备战2021年中考数学考点提升训练——专题三十八:二次函数

合集下载

38中考专题二次函数与实际应用(拱桥问题)-2022年中考数学之二次函数重点题(全国通用)(原卷)

38中考专题二次函数与实际应用(拱桥问题)-2022年中考数学之二次函数重点题(全国通用)(原卷)

专题07 二次函数与实际应用(拱桥问题)一、填空题1.(2021·安徽肥东·中考二模)如图,一座悬索桥的桥面OA 与主悬钢索MN 之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM 与AN 相等.小强骑自行车从桥的一端O 沿直线匀速穿过桥面到达另一端A ,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA 共需_____________秒.2.(2021·江苏工业园区·中考一模)如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州历史文化.如图②,“东方之门”的内侧轮廓是由两条抛物线组成的,已知其底部宽度均为80m ,高度分别为300m 和225m ,则在内侧抛物线顶部处的外侧抛物线的水平宽度(AB 的长)为_________m .第1题图 第2题图3.(2021·浙江·温州市中考一模)2021年1月12日世界最大跨度铁路拱桥——贵州北盘江特大桥主体成功合拢.如图2所示,已知桥底呈抛物线,主桥底部跨度400OA =米,以O 为原点,OA 所在直线为x 轴建立平面直角坐标系,桥面//BF OA ,抛物线最高点离路面距离10EF =米,120BC =米,CD BF ⊥,O ,D ,B 三点恰好在同一直线上,则CD =________米.第3题图 第4题图4.(2021·江苏工业园区·中考二模)如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,拱桥最高点C 到AB 的距离为8m ,24m AB =,D ,E 为拱桥底部的两点,且//DE AB ,若DE 的长为36m ,则点E 到直线AB 的距离为______.二、解答题5.(2021·浙江衢州·中考真题)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.6.如图,某水库上游有一单孔抛物线型拱桥,它的跨度AB为100米.最低水位(与AB在同一平面)时桥面CD距离水面25米,桥拱两端有两根25米高的水泥柱BC和AD,中间等距离竖立9根钢柱支撑桥面,拱顶正上方的钢柱EF长5米.(1)建立适当的直角坐标系,求抛物线型桥拱的解析式;(2)在最低水位时,能并排通过两艘宽28米,高16米的游轮吗?(假设两游轮之间的安全间距为4米)(3)由于下游水库蓄水及雨季影响导致水位上涨,水位最高时比最低水位高出13米,请问最高水位时没在水面以下的钢柱总长为多少米?7.(2021·山西·长治市实验中学九年级期末)景德桥,俗称西关大桥,是我国一座著名的古代石拱桥.景德桥位于山西省东南部的晋城西门外,横跨沁水河,过去,它是晋城通往沁水河阳城地区交通干道上的一座重要桥梁,故曾又名沁阳桥.桥下水面宽度AB是20米,拱高CD是4米,若水面上升3米至EF处.(1)把拱桥看作抛物线的一部分,建立如图1所示的平面直角坐标系,求水面宽度EF.(2)把拱桥看作圆的一部分,则可构造如图2所示的图形,求水面宽度EF.8.(2021·山东即墨·中考一模)即墨古城某城门横断面分为两部分,上半部分为抛物线形状,下半部分为正方形(OMNE为正方形),已知城门宽度为4米,最高处离地面6米,如图1所示,现以O点为原点,OM所在的直线为x轴,OE所在的直线为y轴建立直角坐标系.(1)求出上半部分抛物线的函数表达式,并写出其自变量的取值范围;(2)有一辆宽3米,高4.5米的消防车需要通过该城门进入古城,请问该消防车能否正常进入?(3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB,AD,CD为三根承重钢支架,A、D在抛物线上,B,C在地面上,已知钢支架每米50元,问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元?9.(2020·山东青岛·中考真题)某公司生产A 型活动板房成本是每个425元.图①表示A 型活动板房的一面墙,它由长方形和抛物线构成,长方形的长4AD m =,宽3AB m =,抛物线的最高点E 到BC 的距离为4m .(1)按如图①所示的直角坐标系,抛物线可以用()20y kx m k =+≠表示,求该抛物线的函数表达式;(2)现将A 型活动板房改造为B 型活动板房.如图②,在抛物线与AD 之间的区域内加装一扇长方形窗户FGMN ,点G ,M 在AD 上,点N ,F 在抛物线上,窗户的成本为50元2/m .已知2GM m =,求每个B 型活动板房的成本是多少?(每个B 型活动板房的成本=每个A 型活动板房的成本+一扇窗户FGMN 的成本) (3)根据市场调查,以单价650元销售(2)中的B 型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B 型活动板房.不考虑其他因素,公司将销售单价n (元)定为多少时,每月销售B 型活动板房所获利润w (元)最大?最大利润是多少?10.施工队要修建一个横断面为抛物线的公路隧道,其高度为8米,宽度OM为16米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A.D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.11.(2021·辽宁海城·九年级月考)如图,隧道的横截面由抛物线形和矩形OABC构成.矩形一边OA的长是12m,另一边OC的长是1m.抛物线上的最高点D到地面OA的距离为7m.以OA所在直线为x轴,以OC 所在直线为y轴,建立平面直角坐标系.(1)求该抛物线所对应的函数表达式;(2)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度为5m,求两排灯之间的水平距离;(3)隧道内车辆双向通行,规定车辆必须在中心线两侧行驶,并保持车辆顶部与隧道有不少于1m3的空隙.现有一辆货运汽车,在隧道内距离道路边缘2m处行驶,求这辆货运汽车载物后的最大高度.12.(2020·陕西·子长县齐家湾中学九年级期末)小明将他家乡的抛物线型彩虹桥按比例缩小后,绘制成如下图所示的示意图,图中的三条抛物线分别表示桥上的三条钢梁,x 轴表示桥面,y 轴经过中间抛物线的最高点,左右两条抛物线关于y 轴对称,经过测算,右边抛物线的表达式为21(30)520y x =--+. (1)直接写出左边抛物线的解析式; (2)求抛物线彩虹桥的总跨度AB 的长;(3)若三条钢梁的顶点M 、E 、N 与原点O 连成的四边形OMEN 是菱形,你能求出钢梁最高点离桥面的高度OE 的长吗?如果能,请写出过程;如果不能,请说明理由.13.(2021·山东黄岛·九年级期末)为促进经济发展,方便居民出行.某施工队要修建一个横断面为抛物线的公路隧道.抛物线的最高点P离路面OM的距离为6m,宽度OM为12m.(1)按如图所示的平面直角坐标系,求表示该抛物线的函数表达式;(2)一货运汽车装载某大型设备后高为4m,宽为3.5m.如果该隧道内设双向行车道(正中间是一条宽1m 的隔离带),那么这辆货车能否安全通过?(3)施工队计划在隧道口搭建一个矩形“脚手架”ABCD,使A,D点在抛物线上.B,C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根支杆AB,AD,DC的长度之和的最大值是多少?请你帮施工队计算一下.14.(2021·福建厦门·九年级期末)某海湾有一座抛物线形拱桥,正常水位时桥下的水面宽为100m (如图所示).由于潮汐变化,该海湾涨潮5h 后达到最高潮位,此最高潮位维持1h ,之后开始退潮.如:某日16时开始涨潮,21时达到最高潮位,22时开始退潮.该桥的桥下水位相对于正常水位上涨的高度随涨潮时间t 变化的情况大致如表所示.(在涨潮的5h 内,该变化关系近似于一次函数)(1)求桥下水位上涨的高度(单位:m )关于涨潮时间t (06t ≤≤,单位:h )的函数解析式; (2)某日涨潮期间,某船务公司对该桥下水面宽度进行了三次测量,数据如表所示:现有一艘满载集装箱的货轮,水面以上部分高15m ,宽20m ,在涨潮期间能否安全从该桥下驶过?请说明理由.15.(2020·河北·中考一模)有一座抛物线型拱桥,在正常水位时水面AB的宽为18米,拱顶O离水面AB 的距离OM为9米,建立如图所示的平面直角坐标系.(1)求此抛物线的解析式;(2)一艘货船在水面上的部分的横断面是矩形CDEF.①如果限定矩形的长CD为12米,那么要使船通过拱桥,矩形的高DE不能超过多少米?=++,当L的值最大时,求矩形CDEF的高.②若点E,F都在抛物线上,设L EF DE CF16.(2020·安徽无为·九年级期末)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.17.(2021·贵州安顺·中考真题)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.。

2021中考数学复习专题―二次函数

2021中考数学复习专题―二次函数

2021中考数学复习专题―二次函数----532fd848-6ea1-11ec-b141-7cb59b590d7d2021中考数学复习专题―函数二知识点13。

二次函数的定义形如:y=ax2+bx+c(a、b、c是常数,a≠0)那么y叫做x的二次函数,它常用的三种基本形式。

通式:y=AX2+BX+C(a)≠ 0)顶点公式:y=a(X-H)2+K(a)≠ 0)交点公式:y=a (x-x1)(x-x2)(a)≠ 0、X1和X2是图像和X轴(X轴)知识点14交点的横坐标。

二次函数的象与性质bb4ac?b2,二次函数y=ax+bx+c(a≠0)的图象是以(?)为顶点,以直线y=?2a2a4a2是对称轴的抛物线。

b4ac?b2当a>0,在x=?时,y有最小值,y最小值=,2a4ab4ac?B2当a<0时,其中x=?当y有一个最大值时,y max=。

2a4a知识点15、二次函次图象的平移二次函数图像的平移只需移动顶点坐标即可。

知识点16、二次函数y=ax2+bx+c的图象与坐标轴的交点。

(1)始终与y轴(0,c)相交(2)在b2-4ac>0时,抛物线与x轴有两个交点,a(x1,0)、b(x2,0)这两点距离为ab=|x1-x2|,(x1、x2是ax2+bx+c=0的两个根)。

当b2-4ac=0时,抛物线与x轴只有一个交点。

当b2-4ac<0时,抛物线与x轴不相交。

知识点17:求二次函数的最大值b4ac?b2,常见的有两种方法:(1)直接代入顶点坐标公式(?)。

2a4a(2)将y=ax2+bx+c配方,利用非负数的性质进行数值分析。

两种方法各有所长,第一种方法过程简单,第二种方法有技巧。

【例题精讲】例1。

如图所示,直线y?十、M和抛物线y?x2?bx?C通过点a(1,0),B(3,2)。

⑴ 求M的值和抛物线的解析式;⑵求不等式x2?bx?c?x?m的解集.(直接写出答案)例2。

抛物线y=-x2+(m-1)x+m在点(0,3)与y轴相交,(1)求出m的值并绘制该抛物线;(2)求其与x轴的交点和抛物线顶点的坐标;(3)当抛物线在X轴上方时,X的值是多少?(4)当x取什么值时,Y的值随x的增加而减小?1、如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过a(―1,0)、c(0,―3)两点,与x轴交于另一点b.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴X=1上找到一个点m,将点m到点a的距离和到点C的距离之和最小化,并找到此时点m的坐标;(3)设点p为抛物线的对称轴x=1上的一动点,求使∠pcb=90°的点p的坐标.Yx=1bxaoc2(m?1)x?(m?2)x?1.0(M是实数)x示例2。

备考2021年中考数学复习专题:函数_二次函数_二次函数与不等式(组)的综合应用,综合题专训及答案

备考2021年中考数学复习专题:函数_二次函数_二次函数与不等式(组)的综合应用,综合题专训及答案


≤-2,比较 与 的大小;
(4) 当抛物线F与线段AB有公共点时,直接写出m的取值范围。
9、 (2017濉溪.中考模拟) 2016年里约奥运会,中国跳水队赢得8个项目中的7块金牌,优秀成绩的取得离不开艰辛的训练 .某跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线,已知跳板AB长为2米 ,跳板距水面CD的高BC为3米,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度k米,现以CD为横轴,CB 为纵轴建立直角坐标系.
下面是他的探究过程,请将探究过程补充完整: 将不等式按条件进行转化:
当x=0时,原不等式不成立; 当x>0时,原不等式可以转化为x2+4x﹣1> ; 当x<0时,原不等式可以转化为x2+4x﹣1< ; (1) 构造函数,画出图象 设y3=x2+4x﹣1,y4= ,在同一坐标系中分别画出这两个函数的图象.
备考2021年中考数学复习专题:函数_二次函数_二次函数与不等式(组)的综
合应用,综合题专训及答案
备 考 2021中 考 数 学 复 习 专 题 : 函 数 _二 次 函 数 _二 次 函 数 与 不 等 式 ( 组 ) 的 综 合 应 用 , 综 合 题 专 训
1、 (2018长春.中考真卷) 如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D 的左侧),经过E、D两点的函数y=﹣ x2+mx+1(x≥0)的图象记为G1 , 函数y=﹣ x2﹣mx﹣1(x<0)的图象记为G2 , 其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.
交于A(1,3)和B(﹣3,﹣1)两点.
观察图象可知:

2021年中考一轮复习 数学热点问题《二次函数压轴题的突破与提升》六大必考模型专题练习

2021年中考一轮复习 数学热点问题《二次函数压轴题的突破与提升》六大必考模型专题练习

中考数学热点问题《二次函数压轴题的突破与提升》六大必考模型专题练习题型一:求图形面积类问题1. 如图,假设篱笆(虚线部分)的长度为16m,则所围成矩形ABCD 的最大面积是 .2. 如图,抛物线y=-x 2+2x+3与y 轴交于点C,点D(0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,此时△PCD 的面积为________.3.如图,已知二次函数2y x bx c =++的图象与y 轴交于点A, 与x 轴正半轴交于B,C 两点,且BC =2,ABC S ∆ =3,则b 的值为( )A.-5B.4或-4C. 4D.-4 4.如图,抛物线经过A (-2,0),B ,C (0,2)三点. (1)求抛物线的解析式;(2)在直线AC 下方的抛物线上有一点D ,使得△DCA 的面积最大,求点D 的坐标.题型二:参数求值类问题1. 若函数y=(m-1)x |m|+1是二次函数,则m 的值为____.2. 抛物线y=x 2-2x+m 2+2(m 是常数)的顶点在 ( ) A.第一象限B.第二象限C.第三象限D.第四象限3. 已知二次函数y=-x 2+2x+m.(1)如果二次函数的图象与x 轴有两个交点,求m 的取值范围.4. 当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1求a 的值.5. 已知二次函数263y kx x =-+的图象与x 轴有交点,求k 的取值范围.题型三:利用图像分析类问题1. 下列图象中,当ab >0时,函数y =ax 2与y =ax +b 的图象是( )2. 如图,二次函数y=ax 2+bx+c 的图象与x 轴相交于(-2,0)和(4,0)两点,当函数值y>0时,自变量x 的取值范围是 ( )A.x<-2B.-2<x<4C.x>0D.x>43.已知二次函数的图象如图所示,对称轴是,则下列结论中正确的是( ).A.0>ac B.0>b C.04ac -2<bD.4. 二次函数y=ax 2+bx+c(a ≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①4a+2b+c>0;②5a -b+c=0;③若方程a(x+5)(x-1)=-1有两个根x 1和x 2,且x 1<x 2,则-5<x 1<x 2<1;④若方程|ax 2+bx+c|=1有四个根,则这四个根的和为-4.其中正确的结论有 ( )A.1个B.2个C.3个D.4个5. 如图所示是二次函数c bx ax y ++=2图象的一部分,图象过A 点(3,0),二次函数图象对称轴为1=x ,给出四个结论:①ac b 42>;②0<bc ;③02=+b a ;④0=++c b a ,其中正确结论是( )A.②④B.①③C.②③D.①④ 题型四:动点求最值类问题2y ax bx c =++1x=20a b +=1. 若二次函数y=x2-4x+c的图象经过点(0,3),则函数y的最小值是.2. 如图是函数y=x2-2x-3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线l下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是 .3. 如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为________.4. 如图,抛物线y=x2-bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的表达式.(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.5. 若二次函数y=ax2+b的最大值为4,且该函数的图象经过点A(1,3).(1)a=________,b=________,顶点D的坐标为________;(2)求这个抛物线关于x轴对称后所得的新函数表达式;(3)是否在抛物线上存在点B,使得S△DOB =2S△AOD?若存在,请求出B的坐标;若不存在,请说明理由.6. 已知m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式.(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点C,D 的坐标,并判断△BCD的形状.(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为√2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.题型五:实际应用类问题1. 图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=-1(x-80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴.若OA=10m, 400则桥面离水面的高度AC为( )A.16940mB.174mC.16740mD.154m2. 某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,售后经过统计得到此商品单价在第x 天(x 为正整数)销售的相关信息,如表所示:(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数表达式. (3)这30天中第几天获得的利润最大?最大利润是多少?3. 某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x 之间的关系. (2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?4. 河上有一座桥孔为抛物线形的拱桥,水面宽6m时,水面离桥孔顶部3m.因降暴雨水位上升1m.(1)如图①,若以桥孔的最高点为原点,建立平面直角坐标系,求抛物线的解析式;(2)一艘装满物资的小船,露出水面的高为0.5m、宽为4m(横断面如图②).暴雨后这艘船能从这座拱桥下通过吗?请说明理由.题型六:综合应用类问题1. 已知抛物线y=ax2+bx-4经过点A(2,0),B(-4,0),与y轴交于点C.(1)求这条抛物线的表达式.(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标.(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.2. 如图,抛物线y=-23x2+bx+c与x轴交于A,B两点(点A在点B的左侧),点A的坐标为(-1,0),与y轴交于点C(0,2),直线CD:y=-x+2与x轴交于点D.动点M在抛物线上运动,过点M作MP⊥x轴,垂足为点P,交直线CD于点N.(1)求抛物线的表达式.(2)当点P在线段OD上时,△CDM的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(3)点E是抛物线对称轴与x轴的交点,点F是x轴上一动点,点M在运动过程中,若以C,E,F,M为顶点的四边形是平行四边形时,请写出点F的坐标.3. 如图,在平面直角坐标系中,直线y=mx+3与抛物线交于点A(9,-6),与y轴交于点B,抛物线的顶点C的坐标是(4,-11).(1)分别求该直线和抛物线的函数表达式;(2)D是抛物线上位于对称轴左侧的点,若△ABD的面积为812,求点D的坐标;(3)在y轴上是否存在一点P,使∠APC=45°?若存在,求出满足条件的点P的坐标;若不存在,请说明理由.4. 如图1,抛物线y=-3[(x-2)2+n]与x轴交于点A(m-2,0)和B(2m+3,0)(点A在5点B的左侧),与y轴交于点C,连接BC. (1)求m,n的值.(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN,BN.求△NBC 面积的最大值.(3)如图3,点M,P分别为线段BC和线段OB上的动点,连接PM,PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P 的坐标;若不存在,请说明理由.。

2020-2021备战中考数学(二次函数提高练习题)压轴题训练及答案解析

2020-2021备战中考数学(二次函数提高练习题)压轴题训练及答案解析

2020-2021备战中考数学(二次函数提高练习题)压轴题训练及答案解析一、二次函数1.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x x y x ⎧-++⎪⎨-+⎪⎩==,解得03x y =⎧⎨=⎩或73209x y ⎧=⎪⎪⎨⎪=⎪⎩,则此时P 点坐标为(73,209); 过点A 作AC 的垂线交抛物线于另一点P ,直线PC 的解析式可设为y=﹣x+b , 把A (﹣1,0)代入得13+b=0,解得b=﹣13, ∴直线PC 的解析式为y=﹣13x ﹣13, 解方程组2231133y x x y x ⎧-++⎪⎨--⎪⎩==,解得10x y =-⎧⎨=⎩或103139x y ⎧=⎪⎪⎨⎪=-⎪⎩,则此时P 点坐标为(103,﹣139). 综上所述,符合条件的点P 的坐标为(73,209)或(103,﹣139). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。

2021年冲刺中考数学之热点专题二次函数综合专题(解析版)

2021年冲刺中考数学之热点专题二次函数综合专题(解析版)

热点专题二次函数综合题型二次函数的综合探究题一直是中考的必考题。

通常考查与动点、存在性、相似有关的二次函数综合题,解答与动点有关的函数探究问题,通常需要把问题拆开,分清动点在不同位置运动,或不同时间段运动时对应的函数关系式,进而确定函数图象这类问题往往与函数知识、特殊三角形、特殊四边形的性质,以及分类讨论思想、方程思想、数形结合思想相联系。

解题时要特别注意把握题目中的“动中有变(图形的变化)、变中有静(特殊三角形或四边形的性质及其数学思想)”的内在规律并注意挖掘隐含条件,综合运用数学知识解决问题。

此类问题的考查形式通常为解答题,解答此类问题时要注意分析问题存在的多种情况。

二次函数综合题型有以下三种常见题型:题型一:二次函数与线段最值问题;题型二:二次函数与图形面积问题;题型三:二次函数与特殊三角形的存在性问题;题型四:二次函数与特殊四边形的存在性问题。

