应用时间序列分析 知识点总结
时间序列分析的基础知识
时间序列分析的基础知识时间序列分析是一种用于研究时间序列数据的统计方法。
时间序列数据是按照时间顺序排列的一系列观测值,例如股票价格、气温变化、销售额等。
通过对时间序列数据的分析,我们可以揭示数据的趋势、季节性、周期性以及随机性等特征,从而进行预测和决策。
一、时间序列的基本概念1. 时间序列:时间序列是按照时间顺序排列的一系列观测值。
时间序列可以是连续的,例如每天的股票价格;也可以是离散的,例如每月的销售额。
2. 趋势:趋势是时间序列数据长期变化的方向和幅度。
趋势可以是上升的、下降的或者平稳的。
3. 季节性:季节性是时间序列数据在一年内周期性重复出现的规律。
例如,冬季的销售额通常比夏季的销售额要高。
4. 周期性:周期性是时间序列数据在超过一年的时间范围内周期性重复出现的规律。
周期性可以是几年、几十年甚至几百年。
5. 随机性:随机性是时间序列数据中无法解释的不规律的波动。
随机性是由于各种不可预测的因素引起的,例如自然灾害、政治事件等。
二、时间序列分析的方法1. 描述性分析:描述性分析是对时间序列数据进行可视化和统计描述的过程。
通过绘制时间序列图、计算均值、方差等统计量,我们可以对数据的特征有一个直观的认识。
2. 平稳性检验:平稳性是时间序列分析的基本假设之一。
平稳时间序列的均值、方差和自相关函数不随时间变化。
我们可以通过绘制自相关图、偏自相关图以及进行单位根检验等方法来检验时间序列的平稳性。
3. 分解:分解是将时间序列数据分解为趋势、季节性、周期性和随机性四个部分的过程。
分解可以帮助我们更好地理解时间序列数据的组成部分,并进行更精确的预测。
4. 预测:预测是时间序列分析的重要应用之一。
通过建立合适的模型,我们可以利用历史数据对未来的趋势进行预测。
常用的预测方法包括移动平均法、指数平滑法和ARIMA模型等。
三、常用的时间序列模型1. 移动平均模型(MA):移动平均模型是一种基于过去观测值的加权平均的方法。
时间序列分析复习要点重点
一.导 论1. 计量经济学和时间序列分析的区别与联系2. 时间序列分析的概念:时间序列分析(T i m e s e r i e s a n a l y s i s ) 是一种根据动态数据揭示系统动态结构和规律性的统计方法,是统计学的一个分支。
3. 时间序列分析的研究对象:时间序列数据 4. 时间序列分析的基本思想:样本推断根据系统的有限长度的运行记录(样本数据),建立能够比较精确地反映时间序列中所包含的动态依存关系的数学模型,并借以对系统的未来发展进行预报(时间序列预测)。
二.时间序列分析基础 1、随机过程(1)含义:在数学上,随机过程被定义为一组随机变量。
(2)特征:① 从顺序角度来看:随机过程是随机变量的集合;随机变量是随时间产生的,在任意时刻t ,总有随机变量X t 与之相对应;事物发展没有必然变化规律。
② 从数学角度看:不可用时间t 的函数确定的描述。
③ 从试验角度来看:不可重复。
(3)重要的随机过程 ①白噪声过程②随机游走过程:x t = x t -1 + u t 如果u t 为白噪声过程,则称x t 为随机游走过程。
(4)随机过程的平稳性随机过程的统计特征不随时间的推移而发生变化。
严平稳:随机过程中随机变量的任意子集的联合分布函数与时间无关。
宽平稳:∞<=+2),(k k t t x x Cov σ∞<=2)(σt x Var∞<=μ)(t x E直观的看,平稳的数据可以看作是一条围绕其均值上下波动的曲线。
(5)随机过程与时间序列:随机过程的一次实现称为时间序列随机过程的实现: 由随机变量组成的一个有序序列称为随机过程,记为{},t Y t T ∈,简记为Y t 。
其中,每一个元素Y t 都是随机变量。
将每一个元素的样本点按序排列,称为随机过程的一个实现,即时间序列数据,亦即样本。
2、差分方程的展开式子差分方程:变量当期值定义为它的前期和一个当期的随机扰动因素的函数。
时间序列分析基础
时间序列分析基础时间序列分析是一种重要的统计分析方法,用于研究随时间变化的数据序列。
时间序列分析可以帮助我们理解数据的趋势、季节性变化和周期性波动,从而进行预测和决策。
本文将介绍时间序列分析的基础知识,包括时间序列的概念、特征、分解方法和常用模型等内容。
一、时间序列的概念时间序列是按照时间顺序排列的一系列数据点的集合。
在时间序列分析中,时间是一个重要的因素,数据点的取值取决于时间点的顺序。
时间序列可以是连续的,也可以是离散的,常见的时间序列包括股票价格、气温变化、销售额等。
二、时间序列的特征时间序列通常具有以下几种特征:1. 趋势性:时间序列数据在长期内呈现出的总体上升或下降的趋势。
2. 季节性:时间序列数据在短期内呈现出的周期性波动,通常与季节变化相关。
3. 周期性:时间序列数据在长期内呈现出的周期性波动,但不是固定的季节性。
4. 随机性:时间序列数据中除了趋势性、季节性和周期性外的随机波动。
三、时间序列的分解方法为了更好地理解时间序列数据的趋势、季节性和周期性,常常需要对时间序列进行分解。
常用的时间序列分解方法包括加法模型和乘法模型。
1. 加法模型:加法模型假设时间序列数据是由趋势性、季节性、周期性和随机性的总和构成的。
即 Y(t) = T(t) + S(t) + C(t) +ε(t),其中Y(t)为时间t的观测值,T(t)为趋势性分量,S(t)为季节性分量,C(t)为周期性分量,ε(t)为随机性分量。
2. 乘法模型:乘法模型假设时间序列数据是由趋势性、季节性、周期性和随机性的乘积构成的。
即 Y(t) = T(t) * S(t) * C(t) *ε(t)。
四、常用的时间序列模型时间序列分析中常用的模型包括移动平均模型(MA)、自回归模型(AR)、自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。
1. 移动平均模型(MA):MA模型假设时间序列数据是由随机误差项的线性组合构成的,表示为Y(t) = μ + ε(t) + θ1*ε(t-1) + θ2*ε(t-2) + ... + θq*ε(t-q)。
应用时间序列分析重点
1、时间序列:按时间顺序排列的一组随机变量。
2、平稳性:序列所有的统计性质都不随着时间的推移而变化时,叫严平稳;当一个时间序列满足均值为常数,且自协方差函数只与时间长度有关时,叫弱平稳。
3、随机过程:是一连串随机事件动态关系的定量描述。
