n n n n ++>+,则2122ln ln 221n n n n ++>+,所以111135721sin sin sin sinln ln ln ln 24622462n n n +++++>+++L ,从而可得111146822sin sin sin sinln ln ln ln 246235721n n n +++++>++++L ,上述两个不等式相加可得11112sin sin sin sin 2462n æö++++ç÷èøL ()3456782122ln ln ln ln ln ln ln ln ln 1234567221n n n n n ++>++++++++=++L ,所以,()11111sin sin sin sinln 124622n n ++++>+L ,又由(1),因为1102n -<-<,则111121sin ln 1sin ln022222n f n n n n n -æöæöæö-=---=-->ç÷ç÷ç÷èøèøèø,可得1212sinln ln 2221n nn n n -<-=-,当2n ³且n *ÎN 时,()()()()()()22222122110212221222122n n n n n n n n n n n -----==-<------,所以,2212122n n n n -<--,即221ln ln 2122n n n n -<--,所以,当2n ³时,1111462sin sin sin sinln 2ln ln ln 24623521nn n ++++<++++-L L ,从而有11113521sin sin sin sinln 2ln ln ln 24622422n n n -++++<++++-L L ,上述两个不等式相加得:11112sin sin sin sin 2462n æö++++ç÷èøL 3456782122ln 2ln ln ln ln ln ln ln ln 2ln 2ln 2345672221n nn n n -<+++++++++=+--L ,所以,11111sin sin sin sinln 2ln 24622n n ++++<+L ,当1n =时,1111sin ln ln 2sin 02222f æöæö-=--=->ç÷ç÷èøèø,即1sin ln 22<,所以,对任意的n *ÎN ,11111sin sin sin sinln ln 224622n n ++++<+L ,因此,()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L . (二) 把证明()()f x g x > 转化为证明()()0f xg x ->此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.【例3】(2024届西省榆林市第十中学高三下学期一模)已知函数()()e 11xf x a x =+--,其中a ÎR .(1)讨论函数()f x 的单调性;(2)当2a =时,证明:()ln cos f x x x x >-.【解析】(1)()()e 11x f x a x =+--Q ,()e 1x f x a \=¢+-,当1a ³时,()e 10xf x a =+->¢,函数()f x 在R 上单调递增;当1a <时,由()e 10xf x a =+->¢,得()ln 1x a >-,函数()f x 在区间()()ln 1,a ¥-+上单调递增,由()e 10xf x a =+-<¢,得()ln 1x a <-,函数()f x 在区间()(),ln 1a -¥-上单调递减.综上,当1a ³时,()f x 在R 上单调递增,无减区间.当1a <时,()f x 在()()ln 1,a ¥-+上单调递增,在()(),ln 1a -¥-上单调递减.(2)Q 当2a =时,()e 1xf x x =+-,\要证()ln cos f x x x x >-,即证()e cos 1ln 0,0,x x x x x x ++-->Î+¥,①当01x <£时,e cos 10x x x ++->Q ,ln 0x x £,e cos 1ln 0x x x x x \++-->;②当1x >时,令()e cos 1ln xg x x x x x =++--,则()e sin ln x g x x x =--¢,设()()h x g x ¢=,则()1e cos xh x x x=¢--,1x >Q ,e e 2x \>>,110x-<-<,1cos 1x -£-£,()0h x ¢\>,()h x \在()1,+¥上单调递增,()()1e sin100h x h \>=-->,即()0g x ¢>,()g x \在()1,+¥上单调递增,()()1e cos10g x g \>=+>,即e cos 1ln 0x x x x x ++-->.