考向3二次函数与特殊三角形的存在性问题例:(2019•梅江区期末)如图1,已知抛物线23(0)y ax bx a =++¹与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(1)求抛物线的表达式;(2)如图l ,若点E 为第二象限抛物线上一动点,连接BE ,CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标;(3)如图2,在x 轴上是否存在一点D 使得ACD D 为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.【解析】(1)将点(1,0)A ,(3,0)B -代入23y ax bx =++,得,309330a b a b ì++=ïïíï-+=ïî,解得,12a b ì=-ïïíï=-ïî,\抛物线表达式为223y x x =--+;(2)如图1,过点E 作EF x ^轴于点F ,设(E a ,223)(30)a a a --+-<<,223EF a a \=--+,3BF a =+,OF a =-,\()1122BOCE S BF EF OC EF OF =×++×四边形2211(3)(23)233)()22a a a a a a =+--++--++-g 2399222a a =--+23363(228a =-++,\当32a =-时,BOCE S 四边形最大,且最大值为638;当32a =-时,2915233344a a --+=-++=,此时,点E 坐标为315(,)24-;(3)如图2,连接AC ,①当CA CD =时,此时CO 为底边的垂直平分线,满足条件的点1D ,与点A 关于y 轴对称,点1D 坐标为(1,0)-;②当AD AC =时,在Rt ACO D 中,1OA =Q ,3OC =,由勾股定理得,2210AC OC OA =+,以点A 为圆心,AC 的长为半径作弧,交x 轴于两点2D ,3D ,即为满足条件的点,此时它们的坐标分别为2(101,0)D -,3(101,0)D ;③当DA DC =时,线段AC 的垂直平分线与x 轴的交点4D ,即为满足条件的点,设垂直AC 的垂直平分线交y 轴于点P ,过AC 中点Q ,90AOC BOC PQC PQA Ð=Ð=Ð=Ð=°Q ,4D PO CPQ Ð=Ð,4ACO OD P \Ð=Ð,\△4D AQ CAO D ∽,\4D A AQ CA AO =4102110,45D A \=,444OD D A OA \=-=,\点4D 的坐标为(4,0)-;综上所述,存在符合条件的点D ,其坐标为1(1,0)D -或2(101,0)D -或3101,0)D 或4(4,0)D -.练习:1.(2019•阳江市二模)如图,直线23y x c =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x bx c =-++经过点A ,B .(1)求点B 的坐标和抛物线的解析式;(2)设点(,0)M m 为线段OA 上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①求PN 的最大值;②若以B ,P ,N 为顶点的三角形与APM D 相似,请直接写出点M 的坐标.【解析】(1)直线23y x c =-+交于点(3,0)A ,与y 轴交于点B ,02c \=-+,解得2c =,(0,2)B \,Q 抛物线243y x bx c =-++经过点A ,B ,将点A 、B 的坐标代入抛物线表达式并解得:2410233y x x =-++;(2)①(,0)M m ,则2(,3P m ,2410(,2)33N m m m -++,224102424(03)3333PN m m m m m \=-++-=-+ ;当32m =时,线段PN 有最大值为3;②由(1)可知直线解析式为223y x =-+,(,0)M m Q 为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N ,2(,2)3P m m \-+,2410(,2)33N m m m -++,223PM m \=-+,3AM m =-,22410242(2)43333PN m m m =-++--+=-+,BPN D Q 和APM D 相似,且BPN APM Ð=Ð,90BNP AMP \Ð=Ð=°或90NBP AMP Ð=Ð=°,当90BNP Ð=°时,则有BN MN ^,N \点的纵坐标为2,24102233m m \-++=,解得0m =(舍去)或52m =,5(2M \,0);当90NBP Ð=°时,过点N 作NC y ^轴于点C ,则90NBC BNC Ð+Ð=°,NC m =,22410410223333BC m m m =-++-=-+,90NBP Ð=°Q ,90NBC ABO \Ð+Ð=°,ABO BNC \Ð=Ð,Rt NCB Rt BOA \D D ∽,NC CBOB OA=,\241023323m m m-++=,解得0m =(舍去)或118m =,11(8M \,0);综上可知当以B ,P ,N 为顶点的三角形与APM D 相似时,点M 的坐标为5(2,0)或11(8,0).2.(2019•龙岗区期末)如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为(3,0)B .(0,3)C ,点M 是抛物线的顶点.(1)求二次函数的关系式;(2)点P 为线段MB 上一个动点,过点P 作PD x ^轴于点D .若OD m =,PCD D 的面积为S ,①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标;(3)在MB 上是否存在点P ,使PCD D 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.【解析】(1)将点(3,0)B ,(0,3)C 代入2y x bx c =-++,得09333b c ì=-++ïïíï=ïî,解得,23b c ì=ïïíï=ïî,\二次函数的解析式为223y x x =-++;(2)①2223(1)4y x x x =-++=--+Q ,\顶点(1,4)M ,设直线BM 的解析式为y kx b =+,将点(3,0)B ,(1,4)M 代入,得304k b k b ì+=ïïíï+=ïî,解得26k b ì=-ïïíï=ïî,\直线BM 的解析式为26y x =-+,PD x ^Q 轴且OD m =,(,26)P m m \-+,211(26)322PCD S S PD OD m m m m D \===-+=-+g ,即23S m m =-+,Q 点P 在线段BM 上,且(3,0)B ,(1,4)M ,13m \ ;②2393()224S m m m =-+=--+Q ,10->Q ,\当32m =时,S 取最大值94,3(2P \,3);(3)存在,理由如下:如图21-,当90CPD Ð=°时,90COD ODP CPD Ð=Ð=Ð=°Q ,\四边形CODP 为矩形,3PD CO \==,将3y =代入直线26y x =-+,得,32x =,3(2P \,3);如图22-,当90PCD Ð=°时,3OC =Q ,OD m =,22229CD OC OD m \=+=+,//PD OC Q ,PDC OCD \Ð=Ð,cos cos PDC OCD \Ð=Ð,\DC OCPD DC=,2DC PD OC \=g ,293(26)m m \+=-+,解得,1332m =--(舍去),2332m =-+,(332P \-+,1262)-,当90PDC Ð=°时,PD x ^Q 轴,\不存在,综上所述,点P 的坐标为3(2,3)或(332-+,1262)-.3.(2019•香洲区校级模拟)如图,抛物线的顶点(P m ,1)(0)m >,与y 轴的交点2(0,1)C m +.(1)求抛物线的解析式(用含m 的式子表示)(2)点(,)N x y 在该抛物线上,NH ^直线34y =于点H ,点5(,)4M m 且60NMH Ð=°.①求证:MNH D 是等边三角形;②当点O 、P 、N 在同一直线上时,求m 的值.【解析】设抛物线解析式是2()1(0)y a x m a =-+¹,将2(0,1)C m +代入,得22(0)11a m m -+=+解得1a =.故该抛物线解析式是:2()1y x m =-+;(2)①根据题意知,34NH y =-.34NM y =-.则NM NH =.又因为60NMH Ð=°,所以MNH D 是等边三角形;②由①知,MNH D 是等边三角形.则13(24M N y y =-,即513(424N y =-.故74N y =.由于点7(,4N x 在抛物线2()1y x m =-+上,27()14x m \-+=①所以点N 的坐标是(x ,2()1)x m -+.设直线OP 的解析式是(0)y kx k =¹.把(P m ,1)(0)m >代入,得1mk =.解得1k m=.故该直线方程是x y m=.把(N x ,2()1)x m -+代入,得2()1xx m m -+=②.①②联立方程组,解得m =.4.(2019•汕头市二模)如图,二次函数21y x bx c =++与22()y x cx b b c =++<的图象相交于点A ,分别与y 轴相交于点C ,B ,连接AB 、AC .(1)过点(1,0)作直线l ,判断点A 与直线l 的位置关系,并说明理由.(2)当A 、C 两点是二次函数21y x bx c =++图象上的对称点时,求b 的值.(3)当ABC D 是等边三角形时,求点B 的坐标.【解析】(1)联立1y 、2y 并解得:1x =,故点(1,1)A b c ++,故直线l 过点A ;(2)由题意得:点B 、C 的坐标分别为(0,)b 、(0,)c ,A Q 、C 两点是二次函数21y x bx c =++图象上的对称点,故点A 、C 的纵坐标相同,即:1b c c ++=,解得:1b =-;(3)如下图所示,过等边三角形的点A 作AH BC ^,则点(0,2b cH +,点(1,1)A b c ++,则1AH =,则3tan 1tan 303HB AH HAB =�窗=,则323b c HB b +=-=,而12b cb c +=++,解得:33b +=-,故点33(0,)B +-.考向4二次函数与特殊四边形的存在性问题例:(2019•越秀区校级一模)如图1,抛物线21:2C y ax bx =+-与直线11:22l y x =--交于x 轴上的一点A ,和另一点(3,)B n (1)求抛物线1C 的解析式;(2)点P 是抛物线1C 上的一个动点(点P 在A ,B 两点之间,但不包括A ,B 两点)PM AB ^于点M ,//PN y 轴交AB 于点N ,求MN 的最大值;(3)如图2,将抛物线1C 绕顶点旋转180°后,再作适当平移得到抛物线2C ,已知抛物线2C 的顶点E 在第一象限的抛物线1C 上,且抛持线2C 与抛物线1C 交于点D ,过点D 作//DF x 轴交抛物线2C 于点F ,过点E 作//EG x 轴交抛物线1C 于点G ,是否存在这样的抛物线2C ,使得四边形DFEG 为菱形?若存在,请求E 点的横坐标;若不存在,请说明理由.【解析】(1)直线11:22l y x =--交x 轴于点A 11022x \--=,解得:1x =-(1,0)A \-Q 点(3,)B n 在直线l 上113222n \=--=-(3,2)B \-Q 抛物线21:2C y ax bx =+-经过点A 、B \209322a b a b ì--=ïïíï+-=-ïî解得:1232a b ìïï=ïïïíïï=-ïïïî\抛物线1C 的解析式为213222y x x =--(2)如图1,延长PN 交x 轴于点H90AHN \Ð=°设(P m ,2132)(13)22m m m ---<<//PN y Q 轴N H P x x x m \===11(,)22N m m \--,1AH m =+,1111()2222NH m m \=---=+,22111313(2)222222PN m m m m =-----=-++Rt AHN D Q 中,1tan 2NH NAH AH Ð==sin NHNAH AN\Ð==PM AB ^Q 于点M 90AHN PMN \Ð=Ð=°ANH PNM Ð=ÐQ NAH NPM \Ð=ÐRt PMN \D 中,sin 5MN NPM PN Ð==2213)1)5522105MN PN m m m \==-++=--+MN \的最大值为(3)存在满足条件的抛物线2C ,使得四边形DFEG 为菱形,如图2,连接DE ,过点E 作EQ DF ^于点Q221313252()22228y x x x =--=--Q \抛物线1C 顶点为3(2,25)8-设(E e ,2132)(4)22e e e -->\抛物线2C 顶点式为22113()2222y x e e e =--+--当22211313()2222222x e e e x x --+--=--解得:1x e =,232x =\两抛物线另一交点3(2D ,258-为抛物线1C 顶点//EG x Q 轴,//DF x 轴322()232EG DF DQ e e \===-=-,2213251392228228EQ e e =--+=-+\四边形DFEG 是平行四边形若DFEG Y 为菱形,则DG DF=Q 由抛物线对称性可得:DG DE EF ==,DE EF DF \==,DEF \D 是等边三角形\tan EQEDQ DQ=Ð=,\213932282e e e -+=-解得:132e =(舍去),232e =E \点的横坐标为32时,四边形DFEG 为菱形.练习:1.(2019•禅城区模拟二)如图1,已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图1,连接BC ,PB ,PC ,设PBC D 的面积为S .求S 关于t 的函数表达式,并求出当t 为何值时,PBC D 的面积S 有最大值;(3)如图2,设抛物线的对称轴为直线l ,l 与x 轴的交点为D .在直线l 上是否存在点M ,使得四边形CDPM是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.【解析】(1)将(1,0)A -、(3,0)B 代入2y x bx c =-++,,得,10930b c b c ì--+=ïïíï-++=ïî,解得,23b c ì=ïïíï=ïî,\抛物线的表达式为223y x x =-++;(2)如图1,过点P 作//PF y 轴,交BC 于点F ,设直线BC 的解析式为(0)y mx n m =+¹,将(3,0)B 、(0,3)C 代入y mx n =+,得,303m n n ì+=ïïíï=ïî,解得,13m n ì=-ïïíï=ïî,\直线BC 的解析式为3y x =-+,Q 点P 的坐标为2(,23)t t t -++,\点F 的坐标为(,3)t t -+,2223(3)3PF t t t t t \=-++--+=-+,221393327(222228S PF OB t t t \==-+=--+g ,302-<Q ,\当32t =时,S 取最大值,最大值为278;(3)如图2,连接PC ,交抛物线对称轴l 于点E ,Q 抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点,\抛物线的对称轴为直线1x =,1D C x x -=Q ,1P M x x \-=,2P x \=,(2,3)P \,在223y x x =-++中,当0x =时,3y =,(0,3)C \,3C D y y \-=,3M P y y \-=,6M y \=,\点M 的坐标为(1,6);当2P x ¹时,不存在,理由如下,若四边形CDPM 是平行四边形,则CE PE =,Q 点C 的横坐标为0,点E 的横坐标为1,\点P 的横坐标1202t =´-=,又2P x ¹Q ,\不存在,综上所述,点M 的坐标为(1,6).2.(2018•三水区二模)如图,对称轴为1x =的抛物线经过(1,0)A -,(2,3)B -两点.(1)求抛物线的解析式;(2)P 是抛物线上的动点,连接PO 交直线AB 于点Q ,当Q 是OP 中点时,求点P 的坐标;(3)C 在直线AB 上,D 在抛物线上,E 在坐标平面内,以B ,C ,D ,E 为顶点的四边形为正方形,直接写出点E 的坐标.【解析】(1)对称轴为1x =的抛物线经过(1,0)A -,则抛物线与x 轴的另外一个交点坐标为:(3,0),则抛物线的表达式为:(1)(3)y a x x =+-,将点B 的坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--;(2)设点2(,23)P m m m --,将点A 、B 的坐标代入一次函数表达式并解得:直线AB 的表达式为:1y x =--,当Q 是OP 中点时,则点1(2Q m ,2232m m --,将点Q 的坐标代入直线AB 的表达式并解得:m =,故点P 或;(3)①当BC 为正方形的对角线时,如图1所示,直线AB 的表达式为:1y x =--,则点(0,1)C -,点(0,3)D -,2BD CD ==,故点1(2,1)E -;②当BC 是正方形的一条边时,(Ⅰ)当点D 在BC 下方时,如图2所示,抛物线顶点P 的坐标为:(1,4)-,点(2,3)B -,故PD BC ^,有图示两种情况,左图,点C 、E 的横坐标相同,在函数对称轴上,故点2(1,4)E -;此时,点D 、E 的位置可以互换,故点3(0,3)E -;右图,点B 、E 的横坐标相同,同理点4(2,5)E -;(Ⅱ)当点D 在CB 上方时,此时,点B 、D 坐标相同,这是不可能的,故不存在;综上,点E 的坐标为:(2,1)-或(1,4)-或(0,3)-或(2,5)-.3.(2017•天河区校级模拟)如图,在坐标平面上,沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,则通过A ,B ,C 三点的拋物线对应的函数关系式是251201223y x x =--+.【解析】Q 沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,A \点的坐标为:(4,2)-,B 点的坐标为:(2,6)-,C 点的坐标为:(2,4),将A ,B ,C 代入2y ax bx c =++,1642426424a b c a b c a b c ì-+=ïïïï-+=íïïï++=ïî,解得:51212203a b c ìïï=-ïïïïïï=-íïïïïï=ïïïî,\二次函数解析式为:251201223y x x =--+.故答案为:251201223y x x =--+.4.(2019•南海区二模)如图,抛物线2y x bx c =++交x 轴于点(1,0)A 和点B ,交y 轴于点(0,3)C .(1)求抛物线的解析式;(2)在抛物线上找出点P ,使PC PO =,求点P 的坐标;(3)将直线AC 沿x 轴的正方向平移,平移后的直线交y 轴于点M ,交抛物线于点N .当四边形ACMN 为等腰梯形时,求点M 、N 的坐标.【解析】(1)把点(1,0)A 、(0,3)C 代入二次函数表达式得:013b c c ì=++ïïíï=ïî,解得:43b c ì=-ïïíï=ïî,则抛物线的表达式为:243y x x =-+;(2)如下图,过P 作PH OC ^,垂足为H ,PO PC =Q ,PH OC ^,则:32CH OH ==,23432x x \-+=,解得:22x =±,故点(2P +或(2-;(3)如下图,连接NA 并延长交OC 于GQ 四边形ACMN 为等腰梯形,且//AC MN ,ANM CMN \Ð=Ð,ANM GAC Ð=Ð,GCA CMN Ð=Ð,GAC GCA \Ð=Ð,GA GC\=设GA x =,则GC x =,3OG x =-在Rt OGA D 中,222OA OG AG +=2221(3)x x \+-=,解得53x =,433OG x \=-=,4(0,)3G \直线AG 的解析式为4433y x =-+令2444333x x x -+=-+,解得11x =(舍去),253x =5(3N \,8)9-,225810(1)()399CM AN \==-+-,1037399OM OC CM \=+=+=,37(0,9M \,\存在37(0,9M 、5(3N ,8)9-使四边形ACMN 为等腰梯形.。

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。

备战中考数学专题二次函数图像与坐标轴的交点问题(含解析)

备战中考数学专题二次函数图像与坐标轴的交点问题(含解析)

2021备战中考数学专题-二次函数图像与坐标轴的交点问题〔含解析〕一、单项选择题1.二次函数y=kx2-6x+3的图象与x轴有两个交点,那么k的取值范围是()A.k<3B.k<0且k≠0C.k≤3D.k≤3且k≠02.如图图形中阴影局部的面积相等的是〔〕A.①②B.②③C.①③D.①②③3.在如下图的二次函数y=ax2+bx+c的图象中,大伟同学观察后得出了以下四条结论:①a<0,b>0,c>0;②b2﹣4ac=0;③ <c;④关于x的一元二次方程ax2+bx+c=0有一个正根,你认为其中正确的结论有〔〕A.1条B.2条C.3条D.4条4.假设函数的图象与坐标轴有三个交点,那么的取值范围是〔〕A. B. C.D.5.二次函数y=〔x﹣1〕〔x﹣2〕﹣1与x轴的交点x1,x2,x1<x2,那么以下结论正确的选项是〔〕A.x1<1<x2<2B.x1<1<2<x2C.x2<x1<1D.2<x1<x26.对某个函数给定如下定义:假设存在实数M>0,对于任意的函数值y,都满足|y|≤M,那么称这个函数是有界函数.在所有满足条件的M中,其中最小值称为这个函数的边界值.现将有界函数〔0 x m,1≤m≤2〕的图象向下平移m个单位,得到的函数边界值是t,且≤t≤2,那么m的取值范围是〔〕A.1≤m≤B.≤m≤C.≤m≤D.≤m≤27.二次函数y=x2-(m-1)x+4的图像与x轴有且只有一个交点,那么m的值为〔〕A.1或-3B.5或-3C.-5或3D.以上都不对8.如图,在平面直角坐标系中,抛物线y=α〔x﹣1〕2+k与x轴交于A.B两点,与y轴交于C点.CD∥x轴与抛物线交于D点且A〔﹣1,0〕那么OB+CD=〔〕A.4B.5C.6D.79.“一般的,假如二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.﹣﹣苏科版?数学?九年级〔下册〕P21〞参考上述教材中的话,判断方程x2﹣2x= ﹣2实数根的情况是〔〕A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根10.二次函数y=kx2-7x-7的图象与x轴有两个交点,那么k的取值范围为〔〕A.k>-B.k>-且k≠0C.k≥-D.k≥-且k≠011.抛物线y=ax2+bx+c〔a>0〕的对称轴为x=1,它与x轴的一个交点的坐标为〔﹣3,0〕,那么它与x轴另一个交点的坐标为〔〕A.〔﹣2,0〕B.〔﹣1,0〕C.〔2,0〕D.〔5,0〕二、填空题12.抛物线y=ax2+bx+c与x轴的公共点是〔﹣1,0〕,〔3,0〕,那么关于x的方程ax2+bx+c=0的两个根是________.13.二次函数y=kx2﹣8x+8的图象与x轴有交点,那么k的取值范围是________.14.二次函数y=x2﹣2x﹣1的图象在x轴上截得的线段长为________.15.y=﹣x2+2与x轴交于A,B两点,与y轴交于C点,那么∥ABC的面积为________.16.二次函数y=ax2+bx+c 〔a≠0〕〔a≠0,a,b,C为常数〕的图象,假设关于x的一元二次方程ax2+bx+c=m有实数根,那么m的取值范围是________.17.正整数a满足不等式组〔x为未知数〕无解,那么a的值为________;函数y=〔3﹣a〕x2﹣x﹣3图象与x轴的交点坐标为________18.抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(-3,0),(2,0),那么方程ax2+bx+c=0(a≠0)的解是________.三、解答题19.使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0可得x=1,我们说1是函数y=x﹣1的零点.函数y=x2﹣2mx﹣2〔m+3〕〔m为常数〕〔1〕当m=0时,求该函数的零点.〔2〕证明:无论m取何值,该函数总有两个零点.20.在平面直角坐标系xOy中,抛物线与x轴分别交于点A〔2,0〕、点B〔点B在点A的右侧〕,与轴交于点C,tan∥CBA=.〔1〕求该抛物线的表达式;〔2〕设该抛物线的顶点为D,求四边形ACBD的面积;〔3〕设抛物线上的点E在第一象限,∥BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.四、综合题21.二次函数为y=x2﹣2x+m〔1〕写出它的图象的开口方向,对称轴;〔2〕m为何值时,其图象顶点在x轴上方?22.在平面直角坐标系内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为〔3,0〕,与y轴相交于点C;〔1〕求抛物线的表达式;〔2〕求∥ABC的面积.23.二次函数y=x2﹣2x﹣3与x轴交于A、B两点〔A在B的左边〕,与y轴交于点C.〔1〕求出点A、B、C的坐标.〔2〕求S∥ABC〔3〕在抛物线上〔除点C外〕,是否存在点N,使得S∥NAB=S∥ABC,假设存在,求出点N 的坐标,假设不存在,请说明理由.答案解析局部一、单项选择题1.【答案】D【考点】抛物线与x轴的交点【解析】【分析】利用kx2-6x+3=0有实数根,根据判别式可求出k取值范围。

2021中考数学专题训练——二次函数(解析版)

2021中考数学专题训练——二次函数(解析版)