4、白噪声序列:也叫纯随机序列,各项之间没有任何相关关系,且存在方差齐性,服从正态分布,最简单的平稳序列。
5、随机游走:是非平稳的,未来的发展趋势无法预测。
6、单整与协整:单整是指时间序列显著平稳,不存在单位根,则称序列为零阶单整序列;协整是指几个时间序列本身是非平稳的,但具有长期均衡关系,以它们建立的回归模型的残差序列是平稳的,称这几个时间序列存在协整关系。
二、方法、重要模型与公式 1、AR 模型的平稳性检验:a 、特征根判别或特征系数判别:所有的特征根的绝对值都小于1,或者所有的特征系数大于1。
如t t t x x ε+=-18.0特征方程:λ—0.8=0⇒λ=0.8<1⇒平稳;b 、平稳域判别:AR(2)的平稳域:t t t tx x x εφφ++=--2211特征方程:0212=--φλφλ,则它的平稳条件:21121,λλφλλ=+=2φ-,且11<λ,12<λ ,可以导出212λλφ=<1,21φφ+=2121λλλλ++-=)1)(1(121λλ---<1,21φφ-=2121λλλλ---=)1)(1(121λλ++-<1,即为平稳域。
3、MA模型的可逆性:22516154--+-=t t t t x εεε⇒,125162<=θ125454251612<=+-=+θθ,1253654251612<-=--=-θθ ⇒可逆4、ARMA 模型(1) AR 模型:model:t p t p t t t x x x x εφφφφ++++=---....22110性质:均值pφφφμ---= (110),中心化后为0方差:AR(p):)(B x tt Φ=ε=∑=-pi t i iBk 11ελ=∑∑=∞=p i j tjiiB k 10)(ελ=∑∑∞==-00j pi jt j i ik ελ=∑∞=-0j jt jG ε;Green 函数:∑==pj jii j k G 0λ⇒∑=-='==jk k j k j j G G G 10.....2,1,,1φ, 0k ='>='≤φφφ时,;时,p k p k k k ; AR(p)的自协方差函数:p k p k k r r r --++=φφ....11AR(1)的方差:2121)(φσε-=tx Var ,AR(1)的自协方差函数:0111r r r k k k φφ==-,21201φσε-=r AR(1)的自相关系数:kk 1φρ= AR(2)的方差:22121220)1)(1)(1(1εσφφφφφφ-+--+-=r AR(2)的自协方差函数:22121220)1)(1)(1(1εσφφφφφφ-+--+-=r ,20111φφ-=r r ,2211--+=k k k r r r φφ,k≥2 ; AR(2)的自相关系数:10=ρ,2111φφρ-=,2,2211≥+=--k k k k ρφρφρ(2)MA 模型:model:q t q t t t t x ------+=εθεθεθεμ....2211性质:常数均值μ=t Ex ,常数方差2221)...1()(εσθθq t x Var +++=MA(1)的自相关系数:10=ρ,21111θθρ+-=,2,0≥=k k ρMA(2)的自相关系数:10=ρ,222121111θθθθθρ+++-=,2221221θθθρ++-=,3,0≥=k k ρ(3)ARMA模型model:qt q t t t p t p t t x x x --------++++=εθεθεθεφφφ.......2211110性质:均值pt Ex φφφ---= (110),自协方差函数:∑∞=+=02)(i ki i G G k r εσ自相关系数:∑∑∞=∞=+==02)0()(i jj kj jk GGG r k r ρ;(4)AR (p )序列预测:)(ˆ...)1(ˆ)(ˆ1p l x l x l xx t p t t lt -++-==+φφ 预测方差:Green 函数:021120110,,1G G G G G G φφφ+===22121)...1()]([εσ-+++=L t G G l e Var ;(5) MA (p )序列预测:;,)(ˆ1q l l xqi i l t i t ≤-=∑=-+εθμ ;,)(ˆq l l xt >=μ预测方差:;,)...1()]([22121q l l e Var l t ≤+++=-εσθθ ;,)...1()]([2221q l l e Var q t >+++=εσθθ5、非平稳时间序列的确定分析:移动平均法:nx x x x nt t t t--+++=...~1 ;简单指数平滑:)10(,)1(...)1(~1<<-++-+=--ααααααn t n t t t x x x x ;Wold 分解定理:对于任何一个离散平稳过程{t x },都可以分解为两个相关的额平稳序列之和,其中一个为确定性的{t V },另一个是随机性的{t ε}。
时间序列的知识点
时间序列是指一系列按照时间顺序排列的数据点,这些数据点可以是任何类型的变量,如温度、股票价格、销售量等。
时间序列分析是一种统计方法,用于揭示时间数据中的趋势、季节性和周期性等特征,以及预测未来的趋势和变化。
时间序列分析的步骤可以分为以下几个方面:1.数据收集:首先,需要收集时间序列数据,这些数据可以来自于各种渠道,如传感器、数据库、网站等。
确保数据的完整性和准确性非常重要。
2.数据清洗:在进行时间序列分析之前,需要对数据进行清洗和预处理。
这包括处理缺失值、异常值和噪声等。
同时,还可以进行平滑处理,如移动平均、指数平滑等。
3.数据可视化:通过绘制时间序列图,可以更直观地了解数据的趋势和季节性。
常用的可视化工具包括Matplotlib和Seaborn等。
通过观察图形,可以初步判断是否存在趋势、季节性和周期性等特征。
4.数据分解:时间序列数据通常包含趋势、季节性和随机性三个组成部分。
为了更好地分析这些组成部分,可以使用分解方法,如加法模型和乘法模型。
分解后,可以更准确地对各个部分进行分析和预测。
5.时间序列模型:选择合适的时间序列模型对数据进行建模和预测。
常用的时间序列模型包括ARIMA模型、指数平滑模型和季节性自回归移动平均模型等。
根据数据的特点,选择最适合的模型。
6.模型评估:使用一些评估指标,如均方根误差(RMSE)和平均绝对百分比误差(MAPE),对模型进行评估。
通过评估指标,可以判断模型的拟合程度和预测准确性。
7.模型预测:根据已建立的模型,可以对未来的时间序列数据进行预测。
预测结果可以用于制定决策和规划。
