2015年高考真题
2015年高考真题英语全国卷(新课标I卷)精教版含答案
2015年普通高等学校招生全国统一考试(新课标I)英语第Ⅰ卷第二部分阅读理解(共两节,满分60分)第一节(共15小题;每小题3分,满分45分)阅读下列短文,从每题所给的四个选项(A、B、C、和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AMonthly Talks at London Canal MuseumOur monthly talks start at 19:30 on the first Thursday of each month except August. Ad mission is at normal charges and you don‟t need to book. They end around 21:00. November 7thThe Canal Pioneers, by Chris Lewis. James Brindley is recognized as one of the leading early canal engineers. He was also a major player in training others in the art of canal planning and building. Chris Lewis will explain how Brindley made such a positive contribution to the education of that group of early “civil engineers”. December 5thIce for the Metropolis,by Malcolm Tucker. Well before the arrival of freezers, there was a demand for ice for food preservation and catering, Malcolm will explain the history of importing natural ice and the technology of building ice wells, and how London‟s ice trade grew.February 6thAn Update on the Cotswold Canals, by Liz Payne. The Stroudwater Canal is moving towards reopening. The Thames and Severn Canal will take a little longer. We will have a report on the present state of play.March 6thEyots and Aits-Thames Islands,by Miranda Vickers. The Thames had many islands. Miranda has undertaken a review of all of them. She will tell us about those of greatest interest.Online bookings:/bookMore info:/whatsonLondon Canal Museum12-13 New Wharf Road, London NI 9RTTel:020 7713 083621.When is the talk on James Brindley?A. November 7th.B. March 6th.C. February 6th.D. December 5th.22. What is the topic of the talk in February?A. The Canal Pioneers.B. Ice for the MetropolisC. Eyots and Aits- Thames IslandsD. An Update on the Cotswold Canals23. Who will give the talk on the islands in the Thames?A. Chris LewisB. Malcolm TuckerC. Miranda VickersD. Liz PayneBThe freezing Northeast hasn‟t been a terribly fun place to spend time this winter, so when the chance came for a weekend to Sarasota, Florida, my bags were packed before you could say “sunshine”. I left for the land of warmth and vitamin C(维生素C), thinking of beaches and orange trees. When we touched down to blue skies and warm air, I sent up a small prayer of gratefulness. Swimming pools, wine tasting, and pink sunsets(at normal evening hours, not 4 in the afternoon) filled the weekend, but the best part-particularly to my taste, dulled by months of cold-weather root vegetables-was a 7 a.m. adventure to the Sarasota farmers‟ market that proved to be more than worth the early wake-up call.The market, which was founded in 1979, sets up its tents every Saturday from 7 am to 1 p.m, rain or shine, along North Lemon and State streets. Baskets of perfect red strawberries, the red-painted sides of the Java Dawg coffee truck; and most of all, the tomatoes: amazing, large, soft and round red tomatoes.Disappointed by many a broken, vine-ripened(蔓上成熟的) promise, I‟ve refused to buy winter tomatoes for years. No matter how attractive they look in the store, once I get them home they‟re unfailingly dry, hard, and tasteless. But I homed in, with uncertainty, on one particular table at the Brown‟s Grove Farm‟s stand, full of fresh and soft tomatoes the size of my fist. These were the real deal- and at that moment, I realized that the best part of Sarasota in winter was going to be eating things that back home in New York I wouldn‟t be experiencing again for months.Delighted as I was by the tomatoes in sight, my happiness deepened when I learned that Brown‟s Grove Farm is one of the suppliers for Jack Dusty, a newly opened restaurant at the Sarasota Ritz Carlton, where-luckily for me-I was planning to have dinner that very night. Without even seeing the menu, I knew I‟d be ordering every tomato on it.24. What did the author think of her winter life in New York?A. Exciting.B. Boring.C. Relaxing.D. Annoying.25. What made the author‟s getting up early worthwhile?A. Having a swim.B. Breathing in fresh air.C. Walking in the morning sun.D. Visiting a local farmer‟s market.26. What can we learn about tomatoes sold in New York in winter?A. They are soft.B. They look nice.C. They taste great.D. They are juicy.27. What was the author going to do that evening?A. Eat in a restaurant.B. Check into a hotel.C. Go to a farm.D. Buy fresh vegetables.CSalvador Dali (1904-1989) was one of the most popular of modern artists. The Pompidou Centre in Paris is showing its respect and admiration for the artist and his powerful personality with an exhibition bringing together over 200 paintings, sculptures, drawings and more. Among the works and masterworks on exhibition the visitor will find the best pieces, most importantly The Persistence of Memory.There is also L’Enigme sans Fin from 1938, works on paper, objects, and projects for stage and screen and selected parts from television programmes reflecting the artist‟s showman qualities.The visitor will enter the World of Dali through an egg and is met with the beginning, the world of birth. The exhibition follows a path of time and subject with the visitor exiting through the brain.The exhibition shows how Dali draws