综上,当2a =时,()ln cos f x x x x >-. (三) 把证明()()f x g x > 转化为证明()()min maxf xg x >有时候把证明()()f x g x > 转化为证明()()0f x g x ->后,可能会出现()()f x g x -的导函数很复杂,很难根据导函数研究()()f x g x -的最值,而()f x 的最小值及()g x 的最大值都比较容易求,可考虑利用证明()()min max f x g x >的方法证明原不等式,但要注意这种方法有局限性,因为()()f x g x >未必有()()min max f x g x >.【例4】(2024届广东省部分学校高三上学期第二次联考)已知函数()()e 0xf x ax a =¹.(1)讨论()f x 的单调性;(2)当24e a ³时,证明:()()1ln 01f x x x x -+>+.【解析】(1)由题意可得()()1e xf x a x +¢=.则0a >时,由()0f x ¢>,得1x >-,由()0f x ¢<,得1x <-,则()f x 在(),1-¥-上单调递减,在()1,-+¥上单调递增;当a<0时,由()0f x ¢<,得1x >-,由()0f x ¢>,得1x <-,则()f x 在(),1-¥-上单调递增,在()1,-+¥上单调递减.(2)因为0x >,所以e 01x x x >+.因为24e a ³,所以()()2e 4e 1ln 1ln 11xx ax x x x x x x x --+³-+++.要证()()1ln 01f x x x x -+>+,即证()24e 1ln 01x x x x x --+>+,即证()224e ln 1x x x x ->+.设()()224e 1x g x x -=+,则()()()234e 11x x g x x --¢=+.当()0,1x Î时,()0g x ¢<,当()1,x Î+¥时,()0g x ¢>,则()g x 在()0,1上单调递减,在()1,+¥上单调递增.故()()min 11eg x g ==.设()ln x h x x =,则()21ln xh x x-¢=.当()0,e x Î时,()0h x ¢>,当()e,x Î+¥时,()0h x ¢<,则()h x 在()0,e 上单调递增,在()e,+¥上单调递减.故()()max 1e eh x h ==.因为()()min max g x h x =,且两个最值的取等条件不同,所以()224e ln 1x x x x ->+,即当24e a ³时,()()1ln 01f x x x x -+>+.(四) 把证明()()f xg x >转化为证明()()()(),f xh x h x g x >>若直接证明()()f x g x >比较困难,有时可利用导数中的常见不等式如ln 1,e +1x x x x £-³构造一个中间函数()h x ,或利用不等式的性质通过放缩构造一个中间函数()h x ,再通过证明()()()(),f x h x h x g x >>来证明原不等式.【例5】已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【解析】 (1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++¢==++,要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增,令()0f x ¢>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k p pp p Î-++,(k Z Î),当0k =时满足题意,此时,在区间2(0,3p 上是单调递增的,故a 的最在值为23p.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x xf x -<<.先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x ¢=-Q ,,()0x Î+¥时,()0F x ¢>,所以()F x 在(0,)+¥上递增,\()e 1xF x x =--(0)0F >=,故1xe x ->,即e133xx -<.再证:()3x f x <,(0x >)令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x ¢--+=-=++,故对于0x ">,都有()0¢<G x ,因而()G x 在(0,)¥+上递减,对于0x ">,都有()(0)0G x G <=,因此对于0x ">,都有()3xf x <.所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.(五) 改变不等式结构,重新构造函数证明不等式此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:①去分母,把分数不等式转化为整式不等式;②两边取对数,把指数型不等式转化为对数型不等式;③不等式为()()()()f x h x g x h x >类型,且()()0h x >或<0的解集比较容易确定,可考虑两边同时除以()h x ;④不等式中含有,有时为了一次求导后不再含有对数符号,可考虑不等式两边同时除以x ;⑤通过换元把复杂的不等式转化为简单不等式.