(完整版)人教版导数测试题含答案
人教版高二数学《导数的四则运算法则含答案解析》练习
5.2.2导数的四则运算法则[A级 基础巩固]1.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于( ) A.-1 B.-2C.2 D.0解析:选B ∵f′(x)=4ax3+2bx为奇函数,∴f′(-1)=-f′(1)=-2.2.函数y=x2x+3的导数是( )A.x2+6x(x+3)2B.x2+6xx+3C.-2x(x+3)2D.3x2+6x(x+3)2解析:选A y′=(x2x+3)′=(x2)′(x+3)-x2(x+3)′(x+3)2=2x(x+3)-x2(x+3)2=x2+6x(x+3)2.3.曲线f(x)=x ln x在点x=1处的切线方程为( )A.y=2x+2 B.y=2x-2C.y=x-1 D.y=x+1解析:选C ∵f′(x)=ln x+1,∴f′(1)=1,又∵f(1)=0,∴在点x=1处曲线f(x)的切线方程为y=x-1.4.设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x,则a=( )A.0 B.1C.2 D.3解析:选D y′=a-1x+1,由题意得y′|x=0=2,即a-1=2,所以a=3.5.已知直线y=3x+1与曲线y=ax3+3相切,则a的值为( )A.1 B.±1C.-1 D.-2解析:选A 设切点为(x0,y0),则y0=3x0+1,且y0=ax30+3,所以3x0+1=ax30+3①.对y=ax3+3求导得y′=3ax2,则3ax20=3,ax20=1②,由①②可得x0=1,所以a=1.6.曲线y=x3-x+3在点(1,3)处的切线方程为________.解析:∵y′=3x2-1,∴y′|x=1=3×12-1=2.∴切线方程为y-3=2(x-1),即2x-y+1=0.答案:2x-y+1=07.已知曲线y1=2-1x与y2=x3-x2+2x在x=x0处切线的斜率的乘积为3,则x0=________.解析:由题知y′1=1x2,y′2=3x2-2x+2,所以两曲线在x=x0处切线的斜率分别为1x20,3x20-2x0+2,所以3x20-2x0+2x20=3,所以x0=1.答案:18.已知函数f(x)=f′(π4)cos x+sin x,则f(π4)的值为________.解析:∵f′(x)=-f′(π4)sin x+cos x,∴f′(π4)=-f′(π4)×22+22,得f′(π4)=2-1.∴f(x)=(2-1)cos x+sin x.∴f(π4)=1.答案:19.求下列函数的导数:(1)y=x-ln x;(2)y=(x2+1)(x-1);(3)y=x2sin x;(4)y=x+3x2+3.解:(1)y′=(x-ln x)′=(x)′-(ln x)′=12x-1x.(2)y′=[(x2+1)(x-1)]′=(x3-x2+x-1)′=(x3)′-(x2)′+(x)′-(1)′=3x2-2x+1.(3)y′=(x2)′·sin x-x2·(sin x)′sin2x=2x sin x-x2cos xsin2x.(4)y′=1·(x2+3)-(x+3)·2x(x2+3)2=-x2-6x+3 (x2+3)2.10.偶函数f(x)=ax4+bx3+cx2+dx+e的图象过点P(0,1),且在x=1处的切线方程为y=x-2,求f(x)的解析式.解:∵f(x)的图象过点P(0,1),∴e=1.又∵f(x)为偶函数,∴f(-x)=f(x).故ax4+bx3+cx2+dx+e=ax4-bx3+cx2-dx+e.∴b=0,d=0.∴f(x)=ax4+cx2+1.∵函数f(x)在x=1处的切线方程为y=x-2,∴切点为(1,-1).c,13.曲线y=x2x-1在点(1,1)处的切线为l,则l上的点到圆x2+y2+4x+3=0上的点的最近距离是________.解析:y′=-1(2x-1)2,则y′Error!=-1,∴切线方程为y-1=-(x-1),即x+y-2=0,圆心(-2,0)到直线的距离d=22,圆的半径r=1,∴所求最近距离为22-1.答案:22-114.已知曲线f(x)=x3+ax+b在点P(2,-6)处的切线方程是13x-y-32=0.(1)求a,b的值;(2)如果曲线y=f(x)的某一切线与直线l:y=-14x+3垂直,求切点坐标与切线的方程.解:(1)∵f(x)=x3+ax+b的导数f′(x)=3x2+a,由题意可得f′(2)=12+a=13,f(2)=8+2a+b=-6,解得a=1,b=-16.(2)∵切线与直线y=-14x+3垂直,∴切线的斜率k=4.设切点的坐标为(x0,y0),则f′(x0)=3x20+1=4,∴x0=±1.由f(x)=x3+x-16,可得y0=1+1-16=-14,或y0=-1-1-16=-18.则切线方程为y=4(x-1)-14或y=4(x+1)-18.即4x-y-18=0或4x-y-14=0.[C级 拓展探究]15.设f n(x)=x+x2+…+x n-1,x≥0,n∈N,n≥2.(1)求f n′(2);(2)证明:f n(x)在(0,23)内有且仅有一个零点(记为a n),且0<a n-12<2n3n+1.解:(1)由题设f n′(x)=1+2x+…+nx n-1.所以f n′(2)=1+2×2+…+(n-1)2n-2+n·2n-1,①则2f n′(2)=2+2×22+…+(n-1)2n-1+n·2n,②①-②得,-f n′(2)=1+2+22+…+2n-1-n·2n=1-2n1-2-n·2n=(1-n)·2n-1,所以f n′(2)=(n-1)·2n+1.(2)证明:因为f(0)=-1<0,x≥0,n≥2.f n(23)=23[1-(23)n]1-23-1=1-2×(23)n≥1-2×(23)2>0,所以f n(x)=x+x2+…+x n-1为增函数,所以f n(x)在(0,23)内单调递增,因此f n(x)在(0,23)内有且仅有一个零点a n.由于f n(x)=x-x n+11-x-1,所以0=f n(a n)=a n-a n+1n1-a n-1,由此可得a n=12+12a n+1n>12,故12<a n<23.1 2=12a n+1n<12×(23)n+1=2n3n+1.所以0<a n-。
导数测试题(人教A版理)(含答案)
导数(人教A 版理)测试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数21ln 2y x x =-的单调递减区间为 A .(1,1]- B .(0,1] C .[1,)+∞ D .(0,)+∞2.函数()f x 的定义域为R ,(1)2f -=,对任意x ∈R ,()2f x '>,则()24f x x >+的解集为 A .(1,1)- B .(1,)-+∞ C .(,1)-∞- D .(,)-∞+∞3.设函数()e x f x x =,则A .1x =为()f x 的极大值点B .1x =为()f x 的极小值点C .1x =-为()f x 的极大值点D .1x =-为()f x 的极小值点4.已知函数33y x x c =-+的图象与x 轴恰有两个公共点,则c =A .2-或2B .9-或3C .1-或1D .3-或15.设函数2()ln f x x x=+,则A .12x =为()f x 的极大值点 B .12x =为()f x 的极小值点 C .2x =为()f x 的极大值点 D .2x =为()f x 的极小值点6. 如图所示,在边长为1的正方形O ABC 中任取一 点P ,则点P 恰好取自阴影部分的概率为A .14 B .15 C .16 D .177.设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图象如图所示,则下列结论中一定成立的是A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(2)f -和极小值(1)fC .函数()f x 有极大值(2)f 和极小值(2)f -D .函数()f x 有极大值(2)f -和极小值(2)f8.已知函数()y f x =的图象在点(1,(1))f 处的切线方程是210x y -+=,则(1)2(1)f f '+=A .12B .1C .132D .29.设点P 在曲线e x y =上,点Q 在曲线11y x=-上,则||PQ 的最小值为A 1)-B 1)-C D10.设定义在R 上的函数()f x 是最小正周期为2π的偶函数,()f x '是()f x 的导数,当[0,]x π∈时,0()1f x <<;当(0,)x π∈且2x π≠时,()02x f x π⎛⎫'-> ⎪⎝⎭.则函数()sin y f x x =-在[2,2]ππ-上的零点个数为A .2B .4C .5D .811.设函数1()f x x=,2()g x x bx =-+,若()y f x =的图象与()y g x =的图象有且只有两个不同的公共点11(,)A x y ,22(,)B x y ,则下列判断正确的是A .120x x +>,120y y +>B .120x x +>,120y y +<C .120x x +<,120y y +>D .120x x +>,120y y +<12.已知ln ()ln 1xf x x x=-+,()f x 在0x x =处取最大值,以下各式正确的序号为 ①00()f x x <;②00()f x x =;③00()f x x >;④01()2f x <;⑤01()2f x >. A .①④ B .②④ C .②⑤ D .③⑤二、填空题:本大题共4小题,每小题5分,共20分.13.曲线(3ln 1)y x x =+在点(1,1)处的切线方程为 .14.计算定积分121(sin )d x x x -+=⎰ .15.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线21:C y x a =+到直线:l y x =的距离等于曲线222:(4)2C x y ++=到直线:l y x =的距离,则实数a = .16.已知[0,)x ∈+∞,给出下列四个不等式: ①2e 1x x x ≤++211124x x ≤-+;③21cos 12x x ≥-;④21ln(1)8x x x +≥-.其中,能够恒成立的不等式的序号是 .(写出你认为满足题意的所有不等式的序号)三、解答题:本大题共6小题,共70分. 17.求函数()e 2x f x ax =--的单调区间.18.已知函数3()f x ax bx c =++在2x =处取得极值16c -. (1)求,a b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最小值.19.设函数1()e (0)e x xf x a b a a =++>. (1)求()f x 在[0,)+∞内的最小值;(2)设曲线()y f x =在点(2,(2))f 处的切线方程为32y x =,求,a b 的值.20.已知,a b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点.(1)求a 和b 的值;(2)设函数()g x 的导数()()2g x f x '=+,求()g x 的极值点.21.已知0a >,b ∈R ,函数3()42f x ax bx a b =--+.(1)证明:当01x ≤≤时,①函数()f x 的最大值为|2|a b a -+;②()|2|0f x a b a +-+≥. (2)若1()1f x -≤≤对[0,1]x ∈恒成立,求a b +的取值范围.22.已知函数ln ()e xx kf x +=(k 为常数),曲线()y f x =在点(1,(1))f 处的切线与轴x 平行. (1)求k 的值;(2)求()f x 的单调区间;(3)设()()g x xf x '=,其中()f x '为()f x 的导函数,证明:对任意0x >,2()1e g x -<+.导数(人教A 版理)测试题答案1. B2. B3. C4. B5.D6. C7. D8. D9.解:函数e x y =的反函数为ln y x =,考查函数ln y x =与图象11y x=-的公共点情况,即 考查方程1ln 1x x =-的解的个数,即考查函数1()ln 1h x x x=+-的零点个数. 1()ln 1h x x x =+-,22111()x h x x x x-'=-=,当01x <<时,()0h x '<,()h x 递减;当1x >时,()0h x '>,()h x 递增.故0x >时,()(1)0h x h ≥=,即1ln 1x x≥-,仅当1x =时,取等号.因此||PQ 最小值就是函数e x y =及其反函数ln y x =图象上两点距离最小值,易知此时(0,1)P ,(1,0)Q ,故||PQ .