the viewer between two infinities (无限). “From the infinity small to the infinity large, contraction and expansion coming in and out of focus: amazing Flemish accuracy and the showy Baroque of old painting that he used in his museum-theatre in Figu eras,” explains the Pompidou Centre.The fine selection of the major works was done in close collaboration (合作)with the Museo Nacional Reina Sofia in Madrid, Spain, and with contributions from other institutions like the Salvador Dali Museum in St. Petersburg, Florida.28. Which of the following best describes Dali according to Paragraph 1?A. Optimistic.B. ProductiveC. Generous.D. Traditional.29. What is Dali‟s The Persistence of Memory considered to be?A. One of his masterworks.B. A successful screen adaptation.C. An artistic creation for the stage.D. One of the beat TV programmes.30. How are the exhibits arranged at the World of Dali?A. By popularity.B. By importance.C. By size and shape.D. By time and subject.31. W hat does the word “contributions” in the last paragraph refer to?A. Donations.B. Projects.C. Artworks.D. Documents.DConflict is on the menu tonight at the caféLa Chope. This evening, as on every Thursday night, psychologist Maud Lehanne is leading two of France‟s favorite pastimes, coffee drinking and the “talking cure”. Here they are learning to get in touch with their true feelings. It isn‟t always easy. The customers-some thirty Parisians who pay just under $2 (plus drinks) per session-are quick to intellectualize (高谈阔论),slow to open up and connect. “You are forbidden to say …one feels,‟ or …people think‟,”Lehanne told them. “Say …I think,‟ …Think me‟.”A cafe society where no intellectualizi ng is allowed? It couldn‟t seem more un-French. But Lehanne‟s psychology cafe is about more than knowing oneself: It‟s trying to help the city‟s troubled neighborhood cafes. Over the years, Parisian cafes have fallen victim to changes in the French lifestyle-longer working hours, a fast-food boom and a younger generation‟s desire to spend more time at home. Dozens of new theme cafes appear to change the situation. Cafes focused around psychology, history, and engineering are catching on, filling tables well into the evening.The city‟s “psychology cafes”, which offer great comfort, are among the most popular places. Middle-aged homemakers, retirees, and the unemployed come to such cafes to talk about love, anger, and dreams with a psychologist. And they come to Lehanne‟s group just to learn to say what they feel. “There‟s a strong need in Paris for communication,” says Maurice Frisch, a cafe La Chope regular who works as a religious instructor in a nearby church. “People have few real friends.And they need to open up.” Lehanne says she‟d like to see psychology cafes all over France. “If people had normal lives, these cafes wouldn‟t exist,” she says. “If life weren‟t a battle, people wouldn‟t need a special place just to speak.” But then, it wouldn‟t be France.32.What are people encouraged to do at the cafe La Chope?A. Learn a new subjectB. Keep in touch with friends.C. Show off their knowledge.D. Express their true feelings.33. How are cafes affected by French lifestyle changes?A. They have bigger night crowds.B. They stay open for longer hours.C. They are less frequently visited.D. They start to serve fast food.34. What are theme cafes expected to do?A. Save the cafe business.B. Supply better drinks.C. Create more jobs.D. Serve the neighborhood.35. Why are psychology cafes becoming popular in Paris?A. They bring people true friendship.B. They give people spiritual support.C. They help people realize their dreams.D. They offer a platform for business links.第二节(共5小题,每小题3分,满分15分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项,选项中有两项为多余选项。
2015年全国统一高考数学试卷(理科)(新课标i)附详细解析
2015年全国统一高考数学试卷(理科)(新课标I)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()B2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()7.(5分)设D为△ABC所在平面内一点,,则().8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()255211.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n =,求数列{b n }的前n 项和.18.(12分)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE 丄平面ABCD ,DF 丄平面 ABCD ,BE=2DF ,AE 丄EC . (Ⅰ)证明:平面AEC 丄平面AFC(Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx 与y=c+d 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标I)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()满足=iB.2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....=﹣(﹣<<6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(),则,××(,÷7.(5分)设D为△ABC所在平面内一点,,则().利用向量的三角形法则首先表示为=本题考查了向量的三角形法则的运用;关键是想法将向量表示为8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+)的部分图象,可得函数的周期为(﹣可得+=,)≤≤2k+)的单调递减区间为()9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()﹣﹣≤﹣≤﹣=﹣=2552,的通项为=的系数为11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()×+22r+12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[<﹣时,,>﹣时,﹣,,解得二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=1.x+14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.解:一个圆经过椭圆,解得,,).)15.(5分)若x,y满足约束条件.则的最大值为3.,则,解得,即=3的最大值为16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).x x xx+m=+AD=x+mx+m=,x+m x=+x的取值范围是(﹣+﹣,)三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.,利用裂项法即可求数列==(﹣(﹣+﹣)(﹣.