【例6】(2024届河南省创新发展联盟5月月考)已知函数1e 1()ln x af x x x x-=--.(1)讨论()f x 的单调性;(2)当52a ³时,证明:()11()ln e 1ln x f x x x x x -++->-.【解析】(1)函数1e 1()ln x af x x x x -=--的定义域为(0,)+¥,求导得11222e (1)11(1)(e 1)()x x a x x a f x x x x x -----=-+=¢,若0a £,则1e 10x a --<,且当()0,1x Î时,()0f x ¢>,当()1,x ¥Î+时,()0f x ¢<,即函数()f x 在(0,1)上递增,在(1,)+¥上递减;若0a >,令1e 10x a --=,解得1ln x a =-,若1ln 0a -£,即e a ³,则1e 10x a --³恒成立,当()0,1x Î时,()0f x ¢<,当()1,x ¥Î+时,()0f x ¢>,即函数()f x 在(0,1)上递减,在(1,)+¥上递增;若01ln 1a <-<,即1e a <<,则当()()0,1ln 1,x a ¥Î-È+时,()0f x ¢>,当()1ln ,1x a Î-时,()0f x ¢<,即函数()f x 在(0,1ln ),(1,)a -+¥上递增,在(1ln ,1)a -上递减;ln x x若1ln 1a -=,即1a =,则()0f x ¢³在()0,¥+上恒成立,函数()f x 在(0,)+¥上递增;若1ln 1a ->,即01a <<,则当()()0,11ln ,x a ¥ÎÈ-+时,()0f x ¢>,当(1,1ln )x a Î-时,()0f x ¢<,即函数()f x 在(0,1),(1ln ,)a -+¥上递增,在(1,1ln )a -上递减,所以当0a £时,()f x 的递增区间为()0,1,递减区间为()1,¥+;当01a <<时,()f x 的递增区间为()0,1和()1ln ,a ¥-+,递减区间为()1,1ln a -;当1a =时,()f x 的递增区间为()0,¥+,无递减区间;当1e a <<时,()f x 的递增区间为()0,1ln a -和()1,¥+,递减区间为()1ln ,1a -;当e a ³时,()f x 的递增区间为()1,¥+,递减区间为()0,1.(2)要证()()11ln e 1ln x f x x x x x -++->-,需证()11e e ln 10x x a x x x --+-->,而15e ,02x a x -³>,即有()()1111e 5e e ln 1e ln 12x x x x a x x x x x x----+--³+--,则只需证明()115e e ln 102x x x x x --+-->,即证15e ln 12x x x x -æö+->ç÷èø,即证()215ln 12e x x x x -+->,令()()5ln 12h x x x =+-,则()ln h x x ¢=,当()0,1x Î时,()0h x ¢<,当()1,x ¥Î+时,()0h x ¢>,即函数()h x 在(0,1)上单调递减,在(1,)+¥上单调递增,则()min 3()12h x h ==,令()21(0)e x x x x j -=>,则()()12ex x x x j --¢=,当()0,2x Î时,()0x j ¢>,当()2,x ¥Î+时,()0x j ¢<,函数()j x 在(0,2)上单调递增,在(2,)+¥上单调递减,则()max min 43()2()e 2x h x j j ==<=,从而()215ln 12e x x x x -+->,即()11()ln e 1ln x f x x x x x -++->-成立.(六) 通过减元法构造函数证明不等式对于多变量不等式 ,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.【例7】(2024届江西省南昌市高三三模)定义:若变量,0x y >,且满足:1mmx y a b æöæö+=ç÷ç÷èøèø,其中,0,Z a b m >Î,称y 是关于的“m 型函数”.(1)当2,1a b ==时,求y 关于x 的“2型函数”在点æççè处的切线方程;(2)若y 是关于x 的“1-型函数”,(i )求x y +的最小值:(ii )求证:()1111n n n nn n n n nx ya b+++æö+³+ç÷èø,()N n *Î.【解析】(1)解:当2,1a b ==时,可得12214x y æö=-ç÷èø,则122111242x y x -æöæö=-×-ç÷¢ç÷èøèø,所以1x y =¢=,所求切线方程为1)y x =-,即40x +-=.