答案:选C10.解:函数311()e (1)0e (1)21x xb f x x ax b a x bbx x a x b a -≥++-+≥<<-+=<+. 答案:选B11.解:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只需(0)0F =或203F b ⎛⎫= ⎪⎝⎭.因为(0)1F =,故必有203F b ⎛⎫= ⎪⎝⎭,由此得b 不妨设12x x <,则223x b =所以1()()(F x x x x =-,比较系数得1x -,故1x =120x x +,由此知12121212110x x y y x x x x ++=+=<. 答案:B12.解:22111ln ln 1()[(ln )(1)](1)11(1)(1)x x x f x x x x x x x ++''=⋅-=--=-++++,由题意知0()0f x '=,即00ln 10x x ++=,00ln (1)x x =-+. 故00000000000ln ln (1)()ln 111x x x x x f x x x x x x -+=-===+++. 令函数()l n 1(0)g x x x x =++>,则1()10g x x'=+>,故函数()g x 为增函数,而011331l n l n e 0()22222g g x ⎛⎫⎛⎫=+>-=>= ⎪⎪⎝⎭⎝⎭,即01()2g g x ⎛⎫> ⎪⎝⎭,故012x <,所以01()2f x <.答案:B二、填空题:本大题共4小题,每小题5分,共20分. 13. 43y x =-.14.解:∵321cos sin 3x x x x '⎛⎫-=+ ⎪⎝⎭,∴11231112(sin )d cos 33x x x x x --⎛⎫+=-= ⎪⎝⎭⎰.215.曲线2C 是圆心为(0,4)-,半径r 的圆,圆心到直线:l y x =的距离1d ,所以曲线2C 到直线l 的距离为1d r -设曲线1C 上的点00(,)x y 到直线:l y x =的距离最短为d ,则过00(,)x y 的切线平行于直线y x =.已知函数2y x a =+,则00|21x x y x ='==,即012x =,014y a =+,点00(,)x y 到直线:l y x =的距离111||||a a d ⎛⎫-+- ⎪,由题意1||a -74a =-或94a =.当74a =-时,直线l 与曲线1C 相交,不合题意,故舍去.答案:49. 16.解: 对①,在区间[0,)+∞上,函数e x y =和21y x x =++的增长速度不在同一个“档次”上,随着x 的增大,e x y =的增长速度越来越快,会超过并会远远大于21y x x =++的增长速度,故不等式2e 1x x x ≤++不能恒成立.对②:令t 1t ≥,21x t =-.于是,原不等式对[0,)x ∈+∞是否恒成立534740t t t ⇔-+-≥对[1,)t ∈+∞是否恒成立.记53()4740,[1,)f t t t t t =-+-≥∈+∞,则42()51275(1)(1),[1,)f t t t t t t t t ⎛'=-+=+-∈+∞ ⎝,易知()f t 在⎛ ⎝内递减.当t ⎛∈ ⎝时,()(1)0f t f <=,故不等式534740t t t -+-≥对[1,)t ∈+∞不恒成立,从而排除选项B. 对③:记21()cos 1,[0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-≥在[0,)+∞上恒成立,故()f x 在[0,)+∞上递增,所以()(0)0f x f ≥=,即当[0,)x ∈+∞时,不等式21cos 12x x ≥-+恒成立.对④:取4x =,则左边2ln5lne 2=<==右边,此时21ln(1)8x x x +<-,从而排除选项D. 答案:选填③17.解:(1)()f x 的定义域为(,)-∞+∞,()e x f x a '=-. 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞上单调递增.若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>.所以,()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.故()f x 的递减区间为(,ln )a -∞,递增区间为(ln ,)a +∞. 18.解:(1)因为3()f x ax bx c =++,故2()3f x ax b '=+. 由于()f x 在2x =处取得极值16c -,故有(2)0,(2)16,f f c '=⎧⎨=-⎩即120,8216,a b a b c c +=⎧⎨++=-⎩解得1,12.a b =⎧⎨=-⎩(2)由(1)知3()12f x x x c =-+,2()3123(2)(2)f x x x x '=-=+-.当(,2)x ∈-∞-时,()0f x '>,故()f x 在(,2)-∞-上为增函数;当(2,2)x ∈-时,()0f x '<,故()f x 在(2,2)-上为减函数;当(2,)x ∈+∞时,()0f x '>,故()f x 在(2,)+∞上为增函数.由此可知()f x 在2x =-处取得极大值(2)16f c -=+,()f x 在2x =处取得极小值(2)16f c =-. 由题设条件知1628c +=,解得12c =.此时(3)921f c -=+=,(3)93f c =-+=,(2)164f c =-+=-, 因此()f x 在[3,3]-上的最小值为(2)4f =-. 19.解:(1)1()e e x xf x a a '=-,当ln x a <-时,()0f x '<,()f x 在(,ln )a -∞-上递减;当ln x a >-时,()0f x '>,()f x 在(ln ,)a -+∞①若01a <<,ln 0a ->,()f x 在(0,ln )a -上递减,在(ln ,)a -+∞上递增,从而()f x 在[0,)+∞上的最小值为(ln )2f a b -=+; ②若1a ≥,ln 0a -≤,()f x 在(0,ln )a -上递增,从而()f x 在[0,)+∞上的最小值为1(0)f a b a=++.(2)依题意2213(2)e e 2f a a '=-=,解得2e 2a =或21e 2a =-(舍去), 所以2e a =,代入原函数可得1232b ++=,即12b =,故2e a =,12b =. 20.解:(1)由题设知2()32f x x ax b '=++,且(1)320f a b '-=-+=,(1)320f a b '=++=,解得0a =,3b =-.(2)由(1)知3()3f x x x =-.因为2()2(1)(2)f x x x +=-+,所以()0g x '=的根为121x x ==,32x =-,于是函数()g x 的极值点只可能是1或2-.当2x <-时,()0g x '<;当21x -<<时,()0g x '>,故2-是()g x 的极值点. 当21x -<<或1x >时,()0g x '>,故1不是()g x 的极值点. 所以的极值点为2-.21.解:(1)①22()122126b f x ax b a x a ⎛⎫'=-=-⎪⎝⎭.当0b ≤时,有()0f x '≥,此时()f x 在[0,)+∞上单调递增; 当0b >时,()12f x a x x ⎛'= ⎝,此时()f x在⎡⎢⎢⎣上单调递减,在⎫⎪⎪⎭上单调递增. 所以当01x ≤≤时,max 3,2,()max{(0),(1)}max{,3}|2|,2a b b a f x f f a b a b a b a a b b a-≤⎧==-+-==-+⎨-+>⎩.②由于01x ≤≤,故当2b a ≤时,333()|2|()34224222(221)f x a b a f x a b ax bx a ax ax a a x x +-+=+-=-+≥-+=-+. 当2b a >时,3333()|2|()42(1)244(1)244(1)22(221)f x a b a f x a b ax b x a ax a x a ax a x a a x x +-+=-+=+-->+-->+--=-+. 设3()221,01g x x x x =-+≤≤,则2()626g x x x x ⎛'=-= ⎝⎭⎝⎭,于是()g x ',()g x 随x 的变化情况如下:所以,min ()10g x g ==.所以当01x ≤≤时,32210x x -+>.故3()|2|2(221)f x a b a a x x +-+≥-+. (2)由①知,当01x ≤≤时,m ax ()|2|f x a b a =-+,所以|2|1a b a -+≤.若|2|1a b a -+≤,则由②知()(|2|)1f x a b a ≥--+≥-.所以1()1f x -≤≤对任意01x ≤≤恒成立的充要条件是|2|1,0,a b a a -+≤⎧⎨>⎩即20,31,0a b a b a -≥⎧⎪-≤⎨⎪>⎩或20,1,0.a b b a a -<⎧⎪-≤⎨⎪>⎩(*)在直角坐标系aOb 中,(*)所表示的平面区域为如图所示的阴影部分,其中不包括线段BC . 做一组平行直线()a b t t +=∈R ,得13a b -<+≤,所以a b +的取值范围是(1,3]-.22.解:(1)由ln ()e xx k f x +=,得1ln (),(0,)e xkx x xf x x x --'=∈+∞. 因为曲线()y f x =在(1,(1))f 处的切线与x 轴平行,(2)由(1)得1ln (),(0,)e x x xf x x x --'=∈+∞, 当(0,1)x ∈时,10x ->,ln 0x ->,()0f x '>;当(1,)x ∈+∞时,10x -<,ln 0x x -<,()0f x '<. 所以()f x 的单调增区间是(0,1),单调递减区间是(1,)+∞. (3)证明:因为2()()()g x x x f x '=+,所以1()(1ln ),(0,)e xx g x x x x x +=--∈+∞. 因此,对任意0x >,2()1e g x -<+等价于2e 1ln (1e )1xx x x x ---<++. 令()1ln ,(0,)h x x x x x =--∈+∞,则2()ln 2(ln ln e ),(0,)h x x x x -'=--=--∈+∞.因此,当2(0,e )x -∈时,()0h x '>,()h x 单调递增;当2(e ,)x -∈+∞时,()0h x '<,()h x 单调递减. 所以()h x 的最大值为22(e )1e h --=+,故21ln 1e x x x ---≤+.设()e (1)x x x ϕ=-+.因为0()e 1e e x x x ϕ'=-=-,所以当(0,)x ∈+∞时,()0x ϕ'>,()x ϕ单调递增,()(0)0x ϕϕ>=,故当(0,)x ∈+∞时,()e (1)0x x x ϕ=-+>,即e 11xx >+. 所以22e 1ln 1e (1e )1x x x x x ----≤+<++.因此对任意0x >,2()1e g x -<+.。
(完整版)新人教A版高二理科数学导数练习卷(含答案),推荐文档
2 ,解得
f '(2) 9 4 ,故选 D.
5【答案】D
【解析】当 x 0 时, y x f (x) 在[0,b] 上的函数值非负 在[0,b] 上 f '(x) 0 ,故函 数 f (x) 在[0,b] 上单调递增;当 x 0 时, y x f (x) 在 ( , 0]上的函数值非负 在
A. 2
B. 2
9 C. 4
9 D. 4
5.已知函数 y x f (x) 的图象如图所示,则函数 f (x) 的图象可能是( )
6.函数 f (x) kx ln x 在区间 (1, ) 上单调递增,则实数 k 的取值范围是(
)
A. (, 2]
B. (, 1]
C.[2, )
D.[1, )
7.函数 f (x) a ln x x 在 x 1 处取得极值,则实数 a 的值为(
(1)当 a 1时,求曲线 y f (x) 在点 (2, f (2)) 处的切线方程;
(2)若函数 f (x) 在区间 (2, 3) 上是减函数,求实数 a 的取值范围.
22.已知函数 f (x) ex x . (1)求 f (x) 的极小值;(2)对 x (0, ), f (x) ax 恒成立,求实数 a 的取值范围.
(x)
[1 在e
, e]
上的最大值.
20.已知函数
f
(x)
a ln
x
1 2
x2
bx(a,b R)
在
x1
2
,
x2
3
处取得极值.
(1)求 a , b 的值;(2)求 f (x) 在点 P(1, f (1)) 处的切线方程.
