第一章土的物理性质及工程分类
第1章 土的物理性质及分类
筛分法
200g 10 5.0 2.0 1.0 0.5 0.25 0.1 P % 95 87 78 66 55 36
筛分法就是用一套标准筛子如孔 直径(mm):20、10、5.0、2.0、 l.0、0.5、0.25、0.1、0.075, 将烘干且分散了的200g有代表性 的试样倒入标准筛内摇振,然后 分别称出留在各筛子上的土重, 并计算出各粒组的相对含量,即 得土的颗粒级配。 沉降分析法:具体有密度计法(也 称比重计法)或移液管法(也称吸管 法)。该两法的理论基础都是依据 Stokes(司笃克斯)定律,即球状的 细颗粒在水中的下沉速度与颗粒 直径的平方成正比
第1章 土的物理性质及工程分类
§1.1 §1.2 §1.3 §1.4 §1.5 土的形成与三相组成 土的三相比例指标 无粘性土的密实度 粘性土的物理特征 土的工程分类
土的形成过程
土的三相组成 土的物理状态 土的结构
决定
渗透特性 变形特性 强度特性
土的工程分类:便于研究和应用 土 的 压 实 性:如何获得较好的土
知识要点
1.掌握土体的三相组成及三相比例 指标之间的换算 2.领会无粘性土密实度概念、判别 方法及砂土相对密度的计算 3.掌握粘性土的塑限、液限、塑性 指数和液性指数的概念及其物理状态评价 4.掌握无粘性土和粘性土的分类依据 和分类方法 5.掌握土的工程分类
§1.1 土的形成与三相组成 一、土的形成
固体颗粒 – 颗粒级配
土的三相组成 – 固体颗粒
矿物成分取决于母岩的矿物成分和风化作用 原生矿物:由岩石经过物理风化形成,其矿物
成分与母岩相同。
例:石英、云母、长石等 特征:矿物成分的性质较稳定,由其组成的土具
有无粘性、透水性较大、压缩性较低的特点
土质土力学
质量
重度一般在26~28.5kN/m3
比重瓶法 浮称法 浮力法 虹吸筒法
3、土的含水率:土中
水的质量与土粒质量之 比。
ma(0)
A
W S
V
a
Vv V Vs
mw
Vw
mw m w= × % 100 ms ms 土中水的质量 = × % 100 土中颗粒的质量
质量
体积 土的三相图
含水率的影响因素
土层所处的自然条件 土的空隙体积数量等
筛孔径(mm)
各级筛上的土粒质量 (g) 小于各级筛孔径的土 粒含量(%) 各粒组的土粒含量 (%)
2.0
100 90 10
1.0
100 80 25
0.5
250 55 30
0.25
300 20.1 底盘
50 10 100
解:(1)留在2.0mm筛上的土粒质量为100g,则小于2.0mm 的土粒质量为1000-100=900g,小于2.0.mm的土粒含量为 900/1000=90%;同理可得小于其它孔径的土粒含量。 (2)因小于2.0mm和小于1.0mm孔径的土粒含量90%和80% ,可得2.0mm到1.0mm粒组的土粒含量0.90-0.80=10%。
小土的渗透性。
第二节 土的颗粒特征
土的固体颗粒对土的性质的影响:矿物成分(前)、粒度成分 粒度:土粒大小是描述土的最直观和最简单的标准,将土粒 的大小称为粒度。 粒组:描述土的粒度的方法,随颗粒的大小不同,土具有不同 的性质,工程上常把大小相近的土粒合并为一个粒组。 划分粒组 的原则 在同一个粒组内,土的工程地质性质是相似的
ma(0) m mw ms
2、干密度(重度):土的固体
颗粒质量(重力)与土的总体积
土的物理性质及工程分类
如有你有帮助,请购买下载,谢谢!第一章:土的物理性质及工程分类土是三相体——固相(土颗粒)、液相(土中水)和气相(土中空气)。
固相:是由难溶于水或不溶于水的各种矿物颗粒和部分有机质所组成。
2.土粒颗粒级配(粒度) 2. 土粒大小及其粒组划分b.土粒颗粒级配(粒度成分)土中各粒组相对含量百分数称为土的粒度或颗粒级配。
粒径大于等于0.075mm 的颗粒可采用筛分法来区分。
粒径小于等于0.075mm 的颗粒需采用水分法来区分。
颗粒级配曲线斜率: 某粒径范围内颗粒的含量。
陡—相应粒组质量集中;缓--相应粒组含量少;平台--相应粒组缺乏。
特征粒径: d 50 : 平均粒径;d 60 : 控制粒径;d 10 : 有效粒径;d 30粗细程度: 用d 50 表示。
曲线的陡、缓或不均匀程度:不均匀系数C u = d 60 / d 10 ,Cu ≤5,级配均匀,不好Cu ≥10,,级配良好,连续程度:曲率系数C c = d 302 / (d 60 ×d 10 )。
较大颗粒缺少,Cc 减小;较小颗粒缺少,Cc 增大。
Cc = 1~ 3, 级配连续性好。
粒径级配累积曲线及指标的用途:1.粒组含量用于土的分类定名;2)不均匀系数Cu 用于判定土的不均匀程度:Cu ≥ 5, 不均匀土; Cu < 5, 均匀土;3)曲率系数Cc 用于判定土的连续程度:C c = 1 ~ 3,级配连续土;Cc > 3或Cc < 1,级配不连续土。
4)不均匀系数Cu 和曲率系数Cc 用于判定土的级配优劣:如果 Cu ≥ 5且C c = 1 ~ 3,级配良好的土;如果 Cu < 5 或 Cc > 3或Cc < 1, 级配不良的土。