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.AG=GC=,且BE=,故,,EF=,),=,)=,﹣,,>=﹣.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.w=,建立y=c+dw=的线性回归方程,由于===563的线性回归方程为的回归方程为=100.6+68,的预报值=100.6+68=576.6的预报值的预报值=0.2100.6+68)﹣+20.12=20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由),利用导数的运算法则,利用导数的几何意义、点斜式即可得出切线方程..)联立M Ny=点处的切线斜率为=a=处的切线方程为:,化为==.21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.,,即可得出零点的个数;,解得.时,﹣=a+<﹣=a+=,∴当)在内单调递减,在x==,即,则,即,=a+a时,或时,或选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.,BE=选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.3的面积(3=2=.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.,或求得<,a|=,,[2a+1]参与本试卷答题和审题的老师有:刘长柏;qiss;maths;changq;caoqz;cst;lincy;吕静;双曲线;whgcn;孙佑中(排名不分先后)菁优网2015年7月20日。
2015全国二卷 高考语文试题及答案--完整版
2015年高考真题及答案——语文(青海、西藏、甘肃、贵州、内蒙古、新疆、宁夏、吉林、黑龙江、云南、海南、广西)新课标II)2015年普通高等学校招生全国统一考试语文注意事项:1. 本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
答卷前,考生务必将自己的姓名、主考正好填写在答题卡上。
2. 作答时,将答案卸载答题卡上。
卸载本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1~3题。
艺术品的接受在过去并不被看作是重要的美学问题,20世纪解释学兴起,一个名为“接受美学”的美学分支应运而生,于是研究艺术品的接受成为艺术美学中的显学。
过去,通常只是从艺术品的立场出发,将创作看作艺术家审美经验的结晶过程,作品完成就意味着创作完成。
而从接受美学的角度来看,这一完成并不说明创作已经终结,它只说明创作的第一阶段告一段落,接下来是读者或观众、听众的再创作。
由于未被阅读的作品的价值包括审美价值仅仅是一种可能的存在,只有通过阅读,它才转化为现实的存在,因此对作品的接受具有艺术本体的意义,也就是说,接受者也是艺术创作的主体之一.艺术文本即作品对于接受者来说具有什么意义呢?接受美学的创始人、德国的伊瑟尔说艺术文本是一个“召唤结构”,因为文本有“空白”“空缺”“否定”三个要素。
所谓“空白”是说它有一些东西没有表达出来,作者有意不写或不明写,要接受者用自己的生活经验与想象去补充;所谓“空缺”,是语言结构造成的各个图像间的空白,接受者在阅读文本时要把一个个句子表现的图像片断连接起来,整合成一个有机的图像系统;所谓“否定”指文本对接受者生活的现实具有否定的功能,它能引导接受者对现实进行反思和批判。
由此可见,文本的召唤性需要接受者呼应和配合,完成艺术品的第二次创作。
正如中国古典美学中的含蓄与简洁,其有限的文字常常引发出读者脑海中的丰富意象.接受者作为主体,他对文本的接受不是被动的。
2015年山东省高考语文真题及答案
2015 年山东省高考语文试卷
一、(每小题 0 分,共 15 分)
阅读下面一段文字,完成 1~3 题。
浙江云和梯田,虽然不及云南元阳梯田、广西龙胜梯田那般规模(洪大/宏
大),气势雄伟,但却玲珑纤巧,别有特色。群山逶迤,阳光扑面而来,俯瞰山
中梯田,好似面对着一座宽大的露天体育馆。无论冬夏,太阳每天都(沿/攀)
第 3 页(共 33 页)
D.性格元素之间的非同向和每一个性格元素内部的二重性,是构成性格元素模 糊性的两层主要意思。 (2)下列理解和分析,不符合原文意思的一项是 A.有人将人物的“优点”“缺点”机械叠加,以写出“人情味”,但这样还体现不出人 物性格的模糊性。 B.人物性格具有模糊性,这要求创作者塑造人物不能从表象入手,以避免人物 形象的明确性和概念化。 C.一个人追求真理时的坚定和自以为是时的固执,显示了倔强这一性格元素在 不同情境中的不同表现。 D.要解读人物性格元素的本质,不能仅仅看他外在的言谈举止,更要努力深入 他的内心和灵魂。 (3)根据原文内容,下列表述不正确的一项是 A.“所有的人,正像我一样,都是黑白相间的花斑马﹣﹣好坏相间,好好坏坏, 亦好亦坏。”这句话道出了人的性格模糊性特征。 B.某作家说自己的写作经历过“把好人当坏人写,把坏人当好人写,把自己当罪 人写”三个阶段,这体现了他对人物性格模糊性的重视。 C.曹禺在《雷雨》中塑造的周朴园这一人物,既伪善霸道,又对侍萍怀有某种 真挚的情感,具有很强的性格元素模糊性。 D.鲁迅在《祝福》中通过“我”的叙述,来展现祥林嫂性格元素的模糊性,而“我” 自身性格元素的模糊性是缺失的。
2015年江苏高考数学真题及参考答案
2015年普通高等学校招生统一考试(江苏卷)试题、参考答案数学Ⅰ试题参考公式:圆柱的体积公式:V 圆柱 = Sh ,其中S 是圆柱的底面积,h 为高.圆锥的体积公式:V 圆锥 = 13Sh ,其中S 是圆锥的底面积,h 为高.一、 填空题:本大题共14小题,每小题5 分,共计70 分. 请把答案填写在答题卡相应位置上......... 1. 已知集合A ={1,2,3},B ={2,4,5},则集合A B 中元素的个数为______. 2. 已知一组数据4,6,5,8,7,6,那么这组数据的平均数为______. 3. 设复数z 满足234z i =+(i 是虚数单位),则z 的模为______. 4. 根据如图所示的伪代码,可知输出的结果S 为______.5. 袋中有形状、大小都相同的4只球,其中1只白球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为______. 6. 已知向量(2,1)a =,(1,2)b =-. 若(9,8)(,)ma nb m n R +=-∈,则m n -的值为______. 7. 不等式224xx-<的解集为______.8. 已知1tan 2,tan()7ααβ=-+=,则tan β的值为______. 9. 现有橡皮泥制作的底面积半径为5,、高为4的圆锥和底面半径为2、高为8的圆柱各一个. 若将他们重新制作成总体积与高均保持不变,但底面半径形同的心的圆锥和圆柱各一个,则新的底面半径为______.10. 在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线210(m x y m m R ---=∈相切的所有圆中,半径最大的圆的标准方程为______.11. 设数列{}n a 满足11a =,且*11()n n a a n n N +-=+∈,则数列1n a ⎛⎫⎪⎝⎭前10项的和为______.12. 在平面直角坐标系xOy 中,P 为双曲线221x y -=右支上的一个动点. 若点P 到直线10x y -+=的距离大于c 恒成立,则实数c 的最大值为_____.13. 已知函数20,()ln ,()42,f x xg x x ⎧⎪==⎨--⎪⎩ 01,1,x x <≤>则方程()()1f xg x +=实根的个数为______.14. 设向量(cos ,sin cos )(0,1,2,...,12)666k k k k a k πππ=+=,则()1110k k k a a +=∑的值为______.二、解答题:本大题共6小题,共计90 分. 请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)在ABC ∆中,已知2,3,60AB AC A ===. (1) 求BC 的长; (2) 求sin 2C 的值.16. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,已知1,AC BC BC CC ⊥=. 设1AB 的中点为D ,11B CBC E =.求证:(1) DE//平面11AAC C ; (2)11BC AB ⊥.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路. 记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l . 如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米. 以l 1,l 2所在的直线分别为x ,y 轴,建立平面直角坐标系xOy . 假设曲线C 符合函数2ay x b=+(其中a ,b 为常数)模型.(1) 求a ,b 的值;(2) 设公路l 与曲线C 相切于P 点,P 的横坐标为t .① 请写出公路l 长度的函数解析式f ( t ),并写出其定义域; ② 当t 为何值时,公路l 的长度最短?求出最短长度.18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的离心,且右焦点F 到左准线l 的距离为3. (1) 求椭圆的标准方程;(2) 过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若2PC AB =,求直线AB 的方程.已知函数32()(,)f x x ax b a b R =++∈. (1) 试讨论()f x 的单调性;(2) 若b c a =-(实数c 是与a 无关的常数),当函数()f x 有三个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-+∞,求c 的值.20. (本小题满分16分)设1234,,,a a a a 是各项为正数且公差为(0)d d ≠的等差数列. (1) 证明:31242,2,2,2a a a a 依次构成等比数列;(2) 是否存在1,a d ,使得2341234,,,a a a a 依次构成等比数列?并说明理由; (3) 是否存在1,a d 及正整数n ,k ,使得231234,,,n n k n k n k a a a a +++依次构成等比数列?并说明理由.数学Ⅱ(附加题)21. 【选择题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答. 若多做,则按作答的前两个小题平分. 解答时应写出文字说明、证明过程和演算步骤.A. [选修4-1:几何证明选讲](本小题满分10分)如图,在ABC ∆中,AB AC =,ABC ∆的外接圆O 的弦AE 交BC 于点D.求证: △ABC ∽△AEB .B. [选修4-2:矩阵与变换](本小题满分10分)已知,x y R ∈,向量11α⎡⎤=⎢⎥-⎣⎦是矩阵10x A y ⎡⎤=⎢⎥⎣⎦的属于特征值-2的一个特征向量,求矩阵A 以及它的另一个特征值.C. [选修4-4:坐标系与参数方程](本小题满分10分)已知圆C 的极坐标方程为2sin()404πρθ+--=,求圆C 的半径.D. [选修4-5:不等式选讲](本小题满分10分) 解不等式232x x ++≥.