3
f (x) 1 x3 ax2 3a2 x 1
2023年人教版数学导数基础练习题及答案
2023年人教版数学导数基础练习题及答案(正文)在2023年人教版数学教材中,导数是数学中重要的基础概念之一。
为了帮助学生更好地理解和掌握导数的概念和应用,教材中提供了一系列的基础练习题及答案。
本文将为大家呈现部分2023年人教版数学导数基础练习题及答案。
练习题1:已知函数f(x)=3x²-2x+1,求f(x)的导函数f'(x)。
解答:导数的求法主要是运用导数的基本公式,对函数中的各项进行求导。
f'(x)=d(3x²)/dx - d(2x)/dx + d(1)/dx=6x - 2练习题2:已知函数y=x⁴-2x³+x²,求x=2时的切线方程。
解答:根据导数的定义,切线的斜率等于函数在该点的导数值。
因此,要求得切线方程,需要先求得函数在x=2时的导数值,然后再带入切点坐标即可。
y' = d(x⁴)/dx - d(2x³)/dx + d(x²)/dx= 4x³ - 6x² + 2x将x=2代入导数表达式,得到斜率k:k = 4(2)³ - 6(2)² + 2(2)= 16 - 24 + 4= -4切点坐标已知为(2, f(2)),将x=2代入函数表达式,得到切点的纵坐标:f(2) = (2)⁴ - 2(2)³ + (2)²= 16 - 16 + 4= 4由切点坐标和斜率可以得到切线方程y-y₁=k(x-x₁),将值代入:y-4=-4(x-2)练习题3:求函数f(x)=x³-3x²+2x-5的驻点和拐点。
解答:驻点的求法主要是通过求导数,令导函数f'(x)的值为0,然后求得对应的x值。
拐点的求法则是通过求二阶导数,令二阶导函数f''(x)的值为0,然后求得对应的x值。
首先,求导函数f'(x):f'(x) = d(x³)/dx - d(3x²)/dx + d(2x)/dx - d(5)/dx= 3x² - 6x + 2然后,令导函数f'(x)为0,解方程得到驻点x:3x² - 6x + 2 = 0利用求根公式,可以求得两个解:x₁ = (6 + √(6²-4×3×2))/(2×3) ≈ 2.732x₂ = (6 - √(6²-4×3×2))/(2×3) ≈ 0.268接着,求二阶导函数f''(x):f''(x) = d(3x²)/dx - d(6x)/dx + d(2)/dx= 6x - 6将x₁和x₂代入二阶导函数,解方程得到拐点x:6x - 6 = 0x = 1综上所述,函数f(x)=x³-3x²+2x-5的驻点分别为x₁≈2.732和x₂≈0.268,拐点为x=1。
新人教版高中数学选修二第二单元《一元函数的导数及其应用》测试(含答案解析)
一、选择题1.对任意的0a b t <<<,都有ln ln b a a b <,则t 的最大值为( )A .1B .eC .2eD .1e2.记函数()cos2f x x =的导函数为()f x ',则函数()23()()g x f x f x '=+在[0,]x π∈内的单调递增区间是( )A .0,2π⎡⎤⎢⎥⎣⎦B .,2ππ⎡⎤⎢⎥⎣⎦C .511,1212ππ⎡⎤⎢⎥⎣⎦D .5,12ππ⎡⎤⎢⎥⎣⎦3.若函数()323f x x tx x =-+在区间[]1,4上单调递减,则实数t 的取值范围是( ) A .51[,)8+∞ B .(],3-∞C .51,8⎛⎤-∞ ⎥⎝⎦D .[)3,+∞ 4.已知函数()f x 的图象如图所示,则()f x 可以为( )A .()3x xf x e=B .()x x xf x e e -=- C .()xx f x e= D .()xf x xe =5.若()()21ln 22f x x b x =-++在[)1,-+∞上是减函数,则b 的取值范围是( ) A .[)1,-+∞B .(],1-∞-C .[)1,+∞D .(],1-∞6.已知函数()2ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .7.已知()'f x 是定义在上的函数()f x 的导函数,且2(1)(1)xf x f x e +=-,当1x >时,()()f x f x '>恒成立,则下列判断正确的是( ) A .()()523e f f ->B .()()523f e f ->C .()()523e f f <-D .()()523f e f >-8.设函数f (x )=24x -a ln x ,若f ′(2)=3,则实数a 的值为( )A .4B .-4C .2D .-29.已知定义在R 上的函数()f x 满足(3)16f =,且()f x 的导函数'()41f x x <-,则不等式2()21f x x x <-+的解集为( ) A .{}|33x x -<< B .{}|3x x >- C .{}|3x x >D .{|3x x <-或3x10.已知函数()cos ln f x x x =-+,则()1f '的值为( ) A .sin11- B .1sin1- C .1sin1+ D .1sin1--11.已知()f x 的定义域为(0,)+∞,fx 为()f x 的导函数,且满足()()'f x xf x <-,则不等式(1)(1)f x x +>-()21f x -的解集是( )A .0,1B .2,C .1,2D .1,12.已知函数()xe f x ax x =-,()0,x ∈+∞,当21x x >时,不等式()()1221f x f x x x <恒成立,则实数a 的取值范围为( ) A .(],e -∞B .(),e -∞C .,2e ⎛⎫-∞ ⎪⎝⎭D .,2e ⎛⎤-∞ ⎥⎝⎦二、填空题13.()f x 的定义域为()(),00,-∞⋃+∞,()f x '是导函数,且满足()2()0xf x f x '->,若()f x 是偶函数,()11f =,则不等式()2f x x >的解集为__________.14.已知x y ,均为正实数.1x y +=.则1y x y+的最小值为________. 15.已知函数2ln ()a xf x x x=-,对于12,[2,2020]x x ∈,且当21x x >时,恒有()()12210f x f x x x ->,则实数a 的取值范围为__________. 16.对于三次函数()()320ax bx d a f x cx =+++≠,定义:设()f x "是函数()y f x =的导数()y f x ='的导数,若方程()0f x "=有实数解0x ,则称点()()00x f x ,为函数()y f x =的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,函数()3231324f x x x x =-+-,则它的对称中心为______.17.已知函数()f x sinx cosx =+,()'f x 是()f x 的导函数,若()()00'2f x f x =,则2020012sin x cos x sin x +=-______. 18.已知函数322()3f x x ax bx a =+++,若函数()()sin 2g x f x x =+在点(0,(0))g 处的切线平行于x 轴,则实数b 的值是________.19.已知函数f (x )=ln x -f ′ (12)x 2+3x -4,则f ′(1)=________. 20.函数()sin f x x x =在x π=处的切线方程为______________.三、解答题21.已知函数()ln ()f x x ax a R =-∈. (1)讨论函数()f x 的单调性;(2)证明不等式2()x e ax f x --≥恒成立.22.若函数()32143f x x ax bx =+-+在2x =-和1x =处取得极值. (1)求函数()f x 的解析式; (2)讨论方程()f x k =实数解的个数.23.已知函数()ln f x a x ax =+,2()2g x x x =+,其中a R ∈. (1)求函数()()()h x f x g x =+的极值; (2)若()g x 的图像在()()11,A x g x ,()()()2212,0B x g x xx <<处的切线互相垂直,求21x x -的最小值.24.(1)已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围; (2)已知函数()()=ln f x x mx m m -+∈R .讨论函数()f x 的单调性. 25.已知函数2()3(6)ln ()f x x a x a x a R =+--∈ (1)求函数()y f x =的单调区间;(2)当1a =时,证明:对任意的20,()352x x f x e x x >+>++.26.已知函数2()(2)x x f x ae a e x =-++ (1)若0a >,求()f x 的单调递增区间;(2)若存在正实数0x ,使得0()f x e =-,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令ln xy x=,问题转化为函数在(0,)t 递增,求出函数的导数,求出函数的单调区间,从而求出t 的最大值即可. 【详解】0a b t <<<,ln ln b a a b <,∴ln ln a ba b<,()a b <, 令ln xy x=,则函数在(0,)t 递增, 故21ln 0xy x -'=>, 解得:0x e <<,所以(0,)t 是(0,)e 的子集, 可得0t e <≤,故t 的最大值是e , 故选:B . 【点睛】利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间,a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围.2.C解析:C 【分析】先对函数()f x 求导,再利用辅助角公式化简,然后利用正弦函数图像和性质即可分增区间. 【详解】()cos2f x x =,()'2sin 2f x x ∴=-,2()2sin 24sin 23g x x x x π⎛⎫=-=+⎪⎝⎭, 令2222232k x k πππππ-+≤+≤+, 解得71212k x k ππππ-+≤≤-+, ()g x ∴在[]0,π内的递增区间为511,1212ππ⎡⎤⎢⎥⎣⎦. 故选:C . 【点睛】本题主要考查的是正弦复合函数的单调性以及单调区间的求解,以及复合函数的导数的求法,熟练掌握正弦函数图像和性质是解决本题的关键,是中档题.3.A解析:A 【分析】由函数()f x 在区间[]1,4上单调递减,得到不等式'()0f x ≤在[]1,4x ∈恒成立,再根据二次函数根的分布,求实数t 的取值范围. 【详解】因为函数()323f x x tx x =-+在区间[]1,4上单调递减,所以'2()3230f x x tx =-+≤在[]1,4x ∈恒成立,所以(1)0,(4)0,f f '≤'≤⎧⎨⎩即40,5180,t t -≤⎧⎨-≤⎩解得:518t ≥. 【点睛】本题考查利用导数研究函数的单调性、利用二次函数根的分布求参数取值范围,考查逻辑思维能力和运算求解能力,求解时要充分利用二次函数的图象特征,把恒成立问题转化成只要研究两个端点的函数值正负问题.4.A解析:A 【分析】由图象可知,函数()y f x =为R 上的奇函数,且在()0,∞+上先增后减,然后逐项分析各选项中函数()y f x =的定义域、奇偶性及其在区间()0,∞+上的单调性,结合排除法可得出正确选项. 【详解】由图象可知,函数()y f x =为R 上的奇函数,且在()0,∞+上先增后减. 对于A 选项,函数()3x x f x e =的定义域为R ,()()x xx xf x f x e e---==-=-,该函数为奇函数,当0x >时,()xx f x e=,()1x xf x e -'=. 当01x <<时,()0f x '>,此时函数()y f x =单调递增;当1x >时,()0f x '<,此时函数()y f x =单调递减,合乎题意; 对于B 选项,函数()x xxf x e e-=-的定义域为{}0x x ≠,不合乎题意; 对于C 选项,函数()xx f x e =的定义域为R,()1f e -=-,()11f e =,()()11f f -≠-,该函数不是奇函数,不合乎题意;对于D 选项,函数()xf x xe =的定义域为R ,当0x >时,()xf x xe =,()()10x f x x e '=+>,该函数在区间()0,∞+上单调递增,不合乎题意.故选:A. 【点睛】本题考查函数图象的识别,一般从函数的定义域、奇偶性、单调性、零点以及函数值符号来判断,结合排除法求解,考查分析问题和解决问题的能力,属于中等题.5.B解析:B 【分析】先对函数进行求导,根据导函数小于0时原函数单调递减即可得到答案 【详解】由题意可知()02bf x x x '-+≤+=,在[)1x ∈-+∞,上恒成立, 即()2b x x ≤+在[)1x ∈-+∞,上恒成立, 由于()2y x x =+在[)1,-+∞上是增函数且最小值为1-,所以1b ≤-, 故选:B. 【点睛】本题主要考查导数的正负和原函数的增减性的问题,属于中档题.6.A解析:A 【分析】利用函数的定义域和函数的值域排除BD ,通过函数的单调性排除C ,推出结果即可. 