土粒的矿物成份——矿物分为原生矿物和次生矿物。
原生矿物:岩浆在冷凝过程中形成的矿物(圆状、浑圆状、棱角状) 次生矿物:原生矿物经化学风化后发生变化而形成。
(针状、片状、扁平状) 粗粒土:原岩直接破碎,基本上是原生矿物,其成份同生成它们的母岩。
土力学与地基基础第一章
1.5 粘性土的稠度
1.5.1 界限含水量
粘性土的土粒很细,单位体积的颗粒总表面积较大, 土粒表面与水相互作用的能力较强,土粒间存在粘结力。 稠度就是指土的软硬程度,是粘性土最主要的物理状态 特征。当含水量较大时,土粒被自由水所隔开,表现为 浆液状;随着含水量的减少,土浆变稠,逐渐变为可塑 状态,这时土中水主要表现为弱结合水;含水率再减少, 土就变为半固态;当土中主要含强结合水时,土处于固 体状态,如图1.4所示。
图1.5 土的结构
2、土的颗粒级配 对于土粒的大小及其组成情况,通常以土中各个粒组的 相对含量(各粒组占土粒总量的百分数)来表示,称为土 的颗粒级配。 (1)土的颗粒级配测定方法 ①筛分法----适用于粒径小于等于60mm而大于0.075mm ②比重瓶法-----适用于粒径小于0.075mm (2)颗粒级配表达方式
(1.11) (1.12) (1.12)
同样条件下,上述几种重度在数值上有如下关系,即
(1.13)
(4)土的孔隙比和孔隙率 土中孔隙体积与土粒体积之比称为孔隙比,用符 号e(小数)表示,用以评价天然土层的密实程度。
(1.14)
土中孔隙体积与土的总体积的比值称为孔隙率,用 符号n表示。
(1.15)
(5)饱和度 土中水的体积与孔隙体积之比称为饱和度,用符 号Sr表示。反映土体的潮湿程度。
图1.10 含水量与干密度关系曲线
1、可以总结出如下的特性: (1)、峰值(ωop= ωp +2); (2)、击实曲线位于理论饱和曲线左侧
(3)、击实曲线的形态 2、 影响击实效果的因素 (1)、含水量的影响 (2)、击实功能的影响 (3)、不同土类和级配的影响 3、压实特性在现场填土中的应用 为了便于工地压实质量的控制,可采用压实系数λ来表示,即
土力学总结
土力学第一章土的物理性质及工程分类1.土的特点:碎散性、三相性(固,液,气) 、天然性(自然变异性)或成层性.2.土粒大小是影响土的性质最主要因素.土性取决于颗粒的形状,大小和矿物成分.3.常用的粒度成分的表示方法有表格法、累计曲线法和三角坐标法.1).表格法.表格法是以列表形式直接表达各粒组的百分含量.它用于粒度成分的分类是十分方便的.2)累计曲线法.该方法是比较全面和通用的一种图解法,适应于各种土级配好坏的相对比较.由累计曲线的坡度可以大致判断土粒的均匀程度或级配是否良好.3)三角坐标法.三角坐标法只适用于划分三个组粒的情况.4.研究土中水必须考虑到水的存在状态及其土粒的相互作用;存在于土中的液态水可分为结合水和自由水两大类.结合水是指受电分子吸引力吸附在土粒表面的土中水.自由水是存在于土粒表面电场影响范围以外的水.5.土中气:土中的气体存在于土孔隙中未被水所占据的部位.含气体的土称为非饱和土,非饱和土的工程性质研究已形成土力学的一个热点.6.我们把粘土颗粒在直流电作用下向阳极移动的现象称为电泳;而水分子向阴极移动的现象称为电渗.7.双电层的厚度既取决于颗粒表面的带电性,又取决于溶液中阳离子的价数.8.粘土间的相互作用力:(1)粒间吸引力土粒间吸引力主要来源于分子间的范德华力.(2)土粒间排斥力9.土的结构:是指由土粒单元的大小、形状、相互排列及其联结关系等因素形成的综合特征.10.土的构造:土中的物质成分和颗粒大小等都相近的各部分土层之间的相互关系的特征.11.反映土轻重程度的指标:(1)土的天然密度ρ.ρ=m/V (2)土的干密度ρd =m s/V. (3)土的饱和密度ρsat=m s+Vvρw/V (4)土的浮密度ρ′(5)土粒的相对密度12.反映土松密程度的指标(1)孔隙比e:土中孔隙体积与土粒体积之比(2)孔隙率n :土中孔隙体积与总体积之比,以百分数表示.13.反映土含水程度的指标(1)土的含水率ω:土中水的质量与土颗粒质量之比,称为土的含水率,以百分数计.14.影响压实效果的因素:土类、级配、压实功能和含水率,另外土的毛细管压力以及孔隙压力对土的压实性也有一定影响.第二章土中水的运动规律1.孔隙中的自由水在重力(水位差)作用下,发生运动(从土内孔隙中透过)的现象叫渗透.2.土体具有被水透过的性质称为土的渗透性或透水性.3.渗流引起的渗透破坏问题主要有两大类:一是因渗流力的作用,使土体颗粒流失或局部土体产生移动,导致土体变形甚至失稳,如深基坑中流沙和管涌现象;二是由于渗流作用,使水压力或浮力发生变化,导致土体或结构失稳.4.渗流力:水在土中渗流时,受到土颗粒的阻力T的作用,这个力的作用方向与水流方向相反.5.流沙现象:土颗粒之间的压力等于零,土颗粒将处于悬浮状态而失去稳定.6.流沙现象的防治原则:(1)减小或消除水头差,如采取基坑外的井点降水法降低地下水位或水下挖掘;(2)增长渗流途径,如打板桩;(3)在向上渗流出口处地表用透水材料覆盖压重以平衡渗流力;(4)土层处理,减小土的渗透系数,如冻结法、注浆法等.7.