时间序列分析在各个领域都有广泛的应用,如经济学、金融学、气象学、运输规划等。
通过对时间序列数据的分析和预测,可以帮助人们更好地理解数据的变化规律,做出科学的决策。
总结起来,时间序列分析是一种揭示和预测时间数据特征的统计方法。
通过数据收集、清洗、可视化、分解、建模和预测等步骤,可以深入了解时间序列数据的趋势、季节性和周期性等特征,为决策和规划提供科学依据。
时间序列分析的基础知识
时间序列分析的基础知识时间序列分析是一种重要的统计分析方法,用于研究时间序列数据的规律性和趋势变化。
时间序列数据是按照时间顺序排列的一系列数据观测值,例如股票价格、气温、销售额等。
通过时间序列分析,可以揭示数据中的周期性、趋势性和随机性,从而进行预测和决策。
本文将介绍时间序列分析的基础知识,包括时间序列的特点、常见模型和分析方法。
一、时间序列的特点时间序列数据具有以下几个特点:1. 时间依赖性:时间序列数据中的每个观测值都与前面或后面的观测值相关联,存在一定的时间依赖性。
2. 趋势性:时间序列数据通常会呈现出长期的趋势变化,反映了数据的整体发展方向。
3. 季节性:某些时间序列数据会呈现出周期性的季节变化,例如销售额在节假日前后会有明显波动。
4. 随机性:除了趋势性和季节性外,时间序列数据还包含一定程度的随机波动,反映了数据的不确定性。
二、常见的时间序列模型在时间序列分析中,常用的模型包括:1. 自回归模型(AR):自回归模型假设当前观测值与前几个观测值相关,用于描述数据的自相关性。
2. 移动平均模型(MA):移动平均模型假设当前观测值与前几个观测值的误差相关,用于描述数据的随机性。
3. 自回归移动平均模型(ARMA):ARMA模型将AR模型和MA模型结合起来,综合考虑数据的自相关性和随机性。
4. 差分自回归移动平均模型(ARIMA):ARIMA模型在ARMA模型的基础上引入差分操作,用于处理非平稳时间序列数据。
5. 季节性自回归移动平均模型(SARIMA):SARIMA模型在ARIMA模型的基础上考虑季节性因素,适用于具有季节性变化的数据。
三、时间序列分析的方法进行时间序列分析时,通常包括以下几个步骤:1. 数据预处理:对时间序列数据进行平稳性检验、季节性调整和缺失值处理,确保数据的可靠性和准确性。
2. 模型识别:根据时间序列数据的特点选择合适的模型,如AR、MA、ARMA、ARIMA或SARIMA模型。
时间序列分析的基础知识
时间序列分析的基础知识时间序列分析是统计学中一项重要的技术,用于研究数据随时间变化而产生的规律性。
无论是经济预测、股票波动、气象预测还是其他领域的数据分析,时间序列分析都扮演着关键角色。
本文将介绍时间序列分析的基础知识,包括概念、常用模型和分析方法。
1. 什么是时间序列分析?时间序列是按时间顺序排列的一系列数据点,通常是等间隔采集的。
时间序列分析旨在揭示数据背后的模式、趋势和周期性,从而做出预测或推断。
时间序列分析可分为描述性分析和预测性分析两大类。
2. 时间序列分析的重要性时间序列分析在多个领域有着广泛的应用。
在经济学中,时间序列分析用于预测经济指标的变化趋势;在气象学中,用于预测天气变化;在工程学中,用于监测设备运行状态。
因此,掌握时间序列分析的基础知识对于数据分析人员至关重要。
3. 常用模型及方法3.1 随机游走模型随机游走模型是时间序列分析中最简单的模型之一,假设未来的值由当前值随机决定。
这个模型常用于描述没有明显趋势的时间序列数据。
3.2 移动平均模型移动平均模型是一种平滑时间序列的方法,通过计算特定窗口内数据点的平均值来减少噪音和随机波动。
移动平均模型有助于观察数据的长期趋势。
3.3 季节性模型季节性模型适用于具有明显季节性波动的数据。
通过分析不同季节的数据变化趋势,可以更好地理解数据的周期性规律。
3.4 自回归集成移动平均模型(ARIMA)ARIMA模型结合了自回归、差分和移动平均三种技术,适用于各种类型的时间序列数据。
ARIMA模型能够处理不同类型的数据特征,是时间序列分析中常用的预测模型之一。
4. 总结时间序列分析是一门重要的统计学领域,通过对数据随时间变化的规律性进行分析,可以帮助我们更好地理解数据背后的含义,并做出有效的预测。
掌握时间序列分析的基础知识是数据分析人员必备的能力之一。
希望本文的介绍能为您对时间序列分析有更深入的了解提供帮助。
以上是关于时间序列分析的基础知识的介绍,希望能对您有所帮助。
第六章时间序列分析
第六章时间序列分析重点:1、增长量分析、发展水平及增长量2、增长率分析、发展速度及增长速度3、时间数列影响因素、长期趋势分析方法难点:1、增长量与增长速度2、长期趋势与季节变动分析第一节时间序列的分析指标知识点一:时间序列的含义时间序列是指经济现象按时间顺序排列形成的序列。
这种数据称为时间序列数据。
时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。
时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。
表现了现象在时间上的动态变化,故又称为动态数列。
一个完整的时间数列包含两个基本要素:一是被研究现象或指标所属的时间;另一个是该现象或指标在此时间坐标下的指标值。
同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。
研究时间数列的意义:了解与预测。
[例题·单选题]下列数列中哪一个属于时间数列().a.学生按学习成绩分组形成的数列b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列c.工业企业按产值高低形成的数列d.降水量按时间先后顺序排列形成的数列答案:d解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。
知识点二:增长量分析(水平分析)一.发展水平发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用yt(t=1,2,3,…,n) 。
在绝对数时间数列中,发展水平就是绝对数;在相对数时间数列中,发展水平就是相对数或平均数。
几个概念:期初水平y0,期末水平yt,期间水平(y1,y2,….yn-1);报告期水平(研究时期水平),基期水平(作为对比基础的水平)。