【详解】令()ln 1g x x x =--,则11()1x g x x x-'=-=, 由()0g x '>得1x >,即函数()g x 在(1,)+∞上单调递增, 由()0g x '<得01x <<,即函数()g x 在(0,1)上单调递减, 所以当1x =时,()()min 10g x g ==, 于是对任意(0,1)(1,)x ∈+∞,有()0g x >,则()0f x >,故排除BD ,因为函数()g x 在()0,1单调递减,则函数()f x 在()0,1递增,故排除C. 故选:A. 【点睛】本题考查利用导数对函数图象辨别,属于中档题.7.A解析:A 【分析】构造函数()()x f x g x e=,由(1)(1)g x g x -=+,可得()g x 的图象关于直线1x =对称, 利用导数研究函数的单调性,根据单调性即可比较大小. 【详解】构造函数()()xf xg x e=,因为2(1)(1)xf x f x e +=-,所以11(1)(1)x x f x f x e e +-+-=, 则(1)(1)g x g x -=+,所以()g x 的图象关于直线1x =对称,因为当1x >时,()()f x f x '>,所以()()()0xf x f xg x e''-=>, 所以()g x 在(1,)+∞上单调递增, 所以有(3)(2),(2)(3)g g g g ->->, 即3223(3)(2)(2)(3),f f f f e e e e---->>, 即5(3)(2)e f f ->,5(2)(3)e f f ->, 故选:A. 【点睛】本题考查了导数研究函数的单调性,解题的关键是构造函数,属于中档题.8.B解析:B 【解析】f ′(x )=-,故f ′(2)=-=3,因此a =-4.9.C解析:C 【分析】根据题意,设2()()21g x f x x x =-+-,求导分析可得()0g x '<,即函数()g x 在R 上为减函数,则原不等式可以转化为()()3g x g <,结合函数的单调性分析可得答案. 【详解】解:根据题意,设2()()21g x f x x x =-+-,其导数()()41g x f x x '='-+, 又由()41f x x '<-,即()410f x x '-+<, 则()0g x '<,即函数()g x 在R 上为减函数,又由f (3)16=,则g (3)f =(3)18310-+-=, ()()22()21()2103f x x x f x x x g x g <-+⇒-+-<⇒<,又由函数()g x 为减函数,则有3x >,则不等式2()21f x x x <-+的解集为{|3}x x >; 故选:C . 【点睛】本题考查函数的导数与函数单调性的关系,涉及不等式的求解,根据条件构造函数,利用函数的单调性和导数之间的关系是解决本题的关键,属于中档题.10.C解析:C 【分析】根据导数的运算法则先求出函数的导数()f x '的解析式,再把1x =代入()f x '的解析式运算求得结果. 【详解】∵函数()cos ln f x x x =-+,∴()1sin f x x x'=+, ∴()1sin11f ='+,故选C. 【点睛】本题主要考查求函数的导数,导数的加减法则的应用,属于基础题.11.B解析:B 【分析】构造函数()()F x xf x =,再根据单调性解不等式,即得结果. 【详解】令()()F x xf x =,则()()()0F x f x xf x ''=+<,所以()F x 在(0,)+∞上单调递减(1)(1)f x x +>-()21f x -,2(1)(1)(1)x f x x ∴++>-()21f x -,2(1)(1)F x F x ∴+>-, 2011,2x x x ∴<+<-∴>,故选:B 【点睛】本题考查利用导数解不等式,考查基本分析求解能力,属中档题.12.D解析:D 【分析】由题意得出()()1122x f x x f x <,构造函数()2xg x e ax =-,可知函数()y g x =在区间()0,∞+上单调递增,可得出()20x g x e ax '=-≥对任意的0x >恒成立,利用参变量分离法可得出2x e a x ≤,利用导数求得函数()2xe h x x=在区间()0,∞+上的最小值,由此可求得实数a 的取值范围. 【详解】函数()xe f x ax x =-的定义域为()0,∞+,当21x x >时,()()1221f x f x x x <恒成立, 即()()1122x f x x f x <,构造函数()()2xg x xf x e ax ==-,则()()12g x g x <,所以,函数()2xg x e ax =-在区间()0,∞+上为增函数,则()20xg x e ax '=-≥对任意的0x >恒成立,2xea x∴≤,令()2xe h x x=,其中0x >,则()min a h x ≤.()()212x e x h x x-'=,当01x <<时,()0h x '<,此时函数()y h x =单调递减; 当1x >时,()0h x '>,此时函数()y h x =单调递增. 所以,函数()y h x =的最小值为()()min 12e h x h ==,2e a ∴≤.因此,实数a 的取值范围是,2e ⎛⎤-∞ ⎥⎝⎦.故选:D. 【点睛】本题考查利用函数在区间上的单调性求参数,根据不等式的结构特征构造合适的函数是解题的关键,考查分析问题和解决问题的能力,属于中等题.二、填空题13.【分析】构造函数分析出函数为偶函数且在上为增函数将所求不等式变形为可得出可得出由此可解得原不等式的解集【详解】构造函数该函数的定义域为由于函数为偶函数则所以函数为偶函数当时则所以函数在上为增函数可得 解析:()(),11,-∞-+∞【分析】 构造函数()()2f x g x x=,分析出函数()g x 为偶函数且在()0,∞+上为增函数,将所求不等式变形为()()1g x g >,可得出()()1g x g >,可得出1x >,由此可解得原不等式的解集. 【详解】 构造函数()()2f x g x x=,该函数的定义域为()(),00,-∞⋃+∞, 由于函数()f x 为偶函数,则()()()()()22f x f xg x xx g x --==-=,所以,函数()g x 为偶函数.()()()()()24322x f x xf x x f x f x g x x x''⋅-⋅-'==, 当0x >时,()2()0xf x f x '->,则()0g x '>,所以,函数()g x 在()0,∞+上为增函数,()11f =,可得()()21111f g ==,由()2f x x >可得()21f x x >,即()()1g x g >,所以,()()1g x g >,1x ∴>,解得1x <-或1x >. 因此,不等式()2f x x >的解集为()(),11,-∞-+∞.故答案为:()(),11,-∞-+∞.【点睛】方法点睛:该题主要考查利用导数求解函数不等式,在解题的过程中,思路如下: (1)构造函数,利用导数,结合已知条件,判断函数的单调性与奇偶性; (2)根据题中所给的函数零点,判断函数值符号,可得出不等式,求解即可.14.【分析】均为正实数可得所以再利用导数研究单调性极值与最值即可求解【详解】因为所以所以令则令即解得此时单调递增令即解得此时单调递减所以时所以时的最小值为3故答案为:【点睛】本题主要考查了利用导数求函数【分析】x y ,均为正实数,1x y +=,可得10x y =->,所以01y <<, ()11111y f y x y y y+=+-=-再利用导数研究单调性极值与最值即可求解. 【详解】因为1x y +=,所以1x y =-,所以()11111111111y y y x y y y y y y y--++=+=+=+----, 令()1111f y y y=+--, 则()()()222211211y f y y y y y -'=-+=--令()0f y '>,即210y ->,解得112y << ,此时()f y 单调递增, 令()0f y '<,即210y -<,解得102y <<,此时()f y 单调递减, 所以12y =时,()min 11131122f y =+-=,所以12x y ==时1y x y+的最小值为3, 故答案为:3 【点睛】本题主要考查了利用导数求函数的最值,属于中档题.15.【分析】依题意构造函数则函数在上单调递减利用导数研究函数的单调性则恒成立再根据参变分离即可得解【详解】解:由可知则函数在上单调递减∴∵∴∴实数a 的取值范围为故答案为:【点睛】本题考查函数的求导构造函 解析:(,24]-∞【分析】依题意,构造函数()()F x xf x =,则函数在[2,2020]上单调递减,利用导数研究函数的单调性,则()0F x '≤恒成立,再根据参变分离,即可得解. 【详解】 解:由()()12210f x f x x x ->,2120202x x ≥>≥,可知()()1122x f x x f x >,则函数()()F x xf x =在[2,2020]上单调递减.32()()ln ,()30aF x xf x a x x F x x x'==-=-≤,∵[2,2020]x ∈,∴33224a ≤⨯=,∴实数a 的取值范围为(,24]-∞. 故答案为:(,24]-∞. 【点睛】本题考查函数的求导、构造函数、根据函数的单调性求参数的取值范围,属于中档题.16.【分析】根据拐点的定义令解得则由拐点的性质可得结果【详解】∵函数∴∴令解得且所以函数对称中心为故答案为【点睛】本题主要考查导数的运算以及新定义问题属于中档题新定义题型的特点是:通过给出一个新概念或约解析:1,12⎛⎫⎪⎝⎭【分析】根据拐点的定义,令()630f x x "=-=,解得12x =,则112f ⎛⎫= ⎪⎝⎭,由拐点的性质可得结果. 【详解】 ∵函数()3231324f x x x x =-+-, ∴()2333f x x x '=-+,∴()63f x x "=-.令()630f x x "=-=,解得12x =,且112f ⎛⎫= ⎪⎝⎭, 所以函数()3231324f x x x x =-+-对称中心为1,12⎛⎫ ⎪⎝⎭,故答案为1,12⎛⎫⎪⎝⎭.【点睛】本题主要考查导数的运算,以及新定义问题,属于中档题. 新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.17.【分析】求出导函数后由可得再结合可得又化简可得代入求值可得即为所求【详解】∵∴由得∴∵由得又∴把代入得:∴故答案为【点睛】本题考查同角三角函数关系式解题时注意公式的灵活应用和变形同时注意整体代换在解 解析:1115【分析】求出导函数后由()()00'2f x f x =可得003cosx sinx =-,再结合22001sin x cos x +=可得20110sin x =.又化简可得22002200011215sin x sin x cos x sin x sin x ++=-+,代入求值可得20201111515sin x sin x +=+,即为所求.【详解】∵()f x sinx cosx =+, ∴()'f x cosx sinx =-,由()()00'2f x f x =,得000022cosx sinx sinx cosx -=+, ∴003cosx sinx =-, ∵()2222000022220000000001111.21212315sin x sin x sin x sin x cos x sin x sin x sinx cosx sin x sinx sinx sin x ++++===---⋅---+①由003cosx sinx =-,得22009cos x sin x =, 又22001sin x cos x +=,∴201.10sin x =② 把②代入①得:20201111515sin x sin x +=+. ∴20200111215sin x cos x sin x +=-. 故答案为1115. 【点睛】本题考查同角三角函数关系式,解题时注意公式的灵活应用和变形,同时注意整体代换在解题中的作用,属于基础题.18.【分析】求g (x )的导数可得x=0处切线的斜率由两直线平行的条件:斜率相等得方程解方程可得b 的值【详解】函数g (x )=f (x )+sin2x=x3+2ax2+bx+a2+sin2x 则g′(x )=3x2 解析:2-【分析】求g (x )的导数,可得x=0处,切线的斜率,由两直线平行的条件:斜率相等,得方程,解方程可得b 的值. 【详解】函数g (x )=f (x )+sin2x=x 3+2ax 2+bx+a 2+sin2x 则g′(x )=3x 2+4ax+b+2cos2x ,可得g (x )在x=0处的切线的斜率为b+2,由题意可得b+2=0,可得b=-2. 【点睛】本题考查了通过导数求切线的斜率,考查了两直线平行的条件:斜率相等;解答本题的关键是列出函数的导数等于切线斜率的方程.19.-1【分析】根据题意由函数f (x )的解析式对其求导可得在其中令可得再令即可解可得f′(1)的值【详解】根据题意函数f(x)=lnx -f′()x2+3x -4其导数令令则即答案为-1【点睛】本题考查导数解析:-1 【分析】根据题意,由函数f (x )的解析式对其求导可得112'32f x xf x '=-+()() ,在其中令12x =可得12f ⎛⎫' ⎪⎝⎭,再令1x =即可解可得f′(1)的值, 【详解】根据题意,函数f (x )=ln x -f ′ (12)x 2+3x -4, 其导数112'32f x xf x '=-+()(),令12x =,1111152'3,,1222222f f f '=-⨯⨯+∴'=()()() 令1x =,则15213 1.12f x '=-⨯⨯+=-() 即答案为-1. 【点睛】本题考查导数的计算,注意12f ⎛⎫'⎪⎝⎭为常数. 20.