管涌现象:水在砂性土中渗流时,土中的一些细小颗粒在渗流力作用下,可能通过粗颗粒的孔隙被水流带走,这种现象称为管涌.8.防治管涌现象,一般从下列三个方面采取措施:(1)改变几何条件,在渗流逸出部位设反滤层是防止管涌破坏的有效措施;(2)改变水力条件,降低水力梯度,如打板桩等;(3)土层处理,减小土的渗透系数.9.流网是由一组流线和一组等势线相互正交组成的网格.流网具有以下特征:(1)流线与等势线相互正交.(2)流线与等势线构成的各个网格的长宽比为常数.(3)相邻等势线之间的水头损失相等.(4)各个流槽(即各相邻两流线间)的渗流量相等.10.土的毛细现象是指土中水在表面张力作用下,沿着孔隙向上及其他地方移动的现象.这种细微孔隙中的水被称为毛细水.11.影响冻胀的因素:(1)土的因素(2)水的因素(3)温度的因素(4)外载荷的因素第三章土中应力计算1.土中应力按其起因可分为自重应力和附加应力两种.土中应力按其作用原理或传递方式可分为有效应力和孔隙应力两种.2.土体的应力-应变关系:(1)土的连续性假定(2)土的线弹性假定(3)土的各向同性假定3.土中某点的自重应力与附加应力之和为土体总的应力.4.在土力学中,正应力以压为正,拉为负.剪应力以逆时针为正.5.地下水位升降,使地基土中自重应力也相应发生变化.6.基底附加压力是指超出原有地基竖向应力的那部分基底压力,也即是作用在基础底面的压力与基底处建造前土中自重应力之差.7.有效应力原理:计算土中应力的目的是为了研究土体受力后的变形和强度问题.8.土中有效应力是指土中固体颗粒(土粒)接触点传递的粒间应力.9.存在土体中某点的总应力有三种情况,即自重应力附加应力、自重应力与附加应力之和.10.有效应力原理:(1)饱和土中任意点的总应力σ总是等于有效应力加上孔隙水压力;(2)土的有效应力控制了土的变形及强度.第四章土的压缩性与地基沉降计算1.土的三大工程问题:渗流、变形、强度.2.在外力作用下土体体积缩小的特性称为土的压缩性.3.土的压缩通常由三部分组成:(1)固体土颗粒被压缩;(2)土中水及封闭气体被压缩;(3)水和气体从孔隙中排出.4.对饱和土来说,土体的压缩变形主要是孔隙水的排出.5沉降:在建筑物荷载作用下,地基土主要由于压缩而引起基础的竖向位移.6.计算地基沉降时,必须取得土的压缩性指标.土的压缩性指标可以通过室内压缩试验或现场原位试验的方式获得.7.土的变形模量是指土体在无侧限条件下的应力与应变的比值.变形模量是反映土的压缩性的重要指标之一.8.土的弹性模量的定义是土体在无侧限条件下瞬时压缩的应力-应变模量.9.变形顺序:初始沉降、固结沉降、次固结沉降.10.几种沉降计算方法:分层总和法、应力面积法和弹性理论方法.第五章土的抗剪强度1.土的抗剪强度是指土抵抗剪切破坏的极限能力.2.土的c和ф统称为土的抗剪强度指标.3.土的抗剪强度是决定建筑物地基和土工建筑物稳定性的关键因素.4.无粘性土的抗剪强度决定于有效法向应力和内摩擦角.5.应力路径是指在外力作用下,土中某一点的应力变化过程在应力坐标图中的轨迹.它是描述土体在外力作用下应力变化情况或过程的一种方法.第六章土压力与挡土墙1.用来支撑天然或人工斜坡不致坍塌,保持土体稳定性的一种建筑物,俗称挡土墙.2.土压力是设计挡土墙结构物断面及验算其稳定性的主要外载荷.3.根据挡土墙的方向,大小及墙后填土处的应力状态,将土压力分为静止土压力,主动土压力,被动土压力三种.4.影响土压力的最主要因素:墙体位移条件.5.挡土墙的类型:重力式挡土墙、悬臂式挡土墙、扶壁式挡土墙、锚定板及锚杆式挡土墙.第七章地基承载力1.地基承载力是指单位面积上地基所能承受的荷载.2.地基破坏模式可分为整体剪切破坏、局部剪切破坏及冲切破坏三种。
土的物理性质及工程分类
01第一章土的物理性质及工程分类(总18页)-本页仅作为预览文档封面,使用时请删除本页-课题: 第一章土的物理性质及工程分类一、教学目的:1.了解土的生成和工程力学性质及其变化规律;2.掌握土的物理性质指标的测定方法和指标间的相互转换;3.熟悉土的抗渗性与工程分类。
二、教学重点:土的组成、土的物理性质指标、物理状态指标。
三、教学难点:指标间的相互转换及应用。
四、教学时数: 6 学时。
五、习题:第一章土的物理性质及工程分类一、土的生成与特性1.土的生成工程领域土的概念:土是指覆盖在地表的没有胶结和弱胶结的颗粒堆积物,土与岩石的区分仅在于颗粒胶结的强弱,土和石没有明显区分。
土的生成:岩石在各种风化作用下形成的固体矿物、流体水、气体混合物。
不同风化形成不同性质的土,有下列三种:(1)物理风化:只改变颗粒大小,不改变矿物成分。
由物理风化生成土为粗粒土(如块碎石、砾石、砂土),为无粘性土。
(2)化学风化:矿物发生改变,生成新成分—次生矿物。
由化学风化生成土为细粒土,具有粘结力(粘土和粘质粉土),为粘性土。
(3)生物风化:动植物与人类活动对岩体的破坏。
矿物成分没有变化。
2.土的结构和构造(1)土的结构定义:土颗粒间的相互排列和联结形式称为土的结构。
1)种类:●单粒结构:每一个颗粒在自重作用下单独下沉并达到稳态。