(2)解:由y 是关于x 的“1-型函数”,可得111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,(i)因为2()()a b ay bx x y x y a b a b x y x y æö+=++=+++³++=ç÷èø,当且仅当2ay x x y ì=ïíï+î即x a y b ì=ïí=ïî时取得最小值.(ii )由111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,则()()x a y b ab --=,且x a >,y b >,可设x a at -=,by b t-=,其中(0,)t Î+¥,于是11[(1)]1(1)1nnnnnn n n x y a t b a t b t t éùæöæö+=+++=+++ç÷ç÷êúèøèøëû,记1()(1)1nnnnh t a t b t æö=+++ç÷èø,可得()()()11112111111n n n nn nn n n na t b h t na t nb t t t t a ---++éù+æöæöæö=+++-=-êúç÷ç÷ç÷èøèøèøêëû¢ú,由()0h t ¢=,得1n n b t a +æö=ç÷èø,记10n n b t a +æö=ç÷èø,当00t t <<时()0h t ¢<,当0t t >时,()0h t ¢>,则()()11min0001()1111nnn nnn n n n n n n b a h t h t a t b a b t a b ++éùéùæöæöæöêúêú==+++=+++ç÷ç÷ç÷êúêúèøèøèøëûëû111111111111n n n nn n n n n n n nn n n n n n n n n n a b a b a b a a b b b a ++++++++++æöæöæöæö=+×++×=+++ç÷ç÷ç÷ç÷èøèøèøèø111n n n nn n a b+++æö=+ç÷èø,所以()1111n n n nn n n n nx ya b+++æö+³+ç÷èø.(七) 与极值点或零点有关的多变量不等式的证明此类问题通常是给出函数的零点或极值点12,x x 或123,,x x x ,与证明与12,x x 或123,,x x x 有关的不等式,求解时要有意识的利用方程思想代入消元(若i x 是()f x 的零点,则()0i f x =,若i x 是()f x 的极值点,则()0i f x ¢=,),减少变量个数.【例8】(2024届湖南娄底市高三下学期高考考前仿真联考)已知函数()2e 2ln x af x a x x x =--.(1)当1a =时,讨论函数()f x 的单调性;(2)若22e a >,(i )证明:函数()f x 有三个不同的极值点;(ii )记函数()f x 三个极值点分别为123,,x x x ,且123x x x <<,证明:()()()23131e a f x f x a x x æö-<--ç÷èø.【解析】(1)函数()f x 的定义域为(0,)+¥,当1a =时,()2e 2ln xf x x x x=--,则()422323e e 21e 2(2)(e 2(2))x xx x x x x x x f x x x x x x x x -----¢=+-=+=,令e (0)x y x x =->,则e 10(0)x y x ¢=->>,所以e x y x =-在(0,)+¥上递增,所以0e e 01x y x =->-=,所以当2x >时,()0f x ¢>,当02x <<时,()0f x ¢<,所以()f x 在(0,2)上递减,在(2,)+¥上递增;(2)(i )因为,()0x Î+¥,且()233(2e 2(2)(e ))x xa a x f x x x x a x x x -¢=+--=-,(2)0f ¢=,由e 0xax -=,得e xa x=(,()0x Î+¥),令()(0)x e g x x x =>,则2(e 1)()(0)x x g x x x-¢=>,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>,所以()g x 在(0,1)上递减,在(1,)+¥上递增,所以min ()(1)e g x g ==,当2e (2)e 2a g >=>时,e xa x=在(0,1)和(2,)+¥上各有一个实数根,分别记为13,x x ,则1301,2x x <<>,设22x =,当10x x <<或23x x x <<时,()0f x ¢<,当12x x x <<或3x x >时,()0f x ¢>,所以()f x 在()10,x 和()23,x x 上递减,在()12,x x 和3(,)x +¥上递增,所以函数()f x 在(0,)+¥上有三个不同的极值点,(ii )由(i )1301,2x x <<>,所以13,x x 是方程e x ax =的两个不相等的实数根,即11e x ax =,33e xax =,所以11111211111e 221()ln ln ln x a a af x a x a x a x x x x x x