第21-A 题 第22题【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22. (本小题满分10分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1) 求平面PAB 与平面PCD 所成二面角的余弦值;(2) 点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.23. (本小题满分10分)已知集合{}{}*1,2,3,1,2,3,...,()n X Y n n N ==∈,设{(,)n S ab=a 整除b 或b整除a ,},n a X b Y ∈∈. 令()f n 表示集合n S 所含元素的个数. (1) 写出(6)f 的值;(2) 当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.数学(Ⅰ、Ⅱ)试题答案1. 52. 63.4. 75. 566. -37.{}12x x -<<或(1,2)-8. 39.10. 22(1)2x y -+= 11. 201112.13. 414. 15. 解:(1) 由余弦定理知,22212cos 4922372BC AB AC AB AC A =+-=+-⨯⨯⨯=,所以BC = (2) 由正弦定理知,sin sin AB BC C A =,所以21sin ,sin AB C A BC ===.因为AB BC <,所以C 为锐角,则cos C ==因此sin 22sin cos 27C C C ==⨯=.(1) 由题意知,E 为1B C 的中点, 又D 为1AB 的中点,因此DE //AC .又因为DE ⊄平面11AAC C ,AC ⊂平面11AAC C , 所以DE //平面11AAC C .(2) 因为棱柱111ABC A B C -是直三棱柱, 所以1CC ⊥平面ABC .因为AC ⊂平面ABC ,所以1AC CC ⊥.又因为AC BC ⊥,1CC ⊂平面11BCC B ,BC ⊂平面11BCC B ,1BC CC C =,所以AC ⊥平面11BCC B .又因为1BC ⊂平面11BCC B ,所以1BC AC ⊥.因为1BC CC =,所以矩形11BCC B 是正方形,因此11BC B C ⊥. 因为1,AC B C ⊂平面1B AC ,1ACB C C =,所以1BC ⊥平面1B AC .又因为1AB ⊂平面1B AC ,所以11BC AB ⊥.第16题 第17题 第18题(1) 由题意知,点M ,N 的坐标分别为(5,40),(20,2.5).将其分别代入2a y x b =+,得40,25 2.5,400aba b⎧=⎪⎪+⎨⎪=⎪+⎩解得1000,0.a b =⎧⎨=⎩(2)① 由(1)知,21000(520)y x x =≤≤,则点P 的坐标为21000(,)t t, 设在点P 处的切线l 交x ,y 轴分别于A ,B 点,32000'y x=-,则l 的方程为2310002000()y x t t t -=--,由此得233000(,0),(0,)2t A B t.故()[5,20]f t t =∈. ② 设624410()g t t t ⨯=+,则651610'()2g t t t ⨯=-. 令'()0g t =,解得t =当t ∈时,'()0,()g t g t <是减函数;当t ∈时,'()0,()g t g t >是增函数.从而,当1t =时,函数()g t 有极小值,也是最小值,所以min ()300g t =,此时min ()f t =.答:当t =l的长度最短,最短长度为.18. 解:(1)由题意,得2c a =且23a c c +=,解得1,a c ==则1b =,所以椭圆的标准方程为2212x y +=.(2) 当AB x ⊥轴时,AB =,又3CP =,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为1122(1),(,),(,)y k x A x y B x y =-,则1,2x =,C的坐标为2222(,)1212k kk k -++,且212(1)()12k AB k +===+. 若0k =,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意.从而0k ≠,故直线PC 的方程为22212()1212k k y x k k k +=--++, 则P 点的坐标为2252(2,)(12)k k k +-+,从而PC =. 因为2PC AB ==1k =±.此时直线AB 方程为1y x =-或1y x =-+. 19. 解:(1) 2'()32f x x ax =+,令'()0f x =,解得1220,3ax x ==-. 当0a =时,因为2'()30(0)f x x x =>≠,所以函数()f x 在(,)-∞+∞上单调递增;当0a >时,2(,)(0,)3a x ∈-∞+∞时,2'()0,(,0)3af x x >∈-时,'()0f x <,所以函数()f x 在2(,),(0,)3a -∞+∞上单调递增,在2(,0)3a-上单调递减;当0a <时, 2(,0)(,)3a x ∈-∞-+∞时,2'()0,(0,)3af x x >∈-时,'()0f x <所以函数()f x 在2(,0),(,)3a -∞-+∞上单调递减,在2(0,)3a-上单调递减.(2) 由(1)知,函数()f x 的两个极值为324(0),()327a fb f a b =-=+,则函数()f x 有三个零点等价于324(0)()()327a f fb a b -=+,从而30,4027a a b >⎧⎪⎨-<<⎪⎩或30,40.27a b a <⎧⎪⎨<<-⎪⎩又b c a =-,所以当0a >时,34027a a c -+>或当0a <时,34027a a c -+<.设34()27g a a a c =-+,因为函数()f x 有三个零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-+∞,则在(,3)-∞-上()0g a <,且在33(1,)(,)22+∞上()0g a >均恒成立,从而(3)10g c -=-≤,且3()102g c =-≥,因此1c =.此时,322()1(1)[(1)1]f x x ax a x x a x a =++-=++-+-,因函数有三个零点,则2(1)10x a x a +-+-=有两个异于-1的不等实根, 所以22(1)4(1)230a a a a ∆=---=+->,且2(1)(1)10a a ---+-≠,解得33(,3)(1,)(,)22a ∈-∞-+∞.综述1c =. 20. 解:(1) 证明:因为11222(1,2,3)2n n n n a a a d a n ++-===是同一个常数,所以31242,2,2,2a a a a 依次构成等比数列. (2) 令1a d a +=,则1234,,,a a a a 分别为,,,2(,2,0)a d a a d a d a d a d d -++>>-≠.假设存在1,a d ,使得2341234,,,a a a a 依次构成等比数列, 则43()()a a d a d =-+,且624()(2)a d a a d +=+. 令d t a =,则31(1)(1)t t =-+,且641(1)(12)(1,0)2t t t t +=+-<<≠, 化简得32220(*)t t +-=,且21t t =+. 将21t t =+代入(*)式,2(1)2(1)2313410t t t t t t t t +++-=+=++=+=,则14t =-.显然14t =-不是上面方程的解,矛盾,所以假设不成立,因此不存在1,a d ,使得2341234,,,a a a a 依次构成等比数列. (3) 假设存在1,a d 及正整数,n k ,使得231234,,,n n k n k n k a a a a +++依次构成等比数列, 则22()111(2)()n n k n k a a d a d +++=+,且32(2)111()(3)(2)n k n k n k a d a d a d +++++=+.分别在两个等式的两边同除以2()1n k a +及2(2)1n k a +,并令11(,0)3d t t t a =>-≠,则22()(12)(1)n k n k t t +++=+,且32(2)(1)(13)(12)n k n k n k t t t +++++=+. 将上述两个等式两边取对数,得(2)ln(12)2()ln(1)n k t n k t ++=++, 且()ln(1)(3)ln(13)2(2)ln(12)n k t n k t n k t +++++=++. 化简得2[ln(12)ln(1)][2ln(1)ln(12)]k t t n t t +-+=+-+, 且3[ln(13)ln(1)][3ln(1)ln(13)]k t t n t t +-+=+-+. 再将这两式相除,化简得()ln(13)ln(12)3ln(12)ln(1)4ln(13)ln(1)t t t t t t +++++=++**. 令()4ln(13)ln(1)ln(13)ln(12)3ln(12)ln(1)g t t t t t t t =++-++-++,则2222[(13)ln(13)3(12)ln(12)3(1)ln(1)]'()(1)(12)(13)t t t t t t g t t t t ++-+++++=+++,令222()(13)ln(13)3(12)ln(12)3(1)ln(1)t t t t t t t ϕ=++-+++++, 则'()6[(13)ln(13)2(12)ln(12)(1)ln(1)]t t t t t t t ϕ=++-+++++. 令1()'()t t ϕϕ=,则1'()6[3ln(13)4ln(12)ln(1)]t t t t ϕ=+-+++. 令21()'()t t ϕϕ=,则212'()0(1)(12)(13)t t t t ϕ=>+++.由122(0)(0)(0)(0)0,'()0g t ϕϕϕϕ====>,知21(),(),(),()t t t g t ϕϕϕ在1,03⎛⎫- ⎪⎝⎭和()0,+∞上均单调.故()g t 只有唯一零点0t =,即方程()**只有唯一解0t =,故假设不成立.所以不存在1,a d 及正整数,n k ,使得231234,,,n n k n k n ka a a a +++依次构成等比数列.21. 【选做题】 A. 证明:因为AB AC =,所以ABD C ∠=∠. 又因为C E ∠=∠,所以ABD E ∠=∠, 又BAE ∠为公共交,可知△ABC ∽△AEB .B. 解:由已知,得2A αα⋅=-,即1112012x x y y --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦, 则12,2,x y -=-⎧⎨=⎩即1,2,x y =-⎧⎨=⎩ 所以矩阵1120A -⎡⎤=⎢⎥⎣⎦. 从而矩阵A 的特征多项式()(2)(1)f λλλ=+-,所以矩阵A 的另一个特征值为1.C. 以极坐标系的几点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy . 圆C的极坐标方程2(cos )4022ρθθ+--=, 化简,得22sin 2cos 40ρρθρθ+--=.则圆C 的直角坐标方程为222240x y x y +-+-=, 即22(1)(1)6x y -++=,所以圆C.D. 原不等式可化为3,232x x ⎧<-⎪⎨⎪--≥⎩ 或3,233 2.x x ⎧≥-⎪⎨⎪+≥⎩解得5x ≤-或13x ≥-.综上,原不等式的解集是15,3x x x ⎧⎫≤-≥-⎨⎬⎩⎭.第21-A 题第22题22. 以{},,AB AD AP 为正交基底建立如图所示的空间直角坐标系A xyz -,则个点的坐标为(1,0,0),(1,1,0),(0,2,0),(0,0,2)B C D P .(1) 因为AD ⊥平面PAB ,所以AD 是平面PAB 的一个法向量,(0,2,0)AD =. 因为(1,1,2),(0,2,2)PC PD =-=-, 设平面PCD 的法向量为(,,)m x y z =, 则0m PC =,0m PD =,即20,220.x y z y z +-=⎧⎨-=⎩令1y =,解得1x =,1z =. 