【解析】分析:首先求得导函数然后求得切线的的斜率最后求解切线方程即可详解:当时求解函数的导数可得:则据此可知切线过点切线的斜率为切线方程为:即:点睛:导数运算及切线的理解应注意的问题一是利用公式求导 解析:2y x ππ=-+【解析】分析:首先求得导函数,然后求得切线的的斜率,最后求解切线方程即可.详解:当x π=时,()sin 0fπππ==,求解函数的导数可得:()'sin cos f x x x x =+, 则()'f πsin cos ππππ=+⨯=-,据此可知,切线过点(),0π,切线的斜率为k π=-,切线方程为:()0y x ππ-=--,即:2y x ππ=-+. 点睛:导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.三、解答题21.(1)答案见解析;(2)证明见解析. 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(2)构造函数2()ln x x e x ϕ-=-,利用导数可得()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则可得()0()0x x ϕϕ≥>,即得证.【详解】 (1)11()(0)ax f x a x x x-'=-=>, 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)设函数2()ln x x e x ϕ-=-,则21()x x exϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增. 又由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则()020010x x e x ϕ-'=-=,即0201x e x -=.当()00,x x ∈时,()0x ϕ'<,()ϕx 单调递减; 当()0x x ∈+∞时,()0x ϕ'>,()ϕx 单调递增;所以()0200()ln x x x ex ϕϕ-≥=-,结合021x ex -=,知002ln x x -=-, 所以()()22000000001211()20x x x x x x x x x ϕϕ--+≥=+-==>,则2()ln 0x x e x ϕ-=->, 即不等式2()x e ax f x --≥恒成立.【点睛】关键点睛:本题考查不等式恒成立的证明,解题的关键是转化为证明2()ln x x e x ϕ-=-的最小值大于0. 22.(1)()32112432f x x x x =+-+;(2)答案见解析. 【分析】(1)先对函数求导,根据函数的极值点,列出方程求解,得出,a b ,即可得出解析式; (2)由(1)的结果,利用导数的方法判定函数单调性,求出函数极值,即可得出结果. 【详解】 (1)由()32143f x x ax bx =+-+得()22f x x ax b =+-', 因为函数()32143f x x ax bx =+-+在2x =-和1x =处取得极值, 所以()()2010f f ⎧-=⎪⎨=''⎪⎩,即440120a b a b --=⎧⎨+-=⎩,解得:12a =,2b =, 所以()32112432f x x x x =+-+; (2)由(1)知,()32112432f x x x x =+-+,则()22f x x x '=+-; 令()0f x '=,解得2x =-或1x =, 随x 变化,()f x '与()f x 的变化情况如下:()f x ∴在2x =-处取得极大值,为()23f -=;在1x =处取得极小值,为()1716f =.∴当176k <或223k >时,方程()f x k =有一解; 当176k =或223k =时,方程()f x k =有两解; 当172263k <<时,方程()f x k =有三解. 【点睛】 思路点睛:利用导数的方法判定方程根的个数,或由方程根(函数零点)的个数求参数时,通常需要对函数求导,用导数的方法判定函数单调性,求出极值,再利用分类讨论的思想,即可求解;有时也需要利用数形结合的方法求解. 23.(1)答案见解析;(2)1. 【分析】(1)求导2(1)2()2(2)a x x a h x x a x x⎛⎫++ ⎪⎝⎭'=+++=,然后分0a ≥,0a <讨论求解. (2)求导()22g x x '=+,根据()g x 的图像在()()11,A x g x ,()()22,B x g x 处的切线互相垂直,得到()()1222221x x ++=-,即 ()121141x x =--+,然后由()21221141x x x x -=+++,利用基本不等式求解.【详解】(1)函数2()ln (2)h x a x x a x =+++的定义或为(0,)+∞,2(1)2()2(2)a x x a h x x a x x⎛⎫++ ⎪⎝⎭'=+++=, 若0a ≥,()0h x '>恒成立,此时()h x 在(0,)+∞上单调递增,无极值;若0a <时,()0h x '=,解得2a x =-, 当02ax <<-时,()0h x '<,()h x 单调递减; 当2ax >-时,()0h x '>,()h x 单调递增. ∴当2a x =-时,()h x 有极小值2ln 224a a ah a a ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭,无极大值.(2)()22g x x '=+,则()()1222221x x ++=-,其中,120x x <<,1222022x x ∴+<<+,且()121141x x =--+,210x -<<,()212211141x x x x ∴-=++≥=+,当且仅当21(1,0)2x =-∈-时取等号, ∴当212x =-,132x =-时,21x x -取最小值1.【点睛】结论点睛:(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值. 24.(1)1c ≥-.(2)答案见解析. 【分析】(1)不等式变形为()2f x x c -≤,求出()2f x x -的最大值后可得c 的范围;(2)求出导函数()'f x ,确定()'f x 的正负,得()f x 的单调性.【详解】(1)()f x 定义域是(0,)+∞,由()2f x x c ≤+得,2ln 12c x x ≥+-,设()2ln 12g x x x =+-,则22(1)()2x g x x x-'=-=, 当01x <<时,()0g x '>,当1x >时,()0g x '<,∴()g x 在(0,1)上递增,在(1,)+∞上递减, ∴max ()(1)2ln1121g x g ==+-=-,∴1c ≥-. (2)()()=ln f x x mx m m -+∈R ,定义域是(0,)+∞,1()f x m x'=-, 当0m ≤时,()0f x '>,()f x 在(0,)+∞上递增, 当0m >时,1()()m x mf x x-'=,当10x m <<时,()0f x '>,1x m>时,()0f x '<, ∴()f x 在1(0,)m上递增,在1(,)m+∞上递减.综上,0m ≤时,()f x 的增区间是(0,)+∞,0m >时,()f x 的增区间是1(0,)m,减区间是1(,)m+∞. 【点睛】方法点睛:本题考查函数的单调性,考查不等式恒成立问题.(1)已知()f x 的导函数是()'f x ,解不等式()0f x '>可得增区间,()0f x '<可得减区间.(2)()f x m ≥恒成立,则min ()m f x ≤,若()f x m ≤恒成立,则max ()m f x ≥. 25.(1)答案见解析;(2)证明见解析. 【分析】(1)求出导函数()'f x ,分类讨论确定()'f x 的正负,得增减区间;(2)不等式变形为ln 20x e x -->,令()ln 2x h x e x =--,由()h x '的单调确定其有唯一零点0x ,得出0x 为()h x 极小值点,也是最小值点,证明最小值即得. 【详解】(1)由题意知,函数()f x 的定义域为(0,)+∞由已知得26(6)(6)(1)()6(6)a x a x a x a x f x x a x x x+---+=+--==' 当0a 时,()0f x '>,函数()f x 在(0,)+∞上单调递增, 所以函数()f x 的单调递增区间为(0,)+∞ 当0a >时,由()0f x '>,得6a x >,由()0f x '<,得06ax << 所以函数()f x 的单调递增区间为,6a ∞⎛⎫+ ⎪⎝⎭,单调递减区间为0,6a ⎛⎫ ⎪⎝⎭综上,当0a 时,函数()f x 的单调递增区间为(0,)+∞,0a >时,函数()f x 的单调递增区间为,6a ∞⎛⎫+⎪⎝⎭,单调递减区间为0,6a ⎛⎫⎪⎝⎭. (2)当1a =时,不等式2()352x f x e x x +>++可变为ln 20x e x -->. 令()ln 2xh x e x =--,则1()xh x e x'=-,可知函数()h x '在(0,)+∞单调递增,.. 而131303h e ⎛⎫=-< ⎪'⎝⎭,(1)10h e '=->所以方程()0h x '=在(0,)+∞上存在唯一实根0x ,即01x e x =当()00,x x ∈时,()0h x '<,函数()h x 单调递减; 当()0,x x ∈+∞时,()0h x '>,函数()h x 单调递增;所以()00min 00000111()ln 2ln 220xx h x h x e x x x e x ==--=--=+-> 即 ln 20x e x -->在(0,)+∞上恒成立, 所以对任意20,()352xx f x e x x >+>++成立. 【点睛】关键点点睛:本题考查用导数求函数的单调区间,考查不等式恒成立问题.把不等式化简后,引入新函数,由导数得出新函数的最值,证明最值符合不等关系即可证原不等式.这里对导函数的零点不能求得具体数,可以得出其存在性,得出其性质(范围),然后利用导数的零点化简原函数的最值,以证结论.26.(1)当2a =时,单调增区间为(,)-∞+∞,当02a <<时,单调增区间为1(,ln )2-∞和1(ln ,)a +∞,当2a >时,单调增区间为1(,ln )a-∞和1(ln ,)2+∞(2)1a e≤. 【分析】(1)求()f x '()()211xxe ae =--,()0f x '=可以解得:11ln2x =,21ln x a =,讨论1a 和12的大小关系即可; (2)当0a ≤,()f x 在(0,)+∞上单调递减,()(0)2f x f <=-所以存在;讨论当10a e <≤,11a e<<,1a ≥时()f x 的单调性,利用()f x 的最值即可判断. 【详解】 解:(1)()()2221xx f x aea e '=-++()()211x x e ae =--令()0f x '=,解得:11ln 2x =,21ln x a =,当112a =,即2a =时,()()2210x f x e '=-≥,此时()f x 在R 上单调递增; 单调增区间为(,)-∞+∞当112a >,即02a <<时,令()0f x '>得:1x e a >或12x e <,即1ln 2x <或1ln x a>,此时单调增区间为1(,ln )2-∞和1(ln ,)a+∞ 当112a <,即2a >时,令()0f x '>得:12x e >或1x e a <,解得:1ln 2x >或1ln x a<此时单调增区间为1(,ln )a -∞和1(ln,)2+∞ (2)()(21)(1)xxf x e ae '=--,0x >①当0a ≤时,()0f x '<,()f x 在(0,)+∞上单调递减,∴()(0)2f x f <=-,又x →+∞时,()f x →-∞, ∴ 00x ∃>,使得0()f x e =-,②当0a >时,11()2()()2x xf x a e e a'=--若11a≤,即1a ≥时,()0f x '>,∴()f x 在(0,)+∞上单调递增, ∴()(0)2f x f e >=->-不满足, 若11a >,即01a <<时 ()f x 在1(0,ln )a 是单减,在1(ln ,)a+∞上单增 ∴min 11211()(ln )ln 1ln a f x f a a a a a a +==-+=--- 令1()1ln g a a a=---(01)a << 22111()0a g a a a a-'=-=>, ∴()g a 在(0,1)上单增,且1()11g e e e=--+=- ∴10a e <≤时,1()()g a g e e ≤=-,此时00x ∃>,使得0()f x e =-, 当11a e <<时,1()()g a g e e>=-不满足题意 综上所述:1a e ≤【点睛】本题主要考查了求函数的单调区间,考查了利用方程有解,求参数的范围,属于中档题.。
新人教版高中数学选修二第二单元《一元函数的导数及其应用》测试题(包含答案解析)