æö=--=--=-+ç÷èø,同理3331()ln f x a x x æö=-+ç÷èø,所以()()313131313111ln ln a x a x f x f x x x x x x x æöæö-+++ç÷ç÷-èøèø=--31313111ln ln a x x x x x x æö-+--ç÷èø=-13331131ln x x x a x x x x x æö--+ç÷èø=-,由11e x ax =,33e x ax =,得3331113311e e ln ln ln ln e e e x x x x x x x a x x x a-====-,所以()()1331331313113131313131ln 11x x x x x a a x x f x f x x x x x x a x x x x x x x x æöæö---+-+-ç÷ç÷-æöèøèø===-ç÷---èø,因为2e ,2a æöÎ+¥ç÷èø,所以要证()()()23131e a f x f x a x x æö-<--ç÷èø,只要证()()23131e f x f x a a x x -<--,即证23111e a a a x x æö-<-ç÷èø,即证31111e a x x -<-,即证311e a x x <,只需证13e ax x <,即31e e xx <×,即311ex x -<,由(i )可得1301,2x x <<>,所以3110e e 1x --<<<,根据(i )中结论可知函数e ()=xg x x在(0,1)上递减,所以要证311ex x -<,即证311()(e )x g x g -<,因为3113e e x x a x x ==,所以13()()g x g x =,所以只要证313()(e )x g x g -<,即1333e 13e e e xx x x --<,得13e 3e e x x -<,即3131e ln x x --<,得313e 01ln xx ---<,令1()1ln e(2)xh x x x -=-->,则111e 1()e (2)x x x h x x x x---¢=-+=>,令1()e 1(2)x u x x x -=->,则1()(1)e 0(2)x u x x x -¢=-<>,所以()u x 在(2,)+¥上递减,所以2()(2)10eu x u <=-<,所以()0h x ¢<,所以()h x 在(2,)+¥上递减,所以1()(2)1ln 20e h x h <=--<,所以得证.(八) 与数列前n 项和有关的不等式的证明此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,L ,n 代换,然后用叠加法证明.【例9】(2024届重庆市九龙坡区高三下学期5月质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(九)通过同构函数把复杂不等式化为简单不等式此类问题通常是构造一个函数()f x ,把所证不等式转化为()()()()f g x f h x >,再根据()f x 的单调性转化为证明一个较简单的不等式.【例10】(2024届广东省广州市高中毕业班冲刺训练二)已知函数()e axf x x =(0a >).(1)求()f x 在区间[]1,1-上的最大值与最小值;(2)当1a ³时,求证:()ln 1f x x x ³++.【解析】(1)解:()()e 1axf x ax =+¢(0x >)(0a >),令()0f x ¢=,则1x a =-,当01a <£时,11a-£-,所以()0f x ¢³在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以()()min 1e a f x f -=-=-,()()max 1e af x f ==.当1a >时,111a -<-<,则当11,x a éöÎ--÷êëø时,()0f x ¢<,()f x 在区间11,a éö--÷êëø上单调递减;当1,1x a æùÎ-çúèû时,()0f x ¢>,()f x 在区间1,1a æù-çúèû上单调递增,所以()min 11e f x f a a æö=-=-ç÷èø,而()1e 0a f --=-<,()1e 0a f =>.所以()()max 1e af x f ==综上所述,当01a <£时,()min e a f x -=-,()max e af x =;当1a >时,所以()min 1ef x a =-,()max e af x =.(2)因为0x >,1a ³,所以e e ax x x x ³,欲证e ln 1ax x x x ³++,只需证明e ln 1x x x x ³++,只需证明ln ln e e e e ln 1x x x x x x x x x +==³++,因此构造函数()e 1x h x x =--(x ÎR ),()e 1xh x ¢=-,当(),0x Î-¥时,()0h x ¢<,()h x 在(),0¥-上单调递减;当()0,x Î+¥时,()0h x ¢>,()h x 在()0,¥+上单调递增:所以()()00h x h ³=,所以e 1x x ³+,所以e ln 1x x x x ³++,因此()ln 1f x x x ³++.