二.增长量增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为:增长量=报告期水平-基期水平根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。
时间分析知识点总结
时间分析知识点总结一、时间序列的概念时间序列是指按照时间顺序排列的一组随机变量观测值,通常用来描述某一现象、变量或者经济指标在不同时间点上的取值。
时间序列数据通常具有以下特点:趋势性、季节性、周期性和随机性。
1. 趋势性:时间序列数据在长期内呈现出的总体变化方向,可以是增长趋势,也可以是下降趋势。
2. 季节性:时间序列数据在短期内呈现出的重复性变动模式,通常是由季节因素导致的,比如节假日、气候等因素。
3. 周期性:时间序列数据在中长期内呈现出的周期性波动,可以是周期性的震荡或者波动。
4. 随机性:时间序列数据中除了上述几种规律性变动之外的不规则波动。
时间序列数据是时间分析的研究对象,对其进行分析可以揭示其内在的规律和趋势,为决策和预测提供依据。
二、时间序列分析方法时间序列分析主要包括描述性分析、平稳性分析、自相关性分析和预测分析等方法。
1. 描述性分析描述性分析是对时间序列数据进行可视化分析,主要包括绘制时间序列图、直方图和散点图等,以便观察其随时间的变化规律和分布特征。
2. 平稳性分析平稳性是时间序列数据分析中非常重要的概念,指的是时间序列数据在不同时间点上的统计特性不发生显著的变化。
常用方法包括观察时间序列图来判断其平稳性,以及进行单位根检验等。
3. 自相关性分析自相关性是指时间序列数据中各个时刻的观测值之间的相关关系。
自相关性分析主要包括自相关图的绘制和计算自相关系数等方法,以判断时间序列数据中是否存在自相关性,以及自相关性的程度。
4. 预测分析预测分析是时间序列分析的核心内容,目的是根据过去的数据来预测未来的变动趋势。
常用的预测方法包括移动平均法、指数平滑法、自回归移动平均模型(ARMA)和季节性自回归整合移动平均模型(SARIMA)等。
三、趋势分析趋势分析是时间序列分析中的重要内容,用来研究时间序列数据中长期趋势的变化。
常用的趋势分析方法包括线性趋势分析、指数平滑法和多项式拟合法等。
1. 线性趋势分析线性趋势分析是通过拟合直线来描述时间序列数据的变化趋势,通常采用最小二乘法来估计趋势线的斜率和截距。
时间序列分析知识点总结(1)
一.时间序列分析的相关概念♦随机过程:若对于每一个特定的t ∈T ,X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t ∈T}是一个随机过程。
♦纯随机过程:随机过程X(t)(t=1,2,…),如果是由一个不相关的随机变量序列构成的,即对于所有s ≠t ,随机变量X t 和X s 的协方差均为零,则称其为纯随机过程。
♦♦♦♦独立增量随机过程:任意两相邻时刻上的随机变量之差是相互独立的,则称其为独立增量随机过程。
二阶矩过程:若随机过程{X(t),t ∈T},对每个t ∈T ,X(t)的均值和方差存在,则称其为二阶矩过程。
正态过程:若{X(t)}的有限维分布都是正态分布,则称{X(t)}为正态随机过程。
平稳过程(严平稳):如果对于时间t 的任意n 个值t 1,t 2,…,t n 和任意实数 ,随机过程X(t)的n 维分布函数满足关系式F n (x 1,x 2,…,x n ; t 1,t 2,…,t n ) = F n (x 1,x 2,…,x n ; t 1+ε,t 2+ε,…,t n+ε),则称X(t)为平稳过程。
即是统计特性不随时间的平移而变化的过程。
♦宽平稳:若随机过程{X(t),t ∈T}的均值和协方差存在,且满足①EX t ∈a,∀t ∈T ;②E[X t+τ-a][X t -a]=R(τ),∀t,t+τ∈T ,则称{X(t),t ∈T}为宽平稳随机过程,R(τ)为X(t)的协方差函数。
♦非平稳随机过程:不具有平稳性的过程就是非平稳过程。
即序列均值或协方差与时间有关时,就可以认为是非平稳的。
♦♦自相关:指时间序列观察资料互相之间的依存关系。
动态性(记忆性):指系统现在的行为与其历史行为的相关性。
如果某输入对系统后继n 个时刻的行为都有影响,就说该系统具有n 阶动态性。
二.刻画时间序列统计特性的各种数字特征的定义、性质等♦均值函数其中,F t (x)为随机序列X t 的分布密度函数。
经济学研究中时间序列分析的技术要点总结
经济学研究中时间序列分析的技术要点总结时间序列分析是经济学研究中的重要工具之一,它能够帮助我们理解经济现象的演变规律和趋势,并对未来的走势进行预测。
本文将对时间序列分析的技术要点进行总结和归纳,帮助读者更好地理解并应用这一分析方法。
1. 数据的平稳性测试与处理平稳性是进行时间序列分析的前提条件之一,它指的是在时间维度上的均值和方差不发生明显变化。
为了确保数据的平稳性,需要进行平稳性测试,常用的方法包括ADF检验、单位根检验等。
如果数据不平稳,需要通过差分、对数化、季节性调整等方法进行处理,使其变成平稳序列。
2. 自相关与偏自相关分析自相关(Autocorrelation)分析是确定序列中自身相互依赖关系的方法,用于寻找数据之间的线性关系。
自相关函数(ACF)和偏自相关函数(PACF)是常用的自相关分析工具,可以通过绘制相关函数图形来判断序列的相关性。
ACF表示当前观测值与前几个滞后观测值之间的相关性,而PACF则表示当前观测值与之前滞后值之间的相关性,PACF可以帮助我们确定时间序列模型的阶数。
3. 白噪声检验白噪声是指随机序列,其中各个观测值之间没有任何相关性。
在时间序列分析中,我们通常认为残差序列应该是白噪声。
为了验证残差序列的白噪声特性,可以进行白噪声检验,常用的方法有Ljung-Box检验和ARCH检验。
如果残差序列不是白噪声,说明模型存在缺陷,需要进一步进行修正。
4. ARMA模型选择ARMA模型(AutoRegressive Moving Average Model)是指自回归移动平均模型,它是根据时间序列的自相关性和偏自相关性构建的。
在选择ARMA模型时,需要分析序列的ACF和PACF图,根据截尾性和拖尾性来确定AR和MA的阶数。
通常采用信息准则,如AIC (Akaike Information Criterion)和BIC(Bayesian Information Criterion)来评估模型的拟合优度和复杂度,选择最优的模型。
应用时间序列分析总结归纳
应用时间序列分析总结归纳时间序列分析是一种用来研究时间序列数据的统计方法,通过观察和分析时间序列的规律和趋势,可以对未来的趋势进行预测。