●蜂窝结构:单个下沉,碰到已下沉的土颗粒,因土粒间分子引力大于重力不再下沉,形成大孔隙蜂窝状结构。
●絮状结构:微粒极细的粘土颗粒在水中长期悬浮,相互碰撞吸引形成小链环状土集粒。
小链之间相互吸引,形成大链环,称絮状结构。
图土的结构3)工程性质:密实的单粒结构工程性质最好,蜂窝结构与絮状结构如被扰动破坏天然结构,则强度低、压缩性高,不可用做天然地基。
(2)土的构造1)定义:同一土层中,土颗粒之间的相互关系。
2)种类:●层状结构:由不同颜色或不同粒径的土组成层理,一层一层互相平行。
●分散构造:土粒分布均匀,性质相近,如砂与卵石层为分散构造。
土力学:第1章 土的物理性质和工程分类
d320 d60d10
(1 1b)
式中:d 、d 、d 分别相当于累计百分含量为
10
30
60
10%、30%和60%的粒径;
d10 称为有效粒径;
d60 称为限制粒径;
d 、d 10
30、称d为6平0 均粒径。
3.粒度成分及其表示方法(5)
不均匀系数 Cu 、Cc 反映大小不同粒组的分布情况:
Cu >= 5、Cc =1-3的土级配良好,其余情况为级配不良。
1)横坐标(按对数比例尺)表示某一粒径, 2)纵坐标表示小于某一粒径的土粒的百分
含量。
3.粒度成分及其表示方法(3)
表1-3中的三种土的累计曲线如图1-1所示。
3.粒度成分及其表示方法(4)
在累计曲线上,可确定两个描述土的级配的指标:
• 不均匀系数
Cu
d60 d10
(1 1a)
• 曲率系数
Cs
粒组名称
粒组范围(mm)
粒组名称
粒组范转(mm)
漂石(块石)粒组
>200
砂粒粒组
0.075~2
卵石(碎石粒组)
20~200
粉粒粒组
0.005~0.075
砾石粒粗
2~20
粘粒粒组
<0.005
我国上述规范采用的粒组划分标准见表1-1。《土的
工程分类标准》1.(G土B的J14粒5-9组0)划在分砂粒(粒4组)与粉粒粒组
土质学与土力学第1章土的物理性质及工程分类
第一章 土的物理性质及工程分类§1.1 §1.2 §1.3 §1.4 §1.5 §1.6 §1.7 土的形成 土的三相组成 土的结构和构造 土的三相比例指标 土的物理状态指标 土的工程分类 土的击实特性§1.1 土的形成土的形成示意图 岩石 地球风化搬运、 搬运、沉积土 地球31 风化物理风化 化学风化 生物风化地表或接近地表条件下,岩石、 在地表或接近地表条件下,岩石、矿 物发生机械破碎的过程。
物发生机械破碎的过程。
主要因素是 岩石的失重和温度变化, 岩石的失重和温度变化,岩石裂隙中 水的结冰等。
水的结冰等。
原生矿物 次生矿物在地表或接近地表条件下, 在地表或接近地表条件下, 岩石、 岩石、矿物发生化学变化并 生成新矿物的过程。
生成新矿物的过程。
主因是 水和氧,前者引起溶解、 水和氧,前者引起溶解、水 化,后者引起氧化等化学反 应。
动植物及微生物 引起的岩石风化。
动植物活动有 机 质物理风化5石灰岩里面 含有二氧化碳的水,渗入石灰岩隙缝中, 里面, 二氧化碳的水 在石灰岩里面,含有二氧化碳的水,渗入石灰岩隙缝中, 会溶解其中的碳酸钙。
这溶解了碳酸钙的水,从洞顶上滴下来时, 会溶解其中的碳酸钙。
这溶解了碳酸钙的水,从洞顶上滴下来时, 由於水分蒸发、二氧化碳逸出,使被溶解的钙质又变成固体(称为固化 称为固化)。
由於水分蒸发、二氧化碳逸出,使被溶解的钙质又变成固体 称为固化 。
由上而下逐渐增长而成的,称为“钟乳石 钟乳石”。
由上而下逐渐增长而成的,称为 钟乳石 。
化学风化62 搬运 由风力、水流、重力等完成 搬运—由风力 水流、 由风力、 沉积—残积 坡积、 残积、 3 沉积 残积、坡积、冲积等根据形成过程,可将土分为两大类: 根据形成过程,可将土分为两大类:残积土 无搬运母岩表层经风化作用破碎 成岩屑或细小颗粒后, 成岩屑或细小颗粒后, 未经搬运残留在原地的 堆积物运积土 有搬运风化所形成的土颗粒, 风化所形成的土颗粒, 受自然力的作用搬运到 远近不同的地点所沉积 的堆积物坡积土洪积物(层)断面 洪积物河流形成冲击土河床、河漫滩、 河床、河漫滩、阶地(平原河谷)冲击物 平原河谷)风积土风积土: 风积土:由风力带动土粒经过一段搬运距离后沉积下来 的堆积物。
土力学(清华大学)
小于某粒径之土质量百分数P(%) 10 5.0 1.0 0.5 0.10 0.05 0.01 0.005 0.001
孔径
10 5.0 2.0 1.0 0.5 0.25 0.1 (0.075)
200g筛土余 P
0
100
10
95
16
87 筛 18 78 分 24 66 法
22 55 38 36 72
水分法
土的形成与风化作用
§1.1土的形成
残积土
无搬运
运积土
有搬运
风化母所岩形表成层的经土风颗化粒作,用受破自碎然成力的 作用岩搬屑运或到细远小近颗不粒同后的,地未点经所搬沉积 的堆运积残物留在原地的堆积物
• 坡积土:土粒粗细不同,性质不均
• 洪积土残:积有分土选性,近•粗颗远粒细表面粗糙
• 冲积土强:风浑圆化度分选性•明多显棱,土角层交迭