所以(1,1,1)m =是平面PCD 的一个法向量. 从而3cos ,3AD m AD m AD m==, 所以平面PAB 与平面PCD 所成二面角的余弦值为3. (2) 因为(1,0,2)BP =-,设(,0,2)BQ BP λλλ==- (01)λ≤≤,又(0,1,0)CB =-,则(,1,2)CQ CB BQ λλ=+=--,又(0,2,2)DP =-, 从而cos ,10CQ DP CQ DP CQ DP==.设12t λ+=,[1,3]t ∈,则2222229co s ,5109101520999t CQ DP t t t ==≤-+⎛⎫-+⎪⎝⎭.当且仅当95t =,即25λ=时,cos ,CQ DP 的最大值为. 因为cos y x=在0,2π⎛⎫⎪⎝⎭上是减函数,此时直线CQ 与DP 所成角取得最小值又因为BP ==255BQ BP ==.23. 解: (1) (6)13f =.(2) 当6n ≥时,2,6,23112,61,2322,62,23()12,63,2312,64,23122,65,23n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩ *()t N ∈.下面用数学归纳法证明:① 当6n =时,66(6)621323f =+++=,结论成立;② 假设(6)n k k =≥时结论成立,那么1n k =+时,1k S +在k S 的基础上新增加的元素在(1,1)k +,(2,1)k +,(3,1)k +中产生,分以下情形讨论: 1) 若16k t +=,则6(1)5k t =-+,此时有1211(1)()323(1)22323k k k k f k f k k k --+++=+=++++=++++,结论成立;2) 若161k t +=+,则6k t =,此时有(1)1(1)1(1)()121(1)22323k k k k f k f k k k +-+-+=+=++++=++++结论成立;3) 若162k t +=+,则61k t =+,此时有111(1)2(1)()222(1)22323k k k k f k f k k k --++-+=+=++++=++++结论成立;4) 若163k t +=+,则62k t =+,此时有2(1)11(1)()222(1)22323k k k k f k f k k k -+-++=+=++++=++++结论成立;5) 若164k t +=+,则63k t =+,此时有11(1)1(1)()222(1)22323k k k k f k f k k k -++-+=+=++++=++++结论成立;6) 若165k t +=+,则64k t =+,此时有1(1)()12123k k f k f k k -+=+=++++(1)1(1)2(1)223k k k +-+-=++++ ,结论成立;综上所述,结论对满足6n ≥的自然数n 均成立。
15年高考真题——理科数学(浙江卷)
2015年普通高等学校招生全国统一考试数学试卷(浙江卷)一.选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中 只有一项是符合题目要求的。
1.已知集合{}2|20P x x x =-≥,{}|12Q x x =<≤,则()R P Q = ð( )(A )[)0,1 (B )(]0,2 (C )()1,2 (D )[]1,22.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )(A )38cm (B )312cm (C )3323cm (D )3403cm 3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等比数列,则( ) (A )10a d >,0n dS >(B )10a d <,0n dS < (C )10a d >,0n dS < (D )10a d <,0n dS >4.命题“n N +∀∈,()f n N +∈且()f n n ≤”的否定形式是( ) (A )n N +∀∈,()f n N +∈且()f n n > (B )n N +∀∈,()f n N +∈或()f n n > (C )0n N +∃∈,()0f n N +∈且()00f n n > (D )0n N +∃∈,()0f n N +∈或()00f n n >5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( ) (A )||1||1BF AF -- (B )22||1||1BF AF -- (C )||1||1BF AF ++ (D )22||1||1BF AF ++ 6.设,A B 是有限集,定义()()(),d A B card A B card A B =- ,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“(),0d A B >”的充分必要条件;命题②:对任意有限集,,A B C ,()()(),,,d A C d A B d B C ≤+。
2015年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)
2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2} 2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z 最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= 3.【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【考点】8H:数列递推式.【专题】54:等差数列与等比数列.﹣S n=a n+1可知S n+1﹣S n=S n+1S n,两边同时除以S n+1S n可知﹣【分析】通过S n+1=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.=S n+1S n,【解答】解:∵a n+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF 与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2c osθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
2015年高考安徽卷语文真题含解析
2015年普通高等学校招生全国统一考试(安徽卷):语文⼀、论述类⽂本阅读阅读下面的文字,完成下列各小题。
阅读下面的⽂字,完成下列各小题。
①有⼈说到“经”,便有意⽆意地把它等同“经典”,⽽提起“中国经典”,就转换成“儒家经典”。
这种观念有些偏狭。
中国经典绝不是儒家⼀家经典可以独占的,也应包括其他经典,就像中国传统是“复数的”传统⼀样。
②首先,中国经典应当包括佛教经典,也应当包括道教经典。
要知道,“三教合⼀”实在是东⽅的中国与西⽅的欧洲在⽂化领域中最不同的地⽅之⼀,也是古代中国政治世界的⼀⼤特⾊,即使是古代中国的皇帝,不仅知道“王霸道杂之”,也知道要“儒家治世,佛教治⼼,道教治身”,绝不只用⼀种武器。
因此,回顾中国⽂化传统时,仅仅关注儒家的思想和经典,恐怕是过于狭窄了。
即使是儒家,也包含了相当复杂的内容,有偏重“道德自觉”的孟⼦和偏重“礼法治世”的荀⼦,有重视宇宙天地秩序的早期儒家和重视⼼性理⽓的新儒家。
应当说,在古代中国,关注政治秩序和社会伦理的儒家、关注超越世界和精神救赎的佛教,关注⽣命永恒和幸福健康的道教,分别承担着传统中国的不同责任,共同构成中国复数的⽂化。
其次,中国经典不必限于圣贤、宗教和学派的思想著作,它是否可以包括更⼴泛些?比如历史著作《史记》《资治通鉴》之类,比如⽂字学著作《说⽂解字》,甚⾄唐诗、宋词、元曲里面的那些名著佳篇。
③经典并非天然就是经典,它们都经历了从普通著述变成神圣经典的过程,这在学术史上叫“经典化”。
没有哪部著作是事先照着经典的尺⼨和样式量身定做的,只是因为它写得好,被引用得多,被⼈觉得它充满真理,又被反复解释,还有的被“钦定”为必读书,于是,就在历史中渐渐成了被尊崇、被仰视的经典。
因此,如今我们重新阅读经典,又需要把它放回产⽣它的时代里面,重新去理解。
经典的价值和意义,也是层层积累的,对那些经典里传达的思想、原则甚⾄知识,未必需要亦步亦趋“照办不⾛样”,倒是要审时度势“活学活用”,要进⾏“创造性的转化”。
2015年安徽高考数学(理科)真题(带答案)
2015年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I 卷(选择题目)和第II 卷(非选择题目)两部分,第I 卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第II 卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在答题卷、...................草稿纸上答题无效........。
4.考试结束,务必将试卷和答题卡一并上交。
参考公式:第Ⅰ卷(选择题目共50分)一、选择题目:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的。
(1)设i 是虚数单位,则复数21ii 在复平面内所对应的点位于(A )第一象限(B )第二象限(C )第三象限(D )第四象限(2)下列函数中,既是偶函数又存在零点的是(A )y cos x (B )y sin x (C )y n l x (D )21y x (3)设p :1<x<2,q :2x >1,则p 是q 成立的(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件4、下列双曲线中,焦点在y 轴上且渐近线方程为2y x 的是()(A )2214y x (B )2214x y (C )2214y x (D )2214x y 5、已知m ,n 是两条不同直线, , 是两个不同平面,则下列命题正确的是()(A )若 , 垂直于同一平面,则 与 平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若 , 不平行,则在 内不存在与 平行的直线(D )若m ,n 不平行,则m 与n 不可能垂直于同一平面6、若样本数据1x ,2x , ,10x 的标准差为8,则数据121x ,221x , ,1021x 的标准差为()(A )8(B )15(C )16(D )327、一个四面体的三视图如图所示,则该四面体的表面积是()(A )13(B )23 (C )122 (D )228、C 是边长为2的等边三角形,已知向量a ,b 满足2a ,C 2a b ,则下列结论正确的是()(A )1b (B )a b (C )1a b (D ) 4C a b 9、函数2ax b f x x c 的图象如图所示,则下列结论成立的是()(A )0a ,0b ,0c (B )0a ,0b ,0c (C )0a ,0b ,0c (D )0a ,0b ,0c 10、已知函数sin f x x ( , , 均为正的常数)的最小正周期为 ,当23x时,函数 f x 取得最小值,则下列结论正确的是()(A ) 220f f f (B )022f f f (C )202f f f (D ) 202f f f 第二卷二.填空题目11.371()x x 的展开式中5x 的系数是(用数字填写答案)12.在极坐标系中,圆8sin 上的点到直线()3R 距离的最大值是13.执行如图所示的程序框图(算法流程图),输出的n为14.已知数列{}n a 是递增的等比数列,14329,8a a a a ,则数列{}n a 的前n 项和等于15.设30x ax b ,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)(1)3,3a b ;(2)3,2a b ;(3)3,2a b ;(4)0,2a b ;(5)1,2a b .三.解答题16.在ABC 中,3,6,324A AB AC ,点D 在BC 边上,AD BD ,求AD 的长。