时间序列分析广泛应用于经济学、金融学、气象学、市场研究等领域。
本文将对时间序列分析的应用进行总结归纳,以帮助读者更好地理解和应用这一方法。
一、时间序列分析的基本概念时间序列是指按照时间顺序记录的一组数据。
时间序列分析的基本概念包括平稳性、周期性、趋势性和季节性。
1. 平稳性:时间序列在统计特性上没有明显的变化,均值和方差保持稳定。
2. 周期性:时间序列数据具有周期性的规律,可以按照一定的时间间隔重复出现。
3. 趋势性:时间序列数据呈现出明显的变化趋势,可以是上升趋势、下降趋势或波动趋势。
4. 季节性:时间序列数据受到季节因素的影响,呈现出周期性的波动。
二、时间序列分析的方法时间序列分析的常用方法包括平滑法、趋势法、季节性分解法和ARIMA模型。
1. 平滑法:通过计算一定时间段内的均值或加权平均值,消除时间序列中的随机波动,从而更好地观察到趋势和周期性。
2. 趋势法:通过拟合回归模型,对趋势进行预测和分析。
3. 季节性分解法:将时间序列数据分解为趋势、周期和随机波动三个分量,以便更好地分析和预测季节性变化。
4. ARIMA模型:自回归滑动平均模型是一种包含自回归和滑动平均项的时间序列预测模型,可以用于分析非平稳的时间序列数据。
三、时间序列分析的应用时间序列分析在实际应用中有许多重要的用途,下面将介绍其中几个典型的应用领域。
1. 经济学应用:时间序列分析可以帮助经济学家研究经济指标的趋势和周期性,预测经济增长和衰退的趋势,为制定经济政策提供依据。
2. 金融学应用:时间序列分析在金融市场中广泛应用,可以预测股票和债券的价格变动趋势,为投资者提供决策依据。
3. 气象学应用:时间序列分析可以帮助气象学家预测气象变化趋势和季节性变化,为气象预报提供依据。
4. 市场研究应用:时间序列分析可以分析市场需求的变化趋势和季节性变化,为企业制定市场策略提供依据。
时间序列分析技巧例题和知识点总结
时间序列分析技巧例题和知识点总结时间序列分析是一种用于研究数据随时间变化规律的重要方法,在众多领域都有着广泛的应用,如经济学、金融学、气象学、工程学等。
通过对时间序列数据的分析,我们可以预测未来的趋势、发现周期性模式、识别异常值等。
接下来,让我们通过一些例题来深入理解时间序列分析的技巧,并对相关知识点进行总结。
一、时间序列的基本概念时间序列是按照时间顺序排列的一组数据点。
它可以是等间隔的,比如每小时、每天、每月的观测值,也可以是不等间隔的。
时间序列数据通常具有趋势性、季节性、周期性和随机性等特征。
二、常见的时间序列模型1、自回归模型(AR)自回归模型假设当前值与过去若干个值存在线性关系。
例如,一阶自回归模型 AR(1)可以表示为:$Y_t =\phi_1 Y_{t-1} +\epsilon_t$,其中$\phi_1$是自回归系数,$\epsilon_t$是随机误差项。
2、移动平均模型(MA)移动平均模型则认为当前值是由过去若干个随机误差项的线性组合构成。
一阶移动平均模型 MA(1)表示为:$Y_t =\epsilon_t +\theta_1 \epsilon_{t-1}$。
3、自回归移动平均模型(ARMA)ARMA 模型是 AR 模型和 MA 模型的组合,即同时考虑了序列的自相关性和随机性。
例如,ARMA(1,1)模型为:$Y_t =\phi_1 Y_{t-1} +\epsilon_t +\theta_1 \epsilon_{t-1}$。
4、自回归整合移动平均模型(ARIMA)对于非平稳的时间序列,需要先进行差分使其平稳,然后再应用ARMA 模型,这就是 ARIMA 模型。
三、时间序列分析的步骤1、数据可视化首先,绘制时间序列的折线图或柱状图,直观地观察数据的趋势、季节性和异常值。
2、平稳性检验平稳性是时间序列分析的重要前提。
常用的检验方法有单位根检验(如 ADF 检验),如果检验结果拒绝存在单位根,则序列是平稳的;否则,需要进行差分处理使其平稳。
时间序列分析基础知识
时间序列分析基础知识简介时间序列分析是研究时间序列的一种统计分析方法,通过对时间序列数据的观测、建模和预测,可以揭示数据中存在的内部规律和趋势变化。
本文将介绍时间序列分析的基础知识,包括时间序列的概念、时间序列数据的特点以及常用的时间序列分析方法。
时间序列的概念时间序列是按照一定的时间间隔进行观测或测量得到的数据集合,其中数据与其对应的时间密切相关。
时间序列可以是离散的,也可以是连续的。
离散时间序列是在固定的时间点上观测到的数据,连续时间序列则是在一段时间内连续观测得到的数据。
时间序列数据的特点时间序列数据具有以下几个特点:趋势性:时间序列中包含着某种趋势的演变规律,例如随着时间的推移,销售额呈现逐渐增长或逐渐下降的趋势。
季节性:某些时间序列会受到季节因素的影响,例如每年夏季冰淇淋销量增加,冬季销量减少。
周期性:时间序列中可能存在周期性波动,例如经济周期、股市周期等。
随机性:除趋势、季节和周期外,时间序列中还可能包含无规律性的波动。
这些特点使得时间序列数据在分析和预测时与其他类型数据有所不同。
时间序列分析方法描述性统计分析描述性统计分析是对时间序列数据进行初步分析和总结,以便更好地理解其特点。
常用的描述性统计方法包括:均值:计算一组数据(如一年中销售额)的平均值,用于表示数据的集中趋势。
方差:衡量数据中个体间离散程度,方差越大说明个体间差异越大。
自相关函数:用于判断观测值之间是否存在相关性。
自相关函数图示能够帮助我们发现季节变化或者其他周期性模式。
百分位数:刻画了一组数据中各个子集合所占比例。
平稳性检验平稳性是指时间序列的均值、方差和自相关函数在任意时刻都保持不变。
平稳性检验对于后续模型建立和预测非常重要。
常见的平稳性检验方法包括:观察法:通过绘制时间序列图观察是否具有明显趋势或周期性。
统计检验:使用单位根检验(如ADF检验)来判断时间序列是否平稳。
时间序列预测基于对历史数据进行建模,并利用建模结果进行未来值预测是时间序列分析的核心内容。
应用时间序列分析(知识点总结)
时间序列分析 知识点总结
本课程主要内容
(2)
γ
(t,
s)
=
σ 2 , 0,
t t
= ≠
s s
,
∀t ,
s
∈T
白噪声序列{at}记为: at ~ WN (0,σ 2 )
白噪声序列是一种典型的宽平稳序列
8
五. 随机游走(Random Walk)序列X tLeabharlann = ϕ1 X t−1 + at
ϕ 1
=
1
时的AR(1)模型:
二
.