2021中考数学专题训练——二次函数(解析版)考点一二次函数解析式1.(2018杭州,9,3分)四位同学在研究函数y=x2+bx+c(b,c是常数),甲发现当x=1时,函数有最小值;乙发现-1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4.已知这四位同学中只有一位发现的结论是错误的,则该同学是 ()A.甲B.乙C.丙D.丁答案 B假设甲和丙发现的结论正确,则 解得 ∴该函数的解析式为y=x2-2x+4.若-1是方程x2+bx+c=0的一个根,则x=-1是函数y=x2+bx+c的一个零点,当x=-1时,y=x2-2x+4=7≠0,∴乙发现的结论不正确.当x=2时,y=x2-2x+4=4,∴丁发现的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选B.2.(2017绍兴,8,4分)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使纸上的点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使纸上的点与点C重合,则此时抛物线的函数表达式变为 ()A.y=x2+8x+14B.y=x2-8x+14C.y=x2+4x+3D.y=x2-4x+3答案 A如图, A(2,1),则可得C(-2,-1).一点从A(2,1)平移到C(-2,-1),需要向左平移4个单位,向下平移2个单位,则所求表达式为y=(x+4)2-2=x2+8x+14,故选A.3.(2019宁波,22,10分)如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围. 解析 (1)把P(-2,3)代入y=x2+ax+3,得3=(-2)2-2a+3,解得a=2.∴y=x2+2x+3=(x+1)2+2,∴顶点坐标为(-1,2).(2)①把x=2代入y=x2+2x+3,求得y=11,∴当m=2时,n=11.②2≤n<11.4.(2015绍兴,21,10分)如果抛物线y=ax 2+bx+c 过定点M(1,1),则称此抛物线为定点抛物线.(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x 2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式.请你解答.解析 (1)不唯一,如y=x 2-2x+2.(2)∵定点抛物线的顶点坐标为(b,c+b 2+1),且-1+2b+c+1=1,∴c=1-2b,∴顶点纵坐标c+b 2+1=2-2b+b 2=(b-1)2+1,∴当b=1时,c+b 2+1最小,即抛物线顶点纵坐标的值最小,此时c=-1,∴抛物线的解析式为y=-x 2+2x考点二 二次函数的图象与性质1.(2019温州,9,4分)已知二次函数y=x 2-4x+2,关于该函数在-1≤x ≤3的取值范围内,下列说法正确的是 ( )A.有最大值-1,有最小值-2B.有最大值0,有最小值-1C.有最大值7,有最小值-1D.有最大值7,有最小值-2答案 D y=x 2-4x+2=(x-2)2-2(-1≤x ≤3).由图象可知当x=2时,y 取得最小值-2,当x=-1时,y 取得最大值7.故选D.2.(2019杭州,10,3分)在平面直角坐标系中,已知a ≠b,设函数y=(x+a)(x+b)的图象与x 轴有M 个交点,函数y=(ax+1)·(bx+1)的图象与x 轴有N 个交点,则 ( )A.M=N-1或M=N+1B.M=N-1或M=N+2C.M=N 或M=N+1D.M=N 或M=N-1 答案 C 对于函数y=(x+a)(x+b),当y=0时,函数图象与x 轴的交点为(-a,0),(-b,0),故M=2. 对于函数y=(ax+1)(bx+1),当y=0时,有以下3种情况:①ab ≠0时,图象与x 轴的交点为 , ,此时N=2,M=N;②a=0时,图象与x 轴的交点为 ,此时N=1,M=N+1;③b=0时,图象与x 轴的交点为 ,此时N=1,M=N+1.综上所述,M=N 或M=N+1.故选C.3.(2016温州,10,4分)如图,在△ABC 中,∠ACB=90°,AC=4,BC=2.P 是AB 边上一动点,PD ⊥AC 于点D,点E 在P 的右侧,且PE=1,连接CE.P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动.在整个运动过程中,图中阴影部分面积S 1+S 2的大小变化情况是 ( ) A.一直减小B.一直不变C.先减小后增大D.先增大后减小答案 C 作CF ⊥AB 于F.在Rt △ABC 中,∠ACB=90°,BC=2,AC=4,∴AB=25,CF=554.易知△APD ∽△ABC. 设PD=x,则AD=2x,AP=5x,BE=25-1-5x,∴S 1=x 2,S 2=21(25-1-5x)×554=4-552-2x,∴S 1+S 2=x 2-2x+4-552=(x-1)2+3-552. 4.(2017温州,22,10分)如图,过抛物线y=41x 2-2x 上一点A 作x 轴的平行线,交抛物线于另一点B,交y 轴于点C.已知点A 的横坐标为-2.(1)求抛物线的对称轴和点B 的坐标;(2)在AB 上任取一点P ,连接OP ,作点C 关于直线OP 的对称点D.①连接BD,求BD 的最小值;②当点D 落在抛物线的对称轴上,且在x 轴上方时,求直线PD 的函数表达式.解析 (1)对称轴是直线x=-ab 2=4. ∵点A,B 关于直线x=4对称,点A 的横坐标为-2,∴点B 的横坐标为10.当x=10时,y=5,∴点B 的坐标为(10,5).(2)①如图,连接OD,OB.∵点C,D 关于直线OP 对称,∴OD=OC=5.∵OD+BD ≥OB,∴BD ≥OB-OD=55-5,∴当点D 在线段OB 上时,BD 有最小值55-5.5.(2018温州,21,10分)如图,抛物线y=ax 2+bx(a ≠0)交x 轴正半轴于点A,直线y=2x 经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x 轴于点B.(1)求a,b 的值;(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP .设点P 的横坐标为m,△OBP 的面积为S,记K=S K,求K 关于m 的函数表达式及K 的范围.解析 (1)将x=2代入y=2x,得y=4,∴M(2,4),由题意得 a=-1,b=4(2)如图,过点P 作PH ⊥x 轴于点H,∵点P 的横坐标为m,抛物线的解析式为y=-x 2+4x,∴PH=-m 2+4m.∵B(2,0),∴OB=2,∵S=21OB ·PH=21×2×(-m2+4m)=-m2+4m, ∴K=m S =-m+4, ∴K 随着m 的增大而减小.易得A(4,0),又M(2,4),∴2<m<4.∴0<K<2.6.(2019温州,21,10分)如图,在平面直角坐标系中,二次函数y=-12x ²+2x+6的图象交x 轴于点A,B(点A 在点B 的左侧).(1)求点A,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n+6)个单位,将与该二次函数图象上的点B 3重合.已知m>0,n>0,求m,n 的值.解析 (1)令y=0,则-21x 2+2x+6=0, ∴x 1=-2,x 2=6,∴A(-2,0),B(6,0).由函数图象得,当y ≥0时,-2≤x ≤6.(2)由题意得B 1(6,m),∴B 2(6-n,m),B3(-n,m),函数图象的对称轴为直线x=2.∵点B2,B3在二次函数图象上且纵坐标相同,∴()26n n -+-=2,∴n=1, ∴m=-21×(-1)2+2×(-1)+6=27, ∴m,n 的值分别为27,1.考点三 二次函数综合1.(2015金华,8,3分)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥拱可以近似看成抛物线y=-4001(x-80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴.若OA=10米,则桥面离水面的高度AC 为 ( )A.16409米B.417米C.16407米D.415米答案 B 把x=-10代入y=-4001(x-80)2+16得,y=-417,故选B 2. (2016衢州,15,4分)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为_______ m 2.答案 144解析 如图,设总占地面积为S m2,CD 的长度为x m,由题意知AB=CD=EF=GH=x m,∴BH=(48-4x)m,易知0<x<12,∴S=AB ·BH=x(48-4x)=-4(x-6)2+144,∴当x=6时,S 取得最大值,最大值为144.3.(2017温州,16,5分)小明家的洗手盆上装有一种抬启式水龙头(如图1).完全开启后,水流路线呈抛物线,把手端点A 、出水口B 和落水点C 恰好在同一直线上,点A 到出水管BD 的距离为 12 cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2 cm 的圆柱形水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E,则点E 到洗手盆内侧的距离EH 为_______ cm.答案 24-82解析 如图所示,建立直角坐标系,过A 作AG ⊥OC 于G,交BD 于Q,过M 作MP ⊥AG 于P ,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36, 在Rt △APM 中,MP=22AP AM +=8,故DQ=OG=MP=8,∴BQ=12-8=4,由BQ ∥CG 可得,△ABQ ∽△ACG,∴CG BQ =AG AQ ,即CG 4=3612, ∴CG=12,OC=12+8=20,∴C(20,0),∵水流所在抛物线经过点D(0,24),∴可设抛物线为y=ax 2+bx+24,把C(20,0),B(12,24)代入抛物线解析式,可得 解得 a=203-,b=59∴抛物线的解析式为y=-203-x 2+59x+24, 又∵点E 的纵坐标为10.2,∴令y=10.2,则10.2=-203-x 2+59x+24, 解得x1=6+82,x2=6-82(舍去),∴点E 的横坐标为6+82,又∵ON=30,∴EH=30-(6+82)=24-82.即点E 到洗手盆内侧的距离EH 为(24-82)cm.巩固练习一.选择题1.(2019温州龙湾一模,5)二次函数y=ax 2-4x+4图象的顶点在x 轴上,则a 的值是 ( )A.1B.-1C.4D.-42.(2017杭州拱墅二模,9)已知某二次函数,当自变量x 满足0≤x ≤4时,函数值y 满足0≤y ≤2,则这个函数不可能是 ( ) A.y=21(x-2)2 B.y=x 2-4x+2 C.y=-21(x-2)2+2 D.y=-41x 2+x+1 3.(2019杭州桐庐一模)已知二次函数y=ax 2+(a+2)x-1(a 为常数,且a ≠0), ( )A.若a>0,则x<-1时,y 随x 的增大而增大B.若a>0,则x<-1时,y 随x 的增大而减小C.若a<0,则x<-1时,y 随x 的增大而增大D.若a<0,则x<-1时,y 随x 的增大而减小4.(2017温州联考,10)抛物线y=x 2+x-2与x 轴交于A 、B 两点,A 点在B 点左侧,与y 轴交于点C,若点E 在x 轴上,点P 在抛物线上,且以A 、C 、E 、P 为顶点的四边形是平行四边形,则符合条件的点E 有 ( )A.1个B.2个C.3个D.4个5.(2018江干二模,10)对于二次函数y=ax 2+⎪⎭⎫ ⎝⎛-a 221x(a<0),下列说法正确的个数是 ( ) ①对于任何满足条件的a,该二次函数的图象经过定点(2,1)和(0,0);②若该函数图象的对称轴为直线x=x0,则必有1<x0<2;③当x ≥0时,y 随x 的增大而增大;④若P(4,y 1),Q(4+m,y 2)(m>0)是函数图象上的两点,如果y 1>y 2总成立,则a ≤-121-. A.1 B.2 C.3 D.4二.填空题6.(2018杭州滨口二模)已知点A(4,4)与点B 是二次函数y=ax 2+bx+3(a ≠0)图象上的点,点B 的横坐标是2,到拋物线对称轴的距离为d,其中0<d ≤1,则a 的取值范围是____________ .7.如图,若抛物线y=ax 2+bx+c 上的P(4,0),Q 两点关于它的对称轴x=1对称,则Q 点的坐标为________ .8.如图,直线y=mx+n 与抛物线y=ax 2+bx+c 交于A(-1,p),B(4,q)两点,则关于x 的不等式 mx+n>ax 2+bx+c 的解集是________ .9.如图是一款抛物线型落地灯的示意图.防滑螺母C 为抛物线支架的最高点,灯罩D 距离地面1.86 m,灯柱AB 及支架的相关数据如图所示.若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE 为_______m.三.解答题10.(2018滨江二模)已知关于x 的方程kx 2-(2k-1)x+k+1=0有两个不相等的实数根.(1)求k 的取值范围;(2)亮亮在通过变化k 的值研究二次函数y=kx 2-(2k-1)x+k+1的图象时发现,函数图象都经过点A(1,a),若函数y=x+b+2的图象也经过点A,求b 的值.11.(2019温州洞头二模,23)如图,对称轴为直线x=23的抛物线y=ax 2+b+c 过点A(4,0),B(0,4),点P 为抛物线上一动点,直线OP 交抛物线的对称轴于点C,与抛物线的另一个交点为点D.(1)填空:抛物线的函数表达式为___________ ;(2)若点P 在第一象限,且CP=CO,求点D 的坐标;(3)连接BD,BP ,若POB DOB S S △△=21,求点P 的横坐标.12.某手机制造厂实验室对一种新型快充电池进行实验,充电时电池的电量y(%)是充电时间x(分钟)的一次函数,其中y≤100.已知充电前电量为0(%),测得充电10分钟后电量达到100,充满电后手机马上开始连续工作,工作阶段电池电量y(%)是工作时间x(分钟)的二次函数,如图所示,A是该二次函数图象的顶点.又测得充满电后连续工作了40分钟,这时电量降为20(%),厂商规定手机充电时不能工作,电量小于10(%)时手机部分功能将被限制,不能正常工作.(1)求充电时和充电后使用阶段y关于x的函数表达式(不用写出x的取值范围);(2)为获得更多实验数据,实验室计划在首次充满电并使用40分钟后停止工作再次充电,充电6分钟后再次工作,假定所有的实验条件不变,请问第二次工作的时间是多少分钟(电量到10(%)就停止工作)?13.(2018杭州下沙一模)已知函数y1=kx2-(2k+1)x+(k+1)(k为实数,且k≠0).(1)求证:无论k为何值,该函数图象与x轴总有两个公共点;(2)若一次函数y2=(k-1)x+2k-1的图象与y1的图象经过x轴上的同一点,求k的值;(3)对于任意非零实数k,当0<x<3时,y随x的增大而减小,求k的取值范围.14.(2018杭州上城模拟)在平面直角坐标系中,设二次函数y1=(k+1)x2-(k+1)x+2(其中k≠-1).(1)若函数y1的图象经过点(2,8),求函数y1的表达式;(2)将函数y1的图象向左平移1个单位,再向下平移2个单位,得到函数y2的图象.①求证:若函数y2有最大值,则最大值为正数,若函数y2有最小值,则最小值为负数;②若一次函数y3=(k+1)x+k+1(k>-1),试写出三条与系数k无关的y2、y3两个函数共有的结论。