Cc = d302 / (d60 ×d10 )
度量, Cc=1~3时为连续级 配, >3或<1为不连续级配
土的粒径级配累积曲线
100
90
80
70
60
50
40
30
20
10 0
d60 d50 d30
d10
粒径(mm)
固体颗粒 – 级配曲线
§1.2 土的三相组成 – 固体颗粒
小于某粒径之土质量百分数(%) 10 5.0 1.0 0.5 0.10 0.05 0.01 0.005 0.001
第一章:土的物理性质与工程分类
Physical Conditions and Engineering Behavior of a Soil Mass
本章提要
• 对土的特点进行详细解释 • 对土的组成和和状态进行定量描述
土的物理性质及工程分类副本公开课一等奖优质课大赛微课获奖课件
第7页 7
4 粒度成份分析办法
试验办法 筛分法
筛分法:适合用于0.1mm(建筑工程0.075mm) ≤比d≤重60计mm法:适合用于d<0. 1mm (建筑工程
0.075mm)
第8页 8
比重计法
利用不同大小土粒在水中沉 降速度不同来确定小于某粒 径土粒含量
第9页 9
二、土中水 Water in soils
土密度 环刀法 测定办法 蜡封法
普通 ρ=1.6~2.2g/cm3
灌砂法
第17页 17
注:1):干密度(g/cm3)
dry density
d
ms V
2:):饱和密度(g/cm3)
saturated density
sat
ms mw V
ms VV w
Vs Vw Va
3):浮密度(g/cm3) 显然:ρsat>ρ>ρd>ρˊ
絮状结构
3.絮状结构:细微粘粒大都呈针状或片状,质量极轻,在水
中处于悬浮状态。凝聚成絮状物下沉,形成孔隙较大絮状结构。
灵敏度
原状土无侧限抗压强度 重塑土无侧限抗压强度
土结构受扰 动后强度减 少
第15页 15
六、土结构
1.层理结构:土粒在沉积过程中,因为不同阶段沉积物质成 份、颗粒大小或颜色不同,而沿竖向展现出成层特性。
矿物层状结构主要有
高岭石:膨胀性压缩均较小。 蒙脱石:膨胀性、压缩均大。 高岭石 伊利石:膨胀性、压缩性介于高
岭石和蒙脱石之间。
伊利石 蒙脱石
第4页 4
2 土粒大小及粒组划分
粒度: 粒组:
天然土是由大小不同颗粒组成, 土粒大小称为粒度
工程上常把大小相近土粒合并为 组,称为粒组
第一章土的物理性质与工程分类第一章土的物理性质及工程分
第一章土的物理性质与工程分类第一章土的物理性质及工程分第一节土的组成与结构一、土的组成天然状态下的土的组成(一样分为三相)⑴固相:土颗粒--构成土的骨架,决定土的性质--大小、形状、成分、组成、排列⑵液相:水和溶解于水中物质⑶气相:空气及其他气体(1)干土=固体+气体(二相)(2)湿土=固体+液体+气体(三相)(3)饱和土=固体+液体(二相)二、土的固相——矿物颗粒土粒粒径大小及矿物成分不同,对土的物理力学性质有着较大阻碍。
如当土粒粒径由粗变细时,土的性质可从无粘性变化到有粘性。
(一)土的粒组划分工程上将物理力学性质较为接近的土粒划分为一个粒组,粒组与粒组之间的分界尺寸称为界限粒径。
土颗粒依照粒组范畴划分不同的粒组名称:六大粒组:块石(漂石)、碎石(卵石)、角粒(圆粒)、砂粒、粉粒、粘粒界限粒径分别是:200mm、20mm、2mm、0.075mm、0.005mm,见下表。
表1-1 粒组划分标准(GB 50021—94)(二)土的颗粒级配自然界的土通常由大小不同的土粒组成,土中各个粒组重量(或质量)的相对含量百分比称为颗粒级配,土的颗粒级配曲线可通过土的颗粒分析试验测定。
1.颗粒大小分析试验方法(1)筛分法:适用60—0.075mm的粗粒土(2)密度计法:适用小于0.075mm的细粒土2.颗粒级配曲线——半对数坐标系3.级配良好与否的判别1) 定性判别(1)坡度渐变——大小连续——连续级配 (级配曲线)(2)水平段(台阶)——缺乏某些粒径——不连续级配(1) 曲线形状平缓——粒径变化范畴大——不平均——良好 (2) 曲线形状较陡——变化范畴小——平均——不良 2) 定量判别:不平均系数 1060d d C u =103060d d d 分别表示级配曲线上纵坐标为60% 30% 10%时对应粒径 不平均系数越大,土粒越不平均,工程上把5<u C 的看作是平均的,级配不行;把10>u C 大于的土看作是不平均的,级配良好。
土质学和土力学课件
透水性很大,无粘性,毛细水上升高 度不超 过粒径大小
易透水,当混入云母等杂质时透水性 减小,而压缩性增加;无粘性,遇水不膨 胀,干燥时松散,毛细水上升高度不大, 随粒径变小而增大
粉粒 粘粒
粗 细
0.05~0.01 0.01~0.005
透水性小,湿时稍有粘性,遇水膨胀 小,干时稍有收缩,毛细水上升高度较大 较快,极易出现冻胀现象
土中水
土中水处于不同位置和温度条件下,可具 有不同旳物理状态——固态、液态、气态。液 态水是土中孔隙水旳主要存在状态,因其受土 粒表面双电层影响程度旳不同可分为结合水、 毛细水、重力水。后两者也称为非结合水(自
由水)。
水的类型
主要作用力
结合水
物理化学力