一.差 分
时
∇2 Xt = ∇Xt − ∇Xt−1
依此类推,对 d 1 阶差分后序列再进行一 次1 阶差分运算称为 d 阶差分:
∇d X t = ∇d −1 X t − ∇ d −1 X t −1
13
二. 后移算子(Backshift Operator)
v后移算子类似于一个时间指针,当前序列值 乘以一个后移算子,就相当于把当前序列值 的时间向过去拨了一个时刻.
18
季节差 分
季节差分运算(S 为周期)
∇sXt = Xt − Xt−s.
三
. 一. AR(n)模型
平
二. MA(m)模型
稳
时
三. ARMA(n, m)模型
间
序
at : WN (0,σ 2 )
列
时间序列知识点总结
时间序列知识点总结时间序列的特征在进行时间序列分析之前,需要先了解时间序列数据的特征。
时间序列数据通常包括趋势、季节性、周期性和随机性等几个方面的特征。
趋势是时间序列数据长期变化的倾向,可以分为上升趋势、下降趋势和水平趋势。
趋势可以通过线性趋势、非线性趋势等形式进行建模。
季节性是时间序列数据在一年内重复出现的短期周期性变化。
例如,零售业的销售额在每年的圣诞节期间通常会有显著增长,这就是季节性的表现。
周期性是时间序列数据在非固定时间段内重复出现的周期性变化。
例如,房地产市场可能会出现10年一个周期的波动。
随机性是无法被趋势、季节性和周期性所解释的时间序列数据的波动。
随机性也被称为噪声,它可以通过模型的残差项来描述。
时间序列的模型时间序列分析的目标是从历史数据中找出模式,并据此预测未来的走势。
在时间序列分析中,最常用的模型有自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA模型)和指数平滑模型等。
ARMA模型是一种描述时间序列数据的随机过程,它包括自回归和移动平均两种成分,可以用来描述时间序列数据的趋势和随机波动。
ARIMA模型是在ARMA模型的基础上引入差分运算,用来处理非平稳的时间序列数据。
ARIMA模型包括自回归阶数p、差分阶数d和移动平均阶数q三个参数,可以较为灵活地适应不同时间序列的特征。
指数平滑模型是一种通过加权移动平均的方式对时间序列数据进行平滑处理,并据此预测未来的走势。
指数平滑模型有简单指数平滑、双指数平滑和三指数平滑等不同形式。
时间序列的预测时间序列分析的一个重要应用就是预测未来的走势。
对于经济金融领域来说,预测未来的通货膨胀率、利率和股票价格等具有重要的实际意义。
时间序列预测的方法主要包括基于统计模型的方法和基于机器学习的方法。
基于统计模型的方法是通过建立ARMA模型、ARIMA模型或指数平滑模型等,然后根据模型对未来的走势进行估计。
这种方法的优点是模型比较简单,容易理解和解释。
时间序列分析重要知识点总结
n
xi
xi1
1269.357 14 58.6 8(9 亿 6)元
n
8
连续时点序列
将逐日调查记录的时点序列视为连续时点序列。
a.逐日调查,逐日登记:简单算术平均
x x1 x2 n
n
xn
xi
i1
n
【例2-1】已知某企业一个月内每天的出勤工人人数, 计算该月平均每天出勤工人人数。
【思路】:将该月每天的工人人数相加,除以该月的 日历天数即可。
表1:国内生产总值等现象的时间序列
年份
国内生产总 人均国内生产 年末总人 自然增长 人均消费 值(亿元) 总值(元) 口(万人) 率(‰) (元)
2000 2001 2002 2003 2004 2005 2006 2007
99214.6 109655.2 120332.7 135822.8 159878.3 183217.4 211923.5 249529.9
xa2 0 6 8 8 .4 6 1 0 0 % 3 1 .5 9 % b 6 5 4 8 9 .4 6
作业:某企业总产值和职工人数资料如下表,
试计算该企业第二季度平均每月全员劳动生
产率。月份
3
4
5
6
月总产值(万元)a 1150 1170 1200 1370
a 月 末i职 n1工ai人数11 (70 千 人1)20 b0 61 .3 5 70 61 .7246.6 67 ( .9 万 元 7) .1
逐 增期 长
— 15490.1 24055.5 23339.1 28706.1 37606.4
量
累 积
0(—) 15490.1 39545.6 62884.7 91590.8 129197.2
时间序列分析要点总结
时间序列分析要点总结课时分配表目录第一章绪论第一节时间序列分析的一般问题第二节时间序列的建立第三节确定性时间序列分析方法概述第四节随机时间序列分析的几个基本概念第二章平稳时间序列模型第一节一阶自回归模型第二节一般自回归模型第三节移动平均模型第四节自回归移动平均模型第三章ARMA模型的特征第一节格林函数和平稳性第二节逆函数和可逆性第三节自协方差函数第四节自谱第四章平稳时间序列模型的建立第一节模型识别第二节模型定阶第三节模型参数估计第四节模型的适应性检验第五章平稳时间序列预测第一节正交投影预测(几何预测法)第二节条件期望预测第三节指数平滑预测―ARMA模型特例第六章非平稳时间序列分析第一节非平稳性的检验第二节平稳化方法第三节齐次非平稳序列模型第四节非平稳时间序列的组合模型第七章季节时间序列分析方法第一节简单随机时序模型第二节乘积季节模型第三节季节时序模型的建立第四节X-11方法简介第八章传递函数模型第一节模型简介第二节传递函数模型的识别第三节传递函数模型的拟合及检验第一章绪论【教学目的与要求】了解时间序列的含义、主要分类及建立,了解时间序列分析的作用,以及确定性时间序列分析方法和随机时间序列的几个基本概念。
【教学重点与难点】随机时间序列的几个基本概念。