一、选择题1.若函数sin ()cos x a f x x +=在区间(0,)2π上单调递增,则实数a 的取值范围是( ) A .1a ≤- B .2a ≤ C .1a ≥- D .1a ≤2.已知a R ∈,0b ≠,若x b =是函数()()()2f x x b x ax b =-++的极小值点,则实数b 的取值范围为( )A .1b <且0b ≠B .1b >C .2b <且0b ≠D .2b > 3.已知函数2()f x x a =-+,2()x g x x e ,若对于任意的2[1,1]x ∈-,存在唯一的112[,]2x ∈-,使得12()()f x g x =,则实数a 的取值范围是( ) A .(e ,4)B .(e 14+,4]C .(e 14+,4)D .(14,4] 4.设函数21()9ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( )A .(]1,2B .(]0,3C .[)4,+∞D .(],2-∞ 5.已知函数f (x )(x ∈R )满足(1)1f =,且()f x 的导数f ′(x )>12,则不等式1()22x f x <+的解集( )A .(-∞,1)B .(1,+∞)C .(-∞,-1]∪[1,+∞)D .(-1,1) 6.若()()21ln 22f x x b x =-++在[)1,-+∞上是减函数,则b 的取值范围是( ) A .[)1,-+∞ B .(],1-∞- C .[)1,+∞ D .(],1-∞ 7.已知函数()y f x =的导函数为()y f x '=,满足x R ∀∈,()()f x f x '>且(1)f e =,则不等式(ln )f x x <的解集为( )A .(,)e +∞B .(1,)+∞C .(0,) eD .(0,1) 8.函数()3sin cos 2x x f x x x =+在[]2,2ππ-的图象大致为( )A .B .C .D .9.已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞ C .[2,1]- D .[2,0]-10.已知函数()cos ln f x x x =-+,则()1f '的值为( )A .sin11-B .1sin1-C .1sin1+D .1sin1--11.设曲线12x y x +=-在点(1,2)-处的切线与直线0ax by c -+=垂直,则a b 的值为( )A .13B .13- C .3 D .-312.R 上的函数()f x 满足:()()1f x f x '+>,()20f =,则不等式2()x x e f x e e <-的解集为( )A .()(),00,2∞⋃-B .()(),02,-∞+∞ C .()0+∞,D .(),2∞- 二、填空题13.已知曲线()32351f x x x x =+-+,过点()1,0的直线l 与曲线()y f x =相切于点P ,则点P 的横坐标为______________.14.函数y x b =+的图象与函数122y x =的图象有且仅有一个公共点,则实数b 的取值范围为_________.15.已知x y ,均为正实数.1x y +=.则1y x y+的最小值为________. 16.函数()2()cos 12f x xf x π'=-+的图象在点()()0,0f 处的切线方程为______. 17.函数32()22=-f x x x 在区间[1,2]-上的最大值是___________.18.已知函数()ln ,(0,]f x mx x x e =-∈的最小值为2,则实数m 的值为____________. 19.设函数f (x )在(0,+∞)可导,其导函数为f′(x ),若f (lnx )=x 2﹣1nx ,则f′(1)=_____20.函数sin x y x e =+在点(0,1)处的切线方程是__________.三、解答题21.已知函数()f x 是奇函数,()f x 的定义域为(),+ -∞∞,当0x <时,()()ln ex f x x-=(e 为自然数的底数) (1)若函数()f x 在区间()1,0 2a a a ⎛⎫+> ⎪⎝⎭上存在极值点,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1k f x x ≥+恒成立,求实数k 的范围. 22.已知函数()(ln )xe f x a x x x=--,a R ∈. (1)当0a >时,讨论函数()f x 的单调性:(2)当1a =-时,函数1()()x g x f x x e mx x ⎛⎫=+++ ⎪⎝⎭满足:对任意(0,)x ∈+∞,都有()1g x ≥恒成立,求实数m 的取值范围.23.已知函数2()ln (21)1()f x x ax a x a =+-++≥0.(1)当0a =时,求函数()f x 在区间[1,)+∞上的最大值;(2)函数()f x 在区间(1,)+∞上存在最小值,记为()g a ,求证:1()14g a a<-. 24.设函数()()2ln 2f x a x x a x =+-+,其中.a R ∈ (1)若曲线()y f x =在点()()22f ,处切线的斜率为1,求a 的值; (2)已知导函数()f x '在区间()1e ,上存在零点,证明:当()1,x e ∈时,()2f x e >-. 25.(1)已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围;(2)已知函数()()=ln f x x mx m m -+∈R .讨论函数()f x 的单调性.26.已知1x =是()=2ln b f x x x x++的一个极值点. (1)求函数()f x 的单调递减区间;(2)设函数3()()a g x f x x+=-,若函数()g x 在区间[1,2]内单调递增,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用导函数研究原函数的单调性,利用单调性求解实数a 的取值范围.【详解】 解:函数sin ()cos x a f x x +=则2cos cos sin (sin )()x x x x a f x cos x++'= (0,)2x π∈上, 2cos 0x ∴>要使函数sin ()cos x a f x x +=在区间(0,)2π上单调递增, 22cos sin sin 0x x a x ∴++≥在(0,)2x π∈上恒成立, 即:sin 10a x +≥在(0,)2x π∈上恒成立, (0,)2x π∈上, sin (0,1)x ∈1a ∴-故选:C .【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.B解析:B【分析】由x b =既是()f x 的极小值点,又是零点,且()f x 的最高次项系数为1,因此可设2()()()f x x b x m =-+,这样可求得1m =-,然后求出()'f x ,求得()'f x 的两个零点,一个零点是b ,另一个零点2x 必是极大值点,由2b x >可得b 的范围.【详解】因为()0f b =,x b =是函数()f x 的极小值点,结合三次函数的图象可设2()()()f x x b x m =-+,又2()()()f x x b x ax b =-++,令0x =得22b m b =-,1m =-,即2()(1)()f x x x b =--,22()3(42)2f x x b x b b '=-+++()(32)x b x b =---,由()0f x '=得1x b =,223b x +=, x b =是极小值点,则23b +是极大值点,23b b +>,所以1b >. 故选:B .【点睛】本题考查导数与极值点的关系,解题关键是结合零点与极值点,设出函数表达式,然后再求极值点,由极小值点大于极大值点可得所求范围.3.B解析:B【分析】结合导数和二次函数的性质可求出()f x 和()g x 的值域,结合已知条件可得[0e 4[]a ⊆-,,1)4a -,从而可求出实数a 的取值范围. 【详解】解:g (x )=x 2e x 的导函数为g ′(x )=2xe x +x 2e x =x (x +2)e x ,当0x =时,()0g x '=, 由[)1,0x ∈-时,()0g x '<,(]0,1x ∈时,()0g x '>,可得g (x )在[–1,0]上单调递减,在(0,1]上单调递增,故g (x )在[–1,1]上的最小值为g (0)=0,最大值为g (1)=e , 所以对于任意的2[1,1]x ∈-,2()[0,e]g x ∈.因为2y x a =-+开口向下,对称轴为y 轴, 又10202--<-,所以当0x =时,max ()f x a =,当2x =时,min ()4f x a =-, 则函数2()f x x a =-+在[12-,2]上的值域为[a –4,a ],且函数f (x )在11[,]22-, 图象关于y 轴对称,在(12,2]上,函数()f x 单调递减.由题意,得[0e 4[]a ⊆-,,1)4a -, 可得a –4≤0<e <14a -,解得e 14+<a ≤4. 故选:B .【点睛】 本题考查了利用导数求函数的最值,考查了二次函数的性质,属于中档题.本题的难点是12()()f x g x =这一条件的转化.4.A解析:A【分析】利用()f x 的导函数()'fx ,结合()f x 在区间[1,1]a a -+上的单调性列不等式组求得a的取值范围.【详解】 由()219ln ,(0)2f x x x x =->,则()299,(0)x f x x x x x'-=-=>, 当(0,3)x ∈时,()0f x '<,则()f x 单调递减;当(3,)x ∈+∞时,()0f x '>,则()f x 单调递增,又函数()f x 在区间[1,1]a a -+上单调递减,所以101311a a a a ->⎧⎪+≤⎨⎪+>-⎩,解得12a <≤,故选:A.【点睛】本题主要考查利用函数的单调性求解参数的取值范围问题,其中导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下两个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.5.A解析:A【分析】根据f ′(x )>12,构造函数 ()()122x g x f x =-- ,又()()1111022=--=g f ,然后将不等式1()22x f x <+,转化为1()022--<x f x ,利用单调性的定义求解. 【详解】因为f ′(x )>12,所以()102f x '-> 所以()()()()()110222xg x f x g x f x g x =--⇒=->⇒'' 在R 上递增, 又()()1111022=--=g f , 所以不等式1()22x f x <+,即为1()022--<x f x , 即为:()()1g x g <,所以1x <,故选:A【点睛】本题主要考查函数的单调性与导数以及单调性的应用,还考查了构造转化求解问题的能力,属于中档题.6.B解析:B【分析】先对函数进行求导,根据导函数小于0时原函数单调递减即可得到答案【详解】由题意可知()02b f x x x '-+≤+=,在[)1x ∈-+∞,上恒成立, 即()2b x x ≤+在[)1x ∈-+∞,上恒成立, 由于()2y x x =+在[)1,-+∞上是增函数且最小值为1-,所以1b ≤-,故选:B.【点睛】本题主要考查导数的正负和原函数的增减性的问题,属于中档题.7.C解析:C【分析】由不等式()f lnx x <,令t lnx =,可知()()t f lnx x f t e <⇔<,令()()x f x g x e=,求导可得函数单调性,从而可解:10lnx x e <⇔<<,【详解】解:令t lnx =,则()()t f lnx x f t e <⇔<, 令()()x f x g x e=,则()()()0x f x f x g x e '-'=>, 因为:满足x R ∀∈,()()f x f x '>()g x ∴在R 上单调递增, ∴()()()()11t tf t f t eg t g e <⇔<⇔<110t lnx x e ⇔<⇔<⇔<<, 故选:C .【点睛】 本题主要考查导数法研究函数的单调性,考查了导数的综合应用,属于中档题. 8.C解析:C【分析】利用()()'2,0f fπ确定正确选项.【详解】 ()23sin 222cos 2202f ππππππ=+⋅=>,由此排除BD 选项. 当0x ≥时,()3sin cos 2x x f x x x =+, ()'3cos 3ln 2sin cos sin 2x x x f x x x x -⋅=+-, ()'031040f =+-=>,由此排除A 选项.故选:C【点睛】本小题主要考查函数图象识别,考查导数的运用.9.D解析:D【分析】作出函数()y f x =的图像,和函数y ax =的图像,结合图像可知直线y ax =介于l 与x 轴之间,利用导数求出直线l 的斜率,数形结合即可求解.【详解】由题意可作出函数()y f x =的图像,和函数y ax =的图像.由图像可知:函数y ax =的图像是过原点的直线,当直线介于l 与x 轴之间符合题意,直线l 为曲线的切线,且此时函数()y f x =在第二象限的部分的解析式为22y x x =-,求其导数可得22y x '=-,因为0x ≤,故2y '≤-,故直线l 的斜率为2-,故只需直线y ax =的斜率a []2,0∈-.故选:D【点睛】本题考查了不等式恒成立求出参数取值范围,考查了数形结合的思想,属于中档题. 10.C解析:C【分析】根据导数的运算法则先求出函数的导数()f x '的解析式,再把1x =代入()f x '的解析式运算求得结果.【详解】∵函数()cos ln f x x x =-+,∴()1sin f x x x'=+, ∴()1sin11f ='+,故选C.【点睛】本题主要考查求函数的导数,导数的加减法则的应用,属于基础题. 