毛细水 非结合水
重力水
表面张力和重力 重力
1.结合水
土力学与土质学
(第1章)
第1章 土旳物理性质和工程分类
学习要求:
了解土旳成因和三相构成,掌握土旳物理性 质和物理状态指标旳定义、物理概念、计算公式 和单位。要求熟练地掌握物理指标旳三相换算。 了解地基土旳工程分类根据与精拟定名。
基本内容:
1.1 土旳形成与特征 1.2 土旳三相构成 1.3 土旳物理性质指标 1.4 土旳物理状态指标 1.5 土旳工程分类
化学风化——指岩石碎屑与空气、水和多种水溶液相接触, 经氧化、碳化和水化作用,变化原来矿物成份,形成新 旳矿物(次生矿物)。生成旳土为细粒土,粘性土。
生物风化——由动物、植物和人类对岩体旳破坏称~。
土旳构造和构造
1.定义: 指土颗粒旳大小、形状、表面特征, 相互排列及其联结关系旳综合特征。
2.分类:
水溶盐
●有有机高质岭石、伊利石和蒙脱石
《土力学》第一、二章土的物理性质及工程分类
3、描述土的孔隙体积相对含量的指标 (1)、土的孔隙比 )、土的孔隙比 )、土的孔隙率 (2)、土的孔隙率 )、土的饱和度 (3)、土的饱和度 二、指标的换算
1. 4 无黏性土的密实度
一、 砂土的相对密实度 二、无黏性土密实度划分的其他方法
1. 5 黏性土的物理特征
一、黏性土的可塑性及界限含水量 黏性土的状态随含水量的增大而变软: 黏性土的状态随含水量的增大而变软:
一、 渗流力 二、 渗砂或流土现象
当 且方向向上,就会出现土粒悬浮,随水流动现象。 且方向向上,就会出现土粒悬浮,随水流动现象。 这种现象称为渗砂或流土。 这种现象称为渗砂或流土。 开始出现流砂或流土时的水力梯度称为临界水力梯度。 开始出现流砂或流土时的水力梯度称为临界水力梯度。
三、管涌现象和潜蚀作用
在渗透水流作用下,土中细颗粒在粗颗粒形成的孔隙中流失, 在渗透水流作用下,土中细颗粒在粗颗粒形成的孔隙中流失,导致孔 隙扩大,渗流速度加快,这种现象称为管涌。管涌是一种潜蚀作用, 隙扩大,渗流速度加快,这种现象称为管涌。管涌是一种潜蚀作用, 可导致土体内部强度下降,造成土体失稳。 可导致土体内部强度下降,造成土体失稳。 在工程中可通过设置隔水层、反滤层或止水帷幕预防流砂或管涌现象。 在工程中可通过设置隔水层、反滤层或止水帷幕预防流砂或管涌现象。
二、黏性土的可塑性指标
1、塑性指数 Ip = wL – wp 2、液性指数 IL =
三、黏性土的结构性和触变性
黏性土的结构性是指天然结构受扰动而改变的特性。以灵敏度衡量: 黏性土的结构性是指天然结构受扰动而改变的特性。以灵敏度衡量: :低灵敏土 灵敏度: 灵敏度: :中灵敏土 :高灵敏土 黏性土经扰动后强度降低,扰动停止后强度又随时间而逐渐恢复。 黏性土经扰动后强度降低,扰动停止后强度又随时间而逐渐恢复。 这种胶体化学性质称为土的触变性。 这种胶体化学性质称为土的触变性。
土力学-第一章
土的结构类型
• 示意图
单粒结构—松
• 排列形式 • 矿物成分
点与点、点与面 原生矿物
单粒结构—密
粗 粒 土
30 岩土工程研究所
郭莹主讲
土力学
§1 土的物性及分类 §1.1土的三相组成和结构 1.1.4土的结构
土的结构类型
• 示意图
细 粒 土 • 形成环境
颗粒级配 颗粒级配曲线及指标的用途:
1)粒组含量用于土的分类定名;
2)不均匀系数Cu用于判定土的不均匀程度: Cu ≥ 5,不均匀土; Cu < 5,均匀土
3)曲率系数Cc用于判定土的连续程度: C c = 1 ~ 3, 级配连续土; Cc > 3 或 Cc < 1,级配不连续土
4)不均匀系数Cu和曲率系数Cc用于判定土的级配优劣: 如果 Cu ≥ 5且 C c = 1 ~ 3 , 级配良好的土; 如果 Cu < 5 或 Cc > 3 或 Cc < 1, 级配不良的土。
重力水
地下水位(浸润线)以下饱和土中; 在重力作用下可在土中自由流动。
(gravitation water)
自由水
(free water)
• 存在于固气之间
毛细水
• 在重力与表面张力作用下
可在土粒间孔隙中自由移动 (capillary water)
26 岩土工程研究所
郭莹主讲
土力学
§1 土的物性及分类 §1.1土的三相组成和结构 1.1.3土的液相
粒径(mm)
∵d60A = d60B= 0.28,d10A=0.15 d10B =0.02 ∴CuA=1.87 <CuB=14
16 岩土工程研究所
郭莹主讲
土的物理性质及工程分类
• 矿物成分与母岩不同,称次 生矿物
• 形成十分细微的土颗粒,最 主要为粘性颗粒及可溶盐类
1.1 土的生成
A 风化作用
物理风化 化学风化
生物活动
• 包括植物、动物和人类活 动的作用
• 可加剧物理和化学风化
• 构成土中有机质和营养物 质的生物循环
• 导致腐殖质的形成,改变 土壤的结构
4.颗粒粒度成分的表示方法
4.颗粒粒度成分的表示方法
颗粒分析试验曲线
5.土粒的级配 -级配的概念
• 土的级配: 指土中各粒组的相对含量,用土粒总重的百分数表示
• 正常级配:土的颗粒大小分布是连续的,曲线坡度是渐变 的