【例1】(2024届内蒙古呼和浩特市高三第二次质量监测)对于函数()f x ,若实数0x 满足()00f x x =,则0x 称为()f x 的不动点.已知函数()()e 2e 0x xf x x a x -=-+³.(1)当1a =-时,求证()0f x ³;(2)当0a =时,求函数()f x 的不动点的个数;(3)设*N n Î,()ln 1n +>+L .【解析】(1)当1a =-时,有()()e 2e 0x xf x x x -=--³,所以()1e 2e x x f x =+-¢()0x ³,所以()1e 220e x x f x =+-³=¢当且仅当1e e xx=,e 1x=,即0x =时,等号成立,所以当[)0,x Î+¥时,()0f x ¢³,()f x 单调递增,所以()()()min 00f x f x f ³==,所以()0f x ³得证.(2)当0a =时,()()e 20xf x x x =-³,根据题意可知:方程e 2x x x -=()0x ³解的个数即为函数()f x 的不动点的个数,化e 2x x x -=()0x ³为e 30x x -=()0x ³,令()e 3xg x x =-()0x ³,所以函数()g x 的零点个数,即为函数()f x 的不动点的个数,()e 3x g x ¢=-()0x ³,令()0g x ¢=,即e 3x =,解得ln 3x =,x[)0,ln 3ln 3()ln 3,¥+()g x ¢-+()g x 单调递减33ln 3-单调递增因为()010g =>,()ln 333ln 30g =-<,所以()g x 在[)0,ln 3上有唯一一个零点,又()555e 15215170g =->-=>,所以()g x 在()ln 3,¥+上有唯一一个零点,综上所述,函数()f x 有两个不动点.(3)由(1)知,()e 2e 0,0,x xx x ¥--->Î+,令ln ,1x s s =>,则12ln 0s s s --->,即12ln ,1s s s s->>,设*N s n =Î,则满足1s >,>1ln 1n æö>+ç÷èø,()1ln ln 1ln n n n n +æö>=+-ç÷èø,()ln 2ln1ln 3ln 2ln(1)ln ln 1n n n >-+-+++-=+L L ,即()ln 1n >+L .【例2】(2024届四川省自贡市高三第三次诊断性考试)已知函数1()1ln (0)f x a x a x=++>(1)求函数()f x 的单调区间;(2)函数()f x 有唯一零点1x ,函数2()sin e ag x x x =--在R 上的零点为2x .证明:12x x <.【解析】(1)函数1()1ln (0)f x a x a x=++>的定义域为()0,¥+,且2211()a ax f x x x x -¢=-+=,所以当10x a<<时()0f x ¢<,当1x a >时()0f x ¢>,所以()f x 的单调递减区间为10,a æöç÷èø,单调递增区间为1,a æö+¥ç÷èø;(2)法一:由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即1ln 10f a a a a æö=-++=ç÷èø,令()ln 1x x x x j =-++,则()ln x x j ¢=-,当1x >时,()()0,x x j j ¢<单调递减,当01x <<时,()()0,x x j j ¢>单调递增,因为44e 2.753.144127>=>,55e 3243256<=<,所以()433ln 344ln 27ln e ln 270j =-+=-=->,()544ln 455ln 256ln e ln 2560j =-+=-=-<,当01x <<时()()1ln 10x x x j =-+>,当x ®+¥时()x j ®-¥,所以()x j 在()3,4上存在唯一零点,所以33a <<,即11143a <<,令()2e sin h x x x x -=+-,则()22e cos 10h x x x -=-+-<¢,所以()h x 在()0,¥+上单调递减,故22113113111sin sin sin 03e333333h h a æöæö>=+->+-=>ç÷ç÷èøèø,所以211e sin a a a->-,又()2222sin e 0g x x x a -=--=,所以2221111sin e sin sin x x a x x a a--=>-=-,令()sin F x x x =-,则()1cos 0F x x =-³¢,所以()F x 在()0,¥+上单调递增,又()()21>F x F x ,所以21x x >.