11.A解析:A【分析】 求得函数12x y x +=-在点1x =处的导数,结合两直线的位置关系,即可求解.【详解】 由题意,曲线12x y x +=-,可得()()2221322x x y x x ---'==---, 所以1|3x y ='=-,即曲线12x y x +=-在点(1,2)-处的切线的斜率为3k =-, 因为曲线12x y x +=-在点(1,2)-处的切线与直线0ax by c -+=垂直, 所以(3)1a b ⨯-=-,解得13a b =. 故选:A.【点睛】本题主要考查了导数的几何意义的应用,其中解答中熟练应用导数求解曲线在某点处的切线的斜率,结合两直线的位置关系,列出方程求解是解答的关键,着重考查推理与运算能力,属于基础题.12.D解析:D【分析】构造函数()()x xF x e f x e =-,则由题意可证得()F x 在R 上单调递增,又()20f =, ()()22222F e f e e =-=-,故2()x x e f x e e <-可转化为()()2F x F <,解得2x <.【详解】令()()x x F x e f x e =-,则()()()()()1x x x xF x e f x e f x e e f x f x '''=+-=+-⎡⎤⎣⎦, 因为()()1f x f x '+>,所以()()()0x F x e f x f x ''=+>⎡⎤⎣⎦,所以函数()F x 在R 上单调递增,又()20f =,所以()()22222F e f e e =-=- 故当2()x x e f x e e <-时,有2()x x e f x e e -<-,即()()2F x F <,由()F x 的单调性可知2x <.故选:D.【点睛】本题考查导数与函数的应用,考查构造函数法,根据函数的单调性求解不等式,难度一般.二、填空题13.0或或【分析】设切点的坐标由求出切线方程把代入切线方程可求得切点坐标【详解】设的坐标为过点的切线方程为代入点的坐标有整理为解得或或故答案为:0或或【点睛】本题考查导数的几何意义求函数图象的切线方程要解析:0或1-或53【分析】设切点P 的坐标,由P 求出切线方程,把(1,0)代入切线方程可求得切点坐标. 【详解】设P 的坐标为()32,351m m m m +-+,2()9101f x x x +'=-,过点P 的切线方程为()()3223519101()m m m m x y m m +-+=+---,代入点()1,0的坐标有()()()32235191011mm m mm m --+-+=+--,整理为323250m m m --=,解得0m =或1m =-或53m =, 故答案为:0或1-或53. 【点睛】本题考查导数的几何意义.求函数图象的切线方程要分两种情况:(1)函数()y f x =图象在点00(,)P x y 处的切线方程,求出导函数,得出切线方程000()()y y f x x x '-=-;(2)函数()y f x =图象过点00(,)P x y 处的切线方程:设切线坐标11(,)x y ,求出切线方程为111()()y y f x x x '-=-,代入00(,)x y 求得11,x y ,从而得切线方程.14.【分析】根据幂函数的性质作出的图象数形结合即可求解【详解】由幂函数的性质作出的图象由图知当直线与的图象相切时只有一个公共点由得设切点则解得所以切点为因为切点在切线上所以解得符合题意当直线过点时此时有 解析:(,0){1}-∞【分析】根据幂函数的性质作出122y x =的图象,数形结合即可求解. 【详解】由幂函数的性质作出122y x =的图象,由图知当直线y x b =+与122y x =的图象相切时,只有一个公共点,由122y x =得12122y x x-'=⨯=,设切点()00,x y 则00|1x x y x ='==,解得01x =,所以02y =,切点为()1,2, 因为切点在切线y x b =+上,所以21b =+,解得1b =符合题意,当直线y x b =+过点()0,0时0b =,此时有2个交点,由图知0b <时有一个交点, 故答案为:(,0){1}-∞ 【点睛】关键点点睛:本题的关键点是根据幂函数的性质作出122y x =的图象,然后作y x =,当y x b =+与曲线相切时有一个公共点,利用切点处的导函数值等于1,求出b 的值,当直线y x b =+过原点时有两个公共点,此时0b =再向下平移有一个公共点,可得0b <.15.【分析】均为正实数可得所以再利用导数研究单调性极值与最值即可求解【详解】因为所以所以令则令即解得此时单调递增令即解得此时单调递减所以时所以时的最小值为3故答案为:【点睛】本题主要考查了利用导数求函数 解析:3【分析】x y ,均为正实数,1x y +=,可得10x y =->,所以01y <<, ()11111y f y x y y y+=+-=-再利用导数研究单调性极值与最值即可求解. 【详解】因为1x y +=,所以1x y =-,所以()11111111111y y y x y y y y y y y--++=+=+=+----, 令()1111f y y y=+--, 则()()()222211211y f y y y y y -'=-+=--令()0f y '>,即210y ->,解得112y << ,此时()f y 单调递增, 令()0f y '<,即210y -<,解得102y <<,此时()f y 单调递减, 所以12y =时,()min 11131122f y =+-=,所以12x y ==时1y x y+的最小值为3, 故答案为:3 【点睛】本题主要考查了利用导数求函数的最值,属于中档题.16.【分析】求得函数的导数得到进而求得切点坐标为和即可求得切线的方程【详解】由题意函数可得则解得所以可得切点坐标为又由可得即切线的斜率为所以切线的方程为即故答案为:【点睛】求曲线过点的切线方程的方法:当 解析:20x y +=【分析】求得函数的导数()2()sin 2f x f x π''=+,得到2()1f π'=-,进而求得切点坐标为()0,0和()02f '=-,即可求得切线的方程. 【详解】由题意,函数()2()cos 12f x xf x π'=-+,可得()2()sin 2f x f x π''=+,则()2()sin222f f πππ''=+,解得2()1f π'=-,所以()2cos 1f x x x =--+,可得()020cos010f =-⨯-+=,切点坐标为()0,0, 又由()2sin f x x '=-+,可得()02sin02f '=-+=-,即切线的斜率为2k =-, 所以切线的方程为2y x =-,即20x y +=. 故答案为:20x y +=. 【点睛】求曲线过点P 的切线方程的方法:当点00(,)P x y 是切点时,切线方程为00()y y k x x -=-; 当点00(,)P x y 不是切点时,可分以下几步完成: 第一步:设出切点坐标11(,())P x f x ';第二步:写出过点11(,())P x f x '的切线方程为111()()()y f x f x x x '-=-; 第三步:经点00(,)P x y 代入切线方程,求出1x 的值;第四步:将1x 的值代入111()()()y f x f x x x '-=-可得过点00(,)P x y 的切线方程.17.8【分析】对函数求导由导数确定单调区间由单调性确定极值再比较极值与函数端点值即可确定函数最值【详解】f′(x)=6x2-4x=2x(3x-2)已知x ∈-12当2≥x>或-1≤x<0时f′(x)>0f解析:8 【分析】对函数求导,由导数确定单调区间,由单调性确定极值,再比较极值与函数端点值,即可确定函数最值. 【详解】f ′(x )=6x 2-4x = 2x (3x -2), 已知x ∈[-1,2],当2 ≥ x >23或-1 ≤ x <0时, f ′(x )>0, f (x )单调递增区间是2[1,0),(,2]3-, 当0<x <23时,f ′(x )<0, f (x )单调递减区间是2(0,)3,故函数在0x =处取极大值,f (0)=0,又f (2)=8,故 f (x )的最大值是8. 故答案为:8 【点睛】本题考查了利用导数求函数的最值,考查了计算能力,属于基础题目.18.【分析】求出分三种讨论函数的单调性可得函数的最小值从而得到的值【详解】当时为减函数故解得舍;当时为减函数故舍;当时若故在上为减函数;若故在上为增函数;所以故符合;综上故填【点睛】求函数的最值应结合函 解析:e【分析】 求出'()f x ,分0m ≤,10m e <≤,1m e>三种讨论函数的单调性可得函数的最小值,从而得到m 的值. 【详解】()1'(),0,mx f x x e x-=∈,当0m ≤时,'()0f x <,()ln ,(0,]f x mx x x e =-∈为减函数,故()min 12f x me =-=,解得3m e=,舍;当10m e<≤时,'()0f x <,()ln ,(0,]f x mx x x e =-∈为减函数,()()min 12f x f e me ==-=,故3m e=,舍;当1m e >时,若10,x m ⎛⎫∈ ⎪⎝⎭,'()0f x <,故()f x 在10,m ⎛⎫⎪⎝⎭上为减函数; 若1,x m ⎛⎫∈+∞⎪⎝⎭,'()0f x >,故()f x 在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数; 所以min 11()ln 2f x m m m=⨯-=,故m e =,符合; 综上,m e =,故填e . 【点睛】求函数的最值,应结合函数的定义域去讨论函数的单调性,有的函数的单调性可以利用基本初等函数的单调性、复合函数的单调性判断法则得到,有的函数的单调性需结合导数的符号进行判断,如果导数的符号还不能判断,则需构建新函数(也就是原函数的导函数),再利用导数判断其符号.19.【分析】先利用换元法求出函数f (x )的解析式再求导代值计算即可【详解】设lnx=t 则x=et ∵f (lnx )=x2-1nx ∴f (t )=e2t-t ∴f (x )=e2x-x ∴f′(x )=2e2x-1∴f′( 解析:221e -【分析】先利用换元法求出函数f (x )的解析式,再求导,代值计算即可. 【详解】 设lnx=t ,则x=e t , ∵f (lnx )=x 2-1nx , ∴f (t )=e 2t -t , ∴f (x )=e 2x -x , ∴f′(x )=2e 2x -1, ∴f′(1)=2e 2-1, 故答案为2e 2-1. 【点睛】本题考查了函数解析式的求法和导数的运算,属于基础题.20.【解析】分析:求出函数的导数求得切线的斜率由斜截式方程即可得到所求切线的方程详解:的导数为在点(01)处的切线斜率为即有在点(01)处的切线方程为故答案为点睛:近几年高考对导数的考查几乎年年都有利用解析:210x y -+=【解析】分析:求出函数sin xy x e =+的导数,求得切线的斜率,由斜截式方程,即可得到所求切线的方程.详解:sin x y x e =+的导数为'cos x y x e =+, 在点(0,1)处的切线斜率为0cos02k e =+=, 即有在点(0,1)处的切线方程为210x y -+=. 故答案为210x y -+=.点睛:近几年高考对导数的考查几乎年年都有,利用导数的几何意义,求曲线的切线方程是导数的重要应用之一,曲线()y f x =在点0x 的导数0'()f x 就是曲线在该点的切线的斜率,我们通常用导数的这个几何意义来研究一些与曲线的切线有关的问题,用导数求切线方程的关键在于求切点坐标和斜率,分清是求在曲线某点处的切线方程,还是求过某点处的曲线切线方程.三、解答题21.(1)1,12⎛⎫⎪⎝⎭;(2)(],2-∞.【分析】(1)先根据奇函数的性质得0x >时,()1ln xf x x+=,由于0a >,故研究函数()f x 在()0,∞+上的极值点得1x =处取得唯一极值点,进而得1012a a <<<+,解不等式即可得答案;(2)根据题意将问题转化为()()11ln x x k x++≥在区间[)1,+∞上恒成立,进而令函数()()()11ln x g x x x++=,[)1,x ∈+∞,研究函数()g x 的最小值即可得答案. 【详解】解:(1)设0x >,则0x -<,所以()ln exf x x-=-, 由于函数()f x 是定义域为(),+ -∞∞的奇函数,故()ln 1ln ex xf x x x+==, 即当0x >时,()1ln xf x x+=, 所以()()2211ln ln 'x x x x f x x x ⋅-+-==,解不等式()'0f x >得()0,1x ∈,解不等式()'0f x <得()1,x ∈+∞, 所以函数()f x 在()0,1上单调递增,在()1,+∞上单调递减, 所以函数()f x 在1x =处取得唯一极值点,且为极大值点., 由于函数()f x 在区间()1,0 2a a a ⎛⎫+> ⎪⎝⎭上存在极值点, 所以1012a a <<<+,即112a <<. 故实数a 的取值范围1,12⎛⎫⎪⎝⎭.