【教学方法】基本理论与实际问题相结合【教学内容】§1.1 时间序列分析的一般问题●课程的性质、研究意义及可行性首先提及时间序列分析的含义:根据经济指标的时间序列资料,较精确地找出经济系统的内在统计特征和发展规律性,尽可能多地从中提取出我们所需要的准确信息。
用来实现上述目的的整个方法称为时间序列分析。
它是一种根据动态数据揭示系统动态结构和规律的统计方法,是统计学科的一种分支。
其基本思想是根据系统的有限长度的运行记录(观察数据),建立能够比较精确地反映时间序列中所包含的动态依存关系的数学模型,并借以对系统的未来行为进行预报。
有必要提到计量经济学:社会经济现象往往受许多因素的影响,计量经济学是通过建立系统内经济变量结构式的因果模型,定量分析经济变量之间的随机因果关系而揭示经济系统的内部规律性,从而进行分析和预测。
时间序列分析基础知识
时间序列分析基础知识时间序列分析是统计学和数据科学中一项重要的内容,广泛应用于经济、金融、气候、医学等各个领域。
通过时间序列数据,可以发现数据随时间变化的趋势和规律,并用于模型预测。
以下是关于时间序列分析的一些基本知识。
一、时间序列的定义时间序列是按照时间顺序排列的数据。
这些数据可以是一个变量在不同时间点的观测值,也可以是多个变量在同一时间点的观测值。
时间序列通常由时间索引(如年、月、日、小时等)和数值组成。
例如,某个公司的月销售额、每日气温变化等都属于时间序列数据。
二、时间序列的特征趋势(Trend)趋势是描述整个时间序列中长期变化的一种成分。
它表明了数据随着时间推移所表现出的整体运动方向。
例如,一个科技公司在其成立后的几年内可能表现出清晰的销售增长趋势。
季节性(Seasonality)季节性指的是在一定周期内(如每年、每季度等)重复出现的波动现象。
例如,冰淇淋的销售在夏季通常会显著上升,而在冬季则会下降,这种规律性的波动体现为季节性。
周期性(Cyclicality)周期性与季节性相似,但不同之处在于周期性并非固定时间间隔。
周期性的变化通常跟经济周期或其他长期因素有关,如经济衰退与繁荣交替。
不规则成分(Irregular component)不规则成分是指一种随机的波动,通常是由突发事件引起的,比如自然灾害、政策变动等。
这些成分较难预测和建模。
三、时间序列分析的方法时间序列分析有多种方法,以下是几种常用的方法:移动平均法移动平均法通过计算某些滑动时间窗口内的数据均值来平滑数据,从而识别长期趋势。
常用的有简单移动平均和加权移动平均。
指数平滑法指数平滑法给予最近的数据更多权重,可以快速响应数据变化。
最常用的是单一指数平滑和霍尔特-温特模型。
自回归模型(AR)自回归模型假设当前值与之前若干个时刻的数据值有关。
通过这些过去的数据,我们可以预测未来的数值。
移动平均模型(MA)移动平均模型假设当前值由过去随机误差项影响。
时间序列分析基本知识讲解
时间序列分析基本知识讲解时间序列分析是指对一系列按照时间顺序排列的数据进行分析、建模和预测的方法。
它在许多领域都有广泛的应用,如经济学、金融学、气象学等。
时间序列数据的特点是具有时间依赖性和序列自相关性,即当前的观测值与前面的观测值之间存在一定的关联。
时间序列分析的基本目的是通过观察过去的数据模式,来预测未来的值或者了解数据的发展趋势。
在进行时间序列分析时,我们通常关注以下几个方面的内容:1. 趋势分析:时间序列数据中的趋势是指长期内数据值的增长或下降趋势。
趋势的存在可能是持续性的,也可能是周期性的。
常见的趋势分析方法包括移动平均法、指数平滑法等。
2. 季节性分析:时间序列数据中的季节性是指每年或每个周期内数据值呈现出的周期性规律。
季节性可以是固定的,也可以是随机的。
常用的季节性分析方法有季节性指数法、周期性指数法等。
3. 周期性分析:时间序列数据中的周期性是指数据值在一段时间内出现的循环规律。
周期性往往是由于外部因素引起的,如经济周期、自然环境等。
周期性分析常用的方法有傅里叶分析、自相关函数等。
4. 随机性分析:时间序列数据中的随机性是指数据值的不可预测性和不规律性。
随机性分析可以用来寻找数据中的异常值、离群点等。
常用的随机性分析方法有自回归滑动平均模型(ARMA)、随机游走模型等。
时间序列分析的基本步骤包括收集数据、可视化数据、数据预处理、建立模型、模型检验和评估模型的预测能力等。
常用的时间序列模型有自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)、季节性自回归整合移动平均模型(SARIMA)等。
总之,时间序列分析是研究时间序列数据的变化规律和趋势的一种方法。
通过对时间序列数据的分析,我们可以预测未来的趋势和变化,辅助决策制定和问题解决。
在实际应用中,时间序列分析与其他统计方法和机器学习方法结合,可以提高分析预测的准确性和可靠性。
时间序列分析是研究时间序列数据的内在规律和趋势的一种方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列分析知识点总结
本课程主要内容
•时间序列简介
•时间序列的预处理
•平稳时间序列模型
•ARMA模型的特性
•平稳时间序列模型的建立
•平稳时间序列预测
3
一.时间序列简介
一. 时间序列的定义
二. 时间序列的主要分类
三.宽平稳(Weak Stationary)
四. 白噪声序列(White Noise)
五. 随机游走(Random Walk)序列
一.时间序列的定义
4
1. 从统计的角度讲: 时间序列是某一个指标在不同
的时间上的不同数值按时间先后顺序排成的序列.
时间序列是一组随机变量X(t) (或一个随机过程)
在一系列时刻t1, t2, t3, …, t N (t1 < t2 < …< t N) 的一
次样本实现.
2. 从数学意义上讲:
3. 从系统意义上讲: 时间序列是某一系统在不同
时间(条件)下的响应.