二次函数备战2023年中考数学考点微专题

二次函数备战2023年中考数学考点微专题

考向3.8 二次函数-最值问题例1、(2021·内蒙古·中考真题)已知抛物线223y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点(4,)D y 在抛物线上,E 是该抛物线对称轴上一动点.当BE DE +的值最小时,ACE 的面积为__________.解:根据题意可求出(1,0),(3,0),(0,3)(4,5)A B C D -,, 抛物线223y x x =--的对称轴为:12bx a=-=, 根据函数对称关系,点B 关于1x =的对称点为点A , 连接AD 与1x =交于点E , 此时BE DE +的值最小, 过D 点作x 轴垂线,垂足为F , 设抛物线对称轴与x 轴交点为G ,∵EG DF ∥, ∴AEG ADF ∽, ∴255AG EG EGAF DF =⇔=, ∴2EG =,过点C 作1x =的垂线,垂足为H ,所以四边形ACHE 的面积等于AGE 与梯形ACHG 的面积和, 即111322+(21)3222⨯⨯+⨯⨯=,则ACES=S 四边形ACHE -13115422ECHS=-⨯⨯=, 故答案为:4.1、二次函数求最值通常有两种类型:一种是通过几何性质线段公理和垂线段公理求最值,常常把折的问题转化成直的问题;另一种通过函数的性质求最值;2、本题属于通过几何性质求最值,关键能画出图形,通过对称性解决问题;3、本题主要考查二次函数的交点坐标、对称轴、相似三角形、对称等知识点,根据题意画出图形,可以根据对称求出点E 的坐标是解决本题的关键.例2、(2021·安徽·中考真题)设抛物线(1)y x a x a =+++,其中a 为实数. (1)若抛物线经过点(1,)m -,则m =______;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是______.解:(1)将(1,)m -代入2(1)y x a x a =+++得: 110m a a =--+=故答案为:0(2)根据题意可得新的函数解析式为:2(1)+2y x a x a =+++ 由抛物线顶点坐标24-,24b ac b a a ⎛⎫- ⎪⎝⎭得新抛物线顶点的纵坐标为:24(2)(1)4a a +-+2274a a -++=2(21)84a a --++=2(1)84a --+=∵2(1)0a -≥∴当a=1时,()218a --+有最大值为8, ∴所得抛物线顶点的纵坐标的最大值是8=24故答案为:21、解最值问题先判断题型的特点,是通过几何方法还是函数性质求解,本题属于第二种情况;‘2、本题考查将抛物线的顶点坐标、将点代入代入函数解析式、利用配方法求最值是常用的方法一、单选题 1.(2021·四川绵阳·中考真题)关于x 的方程20ax bx c ++=有两个不相等的实根1x 、2x ,若212x x =,则49b ac -的最大值是( )A .1B 2C 3D .22.(2021·山东滨州·中考真题)对于二次函数216212y x x =-+,有以下结论:①当5x >时,y 随x 的增大而增大;②当6x =时,y 有最小值3;③图象与x 轴有两个交点;④图象是由抛物线212y x =向左平移6个单位长度,再向上平移3个单位长度得到的.其中结论正确的个数为( )A .1B .2C .3D .4二、填空题 3.(2020·江苏连云港·中考真题)加工爆米花时,爆开且不糊的颗粒的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式20.2 1.52y x x =-+-,则最佳加工时间为________min .4.(2020·四川·中考真题)若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是_____.5.(2021·江苏南通·中考真题)平面直角坐标系xOy 中,已知点()2,39P m n -,且实数m ,n 满足240m n -+=,则点P 到原点O 的距离的最小值为___________.6.(2021·广西贵港·中考真题)我们规定:若()()1122,,,a x y b x y →→==,则1212a b x x y y →→⋅=+.例如(1,3),(2,4)a b →→==,则123421214a b →→⋅=⨯+⨯=+=.已知(1,1),(3,4)a x x b x →→=+-=-,且23x -,则a b →→⋅的最大值是________.7.(2021·内蒙古·中考真题)已知抛物线223y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点(4,)D y 在抛物线上,E 是该抛物线对称轴上一动点.当BE DE +的值最小时,ACE 的面积为__________.8.(2021·安徽·中考真题)设抛物线2(1)y x a x a =+++,其中a 为实数. (1)若抛物线经过点(1,)m -,则m =______;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是______.三、解答题 9.(2020·江苏徐州·中考真题)如图在平面直角坐标系中,一次函数y kx b =+的图像经过点()0,4A -、()2,0B 交反比例函数my x=()0x >的图像于点()3,C a ,点P 在反比例函数的图像上,横坐标为n ()03n <<,//PQ y 轴交直线AB 于点Q ,D 是y 轴上任意一点,连接PD 、QD .(1)求一次函数和反比例函数的表达式; (2)求DPQ 面积的最大值.10.(2021·四川内江·中考真题)如图,抛物线2y ax bx c =++与x 轴交于(2,0)A -、(6,0)B 两点,与y 轴交于点C .直线l 与抛物线交于A 、D 两点,与y 轴交于点E ,点D 的坐标为(4,3).(1)求抛物线的解析式与直线l 的解析式;(2)若点P 是抛物线上的点且在直线l 上方,连接PA 、PD ,求当PAD ∆面积最大时点P 的坐标及该面积的最大值;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.一、单选题 1.(2021·四川泸县·一模)关于x 的一元二次方程222(2)20x k x k k -+++=有两个实数根1x ,2x ,则代数式2212121x x x x +-+的最小值是( )A .-8B .-5C .1D .22.(2021·贵州毕节·二模)点P (m ,n )在以y 轴为对称轴的二次函数y =x 2+ax +4的图象上.则m ﹣n 的最大值等于( )A .154B .4C .﹣154D .﹣1743.(2021·安徽淮南·二模)如图,在平面直角坐标系中,已知()()()3,2,0,-2,3,0,A B C M ---是线段AB 上的一个动点,连接CM ,过点M 作MN MC ⊥交y 轴于点N ,若点M N 、在直线y kx b =+上,则b 的最大值是( )A .78-B .34-C .1-D .0二、填空题 4.(2021·江西·赣州市南康区教学研究室一模)当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.5.(2021·江苏锡山·一模)已知抛物线()24410y ax ax a a =+++≠过点(),3A m ,(),3B n 两点,若线段AB 的长不大于4,则代数式21a a ++的最小值是_________.6.(2021·江苏赣榆·模拟预测)如图,平面直角坐标系中,已知A (2,0),B (4,0),P 为y 轴正半轴上一个动点,将线段P A 绕点P 逆时针旋转90°,点A 的对应点为Q ,则线段BQ 的最小值是______________.三、解答题 7.(2021·江苏无锡·一模)如图,已知抛物线2y ax bx c =++()0a ≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点C ,且OC OB =.(1)求点C 的坐标和此抛物线的解析式;(2)若点E 为第二象限抛物线上一动点,连接BE ,CE ,BC ,求BCE 面积的最大值;(3)点P 在抛物线的对称轴上,若线段PA 绕点P 逆时针旋转90°后,点A 的对应点A '.恰好也落在此抛物线上,求点P 的坐标.一、单选题 1.(2021·广东·中考真题)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b cp ++=,则其面积()()()S p p a p b p c ----秦九韶公式.若5,4p c ==,则此三角形面积的最大值为( )A 5B .4C .25D .52.(2021·四川自贡·中考真题)如图,直线22y x =-+与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动点,过点P 作y 轴的平行线交直线3y x =-+于点Q ,OPQ △绕点O 顺时针旋转45°,边PQ 扫过区域(阴影部分)面积的最大值是()A .23πB .12πC .1116π D .2132π 二、填空题 3.(2020·西藏·中考真题)当﹣1≤x≤3时,二次函数y =x 2﹣4x+5有最大值m ,则m =_____.4.(2020·广东广州·中考真题)对某条线段的长度进行了3次测量,得到3个结果(单位:mm )9.9,10.1,10.0,若用a 作为这条线段长度的近以值,当=a ______mm 时,222(9.9)(10.1)(10.0)a a a -+-+-最小.对另一条线段的长度进行了n 次测量,得到n 个结果(单位:mm )12,,,n x x x ,若用x 作为这条线段长度的近似值,当x =_____mm 时,()()()22212n x x x x x x -+-++-最小.5.(2020·山东淄博·中考真题)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是_____个.6.(2020·湖北咸宁·中考真题)如图,四边形ABCD 是边长为2的正方形,点E 是边BC 上一动点(不与点B ,C 重合),90AEF ∠=︒,且EF 交正方形外角的平分线CF 于点F ,交CD 于点G ,连接AF ,有下列结论:①ABE ECG ∽; ②AE EF =; ③DAF CFE ∠=∠;④CEF △的面积的最大值为1.其中正确结论的序号是_____________.(把正确结论的序号都填上)三、解答题 7.(2020·山东枣庄·中考真题)如图,抛物线24y ax bx =++交x 轴于(3,0)A -,(4,0)B 两点,与y 轴交于点C ,AC ,BC .M 为线段OB 上的一个动点,过点M 作PM x ⊥轴,交抛物线于点P ,交BC 于点Q .(1)求抛物线的表达式;(2)过点P 作PN BC ⊥,垂足为点N .设M 点的坐标为(,0)M m ,请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)试探究点M 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.1.D【分析】根据一元二次方程根与系数的关系,求得两根之和和两根之积,再根据两根关系,求得系数的关系,代入代数式,配方法化简求值即可.解:由方程20ax bx c ++=有两个不相等的实根1x 、2x可得,0a ≠,12bx x a +=-,12c x x a=∵212x x =,可得13b x a =-,212c x a =,即22()3b ca a-=化简得292ac b =则22249242(2)2(1)2b ac b b b b b -=-+=--=--+故49b ac -最大值为2 故选D【点拨】此题考查了一元二次方程根与系数的关系,涉及了配方法求解代数式的最大值,根据一元二次方程根与系数的关系得到系数的关系是解题的关键.2.A【分析】将题目中的函数解析式化为顶点式,然后根据二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.解:∵二次函数()22116216322y x x x =-+=-+, ∴该函数的对称轴为直线x =6,函数图象开口向上,当5<x <6时,y 随x 的增大而减小,当x >6时,y 随x 的增大而增大,故①不符合题意;当x =6时,y 有最小值3,故②符合题意;当y =0时,无实数根,即图象与x 轴无交点,故③不符合题意; 图象是由抛物线212y x =向右平移6个单位长度,再向上平移3个单位长度得到的,故④不符合题意;故正确的是②,正确的个数是1, 故选:A .【点拨】本题考查二次函数的性质、二次函数图象与几何变换,解答本题的关键是明确3.3.75【分析】根据二次函数的对称轴公式2bx a=-直接计算即可. 解:∵20.2 1.52y x x =-+-的对称轴为()1.5 3.75220.2b x a =-=-=⨯-(min ), 故:最佳加工时间为3.75min , 故答案为:3.75.【点拨】此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键.4.9s ≥【分析】由已知等式表示出y 2,代入s 中利用二次函数最值即可确定出s 范围. 解:由x +y 2=3,得:y 2=﹣x +3≥0, ∴x ≤3,代入得:s =x 2+8y 2=x 2+8(﹣x +3)=x 2﹣8x +24=(x ﹣4)2+8,当x =3时,s =(3﹣4)2+8=9, ∴9s ≥. 故答案为:9s ≥.【点拨】本题主要考查二次函数的性质,关键是根据题意进行代入消元,然后利用二次函数的性质进行求解即可.5【分析】由已知得到点P 的坐标为(m ,33m +),求得PO解:∵240m n -+=,∴24n m =+,则23933n m -=+, ∴点P 的坐标为(m ,33m +),∴PO = ∵100>,∴210189m m ++当1892010m =-=-时,有最小值, 且最小值为910,∴PO .【点拨】本题考查了点的坐标,二次函数的图象和性质,熟练掌握二次函数的性质是解决本题的关键.6.8【分析】根据平面向量的新定义运算法则,列出关于x 的二次函数,根据二次函数最值的求法解答即可.解:根据题意知:2(1)(3)4(1)(1)8a b x x x x ⋅=+-+-=+-. 因为23x -≤≤,所以当3x =时,2(31)88a b ⋅=+-=. 即a b ⋅的最大值是8. 故答案是:8.【点拨】本题主要考查了平面向量,解题时,利用了配方法求得二次函数的最值. 7.4【分析】根据题意画出函数图像,要使BE DE +的值最小,需运用对称相关知识求出点E 的坐标,然后求ACE 的面积即可.解:根据题意可求出(1,0),(3,0),(0,3)(4,5)A B C D -,,抛物线223y x x =--的对称轴为:12b x a =-=, 根据函数对称关系,点B 关于1x =的对称点为点A ,连接AD 与1x =交于点E ,此时BE DE +的值最小,过D 点作x 轴垂线,垂足为F ,设抛物线对称轴与x 轴交点为G ,∵EG DF ∥,∴AEG ADF ∽,∴255AG EG EG AF DF =⇔=, ∴2EG =,过点C 作1x =的垂线,垂足为H ,所以四边形ACHE 的面积等于AGE 与梯形ACHG 的面积和,即111322+(21)3222⨯⨯+⨯⨯=, 则ACE S =S 四边形ACHE -13115422ECH S =-⨯⨯=, 故答案为:4.【点拨】本题主要考查二次函数的交点坐标、对称轴、相似三角形、对称等知识点,根据题意画出图形,可以根据对称求出点E 的坐标是解决本题的关键.8.0 2【分析】(1)直接将点(1,)m -代入计算即可(2)先根据平移得出新的抛物线的解析式,再根据抛物线顶点坐标得出顶点坐标的纵坐标,再通过配方得出最值解:(1)将(1,)m -代入2(1)y x a x a =+++得:110m a a =--+=故答案为:0(2)根据题意可得新的函数解析式为:2(1)+2y x a x a =+++ 由抛物线顶点坐标24-,24b ac b a a ⎛⎫- ⎪⎝⎭得新抛物线顶点的纵坐标为:24(2)(1)4a a +-+ 2274a a -++= 2(21)84a a --++= 2(1)84a --+= ∵2(1)0a -≥∴当a =1时,()218a --+有最大值为8,∴所得抛物线顶点的纵坐标的最大值是8=24 故答案为:2【点拨】本题考查将抛物线的顶点坐标、将点代入代入函数解析式、利用配方法求最值是常用的方法9.(1)624,y x y x=-=;(2)4. 【分析】(1)利用点()0,4A -、()2,0B 求解一次函数的解析式,再求C 的坐标,再求反比例函数解析式;(2)设6,,P n n ⎛⎫ ⎪⎝⎭则(),24,Q n n -再表示PQ 的长度,列出三角形面积与n 的函数关系式,利用函数的性质可得答案.解:(1)设直线AB 为,y kx b =+把点()0,4A -、()2,0B 代入解析式得:420b k b =-⎧⎨+=⎩ 解得:24k b =⎧⎨=-⎩ ∴ 直线AB 为24,y x =-把()3,C a 代入得:2342,a =⨯-=()3,2,C ∴把()3,2C 代入:,m y x = 236m ∴=⨯=,6,y x∴= (2)设6,,P n n ⎛⎫ ⎪⎝⎭//PQ y 轴, 则(),24,Q n n - 由0<n <3,()666242424,PQ n n n n n n ∴=--=-+=-+ 16242DPQ S n n n ⎛⎫∴=-+ ⎪⎝⎭()222314,n n n =-++=--+即当1n =时, 4.DPQ S ∴=最大【点拨】本题考查的是利用待定系数法求解一次函数与反比例函数的解析式,以及利用二次函数的性质求解面积的最值,掌握以上知识是解题的关键.10.(1)抛物线的解析式为2134y x x =-++,直线l 的解析式为112y x =+;(2)PAD ∆的面积的最大值为274,15(1,)4P .(3)Q 的坐标为13(0,)3或(0,9)-. 【分析】(1)利用待定系数法解决问题即可.(2)如图1中,过点P 作PE ∥y 轴交AD 于点E .设P (m ,-14m 2+m +3),则E (m ,12m +1).因为S △P AD =12•(x D -x A )•PE =3PE ,所以PE 的值最大值时,△P AD 的面积最大,求出PE 的最大值即可.(3)如图2中,将线段AD 绕点A 逆时针旋转90°得到AT ,则T (-5,6),设DT 交y 轴于点Q ,则∠ADQ =45°,作点T 关于AD 的对称点T ′(1,-6),设DQ ′交y 轴于点Q ′,则∠ADQ ′=45°,分别求出直线DT ,直线DT ′的解析式即可解决问题.解:(1)抛物线2y ax bx c =++与x 轴交于(2,0)A -、(6,0)B 两点,∴设抛物线的解析式为(2)(6)y a x x =+-,解得,2x =-,或6x =,(4,3)D 在抛物线上,3(42)(46)a ∴=+⨯-, 解得14a =-, ∴抛物线的解析式为211(2)(6)344y x x x x =-+-=-++, 直线l 经过(2,0)A -、D ,设直线l 的解析式为(0)y kx m k =+≠,则2043k m k m -+=⎧⎨+=⎩, 解得,121k b ⎧=⎪⎨⎪=⎩, ∴直线l 的解析式为112y x =+; (2)如图1中,过点P 作//PE y 轴交AD 于点F .设21(,3)4P m m m -++,则1,12F m m ⎛⎫+ ⎪⎝⎭.()132PAD D A S x x PF PF ∆=⋅-⋅=, PF ∴的值最大值时,PAD ∆的面积最大,()2221111193121424244PF m m m m m m =-++--=-++=--+, 104-<, 1m ∴=时,PF 的值最大,最大值为94,此时PAD ∆的面积的最大值为274,15(1,)4P . (3)如图2中,将线段AD 绕点A 逆时针旋转90︒得到AT ,则(5,6)T -,设DT 交y 轴于点Q ,则45ADQ ∠=︒,(4,3)D ,∴直线DT 的解析式为11333y x =-+, 13(0,)3Q ∴, 作点T 关于AD 的对称点(1,6)T '-,则直线DT '的解析式为39y x =-,设DQ '交y 轴于点Q ',则45ADQ ∠'=︒,(0,9)Q ∴'-,综上所述,满足条件的点Q 的坐标为13(0,)3或(0,9)-.【点拨】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建二次函数解决最值问题,学会构造特殊三角形解决问题.1.C【分析】先根据0∆≥得到k 的范围,再将所求式子变形,用根与系数关系把它表示成k 的代数式,最后根据k 的范围得到所求代数式的最小值.解:∵222(2)20x k x k k -+++=有两个实数根,∴0∆≥即()224(2)420k k k +-+≥, 整理得240k +≥,解得2k ≥-;∵1x 、2x 是222(2)20x k x k k -+++=的两个实数根,∴1224x x k +=+,2122x x k k ⋅=+,()22212121212131x x x x x x x x +-⋅+=+-⋅+, ()22(24)321k k k =+-++,21017k k =++,2(5)8k =+-,∵10>,关于k 的二次函数开口向上,又∵对称轴为k =-5,在对称轴的右侧关于k 的二次函数随着k 的增大而增大,又∵2k ≥-,∴2k =-时,2212121x x x x +-⋅+的值最小为()22581-+-=. 故选:C .【点拨】本题考查元二次方程的根与判别式,利用根与系数关系,将代数式转化为二次函数,利用函数增减性求代数式的最小值是解题关键.2.C【分析】根据题意,可以得到a 的值以及m 和n 的关系,然后将m 、n 作差,利用二次函数的性质,即可求出m ﹣n 的最大值.解:∵点P (m ,n )在以y 轴为对称轴的二次函数y =x 2+ax +4的图象上,∴a =0,∴n =m 2+4,∴m ﹣n =m ﹣(m 2+4)=﹣m 2+m ﹣4=﹣(m ﹣12)2﹣154, ∴当m =12时,m ﹣n 取得最大值,此时m ﹣n =﹣154, 故选:C .【点拨】本题考查了二次函数的图象与性质,属于常考题型,正确理解题意、熟练掌握二次函数的性质是解题的关键.3.A 【分析】当点M 在AB 上运动时,MN ⊥MC 交y 轴于点N ,此时点N 在y 轴的负半轴移动,定有△AMC ∽△NBM ;只要求出ON 的最小值,也就是BN 最大值时,就能确定点N 的坐标,而直线y=kx+b 与y 轴交于点N (0,b ),此时b 的值最大,因此根据相似三角形的对应边成比例,设未知数构造二次函数,通过求二次函数的最值得以解决. 解:连接AC ,则四边形ABOC 是矩形,90A ABO ︒∴∠=∠=,又MN MC ⊥,90CMN ︒∴∠=,AMC MNB ∴∠=∠,~AMC NBM ∴∆∆,AC AM MB BN∴=, 设,BN y AM x ==.则3,2MB x ON y =-=-, 23x x y∴=-, 即:21322y x x =+∴当33212222b x a =-=-=⎛⎫⨯- ⎪⎝⎭时,21333922228y ⎛⎫=⨯+⨯= ⎪⎝⎭最大 直线y kx b =+与y 轴交于()0,N b当BN 最大,此时ON 最小,点()0,N b 越往上,b 的值最大,97288ON OB BN ∴=-=-=, 此时, 70,8N ⎛⎫- ⎪⎝⎭ b 的最大值为78-. 故选A .【点拨】本题综合考查相似三角形的性质、二次函数的性质、二次函数的最值以及一次函数的性质等知识;构造相似三角形、利用二次函数的最值是解题的关键所在.4.2或【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4, 解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4,解得m =所以m =③m >1时,x=1取得最大值,-(1-m )2+m 2+1=4,解得m=2,综上所述,m=2或故答案为:2或【点拨】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.5.74【分析】根据题意得4a+1≥3,解不等式求得a≥12,把x=12代入代数式即可求得. 解:∵抛物线y=ax 2+4ax+4a+1(a≠0)过点A (m ,3),B (n ,3)两点, ∴4222m n a a+=-=-,顶点为(-2,1) ∴由题意可知a>0,∵线段AB 的长不大于4,∴4a+1≥3∴a≥12∴a 2+a+1的最小值为:(12)2+12+1=74; 故答案为74. 【点拨】本题考查了二次函数的性质,二次函数图象上点的坐标特征,根据题意得出4a+1≥3是解题的关键.6.【分析】设P (0,m ),则OP =m ,通过证得△AOP ≌△PMQ 求得Q 的坐标,然后根据勾股定理得到BQm =1时,BQ 有最小值解:∵A (2,0),∴OA =2,设P (0,m ),则OP =m ,作QM ⊥y 轴于M ,∵∠APQ =90°,∴∠OAP +∠APO =∠APO +∠QPM ,∴∠OAP =∠QPM ,在△AOP 和△PMQ 中, AOP PMQ OAP MPQ PA QP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△PMQ (AAS ),∴MQ =OP =m ,PM =OA =2,∴Q (m ,m +2),∵B (4,0),∴BQ= ∵2>0,∴当m =1时,BQ 有最小值32,故答案为:32.【点拨】本题考查图形旋转性质,三角形全等判定与性质,勾股定理两点距离公式,配方法,函数最值,掌握图形旋转性质,三角形全等判定与性质,勾股定理两点距离公式,配方法,函数最值是解题的关键.7.(1)C ()0,3,223y x x =--+;(2)278;(3)点P 的坐标为()1,1-或()1,2--. 【分析】(1)由(),30OC OB B =-,,结合C 的位置,可得C 的坐标,再利用待定系数法求解二次函数的解析式即可;(2)先求解BC 的解析式,过点E 作//EF y 轴交BC 于点F ,设()2,23E a a a --+,则(),3F a a +,再利用12BCE S AB EF =⨯⨯△,列函数关系式,再利用二次函数的性质求解最大面积即可得到答案;(3)如图所示,过1A 作1A N 垂直对称轴交对称轴于点N ,再求解抛物线的对称轴,设点1P 的坐标为()1,m -,由题可知111P A P A =,1190AP A ∠=︒,再证明:11A NP △≌1PMA △,可得:11A N PM m ==,12PN AM ==.再分0m ≥与0m <,可得:A 旋转后对应点的坐标,再把对应点的坐标代入函数解析式即可得到答案.解:(1)由题可得3OB =,∴3OC OB ==,∴点C 的坐标为()0,3,3c =.将点A ,B 坐标代入抛物线解析式得:30,9330,a b a b ++=⎧⎨-+=⎩解得1,2,a b =-⎧⎨=-⎩∴抛物线解析式为223y x x =--+.(2)设直线BC 的解析式为y kx b =+,将()3,0B -,()0,3C 代入,可得30,3,k b b -+=⎧⎨=⎩ 解得:1,3,k b =⎧⎨=⎩∴直线BC 的解析式为3y x .过点E 作//EF y 轴交BC 于点F ,设()2,23E a a a --+,则(),3F a a +,∴()211323322BCE S AB EF a a a =⨯⨯=⨯⨯--+--△22393993+22244a a a a ⎛⎫=--=-+- ⎪⎝⎭23327228a ⎛⎫=-++⎪⎝⎭, ∴BCD △面积最大值278. (3)如图所示,过1A 作1A N 垂直对称轴交对称轴于点N ,设对称轴与x 轴交于点M , ∵()222314y x x x =--+=-++, ∴抛物线的对称轴为1x =-.设点1P 的坐标为()1,m -,由题可知111P A P A =,1190AP A ∠=︒, 则111111190NP A MP A NA P NP A ∠+∠=∠+∠=︒, ∴111NA P MP A ∠=∠. 在11A NP △和1APM △中, 111111111,,,A NP PMA NA P MP A P A AP ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴11A NP △≌1PMA △AAS , ∴11A N PM m ==,12PN AM ==. 下面分两种情况讨论.①当0m ≥时,点1A 的坐标为()1,2m m -+,代入抛物线解析式可得()()221213m m m +=----+, 解得1m =或2m =-(舍去), ∴此时点1P 的坐标为()1,1-;②当0m <时,点2A 的坐标为()1,2m m -+,代入抛物线解析式可得()()221213m m m +=----+, 解得1m =(舍去)或2m =-, ∴此时点2P 的坐标为()1,2--.综上所述:点P 的坐标为()1,1-或()1,2--.【点拨】本题考查的是利用待定系数法求解二次函数的解析式,利用二次函数的解析式求解图形的最大面积,二次函数的图像与性质,等腰直角三角形的性质,三角形的全等的判定与性质,一元二次方程的解法,掌握以上知识是解题的关键.参考答案1.C 【分析】由已知可得a +b =6,5(5)(5)55S a b ab ---,把b =6-a 代入S 的表达式中得:2565S a a -+-S 的最大值. 【详解】 ∵p =5,c =4,2a b cp ++= ∴a +b =2p -c =6∴5(5)(5)(54)55S a b ab =---=-由a +b =6,得b =6-a ,代入上式,得:25(6)5565S a a a a =--=-+-设2+65y a a =--,当2+65y a a =--取得最大值时,S 也取得最大值 ∵22+65(3)4y a a a =--=--+ ∴当a =3时,y 取得最大值4 ∴S 的最大值为5425⨯= 故选:C .【点拨】本题考查了二次函数的性质,关键是由已知得出a +b =6,把面积最大值问题转化为二次函数的最大值问题.2.A 【分析】根据题意得OQM OMN S S S =-阴影扇形扇形,设P (a ,2-2a ),则Q (a ,3-a ),利用扇形面积公式得到()21325?8S a a π=-++阴影,利用二次函数的性质求解即可.【详解】 解:如图,根据旋转的性质,OPQ OMN ≅, ∴OPQOMNSS=,则OMNOPQOQM OPN S S SSS =+--阴影扇形扇形OQM OPN S S =-扇形扇形,∵点P 在直线22y x =-+上,点Q 在直线3y x =-+上,且PQ ∥y 轴, 设P (a ,2-2a ),则Q (a ,3-a ), ∴OP 2=()22222584a a a a +-=-+, OQ 2=()2223269a a a a +-=-+,OQM OPN S S S =-阴影扇形扇形2245?45?360360OQ OP ππ=-()21325?8a a π=-++,设22116325333y a a a ⎛⎫=-++=--+ ⎪⎝⎭,∵30-<,∴当13a =时,y 有最大值,最大值为163,∴S 阴影的最大值为1612383ππ⨯=. 故选:A .【点拨】本题考查了旋转的性质,扇形的面积公式,二次函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件.3.10 【分析】根据题目中的函数解析式和二次函数的性质,可以求得m 的值,本题得以解决. 【详解】∵二次函数y =x 2﹣4x+5=(x ﹣2)2+1, ∴该函数开口向上,对称轴为x =2,∵当﹣1≤x≤3时,二次函数y =x 2﹣4x+5有最大值m ,∴当x =﹣1时,该函数取得最大值,此时m =(﹣1﹣2)2+1=10, 故答案为:10.【点拨】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.4.10.0; 12nx x x n+++.【分析】(1)把222(9.9)(10.1)(10.0)a a a -+-+-整理得:2360.0300.02a a -+,设2360.0300.02y a a =-+,利用二次函数性质求出当10.0a =时有最小值;(2)把()()()22212n x x x x x x -+-++-整理得:()()222212122n n nx x x x x x x x -++++++, 设()()222212122n n y nx x x x x x x x =-++++++,利用二次函数的性质即可求出当y 取最小值时x 的值.【详解】解:(1)整理222(9.9)(10.1)(10.0)a a a -+-+-得:2360.0300.02a a -+, 设2360.0300.02y a a =-+, 由二次函数的性质可知:当60.010.023a -=-=⨯时,函数有最小值, 即:当10.0a =时,222(9.9)(10.1)(10.0)a a a -+-+-的值最小, 故答案为:10.0;(2)整理()()()22212n x x x x x x -+-++-得:()()222212122n n nx x x x x x x x -++++++,设()()222212122n n y nx x x x x x x x =-++++++,由二次函数性质可知:当()121222n nx x x x x x x nn-++++++=-=⨯时,()()222212122n n y nx x x x x x x x =-++++++有最小值,即:当12nx x x x n +++=时,()()()22212n x x x x x x -+-++-的值最小,故答案为:12nx x x n+++.【点拨】本题考查了二次函数模型的应用,关键是设()()()22212n y x x x x x x =-+-++-,整理成二次函数,利用二次函数的性质—何时取最小值来解决即可.5.210 【详解】根据理解题意找出题目中所给的等量关系,找出规律,写出货包数量的函数解析式,再根据二次函数最值的求法求出快递货车装载的货包数量最多的站.【解答】解:当一辆快递货车停靠在第x 个服务驿站时,快递货车上需要卸下已经通过的(x ﹣1)个服务驿站发给该站的货包共(x ﹣1)个, 还要装上下面行程中要停靠的(n ﹣x )个服务驿站的货包共(n ﹣x )个. 根据题意,完成下表:4 3(n﹣3)﹣3+(n﹣4)=4(n﹣4)5 4(n﹣4)﹣4+(n﹣5)=5(n﹣5)……n 0由上表可得y=x(n﹣x).当n=29时,y=x(29﹣x)=﹣x2+29x=﹣(x﹣14.5)2+210.25,当x=14或15时,y取得最大值210.答:在整个行程中,快递货车装载的货包数量最多是210个.故答案为:210.【点评】本题考查了规律型:数字的变化类,二次函数的性质在实际生活中的应用,二次函数的最值在x=﹣时取得.6.①②③【分析】证明∠BAE=∠CEG,结合∠B=∠BCD可证明△ABE∽△ECG,可判断①;在BA上截取BM=BE,证明△AME≌△ECF,可判断②;可得△AEF为等腰直角三角形,证明∠BAE+∠DAF=45°,结合∠BAE=∠CEF,∠FCH=45°=∠CFE+∠CEF,可判断③;设BE=x,则BM=x,AM=AB-BM=2-x,根据△AME≌△ECF,求出△AME面积的最大值即可判断④.【详解】解:∵四边形ABCD为正方形,∴∠B=∠BCD=90°,∵∠AEF=90°,∴∠AEB+∠CEG=90°,又∠AEB+∠BAE=90°,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;在BA上截取BM=BE,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA-BM=BC-BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°=∠AME , ∵∠BAE=∠FEC , ∴△AME ≌△ECF (ASA ),∴AE=EF ,故②正确; ∴△AEF 为等腰直角三角形, ∴∠EAF=∠EFA=45°, ∴∠BAE+∠DAF=45°,而∠BAE=∠CEF ,∠FCH=45°=∠CFE+∠CEF , ∴DAF CFE ∠=∠,故③正确; 设BE=x ,则BM=x ,AM=AB-BM=2-x , S △AME =12•x•(2-x )=212x x -+,当x=1时,S △AME 有最大值12, 而△AME ≌△ECF , ∴S △AME =S △CEF ,∴S △CEF 有最大值12,所以④错误;综上:正确结论的序号是:①②③. 故答案为:①②③.【点拨】本题考查了全等三角形的判定和性质,相似三角形的判定,等腰直角三角形的判定和性质,正方形的性质,二次函数的最值,解题的关键是添加辅助线,灵活运用全等三角形的知识解决线段的问题.7.(1)211433y x x =-++;(2)2222PN =,当2m =时,PN 有最大值,最大值为223. (3)满足条件的点Q 有两个,坐标分别为:()1,3Q ,52852Q -⎝⎭. 【分析】(1)将点A 、B 的坐标代入解析式中求解即可;(2)由(1)求得点C 坐标,利用待定系数法求得直线BC 的解析式,然后用m 表示出PN ,再利用二次函数的性质即可求解;(3)分三种情况:①AC=CQ ;②AC=AQ ;③CQ=AQ ,分别求解即可. 【详解】解:(1)将(3,0)A -,(4,0)B 代入24y ax bx =++,得934016440a b a b -+=⎧⎨++=⎩,解之,得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩. 所以,抛物线的表达式为211433y x x =-++. (2)由211433y x x =-++,得(0,4)C .将点(4,0)B 、(0,4)C 代入y kx b =+,得404k b b +=⎧⎨=⎩,解之,得14k b =-⎧⎨=⎩.所以,直线BC 的表达式为:4y x =-+.由(,0)M m ,得211,433P m m m ⎛⎫-++ ⎪⎝⎭,4(),Q m m -+.∴221114443333PQ m m m m m =-+++-=-+∵OB OC =,∴45ABC OCB ∠=∠=︒. ∴45PQN BQM ∠=∠=︒.∴2214sin 4533PN PQ m m ⎫=︒-+=⎪⎝⎭.22)m =-∵0< ∴当2m =时,PN. (3)存在,理由如下:由点(3,0)A -,(0,4)C ,知5AC =.①当AC CQ =时,过Q 作QE y ⊥轴于点E ,易得222222[4(4)]2CQ EQ CE m m m =+=+--+=,由2225m =,得152m =,252m = 此时,点52852Q -⎝⎭;②当AC AQ =时,则5AQ AC ==.在Rt AMQ △中,由勾股定理,得22[(3)](4)25m m --+-+=. 解之,得1m =或0m =(舍) 此时,点()1,3Q ; ③当CQ AQ =时,由2222[(3)](4)m m m =--+-+,得252m =(舍). 综上知所述,可知满足条件的点Q 有两个,坐标分别为:()1,3Q ,52852Q -⎝⎭. 【点拨】本题是一道二次函数与几何图形的综合题,解答的关键是认真审题,找出相关条件,运用待定系数法、数形结合法等解题方法确定解题思路,对相关信息进行推理、探究、发现和计算.。