法二:因为0a >,由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即()()1111111111ln 1ln 10ln 10f x a x x x x x x x =++=++=Þ++=,设211()ln 1,0,0e e h x x x h h æöæö=++><ç÷ç÷èøèø,而()h x 在()0,¥+上单调递增,所以1211,e e x æöÎç÷èø,()1cos 0g x x ¢=-≥,所以()g x 在R 上单调递增,又12(0)0,0e ag x =-<\>,令22211()sin ,()1cos 0e e x x x x x x x j j ¢=--=-+>,所以()j x 在()0,¥+上单调递增,所以()111sin 0e e x j j æö\<=-<ç÷èø,而()222212211sin sin 0e e a g x x x x x x =--=--=,()()11122211221111sin sin e e g x x x g x x x x x x x \=--<=--\<.【例3】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()lng x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a->,且211x a <<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x xx x xxx x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例4】(2024届天津市滨海新区高考模拟检测)已知函数()ln a xf x x+=,其中a 为实数.(1)当1a =时,①求函数()f x 的图象在e x =(e 为自然对数的底数)处的切线方程;②若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.若()1kg x x =+,且()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

只需证1-ln ex
x+x2-1<1, x
由于 1-ln x>0,ex>e0=1,则只需证明 1-ln x+x2-1<1, x
只需证明 ln x-x2+1>0,令 g(x)=ln x-x2+1,
x
x
则当 x∈(0,1)时,g′(x)=1x-2x-x12=x-1x-2 2x3<x-x2 1<0,
则函数 g(x)在(0,1)上单调递减,则 g(x)>g(1)=0,
[一题多解](与 ex,ln x 有关的不等式证明问题)已
知函数 f(x)=1-ln x+a2x2-ax(a∈R).
(1)讨论函数 f(x)的单调性;
(2)若 a=0 且 x∈(0,1),求证:fexx+x2-1x<1.
[解](1)a=0 时,f(x)在(0,+∞)上递减;
a>0
时,f(x)在
0,1a
切入点:(1)当 x>1 时,1<x-1<x⇔ln x<x-1<xln x; ln x
(2)构造函数 g(x)=1+(c-1)x-cx,借助(2)的讨论求解.
[解](1)由题设,f(x)的定义域为(0,+∞),f′(x)=1x-1, 令 f′(x,f(x)单调递增; 当 x>1 时,f′(x)<0,f(x)单调递减.
上递减,在
1,+∞ a
上递增;
a<0
时,f(x)在
0,- 1 2a
上递减,在
- 1 ,+∞ 2a
上递增.
(2)法一:(最值法)若 a=0 且 x∈(0,1),
欲证fexx+x2-1x<1,只需证1-elxn
x+x2-1<1, x
即证 x(1-ln x)<(1+x-x3)ex.
设函数 g(x)=x(1-ln x),则 g′(x)=-ln x.
lnc-1 令 g′(x)=0,解得 x0= ln c .
ln c
当 x<x0 时,g′(x)>0,g(x)单调递增; 当 x>x0 时,g′(x)<0,g(x)单调递减.
由(2)知
1<c-1<c,故 ln c
0<x0<1.
又 g(0)=g(1)=0,故当 0<x<1 时,g(x)>0.
所以当 x∈(0,1)时,1+(c-1)x>cx.
②当 m≤2 时,求证:ex-lnx+m>0. 证明:当 m≤2 时,x∈-m,+∞, ∵lnx+m≤lnx+2, ∴只需证:ex-lnx+2>0. 令 gx=ex-lnx+2, g′x=ex-x+1 2在-2,+∞上递增.
又∵g′-1=1e-1<0,g′0=12>0, ∴存在唯一实数 x0∈-1,0,使 g′x0=0,即 ex0=x0+1 2. ∴当 x∈-1,x0时,g′x<0,x∈x0,0时,g′x>0. ∵gxmin=gx0=ex0-lnx0+2=x0+1 2+x0 =x0+1 2+x0+2-2>0.
利用导数证明不等式(5 年 3 考) 考向 1 构造函数法(最值法)证明单变量不等式
[高考解读] 以我们熟知的不等关系,如 ln x<x,lnx+1≤x, ex≥x+1 等为载体,通过变形或适当重组,形成一道新颖的题目.重 在考查学生的等价转化能力,逻辑推理及数学运算的能力.