2015年高考真题——理科综合(全国i卷) word版含答案
2015年普通高等学校招生全国统一考试(新课标I卷)理科综合能力侧试一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列叙述错误..的是A.DNA与ATP中所含元素的种类相同B.一个tRNA分子中只有一个反密码子C.T2噬菌体的核酸由脱氧核糖核苷酸组成D.控制细菌性状的基因位于拟核和线粒体中的DNA上2. 下列关于植物生长素的叙述,错误..的是A.植物幼嫩叶片中的色氨酸可转变为生长素B.成熟茎韧皮部中的生长素可以进行非极性运输C.幼嫩细胞和成熟细胞对生长素的敏感程度相同D.豌豆幼苗切段中乙烯的合成受生长素浓度的影响3. 某同学给健康实验兔静脉滴注0.9%的NaCl溶液(生理盐水)20mL后,会出现的现象是A.输入的溶液会从血浆进入组织液B.细胞内液和细胞外液分别增加10mLC.细胞内液Na+的增加远大于细胞外液Na+的增加D.输入的Na+中50%进入细胞内液,50%分布在细胞外液4. 下列关于初生演替中草本阶段和灌木阶段的叙述,正确的是A.草本阶段与灌木阶段群落的丰富度相同B.草本阶段比灌木阶段的群落空间结构复杂C.草本阶段比灌木阶段的群落自我调节能力强D.草本阶段为灌木阶段的群落形成创造了适宜环境5. 人或动物PrP基因编码一种蛋白(PrP c),该蛋白无致病性。
PrP c的空间结构改变后成为PrP Bc(朊粒),就具有了致病性。
PrP Bc可以诱导更多PrP c的转变为PrP Bc,实现朊粒的增——可以引起疯牛病.据此判——下列叙述正确的是A.朊粒侵入机体后可整合到宿主的基因组中B.朊粒的增殖方式与肺炎双球菌的增殖方式相同C.蛋白质空间结构的改变可以使其功能发生变化D. PrP c转变为PrP Bc的过程属于遗传信息的翻译过程6. 抗维生素D佝偻病为X染色体显性遗传病,短指为常染色体显性遗传病,红绿色盲为X染色体隐性遗传病,白化病为常染色体隐性遗传病。
2015年高考重庆卷语文真题含解析
2015年普通高等学校招生全国统一考试(重庆卷):语文⼀、基础知识请根据题干要求作答。
1.下列词语中,字形和字音全都正确的一组是()A.亲和力声名鹊起闹别(biè)扭称(chēng)心如意B.倒胃口皇天后土瞭(liǎo)望哨金蝉脱壳(qiào)C.哈蜜瓜明眸皓齿撑(chēng)场面姹(chà)紫嫣红D.敞篷车异彩纷呈差(chà)不多白雪皑皑(ái)2.下列语句中,加下划线的词语使用不正确的一项是()A.国家质检总局制定的《家用汽车产品修理、更换、退货责任规定》即日起开始施行,值得注意的是,该规定首次提出保修期不低于三年。
B.东方白鹳是一种体态优美的大型涉禽,其羽毛亮如白雪,腿脚鲜红艳丽,覆羽和飞羽黑中闪亮。
白、红、黑结合得如此高妙,令人惊叹。
C.这些年来,随着人们接触的新事物越来越多,观念越来越开放,再加上经济水平的不断提高,中国人的自驾游活动搞得风生水起。
D.重庆商品展示交易会今日在国博中心开幕,农产品展区众多商户在现场批发促销,副食品展区买一送一等优惠活动也比比皆是。
3.依次填入下面一段文字横线处的语句,前后衔接最为恰当的一组是()中国人民抗日战争的胜利,充分证明了中国共产党是救亡图存、实现民族复兴的核心力量。
今天,我们纪念抗日战争胜利70周年,就是要 , , , , 。
铭记这段历史,是因为它的惨烈悲壮与不屈抗争应当成为中华民族的集体记忆,更是希望从中汲取沉痛的历史教训,获得开创未来的精神力量。
①永远铭记参加抗日战争的老战士、抗日将领、爱国人士②永远铭记支援和帮助了中国抗战的外国政府和国际友人③永远铭记惨遭日本侵略者杀戮的死难同胞④永远铭记为抗战胜利建立了功勋的海内外中华儿女⑤永远铭记在抗日战争中英勇战斗、为国捐躯的烈士A.⑤③④②①B.①②④⑤③C.③⑤①④②D.④③②①⑤⼆、论述类⽂本阅读阅读下面的文字,完成下列各小题。
阅读下面的⽂字,完成下列各小题。
2015年高考真题——文科综合(新课标Ⅰ卷)Word版含答案
绝密★启封前2015年普通高等学校招生全国统一考试文科综合能力测试政治(课标卷Ⅰ)一、选择题:本题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
12.某公司准备在甲乙两种复印机中选购一台,甲复印机的购置成本为22000元,乙为18000元;甲的专用耗材每年消耗量不及乙的50%。
该公司最终购买了甲复印机。
如果不考虑其他因素,这一选择的理由是A.甲乙是替代品,甲的耗材消耗量低于乙B.甲与其耗材是互补品,甲的耗材成本低于乙的购置成本C.甲与乙的耗材是互补品,甲的购置成本低于乙的耗材成本D.甲乙是替代品,甲多耗材的购置成本低于甲节约的耗材成本13.2014年11月,国务院召开常务会议,部署加快推进价格改革,缩小政府定价范围,实行公开透明的市场化定价。
加快推进价格改革旨在①破产垄断,促进市场竞争②扩大生产规模,增加产量③降低商品价格,增加商品销售量④以市场化价格为信号,引导社会资本投资A.①②B.①④C.②④D.③④14.据统计,到2014年底,我国互联网金融规模突破10万亿元,其用户数量达7.6亿。
互联网金融行业迅猛发展的同时,接连出现互联网金融企业违规经营、对用户信息保护不力等问题。
为防范这些问题发生,政府应采取的措施是①改进互联网安全技术②完善金融监管政策法规体系③限制高风险的金融产品④引导和规范行业自律组织的发展A.①②B.①③C.②④D.③④15.2015年3月6日,美元指数收盘较前一交易日上涨1.4164点;3月9日,人民币对美元汇率较前一交易日又贬值30个基点。
美元持续升值将对中国经济产生多方面的影响,其中积极的方面在于①扩大中国出口商品的价格优势,增加出口②提升中国外汇储备的国际购买力③抑制中国居民的出境旅游,从而增加国内储蓄④优化中国对外投资结构,加快“走出去”步伐A.①②B.①③C.②④D.③④党的十八大四届四中全会通过《中共中央关于全面推进依法治国若干重大问题的决定》指出“全面建成小康社会、实现中华民族伟大复兴的中国梦,全面深化改革、完善和发展中国特色社会主义制度,提高党的执政能力和执政水平,必须全面推进依法治国。
2015年高考浙江英语真题及答案和解析
2015年高考浙江英语真题及答案和解析(word版)一、选择题部分(共80分)第一部分:英语知识运用(共两节,满分30分!第一节:单项填空(共20小题;每小题0.5分,满分10分)从A、B、C和D四个选项中,选出可以填入空白处的最佳选项,并在答题纸上将该选项标号涂黑。
1. ——Hi, John. Are you busy?——A. Yes.I do agree.B. Yes.That would be nice.C. No.Are you sure?D. No.What’s up?【答案】D开下一名话。
考点:考查交际用语2. Jane’s grandmother had wanted to write children’s book for many years, but one thing or another always got in way.A. a;不填B. the;theC. 不填;theD. a;the【答案】D试题分析:句意:多年来,简的奶奶想写一本有关于儿童的书,但总是被这样或那样的原因阻碍了。
第一个空使用不定冠词表泛指,第二个in the way 是固定搭配,意为挡道或阻碍。
定冠词用于特指或者是固定搭配,不定冠词用于泛指。
考点:考查冠词的使用3. Have you ever heard of the trees that are homes animals both on land and sea?A. aboutB. toC. withD. over【答案】B试题分析:句意:你是否有听说过树是陆上动物和海上动物的家?home to sth 固定搭配,是什么的家园的意思。
该句是一个疑问句,其中还含有一个定语从句。
比如这个句子转化为陈述句应该是You have ever heard of the trees that are homes animals both on land and sea? 然后把定语从句单独拿出来看将会是trees are homes animals both on land and sea. 根据固定搭配自然知道答案是to。
2015高考四川卷语文真题及答案解析
2015年普通高等学校招生全国统一考试(四川卷)语文答案解析第1卷(单项选择题共27分)注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑。
第1卷共3大题,9小题。
每小题3分。
一、(12分,每小题3分)1.下列词语中加点字的读音,全部正确的一项是:A暂时zàn 埋怨mái 谆谆告诫 zhūn 引吭高歌 hángB豆豉chǐ踝骨huái 踉踉跄跄仓cānɡ按图索骥jìC梗概ɡěn 删改shān 炊烟袅袅 niǎo 明眸皓齿 móuD搁浅ɡē解剖pōu 鬼鬼祟祟 suì不屑一顾xiâ解析:【参考答案】D各项的读音分别读:A埋(mán)怨,为多音字,B踉踉跄跄(qiàng),C梗(gěng)概,所以选D,这两项错误读音的字基本为四川人容易读错的字。
2.下列词语中没有错别字的一项是A妨碍功夫片钟灵毓秀管中窥豹,可见一斑B梳妆吊胃口瞠目结舌文武之道,一张一驰C辐射入场券循章摘句风声鹤唳,草木皆兵D蜚然直辖市秘而不宣城门失火,殃及池鱼解析:【参考答案】AB一张一弛中的“驰”应为“弛”,C循章摘句中的“循”应为“寻”,D蜚然中的“蜚”应为“斐”,故答案为A3.下列句中加点词语的使用,不恰当的一项是A“2015年度中国文化跨界论坛”日前在北京举行,届时来自世界各国的艺术家、企业家和媒体人围绕当前文化创意产业发展中的热点进行了交流。
B对于那些熟稔互联网的人来说,进行“互联网+”创业,最难的可能并不是“互联网”这一部分,而是“+”什么以及怎么“+”的问题。
C这家民用小型无人机公式一年前还寂寂无闻,一年后却声名鹊起,其系列产品先后被评为“十大科技产品”“2014年接触高科技产品”。
D近年来,广袤蜀地的新村建设全面推进大巴山区漂亮民居星罗棋布,大凉山上彝家新寨鳞次栉比,西部高原羌寨碉楼拔地而起。
解析:【参考答案】AA中的“届时”指的是到时候、那时候,还没有发生的某项活动或某项事件,与句中“日前”“进行了交流”相矛盾。
2015年全国统一高考数学试卷(理科)(新课标ⅰ)