2021年中考数学 专题训练:二次函数的图象及其性质(含答案)

2021年中考数学 专题训练:二次函数的图象及其性质(含答案)

2021中考数学专题训练:二次函数的图象及其性质一、选择题1. 二次函数y=(x-1)2+3的图象的顶点坐标是 ()A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)2. 若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为()A. 0,5B. 0,1C. -4,5D. -4,13. 已知抛物线y=ax2+bx+c经过(1,0),(2,0),(3,4)三点,则该抛物线的解析式为()A.y=x2-3x+2 B.y=2x2-6x+4C.y=2x2+6x-4 D.y=x2-3x-24. 二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个5. 将抛物线y=-3x2平移,得到抛物线y=-3(x-1)2-2,下列平移方式中,正确的是()A.先向左平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向下平移2个单位长度C.先向右平移1个单位长度,再向上平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度6. 海滨广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的水的最大高度为3米,此时喷水的水平距离为12米.在如图所示的平面直角坐标系中,这支喷泉喷出的水在空中划出的曲线满足的函数解析式是( )A .y =-⎝ ⎛⎭⎪⎫x -122+3B .y =3⎝ ⎛⎭⎪⎫x -122+1C .y =-8⎝ ⎛⎭⎪⎫x -122+3D .y =-8⎝ ⎛⎭⎪⎫x +122+37. (2019•成都)如图,二次函数2y ax bx c =++的图象经过点1,0A,()5,0B ,下列说法正确的是A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =8. (2019•咸宁)已知点()()()()1,,1,,2,0Am B m C m n n -->在同一个函数的图象上,这个函数可能是 A .y x = B .2y x=-C .2y x =D .2y x =﹣9. 已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A. 当a =1时,函数图象过点(-1,1)B. 当a =-2时,函数图象与x 轴没有交点C. 若a >0,则当x ≥1时,y 随x 的增大而减小D. 若a <0,则当x ≤1时,y 随x 的增大而增大10. 点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( ) A. y 3>y 2>y 1 B. y 3>y 1=y 2 C. y 1>y 2>y 3 D. y 1=y 2>y 3二、填空题11. 如果二次函数y =a (x -h )2+k 的图象的顶点坐标为(-1,-3),那么它的对称轴为直线x =________,k 的值为________.12. (2019•株洲)若二次函数2y ax bx =+的图象开口向下,则__________0(填“=”或“>”或“<”).13. 某学习小组为了探究函数y =x 2-|x |的图象与性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m =________. x … -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 … y … 2 0.75 0 -0.25 0 -0.25 0 m 2 …14. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.15. 已知函数y =ax 2+c 的图象与函数y =-3x 2-2的图象关于x 轴对称,则a =________,c =________.16. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,N a b =-.则M 、N 的大小关系为M __________N .(填“>”、“=”或“<”)三、解答题17. 如图,足球场上守门员徐杨在O处抛出一高球,球从离地面1 m处的点A飞出,其飞行的最大高度是4 m,最高处距离飞出点的水平距离是6 m,且飞行的路线是抛物线的一部分.以点O为坐标原点,竖直向上的方向为y轴的正方向,球飞行的水平方向为x轴的正方向建立坐标系,并把球看成一个点.(参考数据:4 3≈7)(1)求足球的飞行高度y(m)与飞行的水平距离x(m)之间的函数关系式;(不必写出自变量的取值范围)(2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(精确到1 m)(3)若对方一名1.7 m的队员在距落地点C 3 m的点H处跃起0.3 m进行拦截,则这名队员能拦到球吗?18. (2019•云南)已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值:(2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标.19. 如图,已知抛物线经过A(-3,0),B(0,3)两点,且其对称轴为直线x=-1.(1)求此抛物线的解析式;(2)若P是抛物线上点A与点B之间的动点(不包括点A,B),求△P AB的面积的最大值,并求出此时点P的坐标.20. 如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE.求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标.21. 如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图22021中考数学 专题训练:二次函数的图象及其性质-答案一、选择题 1. 【答案】A2. 【答案】D 【解析】由y =(x -2)2+k 知此二次函数的顶点坐标为(2,k ),对称轴为x =2,由y =x 2+bx +5知其对称轴为x =-b 2,得-b2=2,所以b =-4;于是可以得到函数的解析式是y =x 2-4x +5,把(2,k )代入其中即得k =1.3. 【答案】B [解析] 把(1,0),(2,0),(3,4)分别代入y =ax 2+bx +c ,得⎩⎨⎧a +b +c =0,4a +2b +c =0,9a +3b +c =4,解得⎩⎨⎧a =2,b =-6,c =4,所以y =2x 2-6x +4.故选B.4. 【答案】C[解析]①∵抛物线开口向上,∴a>0.∵抛物线的对称轴在y 轴右侧,∴->0, ∴b<0.∵抛物线与y 轴交于负半轴,∴c<0,∴abc>0,∴①错误; ②当x=-1时,y>0,∴a -b +c>0.∵-=1,∴b=-2a.把b=-2a 代入a -b +c>0中得3a +c>0,∴②正确; ③当x=1时,y<0,∴a +b +c<0,∴a +c<-b. ∵a +c>b ,∴|a +c|<|b|,即(a +c )2-b 2<0, ∴③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a +b +c , ∴a +b +c ≤am 2+mb +c ,即a +b ≤m (am +b ),∴④正确.故选C .5. 【答案】D[解析] ∵抛物线y =-3x 2的顶点坐标为(0,0),抛物线y =-3(x-1)2-2的顶点坐标为(1,-2),∴将抛物线y =-3x 2向右平移1个单位长度,再向下平移2个单位长度,可得到抛物线y =-3(x -1)2-2.6. 【答案】C7. 【答案】D【解析】由图象可知图象与y 轴交点位于y 轴正半轴,故c>0,A 选项错误;函数图象与x 轴有两个交点,所以24b ac ->0,B 选项错误; 观察图象可知x=-1时y=a-b+c>0,所以a-b+c>0,C 选项错误; 根据图象与x 轴交点可知,对称轴是(1,0),(5,0)两点的中垂线,1532x +==, 即x=3为函数对称轴,D 选项正确, 故选D .8. 【答案】D【解析】()()1,,1,A m B m -, ∴点A 与点B 关于y 轴对称;由于2y x y x==-,的图象关于原点对称,因此选项A ,B 错误;∵0n >,∴m n m -<,由()()1,,2,B m C m n -可知,在对称轴的右侧,y 随x 的增大而减小, 对于二次函数只有0a <时,在对称轴的右侧,y 随x 的增大而减小, ∴D 选项正确,故选D .9. 【答案】D【解析】当a =1时,函数为y =x 2-2x -1,当x =-1时,y =1+2-1=2,其图象经过点(-1,2),不过点(-1,1),所以A 选项错误;当a =-2时,函数为y =-2x 2+4x -1,b 2-4ac =16-4×(-2)×(-1)=8>0,抛物线与x 轴有两个交点,故选项B 错误;当a >0时,抛物线的开口向上,它的对称轴是直线x =--2a2a =1,当x ≥1,在对称轴的右侧,y 随x 的增大而增大,所以C 选项错误;当a <0时,抛物线的开口向下,它的对称轴是直线x =--2a2a =1,当x ≤1,在对称轴的左侧,y 随x 的增大而增大,所以D 选项正确.10. 【答案】D 【解析】此类题利用图象法比较大小更直观简单.容易求出二次函数y =-x 2+2x +c 图象的对称轴为直线x =1,可画草图如解图:由解图知,P 1(-1,y 1),P 2(3,y 2)关于直线x =1对称,P 3(5,y 3)在图象的右下方部分上,因此,y 1=y 2>y 3.二、填空题11. 【答案】-1 -312. 【答案】<【解析】∵二次函数2y ax bx =+的图象开口向下, ∴0a <. 故答案为:<.13. 【答案】0.75【解析】根据表格可得该图象关于y 轴对称,故当x =1.5和x=-1.5时,y 的值相等.∴m =0.75.14. 【答案】21(4)2y x =-【解析】设原来的抛物线解析式为:2y ax =(0)a ≠, 把(2,2)P 代入,得24a =, 解得12a =, 故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-, 把(2,2)P 代入,得212(2)2b =-,解得0b =(舍去)或4b =,所以平移后抛物线的解析式是:21(4)2y x =-, 故答案为:21(4)2y x =-.15. 【答案】3216. 【答案】<【解析】当1x =-时,0y a b c =-+>,当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<, 即M N <, 故答案为:<.三、解答题17. 【答案】解:(1)由题意,设y =a(x -6)2+4. ∵A(0,1)在抛物线上, ∴1=a(0-6)2+4, 解得a =-112, ∴y =-112(x -6)2+4.(2)令y =0,则0=-112(x -6)2+4,解得x 1=4 3+6≈13,x 2=-4 3+6<0(舍去),∴在没有队员干扰的情况下,球飞行的最远水平距离约是13 m. (3)当x =13-3=10时,y =83>1.7+0.3=2, ∴这名队员不能拦到球.18. 【答案】(1)∵抛物线y=x 2+(k 2+k-6)x+3k 的对称轴是y 轴,∴26022b k k x a +-=-=-=, 即k 2+k-6=0, 解得k=-3或k=2,当k=2时,二次函数解析式为y=x 2+6,它的图象与x 轴无交点,不满足题意,舍去,当k=-3时,二次函数解析式为y=x 2-9,它的图象与x 轴有两个交点,满足题意, ∴k=-3.(2)∵P 到y 轴的距离为2, ∴点P 的横坐标为-2或2,当x=2时,y=-5; 当x=-2时,y=-5,∴点P 的坐标为(2,-5)或(-2,-5).19. 【答案】解:(1)设抛物线的解析式为y =ax 2+bx +c. 根据题意,得⎩⎪⎨⎪⎧9a -3b +c =0,c =3,-b2a =-1,解得⎩⎨⎧a =-1,b =-2,c =3. 所以抛物线的解析式为y =-x 2-2x +3.(2)易知直线AB 的表达式为y =x +3,设P(m ,-m 2-2m +3),过点P 作PC ∥y 轴交AB 于点C ,则C(m ,m +3),PC =(-m 2-2m +3)-(m +3)=-m 2-3m , 所以S △PAB =12×(-m 2-3m)×3=-32(m 2+3m)=-32(m +32)2+278, 所以当m =-32时,S △PAB 有最大值278,此时点P 的坐标为(-32,154).20. 【答案】(1)将点B (1,4),E (3,0)的坐标代入抛物线的解析式得,0394⎩⎨⎧=+=+b a b a 解得,62⎩⎨⎧=-=b a ∴抛物线的解析式为y =-2x 2+6x ; (2)∵BD ⊥DE , ∴∠BDE =90°,∴∠BDC +∠EDO =90°,又∵∠ODE +∠DEO =90°, ∴∠BDC =∠DEO , 在△BDC 和△DEO 中,⎩⎨⎧∠BCD =∠DOE =90°∠BDC =∠DEOBD =DE, ∴△BDC ≌△DEO (AAS), ∴OD =BC =1,∴D (0,1);(3)如解图,作点B 关于抛物线的对称轴的对称点B ′,连接D B '交抛物线的对称轴于点M .解图∵抛物线对称轴为直线x =a b 2-=32, ∴点B ′的坐标为(2,4),∵点B 与点B ′关于x =32对称,∴MB =M B ',∴DM +MB =DM +MB ′,∴当点D 、M 、B ′在同一条直线上时,MD +MB 有最小值(即△BMD 的周长有最小值),∵DC =OC -OD =3,CB ′=2,CB =1,∴D B '=2'2CB DC +=13,BD =22BC DC +=10,∴△BDM 周长的最小值=10+13,设直线D B '的解析式为y =kx +t ,将点D 、B ′的坐标代入得⎩⎨⎧t =12k +t =4, 解得⎩⎪⎨⎪⎧k =32t =1,∴直线DB ′的解析式为y =32x +1, 将x =32代入得y =134,∴M (32,134).21. 【答案】 (1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=.当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3). (3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G . 在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD .由于3tan 4GAF ∠=,tan 5DQ t PQD QP t ∠==-,所以345t t =-.解得207t =.图3 图4。

2021年中考数学专题冲刺训练二次函数的图象及其性质答案解析版

2021年中考数学专题冲刺训练二次函数的图象及其性质答案解析版

2021中考数学专题冲刺训练:二次函数的图象及其性质一、选择题1. 一次函数y=ax+b与反比例函数y=的图象如图所示,则二次函数y=ax2+bx+c 的大致图象是()2. 对于函数y=-2(x-m)2,下列说法不正确的是()A.其图象开口向下B.其图象的对称轴是直线x=mC.最大值为0D.其图象与y轴不相交3. 已知二次函数y=a(x-1)2+c的图象如图,则一次函数y=ax+c的图象大致是()4. (2020·福建)10.已知()111,P x y ,()222,P x y 是抛物线22=-y ax ax 上的点,下列命题正确的是( )A.若12|1||1|->-x x ,则12>y yB.若12|1||1|->-x x ,则12<y yC.若12|1||1|-=-x x ,则12=y yD.若12=y y ,则12=x x5. 二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax +b 与反比例函数y =cx 的图象可能是( )6. 二次函数y =ax 2+bx +c 的图象如图所示,下列结论中正确的有( )①abc<0;②b 2-4ac<0;③2a>b ;④(a +c)2<b 2.A .1个B .2个C .3个D .4个7. (2020·贵阳)(3分)已知二次函数y =ax 2+bx +c 的图象经过(﹣3,0)与(1,0)两点,关于x 的方程ax 2+bx +c +m =0(m >0)有两个根,其中一个根是3.则关于x 的方程ax 2+bx +c +n =0 (0<n <m )有两个整数根,这两个整数根是( )A .﹣2或0B .﹣4或2C .﹣5或3D .﹣6或48. 某国家足球队在某次训练中,一名队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁,若足球运动的路线是抛物线y =ax 2+bx +c 的一部分(如图),有下列结论:①a<-160;②-160<a<0;③a -b +c>0;④a<b<-12a.其中正确的是( )A.①③B.①④C.②③D.②④二、填空题9. 若一元二次方程ax2+bx+c=0的根为x1=2,x2=12,则二次函数y=ax2+bx+c的图象与x轴的交点坐标为______________.10. 抛物线y=12(x+3)2-2是由抛物线y=12x2先向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.11. (2019•襄阳)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为2205h t t=-,则小球从飞出到落地所用的时间为__________s.12. 将抛物线y=2x2向左平移1个单位长度,再向下平移2个单位长度,所得抛物线的解析式为________________.13. 设A,B,C三点分别是抛物线y=x2-4x-5与y轴的交点以及与x轴的两个交点,则△ABC的面积是________.14. 如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是________.(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.15. 2018·湖州如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.16. 如图,在平面直角坐标系中,抛物线y=ax2(a>0)与y=a(x-2)2交于点B,抛物线y=a(x-2)2交y轴于点E,过点B作x轴的平行线与两条抛物线分别交于D,C两点.若A是x轴上两条抛物线顶点之间的一点,连接AD,AC,EC,ED,则四边形ACED的面积为________.(用含a的代数式表示)三、解答题17. 如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.18. 如图,二次函数y=-x2+bx+3的图象与x轴交于点A,B,与y轴交于点C,点A的坐标为(-1,0),点D为OC的中点,点P在抛物线上.(1)b=.(2)若点P在第一象限,过点P作PH⊥x轴,垂足为H,PH与BC,BD分别交于点M,N.是否存在这样的点P,使得PM=MN=NH,若存在,求出点P的坐标;若不存在,请说明理由.19. 在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上.若m<n,求x0的取值范围.20. 在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,列表如下: x…-1 0 1 2 3 …y甲… 6 3 2 3 6 …乙写错了常数项,列表如下:x…-1 0 1 2 3 …y乙…-2 -1 2 7 14 …通过上述信息,解决以下问题:(1)求原二次函数y=ax2+bx+c(a≠0)的表达式;(2)对于二次函数y=ax2+bx+c(a≠0),当x时,y的值随x的值增大而增大;(3)若关于x的方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围.21. 已知抛物线l :y =(x -h )2-4(h 为常数).(1)如图22-B -2(a),当抛物线l 恰好经过点P (1,-4)时,l 与x 轴从左到右的交点为A ,B ,与y 轴交于点C .①求l 的解析式,并写出l 的对称轴及顶点坐标.②在l 上是否存在点D (与点C 不重合),使S △ABD =S △ABC ?若存在,请求出点D 的坐标;若不存在,请说明理由.③M 是l 上任意一点,过点M 作ME ⊥y 轴于点E ,交直线BC 于点D ,过点D 作x 轴的垂线,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点M 的坐标.(2)设l 与直线y =35x -245有个交点的横坐标为x 0,且满足3≤x 0≤5,通过l 位置随h 变化的过程,直接写出h 的取值范围.22. 已知函数y=x 2+bx+c (b ,c 为常数)的图象经过点(-2,4).(1)求b ,c 满足的关系式;(2)设该函数图象的顶点坐标是(m ,n ),当b 的值变化时,求n 关于m 的函数解析式;(3)若该函数的图象不经过第三象限,当-5≤x ≤1时,函数的最大值与最小值之差为16,求b 的值.23. 已知直线y =3x -3分别与x 轴、y 轴交于点A ,B ,抛物线y =ax 2+2x +c 经过点A ,B .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,若点D 在y轴的正半轴上,且四边形ABCD 为梯形. ①求点D 的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P ,其对称轴与直线y =3x -3交于点E ,若73tan =∠DPE ,求四边形BDEP 的面积.24. 如图,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2, 2),求实数m 的值; (2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.参考答案一、选择题1. 【答案】A [解析]∵双曲线y=位于第一、三象限, ∴c>0,∴抛物线与y 轴交于正半轴.∵直线y=ax +b 经过第一、二和四象限,∴a<0,b>0,即->0, ∴抛物线y=ax 2+bx +c 开口向下,对称轴在y 轴的右侧.故选A .2. 【答案】D3. 【答案】B[解析] 根据二次函数的图象开口向上,得a >0,根据c 是二次函数图象顶点的纵坐标,得出c <0,故一次函数y =ax +c 的图象经过第一、三、四象限.故选B.4. 【答案】C【解析】本题考查了二次函数的图象和性质,∵22=-y ax ax =a (x -1)2-a ,∴抛物线的对称轴为x =1,根据二次函数的对称性知若12|1||1|-=-x x ,则12=y y ,因此本题选C .5. 【答案】C 【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b 异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b过第一、三、四象限,反比例函数y =cx 位于第二、四象限,故答案为C.6. 【答案】A [解析] ①由抛物线的开口方向向下知a<0,由对称轴在y 轴的左侧得a ,b同号,∴b<0.由抛物线与y 轴交于正半轴得c>0,∴abc>0,故结论①错误. ②由抛物线与x 轴有两个交点得b 2-4ac>0,故结论②错误.③由图象知对称轴x =-b 2a >-1得b2a <1;由a<0,结合不等式的性质三可得b>2a ,即2a<b ,故结论③错误.④由图象知:当x =1时,y<0,即a +b +c<0;当x =-1时,y>0,即a -b +c>0, ∴(a +b +c)(a -b +c)<0,即(a +c)2-b 2<0,∴(a +c)2<b 2.故结论④正确. 故选A.7. 【答案】B .【解析】解:∵二次函数y =ax 2+bx +c 的图象经过(﹣3,0)与(1,0)两点,∴当y =0时,0=ax 2+bx +c 的两个根为﹣3和1,函数y =ax 2+bx +c 的对称轴是直线x =﹣1,又∵关于x 的方程ax 2+bx +c +m =0(m >0)有两个根,其中一个根是3.∴方程ax 2+bx +c +m =0(m >0)的另一个根为﹣5,函数y =ax 2+bx +c 的图象开口向上,∵关于x 的方程ax 2+bx +c +n =0 (0<n <m )有两个整数根,∴这两个整数根是﹣4或2, 故选:B .8. 【答案】B [解析] 用排除法判定.易知c =2.4.把(12,0)代入y =ax 2+bx +c 中,可得144a +12b +2.4=0,即12a +15+b =0.由图象可知a<0,对称轴为直线x =-b 2a ,且0<-b2a <6,∴b>0,∴12a +15<0,∴a<-160,即①成立,②不成立,故不可能选C 与D.∵-b2a <6,∴b<-12a.∵a<0,b>0,∴a<b<-12a ,∴④正确,而a -b +c 的取值不确定, ∴③不正确.故选B.二、填空题9. 【答案】(2,0),⎝ ⎛⎭⎪⎫12,010. 【答案】左3 下 2 [解析] 抛物线y =12x 2的顶点坐标为(0,0),而抛物线y =12(x +3)2-2的顶点坐标为(-3,-2),所以把抛物线y =12x 2先向左平移3个单位长度,再向下平移2个单位长度,就得到抛物线y =12(x +3)2-2.11. 【答案】4【解析】依题意,令0h =得: ∴20205t t =-, 得:(205)0t t -=, 解得:0t =(舍去)或4t =,∴即小球从飞出到落地所用的时间为4s , 故答案为:4.12. 【答案】y =2(x +1)2-213. 【答案】15[解析] 当x =0时,y =-5,∴点A 的坐标为(0,-5);当y =0时,x 2-4x -5=0,解得x 1=-1,x 2=5,不妨设点B 在点C 的左侧, ∴点B 的坐标为(-1,0),点C 的坐标为(5,0),则BC =6, ∴△ABC 的面积为12×6×5=15.14. 【答案】③④ [解析] ∵抛物线开口向上,∴a >0.又∵对称轴为直线x =-b2a >0,∴b <0,∴结论①不正确;∵当x =-1时,y >0,∴a -b +c >0,∴结论②不正确;根据抛物线的对称性,可将阴影部分的面积进行转化,从而求得阴影部分的面积=2×2=4,∴结论③正确;∵4ac -b 24a =-2,c =-1,∴b 2=4a ,∴结论④正确.综上,正确的结论是③④.15. 【答案】-2[解析] ∵四边形ABOC 是正方形,∴点B 的坐标为(-b 2a ,-b2a ). ∵抛物线y =ax 2过点B ,∴-b 2a =a (-b2a )2,解得b 1=0(舍去),b 2=-2.16. 【答案】8a[解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B ,∴BD =BC =2, ∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a , ∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.三、解答题17. 【答案】解:(1)∵抛物线y =ax 2+2ax +1与x 轴仅有一个交点, ∴b 2-4ac =(2a)2-4a =0,解得a =1,a =0(舍去), ∴抛物线的解析式:y =x 2+2x +1.(3分)(2)设直线AB 的解析式为y =kx +b , ∵抛物线解析式y =x 2+2x +1=(x +1)2, ∴A(-1,0),(4分)过点B 作BD ⊥x 轴于点D ,如解图, ∵OC ⊥x 轴, ∴OC ∥BD ,∵C 是AB 中点, ∴O 是AD 中点, ∴AO =OD =1,(6分) ∴点B 的横坐标为1,把x =1代入抛物线中,得y =(x +1)2=(1+1)2=4, ∴B 的坐标为(1,4).(7分)把点A(-1,0) ,B(1,4)代入y =kx +b , 得⎩⎨⎧0=-k +b 4=k +b , 解得⎩⎨⎧k =2b =2,∴直线AB 的解析式为: y =2x +2.(8分)18. 【答案】解:(1)2 [解析]∵二次函数y=-x 2+bx +3的图象过点A (-1,0), ∴0=-(-1)2-b +3. ∴b=2. 故填2.(2)如图①,连接BD ,BC ,过点P 作PH ⊥x 轴于点H ,分别交BC ,BD 于点M ,N.由题意知,抛物线y=-x2+2x+3交x轴于点A(-1,0),B(3,0),交y轴于点C(0,3),且点D为OC的中点,∴D0,.易求直线BC的解析式为y=-x+3,直线BD的解析式为y=-x+.假设存在符合条件的点P(m,-m2+2m+3),则M(m,-m+3),N m,-m+.∵PM=MN=NH,∴-m+=(-m2+2m+3)-(-m+3).整理,得2m2-7m+3=0,解得m1=,m2=3(不合题意,舍去).∴P使得PM=MN=NH.19. 【答案】【思维教练】由图象过点(1,-2),将其带入y1的函数表达式中,解方程即可;(2)由y1=(x+a)(x-a-1)可得出y1过x轴上的两点的坐标,然后分两种情况讨论即可;(3)先求出y1=(x+a)(x-a-1)的对称轴,根据开口向上的二次函数,离对称轴越近,函数值越小即可得解.解:(1)∵函数y1=(x+a)(x-a-1)图象经过点(1,-2),∴把x=1,y=-2代入y1=(x+a)(x-a-1)得,-2=(1+a)(-a),(2分)化简得,a2+a-2=0,解得,a1=-2,a2=1,∴y1=x2+x-2;(4分)(2)函数y1=(x+a)(x-a-1)图象在x轴的交点为(-a,0),(a+1,0),①当函数y2=ax+b的图象经过点(-a,0)时,把x=-a,y=0代入y2=ax+b中,得a2=b;(6分)②当函数y2=ax+b的图象经过点(a+1,0)时,把x=a+1,y=0代入y2=ax+b中,得a2+a=-b;(8分)(3)∵抛物线y1=(x+a)(x-a-1)的对称轴是直线x=-a+a+12=12,m<n,∵二次项系数为1,∴抛物线的开口向上,∴抛物线上的点离对称轴的距离越大,它的纵坐标也越大,∵m<n,∴点Q离对称轴x=12的距离比P离对称轴x=12的距离大,(10分)∴|x0-12|<1-12,∴0<x0<1.(12分)20. 【答案】解:(1)根据甲同学的错误可知x=0时,y=c=3是正确的,由甲同学提供的数据,选择x=-1,y=6;x=1,y=2代入y=ax2+bx+3,得解得a=1是正确的.根据乙同学提供的数据,选择x=-1,y=-2;x=1,y=2代入y=x2+bx+c,得解得b=2是正确的,∴y=x2+2x+3.(2)≥-1[解析]抛物线y=x2+2x+3的对称轴为直线x=-1,∵二次项系数为1,故抛物线开口向上,∴当x≥-1时,y的值随x值的增大而增大.故答案为≥-1.(3)∵方程ax2+bx+c=k(a≠0)有两个不相等的实数根,即x2+2x+3-k=0有两个不相等的实数根,∴Δ=4-4(3-k)>0,解得k>2.21. 【答案】解:(1)①将P(1,-4)代入y=(x-h)2-4,得(1-h)2-4=-4,解得h=1,∴抛物线l的解析式为y=(x-1)2-4,∴抛物线l的对称轴为直线x=1,顶点坐标为(1,-4).②存在.将x=0代入y=(x-1)2-4,得y=-3,∴点C的坐标为(0,-3),∴OC=3.∵S△ABD=S△ABC,∴点D的纵坐标为3或-3.当y=-3时,(x-1)2-4=-3,解得x1=2,x2=0(舍去),∴点D的坐标为(2,-3).当y=3时,(x-1)2-4=3,解得x1=1+7,x2=1-7,∴点D的坐标为(1+7,3)或(1-7,3).综上所述,在抛物线l上存在点D(与点C不重合),使S△ABD=S△ABC,点D的坐标为(2,-3)或(1+7,3)或(1-7,3).③如图(a)所示:∵∠EOF=∠OED=∠OFD=90°,∴四边形OEDF为矩形,∴OD=EF.依据垂线段的性质可知:当OD⊥BC时,OD有最小值,即EF有最小值.把y=0代入抛物线的解析式,得(x-1)2-4=0,解得x1=-1,x2=3,∴B(3,0),∴OB=OC.又∵OD⊥BC,∴CD=BD.∴点D的坐标为(32,-32).将y=-32代入y=(x-1)2-4,得(x-1)2-4=-32,解得x1=-102+1,x2=102+1,∴点M的坐标为(-102+1,-32)或(102+1,-32).(2)∵y=(x-h)2-4,∴抛物线的顶点在直线y=-4上.对于直线y=35x-245,当3≤x0≤5时,-3≤y0≤-9 5,即抛物线l与直线y=35x-245在G(3,-3),H(5,-95)之间的一段有一个交点.当抛物线经过点G时,(3-h)2-4=-3,解得h=2或h=4.当抛物线经过点H时,(5-h)2-4=-95,解得h=5+555或h=5-555.随h的逐渐增加,l的位置随之向右平移,如图(b)所示.由函数图象可知:当2≤h≤5-555或4≤h≤5+555时,抛物线l与直线在3≤x0≤5段有一个交点.22. 【答案】解:(1)将(-2,4)代入y=x2+bx+c,得4=(-2)2-2b+c,∴c=2b,∴b,c满足的关系式是c=2b.(2)把c=2b代入y=x2+bx+c,得y=x2+bx+2b,∵顶点坐标是(m,n),∴n=m2+bm+2b,且m=-,即b=-2m,∴n=-m2-4m.∴n关于m的函数解析式为n=-m2-4m.(3)由(2)的结论,画出函数y=x2+bx+c和函数y=-x2-4x的图象.∵函数y=x2+bx+c的图象不经过第三象限,∴-4≤-≤0.①当-4≤-≤-2,即4≤b≤8时,如图①所示,当x=1时,函数取到最大值y=1+3b ,当x=-时,函数取到最小值y=,∴(1+3b )-=16,即b 2+4b -60=0,∴b 1=6,b 2=-10(舍去); ②当-2<-≤0,即0≤b<4时,如图②所示,当x=-5时,函数取到最大值y=25-3b ,当x=-时,函数取到最小值y=,∴(25-3b )-=16,即b 2-20b +36=0, ∴b 1=2,b 2=18(舍去). 综上所述,b 的值为2或6.23. 【答案】(1)直线y =3x -3与x 轴的交点为A (1,0),与y 轴的交点为B (0,-3). 将A (1,0)、B (0,-3)分别代入y =ax 2+2x +c , 得20,3.a c c ++=⎧⎨=-⎩解得1,3.a c =⎧⎨=-⎩ 所以抛物线的表达式为y =x 2+2x -3.对称轴为直线x =-1,顶点为(-1,-4).(2)①如图2,点B 关于直线l 的对称点C 的坐标为(-2,-3). 因为CD //AB ,设直线CD 的解析式为y =3x +b , 代入点C (-2,-3),可得b =3. 所以点D 的坐标为(0,3).②过点P 作PH ⊥y 轴,垂足为H ,那么∠PDH =∠DPE . 由73tan =∠DPE ,得3tan 7PH PDH DH∠==.而DH =7,所以PH =3. 因此点E 的坐标为(3,6). 所以1()242BDEP S BD EP PH =+⋅=梯形.图2 图3考点伸展第(2)①用几何法求点D 的坐标更简便: 因为CD //AB ,所以∠CDB =∠ABO .因此13BC OA BDOB==.所以BD =3BC =6,OD =3.因此D (0,3).24. 【答案】(1)将M (2, 2)代入1(2)()y x x m m=-+-,得124(2)m m=-⨯-.解得m =4.(2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH最小.设对称轴与x 轴的交点为P ,那么HP EO CPCO=.因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2.(4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′. 由于∠BCE =∠FBC ,所以当CE BC CBBF=,即2BC CE BF =⋅时,△BCE ∽△FBC .设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+. 解得x =m +2.所以F ′(m +2, 0).由'CO BF CE BF =244m BF m +=+.所以2(4)4m m BF ++=. 由2BC CE BF =⋅,得222(4)4(2)4m m m m +++=+整理,得0=16.此方程无解.图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BC BCBF=,即2BC BE BF =⋅时,△BCE ∽△BFC .在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+.解得x =2m .所以F ′(2,0)m .所以BF ′=2m +2,2(22)BF m =+.由2BC BE BF =⋅,得2(2)222(22)m m +=+.解得222m =± 综合①、②,符合题意的m 为222+.。