• 不连续级配:土中缺乏某些粒径的土粒,曲线出现水平段 • 级配良好:粒径分布曲线形状平缓,土粒大小分布范围广,
1.结 合 水
结合水是指受土颗粒表面电分子引力作用吸附在土颗粒表面的水, 又 分 为 强 结 合 水 和 弱结 合 水 两 种 。
11
• 排列致密、定向性强 • 密度>1g/cm3 • 冰点处于零下几十度 • 具有固体的特性 • 温度高于100°C时可蒸发
强结合水
• 位于强结合水之外,电场引 力作用范围之内
(2)比重计法: 适用于粒径小于0.075mm的土。
(3)颗粒分析的先进方法-激光颗分
4.颗粒粒度成分的表示方法
• (1)颗粒级配曲线法
• 试验结果可绘制在半对数纸上 • 纵坐标:小于某粒径的土粒含量(累积百分含量) • 横坐标:使用对数尺度表示土的粒径,可以把粒径相差上千倍的
粗粒都表示出来,尤其能把占总重量少,但对土的性质可能有重 要影响的颗粒部分清楚地表达出来
• 次生矿物 :母岩岩屑经化学风化而成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 粘性土的物理状态指标
无粘性土为单粒结构,土粒与土中水的相互作用不明显,但是粘性土颗粒很细,土粒
与土中水相互作用明显,关系密切,同一种土随着含水率的增加土的状态变化为固态—半
固态—可塑状态—液体状态,可见粘性土的主要物理特征并非非粘性土使用的指标,而是
稠度(反映土粒间的联结强度随着含水率高低而变化的性质)。
2)表达式:
Gs
固体颗粒的密度 纯水4℃时的密度
=
Vs w (4℃)
s w (4℃)
)
3)常见值:砂土 Gs =~2,69,粉土 Gs =~,粘性土~,数值大小取决于矿物成分。 4) 测定方法:比重瓶法;经验法。
(3)土的含水率
1)物理意义:土体中水的质量与固体矿物质量的比值,用百分数表示。
2)表达式:
' sat w
3)常见值: ' 8 ~ 13kN / m3 。
*有效密度:
' ms Vs w
)
V
延伸:各种密度和重度之间的大小关系
天然密度: 干密度:
m V
d
ms V
天然重度: g
sat
d
干重度: d d g 饱和重度: sat sat
g
sat
d
饱和密度:sat
ms
水的质量 固体颗粒质量
=
mw ms
100%
()
3)常见值:砂土 0% ~ 40% ,粘性土 20% ~ 60%, 0 ,粘性土呈坚硬状态。
4)测定方法:烘箱法。
2. 反映土的松密程度的指标
(1)土的孔隙比 e
1)物理意义:土中孔隙体积与固体颗粒体积之比。
2)表达式:
e
孔隙体积 固体颗粒体积
=
VV VS
wVv V
浮重度: sat w
规律总结:
(1)当设Vs 1 时,
Vs
1
ms
Gs
mw
Gs
Vw
m
Gs (1 )
V
(1 )Gs
Vv
(1 )Gs
1
(2)当设V 1时,
V
1
m
ms
1
mw
1
Vw
Vs
GS (1 )
Vv
1
GS (1 )
四、 土的物理状态指标
1. 无粘性土的密实度 (1) 孔隙比标准(同级配)
(2)封闭气体:与大气隔绝,加载缩小,卸载膨胀,使土的渗透性降低。
三、 土的物理性质指标
1. 土的三项基本物理性质指标(此三项均由实验室测定)
(1)土的密度 和土的重度 1)物理意义: 为单位体积土的重量, g / cm3 。
单位体积土所受的重力,即 g 9,8 10, kN / m3 。
课题: 第一章 土的物理性质及工程分类
一、 教学目的:1.了解土的生成和工程力学性质及其变化规律; 2.掌握土的物理性质指标的测定方法和指标间的相互转换; 3.熟悉土的抗渗性与工程分类。
二、教学重点: 土的组成、土的物理性质指标、物理状态指标。 三、教学难点: 指标间的相互转换及应用。 四、教学时数: 6 学时。 五、习题:
(2) 相对密度标准:
Dr
emax e emax emin
()
用 Dr 指标可将土的密实程度分为:松散( Dr <1/3)中密(1/3< Dr <2/3)密实( Dr >2/3) 三种状态。
(3) 贯入试验标准 一种现场原位测试试验:钢锤提升 76cm 高度贯入 30cm 所需锤击数 N,反映贯入阻力 的大小,亦即密实度的大小,将土分为松散(N<10)稍密(10<N<15)中密(15<N<30) 密实(N>30)。
2)表达式
sat
孔隙全部充满水的总质量 土的总体积
=
ms +mw Va w V
ms
Vv w V
3) 常见值: sat 1.8 ~ 2.3g / cm3; d 18 ~ 23kN / cm3 。
(3)土的有效重度(浮重度) '
1)物理意义:地下水位以下土体单位体积土所受的重力扣除浮力。。
2)表达式
(1)土的干密度 d 和土的干重度 d 1)物理意义:干密度为单位体积土的质量, g / cm3 。
2)土的干重度为单位体积干土所受的重力,即 d d g 9.8d 10d kN / m3 。
3)表达式
d
固体颗粒质量 土的总体积
=
ms V
4) 常见值: d 1.3 ~ 2.0g / cm3; d 13 ~ 20kN / cm3 。
2)表达式
土的总质量 土的总体积