5
二. 时间序列的主要分类
按序列的统计特性分: 平稳序列, 非平稳序列.
u平稳序列:时间序列的统计特性不随时间
而变化。
u非平稳序列:时间序列的统计特性随时间
而变化。
平稳时间序列
严平稳序列
宽平稳序列
三.宽平稳(Weak Stationary)
•满足如下条件的序列称为宽平稳序列
2
(1)(),.
t
E X t T
<∞∀∈
均值为常数
方差有界
自协方差函数只依赖于时间的间隔
自协方差函数只依赖于时间的间隔
长度, 而与时间的起止点无关
(3)(,)(,)(,0),,,.
t s t h s h s t t s h s t T
γγγ
=++=−∀−∈
且
(2)(),,.
t
E X t T
µµ
=∀∈
为常数
6
7严平稳与宽平稳的关系
•一般关系
–
严平稳条件比宽平稳条件苛刻,通常情况下,严平稳(低阶矩存在)能推出宽平稳成立, 而宽平稳序列不能反推严平稳成立;
宽平稳
严平稳低阶矩存在
8
四. 白噪声序列(White Noise)•白噪声序列{a t } 也称为纯随机序列, 它满足如下两条性质:
2(1) 0,, (2) (,),,0, t Ea t T
t s
t s t s T
t s σγ=∀∈ ==∀∈ ≠
白噪声序列{a t }记为: 2
~(0,)t a WN σ白噪声序列是一种典型的宽平稳序列
9
五. 随机游走(Random Walk)序列
1 1 AR(1)ϕ=时的模型:
1t t t
X X a −=+11t t t
X X a ϕ−=+其中: a t 为白噪声序列, 那么就称该模型为随机游走模型, 这样的时间序列称随机游走过程.注意: 随机游走过程是非平稳时间序列非平稳时间序列.
()t Var X =∞
10
二
.
时
间序列的预处理
一.差分二. 后移算子三. 差分方式的选择四. 季节差分
11
时间序列的非平稳性及处理方法
2. 方差和自协方差非平稳:Box-Cox 变换
1. 均值非平稳:差分
12
v 一阶差分(相距一期的两个序列值之间的减法运算称为1 阶差分运算)
一. 差分
1
t t t X X X −∇=−其中
称为差分算子.
差分是通过逐项相减消除前后期数据相关性的方法,可剔除序列中的趋势性,是非平稳序列的均值平稳化的预处理.
13
111
d d d t t t X X X −−−∇=∇−∇对 1 阶差分后序列再进行一次 1 阶差分运算称为2 阶差分:
高阶差分
依此类推,对d -1 阶差分后序列再进行一次1 阶差分运算称为d 阶差分:
2
1
t t t X X X −∇=∇−∇14
v 后移算子类似于一个时间指针,当前序列值乘以一个后移算子,就相当于把当前序列值的时间向过去拨了一个时刻., 1
d t d t X B X d −=∀≥二. 后移算子(Backshift Operator)v 记B 为后移算子,有
1
t t BX X −=15
011) (;
B =1 ()()(2), ;t t t B CX CB X CX
C −==为任意常数11 ()(;
3)t t t t B X Y X Y −−±=±(4) ;
n t t n B X X −=0
(1)(1(5))n n i i
i n i B C B =−=−∑!
.
!()!
i
n n C i n i =
−其中后移算子的运算性质1
1(1),
n
i i i n i C B ==+−∑16
二者的关系
1B
⇒∇=−1t t t X X X −∇=−t t X BX =−(1)t
B X =−(1)d d t t
X B X ∇=−从而1
[1(1)]d
k k k
d t
k C B X ==+−∑!
.
!()!
k d d C k d k =
−其中
17
三. 差分方式的选择
•序列蕴含着显著的线性趋势,一阶差分就可以实现趋势平稳;
•序列蕴含着曲线趋势,通常低阶(二阶或三阶)差分就可以提取出曲线趋势的影响;•一般而言,若序列具有二次趋势,则两次差分后可变换为平稳序列;
•对于蕴含着固定周期的序列进行步长为周期长度的差分运算,通常可以较好地提取周期信息.
18
四. 季节差分
反映经济现象的序列, 不少都具有周期性.设X t 为一含有周期为S 的周期性波动序列,则X t , X t +s , X t +2s , …为各相应周期点的数值,它们则表现出非常相近或呈现某一趋势的特征,如果把每一观察值同下一周期相应时刻的观察值相减,这就叫季节差分.
季节差分可以消除周期性的影响.
季节差分
季节差分运算(S 为周期)
.
s t t t s X X X −∇=−20
三
.
平稳时间序列模型
三. ARMA(n , m )模型
二. MA(m )模型一. AR(n )模型2
()0, (), ()0, t t a t s E a Var a E a a s t
σ===≠2(0,)
t a WN σ:12212(0,)()0, t t t t n t n t
a s t X X X X a a WN E X a s t
σϕϕϕ−−−= +∀+<++=
:L 21AR 模型描述的是系统对过去自身
状态的记忆.
一. AR(n )模型
11222(0,)
t t t t m t m
t a X a a a WN a a θθθσ−−−=− −−− L :22
二. MA(m )模型
MA 模型描述的是系统对过去时刻进
入系统的噪声的记忆
三. ARMA(n , m )模型
23
()11121(0,)0,t t n t t a s t n t t m t m
X X X a a a a WN E X a s t
θσϕϕθ−−−−=+
⋅=∀++−−−< L :L ARMA 模型则是系统对过去自身状态以及各
时刻进入的噪声的记忆。
24
四.A R M A 模型的特性
一. 差分方程二. 格林函数和平稳性三. 逆函数和可逆性
四. 时间序列模型的统计特性
低阶模型
均值函数方差函数
自协方差函数自相关函数偏自相关函数
25
五.平稳时间模型的建立
三类平稳时间序列的自相关函数(ACF)和偏自相关函数(PACF) 的统计特性:
26
下题中第一张为ACF 图, 第二张为PACF 图
-1
-0.50
0.511
2
3
4
5
6
7
8
-1
-0.50
0.511
2
3
4
5
6
7
8
该随机过程应建模为(指出滞后阶数)
AR(1)过程.
27-1
-0.500.511
2
3
4
5
6
7
8
-1
-0.500.5
1
1
2
3
4
5
6
7
8
下题中第一张为ACF 图, 第二张为PACF 图
该随机过程应建模为(指出滞后阶数)
MA(1)过程.
28
-1
-0.50
0.5
1
1
2
3
4
5
6
7
8
-1
-0.50
0.511
2345678
下题中第一张为ACF 图, 第二张为PACF 图
该随机过程应建模为(不需指出滞后阶数)
ARMA 过程.
29
六.
平稳时间预测
一. 条件期望预测
三. 预测的三种形式
12ˆ()(|,,,)t t l t t t X l E X X X X +−−=L 二. 条件期望的性质用差分方程形式进行预测
作超前一步和两步预测给出95%的置信区间。