2021年中考复习数学 专题训练:二次函数的图象及性质(含答案)

2021年中考复习数学 专题训练:二次函数的图象及性质(含答案)

2021中考数学专题训练:二次函数的图象及性质一、选择题1. 在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到2. 抛物线y=2(x-3)2+1的顶点坐标是()A. (3,1)B. (3,-1)C. (-3,1)D. (-3,-1)3. 已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:有下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上的两点,则x1<x2.其中正确的个数是()A.2 B.3 C.4 D.54. 某人画二次函数y=ax2+bx+c的图象时,列出下表(计算没有错误):根据此表判断:一元二次方程ax2+bx+c=0的一个根x1满足下列关系式中的() A.3.2<x1<3.3 B.3.3<x1<3.4 C.3.4<x1<3.5 D.3.1<x1<3.25. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2>4ac;②abc<0;③2a +b-c>0;④a+b+c<0.其中正确的是()A.①④B.②④C.②③D.①②③④6. (2019•嘉兴)小飞研究二次函数y=–(x–m)2–m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=–x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当–1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是A.①B.②C.③D.④7. (2020·常德)二次函数的图象如图所示,下列结论:240b ac ->①;0abc <②;40a b +=③;420a b c -+>④.其中正确结论的个数是( )A .4B .3C .2D .18. (2020·湖北孝感)将抛物线:y =-2x +3向左平移1个单位长度,得到抛物线,抛物线与抛物线关于x 轴对称,则抛物线的解析式为( ) A.y =--2 B.y =-+2 C.y =-2 D.y =+2二、填空题9. 经过A (4,0),B (-2,0),C (0,3)三点的抛物线解析式是_____________.10. 如图所示,抛物线y =ax 2-3x +a 2-1经过原点,那么a 的值是________.11. 已知函数y =ax 2+c 的图象与函数y =-3x 2-2的图象关于x 轴对称,则a =________,c =________.12. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,=-.则M、N的大小关系为M__________N.(填“>”、“=”或“<”)N a b13. 如图,抛物线y=-x2+x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x 轴,与拋物线相交于P,Q两点,则线段PQ的长为.14. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题15. 已知抛物线经过点A(1,0),B(0,3),且对称轴是直线x=2,求该抛物线的解析式.16. 把抛物线y=x2先向左平移1个单位长度,再向下平移4个单位长度,得到如图5-ZT -4所示的二次函数的图象.(1)求此二次函数的解析式;(2)在平移后的抛物线上存在一点M,使△ABM的面积为20,请直接写出点M的坐标.17. 如图,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,交y轴于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出点D的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.18. 如图1,把两个全等的Rt△AOB和Rt△COD方别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移的过程中与△COD重叠部分的面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.2021中考数学专题训练:二次函数的图象及性质-答案一、选择题1. 【答案】C[解析]根据二次函数的性质进行判断,由二次函数y=(x-2)2+1,得它的顶点坐标是(2,1),对称轴为直线x=2,当x=2时,函数的最小值是1,图象开口向上,当x≥2时,y的值随x值的增大而增大,当x<2时,y的值随x值的增大而减小,可由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到,所以选项C是错误的,故选C.2. 【答案】A【解析】∵抛物线y=a(x-h)2+k的顶点坐标是(h,k),∴y=2(x -3)2+1的顶点坐标是(3,1).3. 【答案】B[解析] 先根据二次函数的部分对应值在坐标系中描点、连线,由图象可以看出抛物线开口向上,所以结论①正确.由图象(或表格)可以看出抛物线与x轴的两个交点分别为(0,0),(4,0),所以抛物线的对称轴为直线x=2且抛物线与x轴的两个交点间的距离为4,所以结论②和④正确.由图象可以看出当0<x<4时,y<0,所以结论③错误.由图象可以看出当抛物线上的点的纵坐标为2或3时,对应的点均有两个,若A(x1,2),B(x2,3)是抛物线上两点,既有可能x1<x2,也有可能x1>x2,所以结论⑤错误.4. 【答案】B[解析] 从表格中的数据看,当3.2≤x≤3.5时,y随x的增大而增大,且x=3.3时,y=-0.17<0,x=3.4时,y=0.08>0,故y=0一定在3.3<x<3.4这个范围内取得,∴方程的根也在此范围内.故选B.5. 【答案】A[解析] ①因为图象与x轴有两个不同的交点,所以b2-4ac>0,即b2>4ac,故①正确.②图象开口向下,故a<0.图象与y轴交于正半轴,故c>0.因为对称轴为直线x=-1,所以-b2a=-1,所以2a=b,故b<0,所以abc>0,故②错误.③因为a<0,b<0,c>0,所以2a +b -c<0,故③错误.④当x =1时,y =a +b +c ,由图可得,当x =-3时,y<0.因为抛物线的对称轴为直线x =-1,所以由对称性可知,当x =1时,y<0,即a +b +c<0,故④正确.综上所述,①④正确,故选A.6. 【答案】C【解析】把(m ,–m+1)代入y=–x+1,–m+1=–m+1,左=右,故①正确; 当–(x –m)2–m+1=0时,x1=1m m -x2=1m m - 若顶点与x 轴的两个交点构成等腰直角三角形, 则1–m+(1–m)2+1–m+(1–m)2=4(1–m),即m2–m=0,∴m=0或1时,∴存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;故②正确; 当x1<x2,且x1、x2在对称轴右侧时,∵–1<0,∴在对称轴右侧y 随x 的增大而减小,即y1>y2,故③错误; ∵–1<0,∴在对称轴左侧y 随x 的增大而增大, ∴m≥2,故④正确, 故选C .7. 【答案】B 【解析】本题考查了二次函数图像与系数的关系.∵抛物线与x 轴有两个交点,∴方程20ax bx c ++=有两个不相等的实数根,240b ac ∴->,故①正确,由图象知,抛物线的对称轴为直线2x =,22ba∴-=,40a b ∴+=,故③正确,由图象知,抛物线开口方向向下,0a ∴<.∵40a b +=,0b ∴>.∵抛物线与y 轴的交点在y 轴的正半轴上,0c ∴>.0abc ∴<,故②正确,由图象知,当2x =-时,0y <,420a b c ∴-+<,故④错误.综上所述,正确的结论有3个,因此本题选B .8. 【答案】A【解析】利用平移得性质“上加下减,左加右减”得抛物线得解析式:y =-2(x +1)+3,整理得y =+2,再利用关于x 轴对称的性质“横坐标不变,纵坐标互为相反数”得:y =--2.故选A. 二、填空题9. 【答案】y=-(x -4)(x +2)[解析]设抛物线解析式为y=a (x -4)(x +2),把C (0,3)代入上式得3=a (0-4)(0+2),解得a=-,故y=-(x -4)(x +2).10. 【答案】-1 [解析] 因为抛物线经过原点(0,0),所以a 2-1=0,即a =±1.因为抛物线的开口向下,所以舍去a =1.故a =-1.11. 【答案】3212. 【答案】<【解析】当1x =-时,0y a b c =-+>, 当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<, 即M N <, 故答案为:<.13. 【答案】2[解析]当y=0时,-x 2+x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-x 2+x +2=2,∴点C 的坐标为(0,2). 当y=2时,-x 2+x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0),将A (-2,0),D (2,2)代入y=kx +b ,得解得∴直线AD 的解析式为y=x +1.当x=0时,y=x +1=1,∴点E 的坐标为(0,1). 当y=1时,-x 2+x +2=1,解得x 1=1-,x 2=1+, ∴点P 的坐标为(1-,1),点Q 的坐标为(1+,1),∴PQ=1+-(1-)=2.14. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题15. 【答案】解:∵抛物线的对称轴是直线x =2且经过点A(1,0),∴由抛物线的对称性可知,抛物线还经过点(3,0).设抛物线的解析式为y =a(x -1)(x -3).把(0,3)代入解析式,得3=3a ,∴a =1,∴y =(x -1)(x -3),即该抛物线的解析式为y =x2-4x +3.16. 【答案】解:(1)此二次函数的解析式为y =(x +1)2-4,即y =x2+2x -3.(2)∵当y =0时,x2+2x -3=0,解得x1=-3,x2=1,∴A(1,0),B(-3,0),∴AB =4. 设点M 的坐标为(m ,n).∵△ABM 的面积为20,∴12AB·|n|=20,解得n =±10. 当n =10时,m2+2m -3=10,解得m =-1+14或m =-1-14,∴点M 的坐标为(-1+14,10)或(-1-14,10);当n =-10时,m2+2m -3=-10,此方程无解.故点M 的坐标为(-1+14,10)或(-1-14,10).17. 【答案】解:(1)D(-2,3).(2)设二次函数的解析式为y=ax2+bx+c(a,b,c为常数,且a≠0),根据题意,得解得∴二次函数的解析式为y=-x2-2x+3.(3)x<-2或x>1.18. 【答案】(1)将A(1,2)、O(0,0)、C(2,1)分别代入y=ax2+bx+c,得2,0,42 1.a b cca b c++=⎧⎪=⎨⎪++=⎩解得32a=-,72b=,0c=.所以23722y x x=-+.(2)如图2,过点P、M分别作梯形ABPM的高PP′、MM′,如果梯形ABPM是等腰梯形,那么AM′=BP′,因此yA-y M′=yP′-yB.直线OC的解析式为12y x=,设点P的坐标为1(,)2x x,那么237(,)22M x x x-+.解方程23712()222x x x--+=,得123x=,22x=.x=2的几何意义是P与C重合,此时梯形不存在.所以21(,)33P.图2 图3(3)如图3,△AOB 与△COD 重叠部分的形状是四边形EFGH ,作EK ⊥OD 于K .设点A ′移动的水平距离为m ,那么OG =1+m ,GB ′=m .在Rt △OFG 中,11(1)22FG OG m ==+.所以21(1)4OFG S m ∆=+. 在Rt △A ′HG 中,A ′G =2-m ,所以111'(2)1222HG A G m m ==-=-. 所以13(1)(1)22OH OG HG m m m =-=+--=. 在Rt △OEK 中,OK =2 EK ;在Rt △EHK 中,EK =2HK ;所以OK =4HK . 因此4432332OK OH m m ==⨯=.所以12EK OK m ==. 所以211332224OEH S OH EK m m m ∆=⋅=⨯⋅=. 于是22213111(1)44224OFG OEH S S S m m m m ∆∆=-=+-=-++2113()228m =--+. 因为0<m <1,所以当12m =时,S 取得最大值,最大值为38.。