2015年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1 B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2015•新课标Ⅰ)设复数z满足=i,则|z|=()A.1 B.C.D.2【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.2.(5分)(2015•新课标Ⅰ)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.3.(5分)(2015•新课标Ⅰ)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.4.(5分)(2015•新课标Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.5.(5分)(2015•新课标Ⅰ)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣x0,﹣y0)•(﹣﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.6.(5分)(2015•新课标Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.7.(5分)(2015•新课标Ⅰ)设D为△ABC所在平面内一点,,则()A.B.C.D.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.8.(5分)(2015•新课标Ⅰ)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos (πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.9.(5分)(2015•新课标Ⅰ)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.8【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C10.(5分)(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.11.(5分)(2015•新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.12.(5分)(2015•新课标Ⅰ)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D二、填空题(本大题共有4小题,每小题5分)13.(5分)(2015•新课标Ⅰ)若函数f(x)=xln(x+)为偶函数.则a= 1.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴,∴lna=0,∴a=1.故答案为:1.14.(5分)(2015•新课标Ⅰ)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.15.(5分)(2015•新课标Ⅰ)若x,y满足约束条件.则的最大值为3.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),则k OA==3,即的最大值为3.故答案为:3.16.(5分)(2015•新课标Ⅰ)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).三、解答题:17.(12分)(2015•新课标Ⅰ)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.18.(12分)(2015•新课标Ⅰ)如图,四边形ABCD为菱形,∠ABC=120°,E,F 是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE 丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF=,从而EG2+FG2=EF2,则EG⊥FG,AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos<,>===﹣.则有直线AE与直线CF所成角的余弦值为.19.(12分)(2015•新课标Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu 的斜率和截距的最小二乘估计分别为:=,=﹣.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.20.(12分)(2015•新课标Ⅰ)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.21.(12分)(2015•新课标Ⅰ)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f (x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.选修4一1:几何证明选讲22.(10分)(2015•新课标Ⅰ)如图,AB是⊙O的直径,AC是⊙O的切线,BC 交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°选修4一4:坐标系与参数方程23.(10分)(2015•新课标Ⅰ)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.选修4一5:不等式选讲24.(10分)(2015•新课标Ⅰ)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f (x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).。
2015年全国统一高考真题物理试卷(新课标ⅰ)(含答案及解析)
2015年全国统一高考物理试卷(新课标Ⅰ)一、选择题(本题共8小题,每小题6分,在每小题给出的四个选项中,第1-5题只有一项符合题目要求。
第6-8题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分)1.(6分)两相邻匀强磁场区域的磁感应强度大小不同、方向平行。
一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后粒子的()A.轨道半径增大,角速度增大B.轨道半径增大,角速度减小C.轨道半径减小,速度增大D.轨道半径减小,速度不变2.(6分)如图,直线a、b和c、d是处于匀强电场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为φM,φN,φP,φQ,一电子由M点分别到N点和P点的过程中,电场力所做的负功相等,则()A.直线a位于某一等势面内,φM>φQB.直线c位于某一等势面内,φM>φNC.若电子由M点运动到Q点,电场力做正功D.若电子由P点运动到Q点,电场力做负功3.(6分)一理想变压器的原,副线圈的匝数比为3:1,在原、副线圈的回路中分别接有阻值相同的电阻,原线圈一侧接在电压为220V的正弦交流电源上,如图所示,设副线圈回路中电阻两端的电压为U,原、副线圈回路中电阻消耗的功率的比值为k,则()A.U=66V,k=B.U=22V,k=C.U=66V,k=D.U=22V,k=4.(6分)如图,一半径为R,粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平,一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道,质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小,用W表示质点从P点运动到N点的过程中克服摩擦力所做的功,则()A.W=mgR,质点恰好可以到达Q点B.W>mgR,质点不能到达Q点C.W=mgR,质点到达Q点后,继续上升一段距离D.W<mgR,质点到达Q点后,继续上升一段距离5.(6分)一带有乒乓球发射机的乒乓球台如图所示,水平台面的长和宽分别为L1和L2,中间球网高度为h,发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h,不计空气的作用,重力加速度大小为g,若乒乓球的发射率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,到v的最大取值范围是()A.<v<L1B.<v<C.<v<D.<v<6.(6分)1824年,法国科学家阿拉果完成了著名的“圆盘实验”。
2015年高考语文(全国新课标Ⅱ卷)真题试卷及答案解析
2015年高考语文(全国新课标Ⅱ卷)真题试卷及答案解析2015年普通高等学校招生全国统一考试语文注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
答卷前,考生务必将自己的姓名、主考正好填写在答题卡上。
2.作答时,将答案卸载答题卡上。
卸载本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1~3题。
艺术品的接受在过去并不被看作是重要的美学问题,20世纪解释学兴起,一个名为“接受美学”的美学分支应运而生,于是研究艺术品的接受成为艺术美学中的显学。
过去,通常只是从艺术品的立场出发,将创作看作艺术家审美经验的结晶过程,作品完成就意味着创作完成。
而从接受美学的角度来看,这一完成并不说明创作已经终结,它只说明创作的第一阶段告一段落,接下来是读者或观众、听众的再创作。
由于未被阅读的作品的价值包括审美价值仅仅是一种可能的存在,只有通过阅读,它才转化为现实的存在,因此对作品的接受具有艺术本体的意义,也就是说,接受者也是艺术创作的主体之一.艺术文本即作品对于接受者来说具有什么意义呢?接受美学的创始人、德国的伊瑟尔说艺术文本是一个“召唤结构”,因为文本有“空白”“空缺”“否定”三个要素。
所谓“空白”是说它有一些东西没有表达出来,作者有意不写或不明写,要接受者用自己的生活经验与想象去补充;所谓“空缺”,是语言结构造成的各个图像间的空白,接受者在阅读文本时要把一个个句子表现的图像片断连接起来,整合成一个有机的图像系统;所谓“否定”指文本对接受者生活的现实具有否定的功能,它能引导接受者对现实进行反思和批判。
由此可见,文本的召唤性需要接受者呼应和配合,完成艺术品的第二次创作。
正如中国古典美学中的含蓄与简洁,其有限的文字常常引发出读者脑海中的丰富意象.接受者作为主体,他对文本的接受不是被动的。
海德格尔提出“前理解”,即理解前的心理文化结构,这种结构影响着理解。
2015年高考数学试卷真题附详细解析
2015年高考数学试卷一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(真题卷)数学(理科)1.(5分)(2015•真题)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2]C.(1,2)D.[1,2]2.(5分)(2015•真题)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•真题)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•真题)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∂n0∈N*,f(n0)∉N*且f(n0)>n0D.∂n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•真题)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•真题)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•真题)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinx B.f(sin2x)=x2+xC.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|8.(5分)(2015•真题)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•真题)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•真题)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•真题)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•真题)若a=log43,则2a+2﹣a=.13.