=
m V
3)常见值: 1.6 ~ 2.2g / cm3, 16 ~ 22kN / cm3 。
4)测定方法:环刀法(粘性土和粉土),灌水法(卵石、砾石与原状砂)。
(2)土粒比重 Gs (ds ) 1)物理意义:土中固体矿物的质量与同体积 4℃时的纯水质量的比值。
ms
(1)含水率 (前已述)
(2)土的饱和度 Sr
1)物理意义:水在空隙中的充满程度。
2)表达式:
Sr
水的体积 孔隙体积
= VW VV
3)常见值: Sr 0 ~ 1 4)确定方法:由 、GS、 实测值推算。
5)工程应用:砂土和粉土以饱和度分为稍湿(<)、很湿(~)、饱和(>)三类。
4. 特定条件下土的密度(重度)
重力水:位于地下水位以下,具有浮力作用,可从总水头较高处向较低处流动。
毛细水:位于地下水位以上,受毛细作用上升,粉土中空隙小,毛细水上升高。
(2)气态水:水汽,影响不大。
(3)固态水:0℃以下自由水发生冻胀。
3. 土中气体
土颗粒中没有被水填充的部分为气体。
(1) 自由气体:与大气连通,压缩逸出,对工程无影响。
震筛 10~15min 后称取各级筛底盘试样的质量。
2) 密度计法:
适用于粉土和粘性土, d <,测定悬浊液读数。
粒径级配曲线上:纵坐标 10%所对应的粒径 称为有效粒径;纵坐标为 60%所对应的
粒径 d60 称为限定粒径; d60 与 d10 的比值称为不均匀系数 Cu ,即
Cu
d60 d10
不均匀系数 Cu 为表示土颗粒组成的重要特征。当 Cu 很小时曲线很陡,表示土均匀;
第一章 土的物理性质及工程分类 一、 土的生成与特性 1. 土的生成 工程领域土的概念:土是指覆盖在地表的没有胶结和弱胶结的颗粒堆积物,土与岩石 的区分仅在于颗粒胶结的强弱,土和石没有明显区分。 土的生成:岩石在各种风化作用下形成的固体矿物、流体水、气体混合物。 不同风化形成不同性质的土,有下列三种: (1)物理风化:只改变颗粒大小,不改变矿物成分。由物理风化生成土为粗粒土(如 块碎石、砾石、砂土),为无粘性土。 (2)化学风化:矿物发生改变,生成新成分—次生矿物。由化学风化生成土为细粒 土,具有粘结力(粘土和粘质粉土),为粘性土。 (3)生物风化:动植物与人类活动对岩体的破坏。矿物成分没有变化。 2. 土的结构和构造 (1) 土的结构 定义:土颗粒间的相互排列和联结形式称为土的结构。 1) 种类:
5)工程应用:干密度或干重度越大,表明土体越密实,表明工程质量越好。
6)测定方法:环刀法,放射性同位素测试仪。
(2)土的饱和密度 sat 和土的饱和重度 sat 1)物理意义:孔隙中全部充满水时单位体积土的质量, g / cm3 。
孔隙中全部充满水时单位体积土所受的重力,即 sat sat g 9.8sat 10satkN / m3 。
图 粘土矿物两种原子层
蒙脱石—两结构单元之间没有氢键,相互的联结弱,水分子可以进入量晶胞之间。因 此,蒙脱石的亲水性最大,具有强烈的吸水膨胀、失水收缩的特性。
伊利石—又称水云母,部分 Si-O 四面体中的 Si 为 Al、Fe 所取代,损失的原子价由阳 离子钾补偿。因此,晶格层组之间具有结合力,亲水性低于蒙脱石。
3) 常见值:砂土 e 0.5~1.0 ,粘性土 e 0.5~1.2 4)确定方法:由 、GS、 实测值推算。
(2)土的孔隙度(孔隙率) n
1)物理意义:表示孔隙体积含量,土中空隙占总体积的百分比。
2)表达式:
n
孔隙体积 土体总体积
= VV V
100%
3)常见值: n 30%~50%
4)确定方法:由 、GS、 实测值推算。 3. 反映土中含水程度的指标
(2)土的构造 1)定义:同一土层中,土颗粒之间的相互关系。 2)种类:
层状结构:由不同颜色或不同粒径的土组成层理,一层一层互相平行。 分散构造:土粒分布均匀,性质相近,如砂与卵石层为分散构造。 结核状构造:在细粒土中混有粗颗粒或各种结核,属结核状构造。 裂隙状构造:土体中有很多不连续的小裂隙。 3)工程性质:分散结构的工程性质最好,结核状取决于细粒土,裂隙状渗透性大, 工程性质差。 3. 土的工程特性 (1)压缩性高 当应力数值相同,材料厚度一样时,卵石的压缩性为刚才压缩性的数千倍;饱和细沙 的压缩性为 C20 混凝土的数千倍,足以证明土的压缩性极高。软塑或流塑状态的粘性土比 饱和细沙的压缩性还要高。 (2)强度低 土的强度特指抗剪强度,而非抗压强度或抗拉强度。 无粘性土的强度来源于土粒表面滑动的摩擦和颗粒间的咬合摩擦;粘性土的强度出摩 擦力外,还有粘聚力,均远小于建筑材料本身的强度。 (3)透水性大 土体颗粒间具有许多透水空隙,因此透水性比木材、混凝土都大,尤其是粗颗粒的卵 石或砂土,其透水性更大。 4. 土的生成与工程特性的关系 (1)搬运、沉积条件:冲积层优于风积层。 (2)沉积年代:沉积年代越长,工程性质越好。 (3)自然环境:特殊土地基。 二、 土的三相组成 土的三相组成是指土由固体矿物、水和气体三部分组成。 1. 土的固体颗粒 土的固体颗粒是土的三相组成中的主体,是决定土的工程性质的主要成分。 (1)土粒的矿物成分 1)原生矿物