中考数学压轴题专项训练二次函数含解析

中考数学压轴题专项训练二次函数含解析

2021年中考数学压轴题专项训练《二次函数》1.如图,在平面直角坐标系中,二次函数y=ax2+bx+3(a≠0)的图象经过点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求a,b的值;(2)若点P为直线BC上一点,点P到A,B两点的距离相等,将该抛物线向左(或向右)平移,得到一条新抛物线,并且新抛物线经过点P,求新抛物线的顶点坐标.解:(1)∵二次函数y=ax2+bx+3(a≠0)的图象经过点A(﹣1,0),点B(3,0),∴,解得;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,C(3,0),∵点P到A,B两点的距离相等,∴点P在抛物线的对称轴x=1上,∵B(3,0),C(0,3),∴直线BC的解析式为y=﹣x+3,令x=1,则y=﹣1+3=2,∴P(1,2),设平移后的新抛物线的解析式为y=﹣(x﹣h)2+4,∵新抛物线经过点P,∴2=﹣(1﹣h)2+4,解得h1=1+,h2=1﹣,∴新抛物线的顶点坐标为(1+,4)或(1﹣,4).2.如图a,已知抛物线y=﹣x2+bx+c经过点A(4,0)、C(0,2),与x轴的另一个交点为B.(1)求出抛物线的解析式.(2)如图b,将△ABC绕AB的中点M旋转180°得到△BAC′,试判断四边形B C′AC的形状.并证明你的结论.(3)如图a,在抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC全等?若存在,请直接写出点D 的坐标;若不存在请说明理由.解:(1)将点A、C的坐标代入抛物线表达式并解得:b=1,c=2,故:抛物线的解析式为:y=﹣x2+x+2;(2)四边形BC′AC为矩形.抛物线y=﹣x2+x+2与x轴的另一个交点为:(﹣1,0)由勾股定理求得:BC=,AC=2,又AB=5,由勾股定理的逆定理可得:△ABC直角三角形,故∠BCA=90°;已知,△ABC绕AB的中点M旋转180o得到△BAC′,则A、B互为对应点,由旋转的性质可得:BC=AC',AC=BC’所以,四边形BC′AC为平行四边形,已证∠BCA=90°,∴四边形BC′AC为矩形;(3)存在点D,使得以A、B、D三点为顶点的三角形与△ABC全等,则点D与点C关于函数对称轴对称,故:点D的坐标为(3,2).3.如图,已知二次函数y=x2﹣2x+m的图象与x轴交于点A、B,与y轴交于点C,直线AC交二次函数图象的对称轴于点D,若点C为AD的中点.(1)求m的值;(2)若二次函数图象上有一点Q,使得tan∠ABQ=3,求点Q 的坐标;(3)对于(2)中的Q点,在二次函数图象上是否存在点P,使得△QBP∽△COA?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)设对称轴交x轴于点E,交对称轴于点D,函数的对称轴为:x=1,点C为AD的中点,则点A(﹣1,0),将点A的坐标代入抛物线表达式并解得:m=﹣3,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)tan∠ABQ=3,点B(3,0),则AQ所在的直线为:y=±3x(x﹣3)…②,联立①②并解得:x=﹣4或3(舍去)或2,故点Q(﹣4,21)或(2,﹣3);(3)不存在,理由:△QBP∽△COA,则∠QBP=90°①当点Q(2,﹣3)时,则BQ的表达式为:y=﹣(x﹣3)…③,联立①③并解得:x=3(舍去)或﹣,故点P(﹣,),此时BP:PQ≠OA:OB,故点P不存在;②当点Q(﹣4,21)时,同理可得:点P(﹣,),此时BP:PQ≠OA:OB,故点P不存在;综上,点P不存在.4.如图,已知二次函数y=ax2+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣x+b 的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:2.(1)求这个二次函数的表达式;(2)若点M为x轴上一点,求MD+MA的最小值.解:(1)把D(0,﹣3)代入y=﹣x+b得b=﹣3,∴一次函数解析式为y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣6,则A(﹣6,0),作EF⊥x轴于F,如图,∵OD∥EF,∴==,∴OF=OA=4,∴E点的横坐标为4,当x=4时,y=﹣x﹣3=﹣5,∴E点坐标为(4,﹣5),把A(﹣6,0),E(4,﹣5)代入y=ax2+4ax+c得,解得,∴抛物线解析式为y=﹣x2﹣x+;(2)作MH⊥AD于H,作D点关于x轴的对称点D′,如图,则D′(0,3),在Rt△OAD中,AD==3,∵∠MAH=∠DAO,∴Rt△AMH∽Rt△ADO,∴=,即=,∴MH=AM,∵MD=MD′,∴MD+MA=MD′+MH,当点M、H、D′共线时,MD+MA=MD′+MH=D′H,此时MD+MA的值最小,∵∠D′DH=∠ADO,∴Rt△DHD′∽Rt△DOA,∴=,即=,解得D′H=,∴MD+MA的最小值为.5.如图1,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)如图2,直线AD:y=x+1与y轴交于点D,P点是x轴上一个动点,过点P作PG∥y轴,与抛物线交于点G,与直线AD交于点H,当点C、D、H、G四个点组成的四边形是平行四边形时,求此时P点坐标.(3)如图3,连接AC和BC,Q点是抛物线上一个动点,连接AQ,当∠QAC=∠BCO时,求Q点的坐标.解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),故﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①;(2)直线AD:y=x+1与y轴交于点D,则点D(0,1),则CD=2;设点P(x,0),则点H(x,x+1)、点G(x,﹣x2﹣2x+3),则GH=CD=2,即|x+1﹣(﹣x2﹣2x+3)|=2,解得:x=﹣或,故点P(﹣,0)或(,0)或(,0);(3)设直线AQ′交y轴于点H,过点H作HM⊥AC交于点M,交AQ于点H′,设:MH=x=MC,∠QAC=∠BCO,则tan∠CAH=,则AM=3x,故AC=AM+CM=4x=3,解得:x=,则CH=x=,OH=OC﹣CH=,故点H(0,),同理点H′(﹣,3),由点AH坐标得,直线AH的表达式为:y=(x+3)…②,同理直线AH′的表达式为:y=2(x+3)…③,联立①②并解得:x=﹣3(舍去)或;联立①③并解得:x=﹣3(舍去)或﹣1;故点Q的坐标为:(,)或(﹣1,4).6.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y 轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)直接写出:b的值为﹣;c的值为﹣2;点A的坐标为(﹣1,0);(2)点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.①如图1,过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;②若△CDM为等腰直角三角形,直接写出点M的坐标1.解:(1)直线y=x﹣2与x轴交于点B,与y轴交于点C,则点B、C的坐标为:(4,0)、(0,﹣2),将点B、C的坐标代入抛物线表达式并解得:b=﹣,c=﹣2,故抛物线的表达式为:y=x2﹣x﹣2…①,点A(﹣1,0);故答案为:﹣,﹣2,(﹣1,0);(2)①如图1,过点D作y轴的平行线交BC于点H,设点D(m,m2﹣m﹣2),点H(m,m﹣2),则∠MDH=∠OBC=α,tan∠OBC==tanα,则cos;MD=DH cos∠MDH=(m﹣2﹣m2+m+2)=(﹣m2+4m),∵<0,故DM有最大值;设点M、D的坐标分别为:(s,s﹣2),(m,n),n=m2﹣m ﹣2;②(Ⅰ)当∠CDM=90°时,如图2左图,过点M作x轴的平行线交过点D于x轴的垂线于点F,交y 轴于点E,则△MEC≌△DFM(AAS),∴ME=FD,MF=CE,即s﹣2=2=m﹣s,s=s﹣2﹣n,解得:s=,故点M(,﹣);(Ⅱ)当∠MDC=90°时,如图2右图,同理可得:s=,故点M(,﹣);(Ⅲ)当∠MCD=90°时,则直线CD的表达式为:y=﹣2x﹣2…②,联立①②并解得:x=0或﹣1,故点D(﹣1,0),不在线段BC的下方,舍去;综上,点M坐标为:(,﹣)或(,﹣).7.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A,B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点D,点C是BD的中点时,求直线BD和抛物线的解析式,(3)在(2)的条件下,点P是直线BC下方抛物线上的一点,过P作PE⊥BC于点E,作PF∥AB交BD于点F,是否存在一点P,使得PE+PF最大,若存在,请求出该最大值;若不存在,请说明理由.解:(1)a(x﹣1)(x﹣3)=0,x1=1,x2=3,则点A的坐标为(1,0),点B的坐标为(3,0),∴OA=1,OB=3,∵△OCA∽△OBC,∴=,即=,解得,OC=;(2)在Rt△BOD中,点C是BD的中点,∴BD=2OC=2,由勾股定理得,OD===,∴点D的坐标为(0,﹣)设直线BD的解析式为:y=kx+b,则,解得,,则直线BD的解析式为:y=x﹣,∵点B的坐标为(3,0),点D的坐标为(0,﹣),点C是BD的中点,∴点C的坐标为(,﹣),∴﹣=a(﹣1)(﹣3),解得,a=,∴抛物线的解析式:y=(x﹣1)(x﹣3),即y=x2﹣x+2;(3)作PG⊥OB交BD于G,tan∠OBD==,∴∠OBD=30°,∵PF∥AB,∴∠PFG=∠OBD=30°,∴PF=PG,∵PE⊥BC,PF⊥PG,∴∠EPG=∠PFG=30°,∴PE=PG,∴PE+PF=PG+PG=PG,设点P的坐标为(m,m2﹣m+2),点G的坐标为(m,m﹣),∴PG=m﹣﹣(m2﹣m+2)=﹣m2+3m﹣3∴PE+PF=PG=﹣3m2+m﹣=﹣3(m﹣)2+,则PE+PF的最大值为.8.已知抛物线y=ax2+bx+c经过点A(﹣2,0),B(3,0),与y 轴负半轴交于点C,且OC=OB.(1)求抛物线的解析式;(2)在y轴负半轴上存在一点D,使∠CBD=∠ADC,求点D 的坐标;(3)点D关于直线BC的对称点为D′,将抛物线y=ax2+bx+c 向下平移h个单位,与线段DD′只有一个交点,直接写出h 的取值范围.解:(1)OC=OB,则点C(0,﹣3),抛物线的表达式为:y=a(x+2)(x﹣3)=a(x2﹣x﹣6),﹣6a=﹣3,解得:a=,故抛物线的表达式为:y=x2﹣x﹣3;(2)设:CD=m,过点D作DH⊥BC交BC的延长线于点H,则CH=HD=m,tan∠ADC==tan∠DBC==,解得:m=3或﹣4(舍去﹣4),故点D(0,﹣6);(3)过点C作x轴的平行线交DH的延长线于点D′,则D′(﹣3,﹣3);平移后抛物线的表达式为:y=x2﹣x﹣3﹣h,当平移后的抛物线过点C时,抛物线与线段DD′有一个公共点,此时,h=3;当平移后的抛物线过点D′时,抛物线与线段DD′有一个公共点,即﹣3=9﹣h,解得:h=15,故3≤h≤15.9.如图①,在平面直角坐标系中,抛物线y=x2的对称轴为直线l,将直线l绕着点P(0,2)顺时针旋转∠α的度数后与该抛物线交于AB两点(点A在点B的左侧),点Q是该抛物线上一点(1)若∠α=45°,求直线AB的函数表达式;(2)若点p将线段分成2:3的两部分,求点A的坐标(3)如图②,在(1)的条件下,若点Q在y轴左侧,过点p作直线l∥x轴,点M是直线l上一点,且位于y轴左侧,当以P,B,Q为顶点的三角形与△PAM相似时,求M的坐标.解:(1)∵∠α=45°,则直线的表达式为:y=x+b,将(0,2)代入上式并解得:b=2,故直线AB的表达式为:y=x+2;(2)①AP:PB=2:3,设A(﹣2a,4a2)B(3a,9a2),,解得:,(舍去),∴;②AP:PB=3:2,设A(﹣3a,9a2),B(2a,4a2),,解得:,(舍去),∴,综上或;(3)∠MPA=45°,∠QPB≠45°A(﹣1,1),B(2,4),①∠QBP=45°时,此时B,Q关于y轴对称,△PBQ为等腰直角三角形,∴M1(﹣1,2)M2(﹣2,2),②∠BQP=45°时,此时Q(﹣2,4)满足,左侧还有Q'也满足,∵BQP=∠BQ'P,∴Q’,B,P,Q四点共圆,则圆心为BQ中点D(0,4);设Q'(x,x2),(x<0),Q'D=BD,∴(x﹣0)2+(x2﹣4)2=22(x2﹣4)(x2﹣3)=0,∵x<0且不与Q重合,∴,∴,Q'P=2,∵Q'P=DQ'=DP=2,∴△DPQ'为正三角形,则,过P作PE⊥BQ',则,,∴,当△Q’BP~△PMA时,,,则,故点;当△Q’PB~△PMA时,,,则,故点;综上点M的坐标:(﹣1,2),(﹣2,2),,.10.如图,Rt△FHG中,∠H=90°,FH∥x轴,=0。

2021年中考数学专题训练:二次函数的图象及其性质(含答案)

2021年中考数学专题训练:二次函数的图象及其性质(含答案)

2021中考数学专题训练:二次函数的图象及其性质一、选择题1. 若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为()A. 0,5B. 0,1C. -4,5D. -4,12. 已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n的值为()A.-2B.-4C.2D.43. 如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A. y=(x-1)2+2B. y=(x+1)2+2C. y=x2+1D. y=x2+34. 2019·雅安在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法中错误的是()A.y的最小值为1B.图象的顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到5. 二次函数y=ax2+bx+c的部分图象如图所示,顶点为D(-1,2),与x轴的一个交点A 在点(-3,0)和(-2,0)之间,有以下结论:①b2-4ac<0;②a+b+c<0;③c-a=0;④一元二次方程ax2+bx+c-2=0有两个相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个6. 已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点.现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a -b +c ≥0;④a +b +cb -a的最小值为3.其中,正确结论的个数为( ) A. 1个 B. 2个 C. 3个 D. 4个7. (2020·株洲)二次函数2y ax bx c =++,若0ab <,20a b ->,点()11,A x y ,()22,B x y 在该二次函数的图象上,其中12x x <,120x x +=,则( )A. 12y y =-B. 12y y >C. 12y y <D. 1y 、2y 的大小无法确定8. 如图,边长为2的等边△ABC 和边长为1的等边△A ′B ′C ′,它们的边B ′C ′,BC位于同一条直线l 上,开始时,点C ′与B 重合,△ABC 固定不动,然后把△A ′B ′C ′自左向右沿直线l 平移,移出△ABC 外(点B ′与C 重合)停止,设△A ′B ′C ′平移的距离为x ,两个三角形重合部分的面积为y ,则y 关于x 的函数图象是( )二、填空题9. 已知二次函数y=x 2-4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是 .10.抛物线y =-8x 2的开口向________,对称轴是________,顶点坐标是________;当x >0时,y 随x 的增大而________,当x <0时,y 随x 的增大而________.11. 若方程(x -m )(x -n )=3(m ,n为常数,且m <n )的两实数根分别为a 、b (a <b ),则m 、n 、a 、b 的大小关系为______________.12. 二次函数y =-2x 2-4x +5的最大值是________.13. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42Ma b =+,N a b =-.则M 、N 的大小关系为M __________N .(填“>”、“=”或“<”)14. 已知函数y =⎩⎨⎧-x 2+2x (x >0),-x (x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为________.三、解答题15. 如图①,已知抛物线y =ax 2+bx +c 经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的解析式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x 轴上,直接写出两条抛物线、对称轴和y 轴围成的图形的面积S(图②中阴影部分).16. 已知抛物线l :y =(x -h )2-4(h 为常数).(1)如图22-B -2(a),当抛物线l 恰好经过点P (1,-4)时,l 与x 轴从左到右的交点为A ,B ,与y 轴交于点C .①求l 的解析式,并写出l 的对称轴及顶点坐标.②在l 上是否存在点D (与点C 不重合),使S △ABD =S △ABC ?若存在,请求出点D 的坐标;若不存在,请说明理由.③M 是l 上任意一点,过点M 作ME ⊥y 轴于点E ,交直线BC 于点D ,过点D 作x 轴的垂线,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点M 的坐标.(2)设l 与直线y =35x -245有个交点的横坐标为x 0,且满足3≤x 0≤5,通过l 位置随h 变化的过程,直接写出h 的取值范围.17. 如图,已知抛物线y =-x 2+bx +c 经过A (0, 1)、B (4, 3)两点.(1)求抛物线的解析式; (2)求tan ∠ABO 的值;(3)过点B 作BC ⊥x 轴,垂足为C ,在对称轴的左侧且平行于y 轴的直线交线段AB 于点N ,交抛物线于点M ,若四边形MNCB 为平行四边形,求点M 的坐标.18. 如图,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x ,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上. (1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时.①求t关于x的函数解析式和自变量x的取值范围;②当梯形CMQP的两底的长度之比为1∶2时,求t的值.2021中考数学专题训练:二次函数的图象及其性质-答案一、选择题1. 【答案】D【解析】由y=(x-2)2+k知此二次函数的顶点坐标为(2,k),对称轴为x=2,由y=x2+bx+5知其对称轴为x=-b2,得-b2=2,所以b=-4;于是可以得到函数的解析式是y=x2-4x+5,把(2,k)代入其中即得k=1.2. 【答案】B[解析]由抛物线过(-2,n)和(4,n),说明这两个点关于对称轴对称,即对称轴为直线x=1,所以-=1,又因为a=-1,所以可得b=2,即抛物线的解析式为y=-x2+2x+4,把x=-2代入解得n=-4.3. 【答案】C【解析】根据图象平移变换口诀“左加右减,上加下减”进行解答.把抛物线y=x2+2向下平移1个单位得y=x2+2-1=x2+1.4. 【答案】C5. 【答案】B序号逐项分析正误①∵b>a>0,∴对称轴-b2a<0,即对称轴在y轴左侧√②∵抛物线y=ax2+bx+c与x轴最多有一个交点,且抛物线开口向上,∴y=ax2+bx+c≥0,∴方程ax2+bx+c+2=0即ax2+bx+c=-2无实数根√③由②得y=ax2+bx+c≥0,∴当x=-1时,a-b+c≥0√④∵当x=-2时,y=4a-2b+c≥0,∴a+b+c≥3b-3a,a+b+c≥3(b-a),∵b>a,∴a+b+cb-a≥3√7. 【答案】B【解析】首先分析出a,b,x1的取值范围,然后用含有代数式表示y1,y2,再作差法比较y1,y2的大小.∵20a b->,b2≥0,∴a>0.又∵0ab <, ∴b <0.∵12x x <,120x x +=, ∴21x x =-,x 1<0.∵点()11,A x y ,()22,B x y 在该二次函数2y ax bx c =++的图象上∴2111y ax bx c =++,2222211y ax bx c ax bx c =++=-+.∴y 1-y 2=2bx 1>0. ∴y 1>y 2.故选:B.8. 【答案】B【解析】由题意知:在△A ′B ′C ′移动的过程中,阴影部分总为等边三角形.当0<x ≤1时,边长为x ,此时y =12x ×32x =34x 2;当1<x ≤2时,重合部分为边长为1的等边三角形,此时y =12×1×32=34;当2<x ≤3时,边长为3-x ,此时y =12(3-x )×32(3-x ).综上,这个分段函数的图象左边为开口向上的抛物线的一部分,中间为直线的一部分,右边为开口向上抛物线的一部分,且最高点为34.故选B.二、填空题9. 【答案】k<4 [解析]∵二次函数y=x 2-4x +k 的图象的顶点在x 轴下方, ∴二次函数y=x 2-4x +k 的图象与x 轴有两个公共点. ∴b 2-4ac>0,即(-4)2-4×1×k>0.解得 k<4.10. 【答案】下y 轴 (0,0) 减小 增大11. 【答案】a <m <n <b【解析】如解图,解方程(x -m)(x -n)=3可以看作是求y =(x -m)(x -n)与y =3这两个函数图象的交点,由解图易得a <m <n <b.12. 【答案】713. 【答案】<【解析】当1x =-时,0y a b c =-+>, 当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<, 即M N <, 故答案为:<.14. 【答案】⎝⎛⎭⎪⎫23,00<m<14 [解析] 联立y =x +m 与y =-x 2+2x ,得x +m =-x2+2x ,整理得x 2-x +m =0,当有两个交点时,b 2-4ac =(-1)2-4m>0,解得m<14.当直线y =x +m 经过原点时,与函数y =⎩⎨⎧-x 2+2x (x>0)x (x≤0)的图象有两个不同的交点,再向上平移,有三个交点,∴m>0, ∴m 的取值范围为0<m<14.故答案为0<m<14.三、解答题15. 【答案】解:(1)把(0,3),(3,0),(4,3)代入y =ax2+bx +c ,得 ⎩⎪⎨⎪⎧c =3,9a +3b +c =0,16a +4b +c =3,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3. 所以抛物线的解析式为y =x2-4x +3. (2)因为y =x2-4x +3=(x -2)2-1,所以抛物线的顶点坐标为(2,-1),对称轴是直线x =2. (3)阴影部分的面积为2.16. 【答案】解:(1)①将P (1,-4)代入y =(x -h )2-4,得(1-h )2-4=-4,解得h =1, ∴抛物线l 的解析式为y =(x -1)2-4,∴抛物线l 的对称轴为直线x =1,顶点坐标为(1,-4). ②存在.将x=0代入y=(x-1)2-4,得y=-3,∴点C的坐标为(0,-3),∴OC=3.∵S△ABD=S△ABC,∴点D的纵坐标为3或-3.当y=-3时,(x-1)2-4=-3,解得x1=2,x2=0(舍去),∴点D的坐标为(2,-3).当y=3时,(x-1)2-4=3,解得x1=1+7,x2=1-7,∴点D的坐标为(1+7,3)或(1-7,3).综上所述,在抛物线l上存在点D(与点C不重合),使S△ABD=S△ABC,点D的坐标为(2,-3)或(1+7,3)或(1-7,3).③如图(a)所示:∵∠EOF=∠OED=∠OFD=90°,∴四边形OEDF为矩形,∴OD=EF.依据垂线段的性质可知:当OD⊥BC时,OD有最小值,即EF有最小值.把y=0代入抛物线的解析式,得(x-1)2-4=0,解得x1=-1,x2=3,∴B(3,0),∴OB=OC.又∵OD⊥BC,∴CD=BD.∴点D的坐标为(32,-32).将y=-32代入y=(x-1)2-4,得(x-1)2-4=-32,解得x 1=-102+1,x 2=102+1,∴点M 的坐标为(-102+1,-32)或(102+1,-32). (2)∵y =(x -h )2-4,∴抛物线的顶点在直线y =-4上. 对于直线y =35x -245, 当3≤x 0≤5时,-3≤y 0≤-95,即抛物线l 与直线y =35x -245在G (3,-3),H (5,-95)之间的一段有一个交点. 当抛物线经过点G 时,(3-h )2-4=-3,解得h =2或h =4.当抛物线经过点H 时,(5-h )2-4=-95,解得h =5+555或h =5-555. 随h 的逐渐增加,l 的位置随之向右平移,如图(b)所示.由函数图象可知:当2≤h ≤5-555或4≤h ≤5+555时,抛物线l 与直线在3≤x 0≤5段有一个交点.17. 【答案】(1)将A (0, 1)、B (4, 3)分别代入y =-x 2+bx +c ,得1,164 3.c b c =⎧⎨-++=⎩ 解得92b =,c =1. 所以抛物线的解析式是2912y x x =-++.(2)在Rt △BOC 中,OC =4,BC =3,所以OB =5. 如图2,过点A 作AH ⊥OB ,垂足为H .在Rt △AOH 中,OA =1,4sin sin 5AOH OBC ∠=∠=, 所以4sin 5AH OA AOH =⋅∠=. 图2所以35OH =,225BH OB OH =-=. 在Rt △ABH 中,4222tan 5511AH ABO BH ∠==÷=. (3)直线AB 的解析式为112y x =+. 设点M 的坐标为29(,1)2x x x -++,点N 的坐标为1(,1)2x x +, 那么2291(1)(1)422MN x x x x x =-++-+=-+. 当四边形MNCB 是平行四边形时,MN =BC =3.解方程-x 2+4x =3,得x =1或x =3.因为x =3在对称轴的右侧(如图4),所以符合题意的点M 的坐标为9(1,)2(如图3).图3 图4 考点伸展第(3)题如果改为:点M 是抛物线上的一个点,直线MN 平行于y 轴交直线AB 于N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点M 的坐标. 那么求点M 的坐标要考虑两种情况:MN =y M -y N 或MN =y N -y M .由y N -y M =4x -x 2,解方程x 2-4x =3,得27x =±(如图5).所以符合题意的点M 有4个:9(1,)2,11(3,)2,57(27,)--,57(27,)++.图518. 【答案】 (1)因为AB =OC = 4,A 、B 关于y 轴对称,所以点A 的横坐标为2.将x =2代入y =2114x +,得y =2.所以点M 的坐标为(0,2).(2) ① 如图2,过点Q 作QH ⊥ x 轴,设垂足为H ,则HQ =y 2114x =+,HP =x – t . 因为CM //PQ ,所以∠QPH =∠MCO .因此tan ∠QPH =tan ∠MCO ,即12HQ OM HP OC ==.所以2111()42x x t +=-.整理,得2122t x x =-+-. 如图3,当P 与C 重合时,4t =-,解方程21422x x -=-+-,得15x =±. 如图4,当Q 与B 或A 重合时,四边形为平行四边形,此时,x =± 2. 因此自变量x 的取值范围是15x ≠±,且x ≠± 2的所有实数.图2 图3 图4②因为sin ∠QPH =sin ∠MCO ,所以HQ OM PQ CM =,即PQ HQ CM OM=. 当12PQ HQ CM OM ==时,112HQ OM ==.解方程21114x +=,得0x =(如图5).此时2t =-.当2PQ HQ CM OM ==时,24HQ OM ==.解方程21144x +=,得23x =±. 如图6,当23x =时,823t =-+;如图6,当23x =-时,823t =--.图5 图6 图7考点伸展本题情境下,以Q 为圆心、QM 为半径的动圆与x 轴有怎样的位置关系呢?设点Q 的坐标为21,14x x ⎛⎫+ ⎪⎝⎭,那么222222111144QM x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭. 而点Q 到x 轴的距离为2114x +. 因此圆Q 的半径QM 等于圆心Q 到x 轴的距离,圆Q 与x 轴相切.。

2021年中考三轮 临考冲刺数学训练:二次函数的实际应用(含答案)

2021年中考三轮 临考冲刺数学训练:二次函数的实际应用(含答案)