(4分)(2015•真题)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•真题)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•真题)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•真题)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•真题)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•真题)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•真题)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•真题)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(真题卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∂n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC 通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),析:由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20 1 5年河北省普通高等学校对口招生考试语文一、单项选择I(每小题2分,共24分)l 下列词语中加点的字.读音完全相同的一组是A提.防堤.岸蹄.筋啼.笑皆非B伺.候敕.造饬.令不吝赐.教C怯.懦惬.意契.约锲.而不舍D孜.然辎.重孳.生龇.牙咧嘴2下列各组词语中,有错别字的一组是A锻炼竣工张惶失措无耻谰言B膨胀轻慢痴心妄想漠不关心C浮躁拱璧不卑不亢耳濡目染D赝品融洽名列前茅矫枉过正3依次填入下列各句横线处的词语,最恰当的一组是①每年“两会”召开期间,各地代表、委员首都北京。
②如果没有丰富的生活积累和深厚的艺术功底,没有较高的语言文字修养,是很难写出高的作品来的。
③刘翔退役了,他的运动生涯既收获了鲜花和掌声,也经受了体育迷的诋毁和谩骂,但无论如何,他飞人般的速度和铁人般的毅力还是让人不能的。
A聚集品位质疑B云集品味置疑C云集品位置疑D聚集品味质疑4.下列各句加点的成语,使用恰当的一项是A.重新出现在大众跟前的四款经典小汽车,改弦更张....,经过设计者的改造,再一次畅销起来。
B.这些人对个人利益斤斤计较.对广大群众疾苦却漫不经心....。
C.主编认为他的文章观点模糊.条理混乱,文字晦涩,是一篇不刊之论....,所以没有采用。
D.大家对你的剧本提了不少修改意见.我想再补充几点,供你参考.权当是画蛇添足....吧。
5.下列各句中标点符号使用正确的一项是A.每当我好心鼓励20多岁的年轻人善用“弱连接”——那些我们见过面,偶尔联系,但是还不太熟的人——的力量时,经常是碰了一鼻子灰。
B.1995年,卢鹤绂与弟子王世明撰写的《对马赫原理的一个直接验证》在美国《伽利略电动力学》上发表,该杂志的主编评价这篇论文:“开辟了挑战爱因斯坦的新方向”。
C.就设备的购买而论,总得到市场去考察一番,看一看设备的品质、性价比,然后和厂商商谈价格,落实运输、安装、调试、培训、维修……等问题,没有十天半月的时间恐怕弄不下来。
D.学部是中国科学院和中国工程院各学科的咨询机构,由若干院士(旧称学部委员。
)组成,院士由院内外著名科学家担任。
6、下列句子没有语病的一项是A.以“城市,让生活更美好”为主题的上海世博会,让肤色不同、语言各异的人们在这样一个巨大的平台上共同寻找答案。
B.天气变化的脚步总是牵动着经济。
据统计,天气在全世界4/5的经济活动中扮演着决定性的角色。
除了农业外,航空、航海、商业零售、建筑等行业,无一对天气颇为敏感。
C.刘老先生热心支持家乡的教育、慈善等公益事业。
他这次返乡,主动提出要与部分福利院参加高考的孤儿合影留念。
D.成千上万的亚运会志愿者都在忙碌着,他们在共同努力,完成举办一次令亚洲乃至全世界都瞩目的文明亚运的理想。
7.填入下面横线处的句子,与上下文衔接最恰当的一项是在全世界,。
京剧以其独特的艺术魅力和深厚的民族情愫,成为联系大陆同胞和台、港、澳同胞,联系海内外炎黄子孙的重要艺术纽带。
京剧,最富民族性,同时也最富世界性,在我国对外文化交流中发挥着重要的作用。
①凡有炎黄子孙的地方几乎都有京剧爱好者②京剧爱好者遍布于所有有炎黄子孙的地方③不但是人类文化宝库中的精品,而且也是中华民族文化的瑰宝④不但是中华民族文化的瑰宝,而且也是人类文化宝库中的精品A.①|③B.①④C .②③D.②④8 下列句子中,没有运用借代修辞手法的一项是A.那位打着赤脚,抽着旱烟袋的庄稼汉是咱乡里数一数二的笔杆子,你可不要小瞧他。
B.做事一定要有统筹安排,不要捡了芝麻丢西瓜。
C.从老百姓的米袋子、菜篮子中,我们可以看出一届政府的政绩。
D.金风送爽,玉免东升,好一个中秋之夜。
9.下列有关文学常识的表述,正确的一项是A.元曲包括散曲和杂剧,关汉卿的《窦娥冤》、马致远的《西厢记》和王实甫的《汉宫秋》是最著名的杂剧作品。
B.柳永是北宋著名词人.他的词流传甚广,当时有“凡有井水饮处,皆能歌柳词”的说法。
其代表作有《雨霖铃》《八声甘州》等。
C.古体诗分为四言、五言、七言和杂言。
《关雎》是四言.《静夜思》是五亩,《琵琶行》是杂言。
D.鲁迅原名周作人,浙江绍兴人。
是著名文学家、思想家和革命家。
在《拿来主义》一文中,鲁迅旗帜鲜明地提出了“拿来主义”的主张。
1 0.下列各句的礼貌用语运用正确的一项是A.李教授学问精深,经常见教我。
B.黎明给他的父亲惠赠生日贺卡。
C.我们谨向各位代表表示热烈的欢迎。
D.晓岚昨日收到张大妈的信,今日就马上赐复。
阅读下面这首诗,完成ll—l2题。
绝句杜甫迟日江山丽,春风花草香、泥融飞燕子,沙暖睡鸳鸯。
11.对这首诗语句的理解,不恰当的一项是A.首句写迟升的太阳临照壮丽的河山,领起全篇.突出春天阳光明媚、万物欣欣向荣的特点。
B.二句进一步以和煦的春风、芳香的花草展现明媚的大好春光。
C.三句写冰雪消融,泥土潮湿而松软.燕子衔泥筑巢,轻盈地飞来飞去,显出一番春意盎然的情状。
D.四句写水暖沙温,美丽多情的鸳鸯相依相偎、恬然静睡,尽享春天的温暖,十分娇柔可爱。
1 2.对这首诗的赏析,不恰当的一项是A.前两句中“迟日”“江山”“春风”“花草”四个意象组成一幅春的大景致,‘丽”“香”从感官上突出诗人对春的感受。
B.诗的后两句是工笔细描的特写画面。
飞燕的繁忙、鸳鸯的闲适.一动一静尽显春的生机与娴静。
C.最后一句写因沙地温度提升.引来成双成对的鸳鸯。
从情感的表达来看,春日鸳鸯成为诗人在大好春光中渴慕爱情的象征。
D.全诗语言自然流畅,不事雕琢,平朴如活.别有韵味二单项选择II(每小题2分,共8分)阅读下面的文字.完成l 3—16题。
甜甜圈排队怪圈一款奶油夹心、淋着诱人糖浆的甜甜圈羊角面包风靡了整个曼哈顿面包店号称每天只做200个到250个羊角甜甜圈,每个售价5美元卖甜甜圈的网站推出了购买“秘籍”,建议顾客在面包店8 点开门前两个小时排好队,同时还声明,每位顾客最多只能买两个甜甜圈,甜甜圈如此风靡,有人专门排队后转手将甜甜圈卖出去,价格30美元一个。
排长队的情况很常见。
几年前迪士尼副总裁乔·马克思到东京迪±尼乐园参观时观察到一种现象,在一家店前面,游客们排起长队,有些人甚至已排了几十小时人们是为了买一种廉价的皮手镯,手镯上可以刻自己的名字。
排队的游客很多,但整十园区只有有这一家店在售卖。
马克思十分不理解园区只开设一家店贩卖皮手镯的做法,既然皮手镯如此受欢迎.就应该多开几家店,减少人们的排队时间,否则长久的等待会让游客失去耐心而放弃购买。
但实际情况是,大多数人对排队并不反感。
人们会为了买新出的小玩意儿.或等待人满为患的餐厅空出位子,忍受脚痛站上一个小时甚至更久,并告诉自己这样是绝时值得的。
为什么人们会有这样有违“常理”的消费行为呢?心理学家将此行为叫作自我传递信号,就是说,人们倾向于通过自身的行为来进行自我认知。
在东京迪士尼的例子中.多是情侣或配偶一起排队爱人们的耐心等待表示对彼此的强烈承诺因为,根据日本的传统,交换皮手镯是亲密关系的标志,正是排队等候买皮手镯的行为,才使产品如此受欢迎。
爱人们排队是在向其他游客表示,他们对被此的承诺是多么的坚定。
同样,曼哈顿的甜甜圈发出“限购”的消息.通过网站上的“秘籍”鼓励顾客排队,让排队买甜甜圈成为潮流,顾客通过排队表示自己是紧跟潮流的人有这样一个心理学实验在实验第一个阶段.参与者被要求在冰水里抱住自己的胳膊,直至忍受不了为止。
第二阶段,参与者做另一十冰水实验,接着再测试脉搏第一阶段之后,实验者对一些参与者说,高耐痛是心脏健康的标志。
意识到这一点的参与者在第二阶段中,都会坚持把手臂放在冰水里泡上更长时间。
与此同时,其他与者被告知低耐痛是心脏健康的标志,在第二阶段中,这些参与者将手臂泡在冰水中的时间大大减少了。
很明显,参与者将手臂能泡在冰水里的时间长短当作判断健康与否的标准.从而延长或缩短在冰水里的时间.来暗示自己是健康的,这就是“自我传递”现象这样的例子同样出现在日常生活中,当你面对一个流浪汉时,你给了他一些零钱你很有可能会感到自豪。
给流浪汉零钱不会彻底改变你这个人,但由于在大脑中,行为比话语要采得有力量,因此你很可能相信自己就是一个正直的人。
饥饿营销正是运用了这样的原理,让消费者在等待中获得自我认同,比如小米手机的用户预定机制,就是让用户向自身传递“我是最前沿的科技迷”的信号,从而甘愿等待。
1 3作者认为人们排队购买甜甜圈最主要的原因是A甜甜圈是十分诱人的美食B甜甜圈价格低廉C 顾客跟风购买致使供不应求D顾客在排队时获得了自我认知14关于自我传递”现象,不正确的理解是A通过自身的行为进行的自我认知B通过给流浪汉零钱,进而相信自己是一个正直的人C 与爱人一起排长队,正好消磨时间,谈情说爱D甘愿等待购买小米手机,表示自己是紧跟潮流的人1 5关于“饥饿营销”,不正确的表述是A 让顾客在感到饥饿之后再购买商品,从而极大满足其心理需求B 让消费者在等待中获得自我认同C面包店每天只做200个到250个羊角甜甜圈D排队虽花费了时间,耗费了体力,但心里认为绝对值得16 下列理解与判断,不符合文义的一项是A排长队购物物的人缺乏时间观念,不懂得珍惜时间B在东京迪士尼购买皮手镯时,爱人们通过在一起排队显示对彼此的承诺。
C参加冰水实验的人如以为高耐痛是心脏健康的标志,将手臂泡在冰水中的时间会长一些。
D给流浪汉零钱并非仅仅是慈善.也是对自我的一种认可。
三,单项选择Ⅲ〔每小题2分,共8分〕阅读下面的文言文,完成17-20题。
及至始皇,奋六世之余烈,振长策而御宇内,吞二周而亡诸侯,履至尊而制六合,执敲扑而鞭笞天下,威振四海。
南取百越之地,以为桂林、象郡;百越之君,俯首系颈,委命下吏。
乃使蒙恬北筑长城而守藩篱,却匈奴七百余里。
胡人不敢南下而牧马,士不敢弯弓而报怨。
于是废先王之道,焚百家之言,以愚黔首;隳名城,杀豪杰,收天下之兵,聚之咸阳,销锋镝,铸以为金人十二,以弱天下之民。
然后践华为城,因河为池,据亿丈之城,临不测之渊,以为固。
良将劲弩守要害之处,信臣精卒陈利兵而谁何。
天下已定,始皇之心,自以为关中之固,金城千里,子孙帝王万世之业也。
始皇既没,余威震于殊俗。
然陈涉瓮牖绳枢之子,氓隶之人,而迁徙之徒也;才能不及中人,非有仲尼、墨翟之贤,陶朱、猗顿之富;蹑足行伍之间,而倔起阡陌之中,率疲弊之卒,将数百之众,转而攻秦,斩木为兵,揭竿为旗,天下云集响应,赢粮而景从。
山东豪俊遂并起而亡秦族矣。
1 7下列加点同语解释错误的一项是A履.至尊而制六合履:登上B赢.粮而景从赢:担负C信臣精卒陈利兵.而谁何兵:士兵D隳.名城,杀豪杰隳:毁坏1 8下列加点词用法不同于其他三项的一项是A以弱.天下之民B稍稍宾客..其父C而耻.学于师D吾从而师.之19下列句中加点词语意思和用法相同的一组是A执敲扑而.鞭笞天下尊贤而.重士B乃赏成,献诸.抚军或取诸.怀抱C南取百越之地,以.为桂林、象郡成以.其小,劣之D因.河为池,据亿丈之城因.宾客至蔺相如门谢罪20下列句子与所给例句类型不同的一项是例然陈涉瓮牖绳枢之予A夸所谓慧空禅院者,褒之庐冢也B今臣亡国贱俘c苟以无下之大D师者,所以传道、受业、解惑也四、填空(每空l分,共5分)21 ,千金散尽还复来。