(2016·全国卷Ⅲ)设函数 f(x)=ln x-x+1. (1)讨论函数 f(x)的单调性; (2)证明当 x∈(1,+∞)时,1<xl-n x1<x; (3)设 c>1,证明当 x∈(0,1)时,1+(c-1)x>cx.
(2)证明:由(1)知,f(x)在 x=1 处取得最大值,最大值为 f(1)=0.
所以当 x≠1 时,ln x<x-1.
故当 x∈(1,+∞)时,ln x<x-1,ln1<1-1,即 1<x-1<x.
xx
ln x
(3)证明:由题设 c>1,设 g(x)=1+(c-1)x-cx,
则 g′(x)=c-1-cxln c.
单变量不等式的证明方法 (1)移项法:证明不等式f(x)>g(x)(f(x)<g(x))的问题转化为证明 f(x)-g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x); (2)构造“形似”函数:对原不等式同解变形,如移项、通分、 取对数;把不等式转化为左右两边是相同结构的式子的结构,根据 “相同结构”构造辅助函数; (3)最值法:欲证f(x)<g(x),有时可以证明f(x)max<g(x)min. 提醒:拆分函数时,ex和ln x尽量分到两个不同的函数中. (4)放缩法:若所构造函数最值不易求解,可将所证明不等式进 行放缩,再重新构造函数.
所以 g(x)<g(1)=1.
设函数 h(x)=(1+x-x3)ex,x∈(0,1),
因为 x∈(0,1),所以 x>x3,所以 1+x-x3>1,
又 1<ex<e,所以 h(x)>1,所以 g(x)<1<h(x),
即原不等式成立.
法三:(放缩法)若 a=0 且 x∈(0,1),欲证fexx+x2-1x<1,
当 x∈(0,1)时,g′(x)>0,故函数 g(x)在(0,1)上单调递增, 所以 g(x)<g(1)=1. 设函数 h(x)=(1+x-x3)ex,则 h′(x)=(2+x-3x2-x3)ex. 设函数 p(x)=2+x-3x2-x3,则 p′(x)=1-6x-3x2. 当 x∈(0,1)时,p′(0)·p′(1)=-8<0, 故存在 x0∈(0,1),使得 p′(x0)=0, 从而函数 p(x)在(0,x0)上单调递增,在(x0,1)上单调递减.
所以 ln x-x2+1>0, x
即原不等式原立.
[点评] 含“x”的不等式证明,考题第二问出现含x的不等式, 往往是对所求证的不等式先进行等价变形,如移项、分解、重组, 放缩等手段,化为更加加强的不等式的证明,甚至构造两个系数, 其中放缩法比较灵活.
①x>0时,证明:\f(x+1,ex)1-x-xln x<1+e-2. 析:令gx=x+ex 1,hx=1-x-xln x. 易证0<gx<1,h′x=-ln x-2. ∵hx在0,e-2上递增,在e-2,+∞上递减, ∴hx≤he-2=1+e-2, ∴gxhx<1+e-2.
当x∈(0,x0)时,p(x0)>p(0)=2,当x∈(x0,1)时,p(x0)·p(1)<-2<0,
故存在x1∈(0,1),使得h′(x1)=0, 即当x∈(0,x1)时,p(x)>0,当x∈(x1,1)时,p(x)<0, 从而函数h(x)在(0,x1)上单调递增,在(x1,1)上单调递减. 因为h(0)=1,h(1)=e, 所以当x∈(0,1)时,h(x)>h(0)=1, 所以x(1-ln x)<(1+x-x3)ex,x∈(0,1), 即fexx+x2-1x<1,x∈(0,1).
法二:(放缩法)若 a=0 且 x∈(0,1),
欲证fexx+x2-1x<1,只需证1-elxn
x+x2-1<1, x
即证 x(1-ln x)<(1+x-x3)ex.
设函数 g(x)=x(1-ln x),则 g′(x)=-ln x,
当 x∈(0,1)时,g′(x)>0,故函数 g(x)在(0,1)上单调递增.
相关文档
最新文档