2021中考数学临考冲刺训练:二次函数的实际应用一、选择题1. 某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为()A.130元/个B.120元/个C.110元/个D.100元/个2. 如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12 m,则该梯形储料场ABCD的最大面积是()A.18 m2B.18m2C.24m2D.m23. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m4. 如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD的总长为12 m,则该梯形储料场ABCD的最大面积是()A.18 m2B.18 3 m2 C.24 3 m2 D.45 32m25. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位: s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是()A.①④B.①②C.②③④D.②③6. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.有下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是()A.①④B.①②C.②③④D.②③7. 如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x-x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5 m时,小球距O点水平距离为3 mB.小球距O点水平距离超过4 m时呈下降趋势C.小球落地点距O点水平距离为7 mD.斜坡的坡度为1∶28. 如图,将一个小球从斜坡上的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5 m时,小球距点O的水平距离为3 mB.小球距点O的水平距离超过4 m后呈下降趋势C.小球落地点距点O的水平距离为7 mD.小球距点O的水平距离为2.5 m和5.5 m时的高度相同二、填空题9. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.10. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF 分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB=________m时,矩形ABCD的面积最大.11. 某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,则可卖出(30-x)件.若要使销售利润最大,则每件的售价应为________元.12. 竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时达到相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=.13. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.14. 在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=-x2+x+,由此可知该生此次实心球训练的成绩为米.15. 如图,小明的父亲在相距2 m的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高度都是2.5 m,绳子自然下垂呈抛物线状,身高1 m的小明距较近的那棵树0.5 m时,头部刚好接触到绳子,则绳子的最低点到地面的距离为________m.16. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.三、解答题17. 如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2.25 m,喷出水流的运动路线是抛物线的一部分.水流的最高点P到喷水枪AB所在直线的距离为1 m ,且到地面的距离为3 m .求水流的落地点C 到水枪底部B 的距离.18. 如图,需在一面墙上绘制几个相同的抛物线型图案,按照图中的直角坐标系,最左边的抛物线可以用y =ax 2+bx (a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32 m.(1)求该抛物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m ,则最多可以连续绘制几个这样的抛物线型图案?19. 已知某商品的进价为每件40元,现售价为每件60元,每星期可卖出300件,经市场调查反映,每件每涨价1元,每星期可少卖出10件.(1)要想每星期获得6090元的利润,该商品每件的价格应定为多少元? (2)每星期能否获利7000元?试说明理由.(3)该商品每件的价格定为多少元时,每星期获利最大,最大利润是多少?20. 某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y (间)与每间标准房的价格x (元)的数据如下表:x (元) … 190 200 210 220 … y (间) … 65 60 55 50 …(1)根据所给数据在坐标系中描出相应的点,并画出图象. (2)求y 关于x 的函数表达式,并写出自变量x 的取值范围.(3)设客房的日营业额为w (元),若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?21. 凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18-10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低售价买?(2)写出该文具店一次销售x (x >10)只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x ≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?22. 宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x 天生产的产品数量为y 件,y 与x 满足如下关系:y =⎩⎨⎧7.5x (0≤x ≤4),5x +10(4<x ≤14).(1)工人甲第几天生产的产品数量为70件?(2)设第x 天生产的产品成本为P 元/件,P 与x 之间的函数图象如图.工人甲第x 天创造的利润为W 元,求W 与x 之间的函数解析式,并求出第几天时,工人甲所创造的利润最大,最大利润是多少.23. 2018·荆州为响应荆州市“创建全国文明城市”的号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18 m,另外三边由36 m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=x m,面积为y m2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160 m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).则丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.24. 有一块形状如图所示的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B =90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.2021中考数学临考冲刺训练:二次函数的实际应用-答案一、选择题1. 【答案】B[解析] 设利润为y元,涨价x元,则有y=(100+x-90)(500-10x)=-10(x-20)2+9000,故每个商品涨价20元,即单价为120元/个时,获得最大利润.2. 【答案】C[解析]如图,过点C作CE⊥AB于E,设CD=x,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,∠BCE=∠BCD-∠DCE=30°,BC=12-x.在Rt△CBE中,∵∠CEB=90°,∴BE=BC=6-x,∴AD=CE=BE=6x,AB=AE+BE=x+6-x=x+6,∴梯形ABCD的面积=(CD+AB)·CE=x+x+6·6x=-x2+3x+18=-(x-4)2+24,=24,即CD长为4 m时,使梯形储料场ABCD的面积最大,∴当x=4时,S最大最大面积为24m2,故选C.3. 【答案】C[解析] 以2 m长线段所在直线为x轴,以其垂直平分线为y轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.4. 【答案】C[解析] 如图,过点C作CE⊥AB于点E,则四边形ADCE为矩形,∠DCE=∠CEB=90°,则∠BCE=∠BCD-∠DCE=30°.设CD =AE =x m ,则BC =(12-x)m.在Rt △CBE 中,∵∠CEB =90°,∠BCE =30°, ∴BE =12BC =(6-12x)m , ∴AD =CE =BC 2-BE 2=(6 3-32x)m ,AB =AE +BE =x +6-12x =(12x +6)m ,∴梯形ABCD 的面积=12(CD +AB)·CE =12(x +12x +6)·(6 3-32x) =-3 38x 2+3 3x +18 3 =-3 38(x -4)2+24 3.∴当x =4时,S 最大=24 3.即CD 的长为4 m 时,梯形储料场ABCD 的面积最大为24 3 m 2.故选C.5. 【答案】D[解析]①由图象知小球在空中达到的最大高度是40 m ,故①错误;②小球抛出3秒后,速度越来越快,故②正确; ③小球抛出3秒时达到最高点即速度为0,故③正确; ④设函数解析式为:h=a (t -3)2+40,把O (0,0)代入得0=a (0-3)2+40,解得a=-, ∴函数解析式为h=-(t -3)2+40.把h=30代入解析式得,30=-(t -3)2+40,解得t=4.5或t=1.5, ∴小球的高度h=30 m 时,t=1.5 s 或4.5 s ,故④错误,故选D .6. 【答案】D [解析] ①由图象知小球在空中达到的最大高度是40 m ,故①错误;②小球抛出3秒后,速度越来越快,故②正确;③∵小球抛出3秒时达到最高点,∴速度为0,故③正确;④设函数解析式为h =a(t -3)2+40, 把O(0,0)代入得0=a(0-3)2+40.解得a =-409,∴函数解析式为h =-409(t -3)2+40.把h =30代入解析式,得30=-409(t -3)2+40,解得t =4.5或t =1.5,∴小球的高度h =30 m 时,t =1.5 s 或4.5 s ,故④错误.故选D.7. 【答案】A[解析]根据函数图象可知,当小球抛出的高度为7.5 m 时,二次函数y=4x -x 2的函数值为7.5,即4x -x 2=7.5,解得x 1=3,x 2=5,故当抛出的高度为7.5 m 时,小球距离O 点的水平距离为3 m 或5 m ,A 结论错误;由y=4x -x 2,得y=-(x -4)2+8,则抛物线的对称轴为直线x=4,当x>4时,y 随x 值的增大而减小,B 结论正确;联立方程y=4x -x 2与y=x ,解得或则抛物线与直线的交点坐标为(0,0)或7,,C 结论正确;由点7,知坡度为∶7=1∶2也可以根据y=x 中系数的意义判断坡度为1∶2,D 结论正确.故选A .8. 【答案】A [解析] 令y =7.5,得4x -12x 2=7.5.解得x 1=3,x 2=5.可见选项A错误.由y =4x -12x 2得y =-12(x -4)2+8,∴对称轴为直线x =4,当x >4时,y 随x 的增大而减小,选项B 正确.联立y =4x -12x 2与y =12x ,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =7,y =72.∴抛物线与直线的交点坐标为(0,0),⎝ ⎛⎭⎪⎫7,72,可见选项C 正确.由对称性可知选项D 正确.综上所述,只有选项A 中的结论是错误的,故选A.二、填空题9. 【答案】144 【解析】∵围墙的总长为50 m ,设3间饲养室合计长x m ,则饲养室的宽=48-x 4 m ,∴总占地面积为y =x·48-x 4=-14x 2+12x(0<x <48),由y=-14x 2+12x =-14(x -24)2+144,∵x =24在0<x <48范围内,a =-14<0,∴在0<x≤24范围内,y 随x 的增大而增大,∴x =24时,y 取得最大值,y 最大=144 m 2.10. 【答案】150 [解析] 设AB =x m ,则AB =EF =CD =x m ,所以AD =BC =12(900-3x)m.设矩形ABCD 的面积为y m 2,则y =x·12(900-3x)=-32x 2+450x(0<x <300).由于二次项系数小于0,所以y 有最大值,且当x =-b2a =-4502×(-32)=150时,函数y 取得最大值.故当AB =150 m 矩形ABCD 的面积最大.11. 【答案】25[解析] 设利润为w 元,则w =(x -20)(30-x)=-(x -25)2+25.∵20≤x≤30,∴当x =25时,二次函数有最大值25.12. 【答案】1.6[解析]设各自抛出后1.1秒时达到相同的最大离地高度h ,则第一个小球的离地高度y=a (t -1.1)2+h (a ≠0), 由题意a (t -1.1)2+h=a (t -1-1.1)2+h , 解得t=1.6.故第一个小球抛出后1.6秒时在空中与第二个小球的离地高度相同.13. 【答案】y =-19(x +6)2+414. 【答案】10[解析]当y=0时,-x2+x+=0,解得,x=-2(舍去)或x=10.故答案为10.15. 【答案】0.5[解析] 以抛物线的对称轴为纵轴,向上为正,以对称轴与地面的交点为坐标原点建立平面直角坐标系,则抛物线的解析式可设为y=ax2+h.由于抛物线经过点(1,2.5)和(-0.5,1),于是求得a=2,h=0.5.16. 【答案】1.6 秒【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1秒时到达相同最大离地高度,即到达二次函数图象的顶点处,故此二次函数图象的对称轴为t=1.1;由于两次抛小球的时间间隔为1秒,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同. 故该距离为0.5秒,所以此时第一个小球抛出后t=1.1+0.5=1.6秒时与第二个小球的离地高度相同.三、解答题17. 【答案】解:如图,以点B为坐标原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系.根据题意,得抛物线的顶点P的坐标为(1,3),∴设抛物线的解析式为y=a(x-1)2+3.把A(0,2.25)代入,得2.25=a(0-1)2+3,解得a=-0.75,∴y=-0.75(x-1)2+3.令y=0,得-0.75(x-1)2+3=0,解得x1=3,x2=-1(舍去),∴BC=3 m.答:水流的落地点C到水枪底部B的距离为3 m.18. 【答案】解:(1)由题意知,抛物线y =ax 2+bx(a ≠0)经过点B(12,34),C(32,34), 则⎩⎪⎨⎪⎧14a +12b =3494a +32b =34,解得⎩⎨⎧a =-1b =2,∴抛物线的解析式是y =-x 2+2x.(3分) 根据对称性知,抛物线的对称轴是x =-b2a =1, 当x =1时,y =1, ∴顶点坐标是(1,1).答:图案最高点到地面的距离是1 m .(5分) (2)∵抛物线的对称轴是x =1,∴一个图案与地面两交点间的距离是2 m ,10÷2=5. 答:最多可以连续绘制5个这样的抛物线型图案.(8分)19. 【答案】解:设该商品每件涨价x 元时,每星期获得的总利润为y 元. (1)由题意,得(60+x -40)(300-10x)=6090, 整理得x 2-10x +9=0, 解得x 1=1,x 2=9.60+1=61(元),60+9=69(元).答:要想每星期获得6090元的利润,该商品每件的价格应定为61元或69元. (2)不能.理由:列方程,得(60+x -40)(300-10x)=7000, 整理得x 2-10x +100=0. ∵Δ=(-10)2-4×1×100<0, ∴此方程无实数解,∴销售该商品每星期不能获利7000元.(3)y =(60+x -40)(300-10x)=-10x 2+100x +6000=-10(x -5)2+6250, ∴当x =5时,y 最大=6250,60+x =65.答:该商品每件的价格定为65元时,每星期获利最大,最大利润为6250元.20. 【答案】解:(1)如图所示.(2)设y=kx +b (k ≠0),把(200,60)和(220,50)代入, 得解得∴y=-x +160(170≤x ≤240). (3)w=x ·y=x ·-x +160=-x 2+160x.∴函数w=-x 2+160x 图象的对称轴为直线x=-=160,∵-<0,∴在170≤x ≤240范围内,w 随x 的增大而减小. 故当x=170时,w 有最大值,最大值为12750元.21. 【答案】解:(1)设一次至少买x 只计算器,才能以最低售价购买,则每只降价为:0.1(x -10)元,由题意得, 20-0.1(x -10)=16, 解得x =50.答:一次至少购买50只计算器,才能以最低售价购买.(2分) 【一题多解】设一次购买x 只计算器,才能以最低售价购买,则每只降低为:0.1(x -10)元,由题意得,20-0.1(x -10)≤16,解得x ≤50, ∴最大整数x =50.答:一次至少购买50只计算器,才能以最低售价购买. (2)由题意得,当10<x ≤50时,y =[20-12-0.1(x -10)]x , 即y =-0.1x 2+9x(3分)当x >50时,则每只计算器都按16元销售. ∴y =16x -12x =4x ,综上可得y =⎩⎨⎧-0.1x 2+9x (10<x ≤50)4x (x >50).(5分)(3)由y =-0.1x 2+9x 得,其图象的对称轴为x =-b2a =-92×(-0.1)=45,∵a =-0.1<0,当x >45时,y 随x 的增大而减小,(6分)又∵50>46>45,∴当x =46时的函数值大于x =50时的函数值, 即卖46只赚的钱反而比卖50只赚的钱多.(8分)由二次函数的性质知,当x =45时,y 最大值=-0.1×452+9×45=202.5, 这时售价为20-0.1×(45-10)=16.5(元).答:店家一次应卖45只,这时的售价是16.5元.(10分)22. 【答案】解:(1)令7.5x =70,则x =283>4,不符合题意, ∴5x +10=70,解得x =12.答:工人甲第12天生产的产品数量为70件. (2)由函数图象知,当0≤x≤4时,P =40; 当4<x≤14时,设P =kx +b.将(4,40),(14,50)代入,得⎩⎨⎧4k +b =40,14k +b =50,解得⎩⎨⎧k =1,b =36.∴P =x +36.①当0≤x≤4时,W =(60-40)·7.5x =150x , ∵W 随x 的增大而增大, ∴当x =4时,W 最大=600;②当4<x≤14时,W =(60-x -36)(5x +10)=-5x 2+110x +240=-5(x -11)2+845,∴当x =11时,W 最大=845. ∵845>600,∴当x =11时,W 取得最大值,最大值为845. 综上,W 与x 之间的函数解析式为 W =⎩⎨⎧150x (0≤x≤4),-5x 2+110x +240(4<x≤14);第11天时,工人甲所创造的利润最大,最大利润是845元.23. 【答案】解:(1)y =-2x 2+36x (9≤x <18). (2)由题意得-2x 2+36x =160,解得x1=10,x2=8(不符合题意,舍去).∴x的值为10.(3)∵y=-2x2+36x=-2(x-9)2+162,∴x=9时,y有最大值162.设购买乙种绿色植物a棵,购买丙种绿色植物b棵,由题意得14(400-a-b)+16a+28b=8600,∴a+7b=1500,∴b的最大值为214,即丙种植物最多可以购买214棵,此时a=2,需要种植的面积=0.4×(400-214-2)+1×2+0.4×214=161.2(m2)<162 m2,∴这批植物可以全部栽种到这块空地上.24. 【答案】解:(1)①若所截矩形材料的一条边是BC,如图①所示:过点C作CF⊥AE于点F,则S1=AB·BC=6×5=30;②若所截矩形材料的一条边是AE,如图②所示:过点E作EF∥AB交CD于点F,过点F作FG⊥AB于点G,过点C作CH⊥FG 于点H,则四边形AEFG为矩形,四边形BCHG为矩形,∴AE=FG=6,HG=BC=5,BG=CH,∠BCH=90°.∵∠BCD=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴BG=CH=FH=FG-HG=6-5=1,∴AG=AB-BG=6-1=5,∴S2=AE·AG=6×5=30.(2)能.如图③,在CD上取点F,过点F作FM⊥AB于点M,FN⊥AE于点N,过点C 作CG⊥FM于点G,则四边形ANFM为矩形,四边形BCGM为矩形,∴MG=BC=5,BM=CG,∠BCG=90°.∵∠BCD=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴FG=CG.设AM=x,矩形AMFN的面积为S,则BM=6-x,∴FM=GM+FG=GM+CG=BC+BM=11-x,∴S=AM·FM=x(11-x)=-x2+11x=-(x-5.5)2+30.25,∴当x=5.5时,S取得最大值,最大值为30.25.故这些矩形材料面积的最大值为30.25.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战2021中考数学考点提升训练——专题三十八:二次函数
一、选择题
1.抛物线y=x2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是()A.y=(x+1)2﹣2 B.y=(x﹣1)2+2
C.y=(x﹣1)2﹣2 D.y=(x+1)2+2
2.将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.10
3.关于二次函数,下列说法正确的是().
A.其图象的顶点坐标是B.当时,y随x的增大而减小
C.其图象与x轴有两个交点D.其图象开口向上
4.已知二次函数y=(x﹣2)2﹣1,那么该二次函数图象的对称轴是()
A.直线x=2 B.直线x=﹣2 C.直线x=1 D.直线x=﹣1 5.二次函数y=x2﹣2x+2的顶点坐标是()
A.(1,1)B.(2,2)C.(1,2)D.(1,3)
6.函数y=x2-2x-3中,当-2≤x≤3时,函数值y的取值范围是()
A.-4≤y≤5 B.0≤y≤5 C.-4≤y≤0 D.-2≤y≤3
7.要得到抛物线,可以将抛物线()
A.向右平移6个单位长度,再向下平移3个单位长度
B.向右平移6个单位长度,再向上平移3个单位长度
C.向左平移6个单位长度,再向上平移3个单位长度
D.向左平移6个单位长度,再向下平移3个单位长度
8.一条抛物线的顶点在第四象限,且与轴的两个交点的横坐标为一正一
负,则中为正数的( )
A .只有
B .只有
C .只有
D .只有和
9.在抛物线y =ax 2
-2ax -3a 上有A(-0.5,y 1)、B(2,y 2)和C(3,y 3)三点,若抛物线与y 轴的交点在正半轴上,则y 1、y 2和y 3的大小关系为( ) A .y 3<y 1<y 2
B .y 3<y 2<y 1
C .y 2<y 1<y 3
D .y 1<y 2<y 3
10.已知抛物线y =x 2
﹣x ﹣1,与x 轴的一个交点为(m ,0),则代数式m 2
﹣m +2020的值为( ) A .2018
B .2019
C .2020
D .2021
11.某商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足2
2(20)1558y x =--+,由于某种原因,价格只能15x 19≤≤,那么一周可获得最大利润是( ) A .1554
B .1556
C .1558
D .1560
12.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m 宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m .设饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式是( )
A .y =﹣x 2
+50x B .y =﹣x 2
+24x C .y =﹣x 2+25x
D .y =﹣x 2+26x
13.已知、、满足表格(如图)中的条件,则
的值是( )
A.4.5 B.9.5 C.D.无法确定
14.如图,已知二次函数y1=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y2=﹣x+c与抛物线交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论错误的是()
A.2a+b=0 B.b2﹣4ac>0
C.a﹣b+c<0 D.当0<x<3时,y1>y2
15.如图,二次函数的图象与x轴交于点A,B,交y轴于点C,点D在该函数第四象限内的图象上,若的面积为,则点D的横坐标是().
A.1 B.C.D.2
二.填空题
1.二次函数y=(x﹣2)2﹣3图象的顶点坐标是.
2.若二次函数y=x²+x+a和x轴有两个交点,则a的取值范围为__________
3.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2
+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).
4.已知二次函数y =x 2+2x +n ,当自变量x 的取值在﹣2≤x ≤1的范围内时,函数的图象与
x 轴有且只有一个公共点,则n 的取值范围是 .
5.已知二次函数y=
12
(x ﹣1)2
+4,若y 随x 的增大而增大,则x 的取值范围是________ 6.汽车刹车后行驶的距离s (单位:m )关于行驶的时间t (单位:s )的函数解析式是s =12t ﹣6t 2
,汽车刹车后到停下来前进了 m .
7.如图是抛物线拱桥,当拱顶离水面2米时,水面宽度4米,水面宽度增加2米时,水位下降_________米
8.已知二次函数y =ax 2
+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b >0;③b 2
﹣4ac >0;④a ﹣b +c >0,其中正确的有 .(只填写序号)
三.解答题
1.已知:二次函数23y x bx =
+-的图象经过点(2,5)A .
(1)求二次函数的解析式,
(2)求二次函数的图像与x 轴的交点坐标.
2.已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).
(1)求a的值和图象的顶点坐标.
(2)点Q(m,n)在该二次函数的图象上,当m=2时,求n的值.
3.已知二次函数y=x2﹣6x+c+27.
(1)求证:当c=10时,任意实数a,对应的函数值a2﹣6a+c+27≥1;
(2)该函数图象是否可以通过函数y=x2﹣6x的图象平移得到,如果能,请写出变化过程.
4.新冠肺炎期间,某超市将购进一批口罩进行销售,已知购进4盒甲口罩和6盒乙口罩需260元,购进5盒甲口罩和4盒乙口罩需220元.两种口罩以相同的售价销售,甲口罩的销
售量(盒)与售价(元)之间的关系为;当售价为40元时,乙口罩可销售100盒,售价每提高1元,少销售5盒.
(1)求甲、乙两种口罩每盒的进价分别为多少元?
(2)当乙口罩的售价为多少元时,乙口罩的销售总利润最大?此时甲乙两种口罩的销售利润总和为多少?
(3)当甲口罩的销售量不低于乙口罩的销售量的,若使两种口罩的总利润最高,求此时的定价为多少?
5.如图,已知边长为10的正方形,E是边上一动点(与B、C不重合),连结,H是延长线上的一点,过点E作的垂线交的角平分线于点F.
(1)求证:;
(2)若时,求的面积;
(3)为何值时,的面积最大,最大值是多少?
6.二次函数y=ax2+bx+c(a≠0)的自变量x与对应的函数y的值(部分)如表所示:
解答下列问题:
(Ⅰ)求这个二次函数的解析式;
(Ⅱ)表格中m的值等于;
(Ⅲ)在直角坐标系中,画出这个函数的图象;
(Ⅳ)将这个函数的图象向右平移2个单位长,向上平移1个单位长,写出平移后的二次函数解析式.
7.某水果店销售某种水果,由市场行情可知,从1月至12月,这种水果每千克售价(元)与销售时间(,为正整数)月之间存在如图1所示(图1的图象是线段)的变化趋势,每千克成本(元)与销售时间(,为正整数)月满足函数表达式,其变化趋势如图2所示(图2的图象是抛物线).
(1)求关于的函数表达式(不需要写出自变量的取值范围)
(2)求关于的函数表达式(不需要写出自变量的取值范围)
(3)求哪个月出售这种水果,每千克所获得的收益最大.。

相关文档
最新文档