(2)根据题意当1x ≥时,不等式()1kf x x ≥+恒成立, 所以当1x ≥时,1ln 1x k x x +≥+恒成立,即()()11ln x x k x++≥在区间[)1,+∞上恒成立; 故令()()()11ln x g x x x++=,[)1,x ∈+∞,()()()()()221ln '1ln ln '11x x x x x g x x x x x +⋅-+⎡⎤-⎣⎦=++=, 令()ln h x x x =-,则()11'10x h x x x-=-=≥在区间[)1,+∞上恒成立, 所以函数()h x 在区间[)1,+∞单调递增,故()()110h x h ≥=>,所以()'0g x >区间[)1,+∞上恒成立,所以函数()g x 在区间[)1,+∞单调递增, 所以()()12g x g ≥=,即函数()g x 在区间[)1,+∞上的最小值为2, 由于()()11ln x x k x++≥在区间[)1,+∞上恒成立,故只需函数()min g x k ≥⎡⎤⎣⎦即可,所以k 2≤,即实数k 的范围为:(],2-∞ 【点睛】本题考查利用导数研究函数的极值点,不等式恒成立问题,考查化归转化思想和运算求解能力,是中档题.本题第二问解题的关键在于根据题意将问题转化为()()11ln x x k x++≥在区间[)1,+∞上恒成立,进而令函数()()()11ln x g x x x++=,[)1,x ∈+∞并研究函数()g x 的最小值问题.22.(1)函数()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;(2)[2,)-+∞. 【分析】(1)先对函数求导,令()0f x '=求出1x =,根据导数的方法,即可得到函数单调性;(2)先由1a =-,得到()ln (1)xg x xe x m x =-++,由分离参数法方法,将原不等式化为1ln 1x x m e x +≥--,构造函数1ln ()1xx h x e x+=--,利用导数的方法求出其最大值,即可得出结果. 【详解】(1)由题意,()22(1)()x x x ax e x a xe e f x a x x x+--'=--= ∵0a >,0x >,0x ax e ∴+>,令()0f x '=,得1x =,所以01x <<时,()0f x '>,()f x 单调递增,1x >时,()0f x '<,()f x 单调递减, 所以函数()f x 在(0,1)上单调递增,在(1,)+∞上单调递减. (2)当1a =-时,1()()ln (1)x xg x f x x e mx xe x m x x ⎛⎫=+++=-++ ⎪⎝⎭由()1g x ≥对(0,)x ∈+∞恒成立,得1ln 1xx m e x+≥--, 设1ln ()1x x h x e x +=--,则222ln ln ()x x x x e xh x e x x-+'=-=-, 设2()ln xx x e x ϕ=+,则0x >时,()21()20xx x x e xϕ'=++>, 所以()ϕx 在(0,)+∞上单调递增,且(1)0e ϕ=>,1ln 202ϕ⎛⎫=< ⎪⎝⎭, 所以函数()ϕx 在(0,)+∞上有唯一的零点01,12x ⎛⎫∈⎪⎝⎭当00x x <<时,()0x ϕ<,()0h x '>,()h x 单调递增; 当0x x >时,()0x ϕ>,()0h x '<,()h x 单调递减, 所以0x >时,()00max 001ln ()1x x h x h x e x +==-- 所以001ln 1x x m e x +≥--, ()02000ln 0x x x e x ϕ=+=,000011ln xx e x x ∴=,即000011ln ln ln ln x x x x ⎛⎫+=+ ⎪⎝⎭因为ln y x x =+是增函数,所以0001lnln x x x ==-, 000000001ln 11122x x x x x x m e e e e x x +-∴≥--=--=--=-,即m 的取值范围为[2,)-+∞. 【点睛】 思路点睛:导数的方法研究由不等式恒成立(或能成立)求参数时,一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.23.(1)0;(2)证明见解析. 【分析】(1)由导数求出函数()f x 的单调性,即可得出函数()f x 在区间[1,)+∞上的最大值; (2)求导得出(21)(1)()ax x f x x--'=,讨论a 的值,确定函数()f x 的单调性,得出函数()f x 有最小值时a 的取值范围,再令12t a=,由(1)得出()ln 1,(1)h t t t t =-+>的单调性,进而证明该不等式. 【详解】解:(1)当0a =时,()ln 1f x x x =-+,则1()1f x x'=- 因为[1,)x ∈+∞,所以()0f x '≤. 所以()f x 在区间[1,)+∞上单调递减 所以()f x 区间[1,)+∞上最大值为(1)0f =. (2)由题可知1()2(21)f x ax a x'=+-+ 22(21)1ax a x x-++=(21)(1)ax x x--=.①当0a =时,由(1)知,函数()f x 在区间(1,)+∞上单调递减 所以函数()f x 无最小值,此时不符合题意; ②当12a ≥时,因为(1,)x ∈+∞,所以210ax ->.此时函数()f x 在区间(1,)+∞上单调递增所以函数()f x 无最小值,此时亦不符合题意; ③当102a <<时,此时112a<. 函数()f x 在区间1(1,)2a 上单调递减,在区间1(,)2a+∞上单调递增 所以min 111()()ln 224f x f a a a==-即11()ln 24g a a a=-. 要证1()14g a a<-,只需证当102a <<时,1()104g a a -+<成立. 即证111ln 10,0222a a a ⎛⎫-+<<< ⎪⎝⎭ 设12t a=,()ln 1,(1)h t t t t =-+> 由(1)知()(1)0h t h <= 即1()104g a a -+<成立. 所以1()14g a a<-. 【点睛】在证明不等式的恒成立问题时,可以将不等式问题转化为求函数的最值问题,进而证明不等式.24.(1)2a =;(2)证明见解析. 【分析】(1)由导数的几何意义运算即可得解;(2)结合导函数的零点可得02a x =,再由函数()f x 的单调性,进而可转化条件为()20000min 2ln 2f x x x x x =--,设()()22,21ln ,g x x x e x x x =--∈,通过导数证明()2g x e >-即可得证.【详解】(1)因为()()2ln 2f x a x x a x =+-+,所以()()22af x x a x'=+-+, 所以()()42212af a '=+-+=,解得2a =; (2)证明:由题意,()()()()1222x x a af x x a x x--'=+-+=, 因为导函数()f x '在区间()1,e 上存在零点, 设零点为()00,1,x x e ∈,则()0222,e a x ∈=,所以()f x 在()01,x 上单调递减,在()0,x e 上单调递增,故()()()()0220000i 0000m n ln 22ln 22a x x a x x x f x f x x x x +-+=+-+==200002ln 2x x x x =--,设()()22,21ln ,g x x x e x x x =--∈,则()2ln 2g x x x '=-,设()()()2ln 21,,h x g x x e x x '==-∈,则()220h x x'=-<,()h x 单调递减, 又()()112h g '==-,故()2ln 20g x x x '=-<在()1,e 上恒成立,故()g x 单调递减, 所以()()2g x g e e >=-, 故当()1,x e ∈时,()2f x e >-. 【点睛】关键点点睛:解决本题的关键是利用导函数的零点即函数的极值点转化条件为证明2200002ln 2x x x x e -->-.25.(1)1c ≥-.(2)答案见解析.【分析】(1)不等式变形为()2f x x c -≤,求出()2f x x -的最大值后可得c 的范围;(2)求出导函数()'f x ,确定()'f x 的正负,得()f x 的单调性.【详解】(1)()f x 定义域是(0,)+∞,由()2f x x c ≤+得,2ln 12c x x ≥+-,设()2ln 12g x x x =+-,则22(1)()2x g x x x-'=-=, 当01x <<时,()0g x '>,当1x >时,()0g x '<, ∴()g x 在(0,1)上递增,在(1,)+∞上递减,∴max ()(1)2ln1121g x g ==+-=-,∴1c ≥-.(2)()()=ln f x x mx m m -+∈R ,定义域是(0,)+∞,1()f x m x'=-, 当0m ≤时,()0f x '>,()f x 在(0,)+∞上递增, 当0m >时,1()()m x m f x x -'=,当10x m <<时,()0f x '>,1x m >时,()0f x '<, ∴()f x 在1(0,)m 上递增,在1(,)m +∞上递减.综上,0m ≤时,()f x 的增区间是(0,)+∞,0m >时,()f x 的增区间是1(0,)m ,减区间是1(,)m +∞. 【点睛】方法点睛:本题考查函数的单调性,考查不等式恒成立问题.(1)已知()f x 的导函数是()'f x ,解不等式()0f x '>可得增区间,()0f x '<可得减区间.(2)()f x m ≥恒成立,则min ()m f x ≤,若()f x m ≤恒成立,则max ()m f x ≥. 26.(1)(]0,1;(2)3a ≥-.【分析】(1)求出导函数()'f x ,由()01f '=求得b ,并检验,然后由()0f x '<确定减区间;(2)同样求出()'g x ,然后由()0g x '≥在[1,2]上恒成立得a 的范围.【详解】(1)()f x 的定义域为(0,)+∞,2()2(0,,)1b f x xx x +'=-∈+∞. 因为1x =是()2f x x ln b xx =++的一个极值点, 所以(1)0f '=,即210b -+=. 解得3b =,经检验,适合题意,所以3b = 因为222313()22f x x x x x x +-+='=-, 解()0f x '<,得01x <<.所以函数()f x 的单调递减区间为(]0,1.(2)()()23(0)a g x f x x l a x xnx x =-=+->+, 2()01(2)a x g x xx '=>++. 因为函数()g x 在[]1,2上单调递增, 所以()0g x '≥在[]1,2上恒成立, 即2201a x x++≥在[]1,2上恒成立, 所以22a x x ≥--在[]1,2上恒成立, 所以[]2(2),1,2max a x x x ≥--∈.因为在[]1,2上,2(2)3max x x --=-,所以3a ≥-.【点睛】本题考查由导数研究函数的极值、单调性,考查由单调性确定参数范围,解题关键是的转化,单调性转化为不等式恒成立,再转化为求函数最值.本题旨在考查学生的逻辑推理能力,运算求解能力,转化与化归能力.。
完整版)导数测试题(含答案)
完整版)导数测试题(含答案)1.已知函数y=f(x)=x^2+1,则在x=2,Δx=0.1时,Δy的值为0.41.2.函数f(x)=2x^2-1在区间(1,1+Δx)上的平均变化率为4+4Δx。
3.设f′(x)存在,则曲线y=f(x)在点(x,f(x))处的切线与x 轴相交但不垂直。
4.曲线y=-1/x在点(1,-1)处的切线方程为y=x-2.5.在曲线y=x^2上,且在该点处的切线倾斜角为π/4的点为(2,4)。
6.已知函数f(x)=1/x,则f′(-3)=-1/9.7.函数f(x)=(x-3)ex的单调递增区间是(2,∞)。
8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的充要条件。
9.函数f(x)在开区间(a,b)内的极小值点有2个。
10.函数f(x)=-x^2+4x+7,在x∈[3,5]上的最大值和最小值分别是f(3)和f(5)。
11.函数f(x)=x^3-3x^2-9x+k在区间[-4,4]上的最小值为-71.12.速度为零的时刻是0,1,4秒末。
13.已知函数 $y=f(x)=ax^2+2x$,且 $f'(1)=4$,则 $a=3$。
14.已知函数 $y=ax^2+b$ 在点 $(1,3)$ 处的切线斜率为 $2$,则 $b=a+1$。
15.函数 $y=x e^x$ 的最小值为 $-1/e$。
16.有一长为 $16$ m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是 $64$ $m^2$。
17.(1) $y'=6x+\cos x$;(2) $y'=\dfrac{1}{(1+x)^2}$;(3)$y'=\dfrac{1}{x}-e^x$。
18.(1) 解方程 $x^2+4=x+10$ 得 $x=3$ 或 $x=-2$,故交点为 $(3,13)$ 或 $(-2,0)$;(2) 在交点 $(3,13)$ 处,抛物线的斜率为 $6$,故该点处的切线方程为 $y=6x-5$。
人教版高中数学高一下册选择性必修第二册《导数练习》含答案
再练一课(范围:§5.1~§5.2)1.(多选)自变量x 从x 0变化到x 1时,函数值的增量与相应自变量的增量之比是( )A .从x 0到x 1的平均变化率B .在x =x 1处的变化率C .点(x 0,f (x 0))与点(x 1,f (x 1))连线的斜率D .在区间[x 0,x 1]上的导数答案 AC解析 Δy Δx =f (x 1)-f (x 0)x 1-x 0表示函数从x 0到x 1的平均变化率,也表示点(x 0,f (x 0))与点(x 1,f (x 1))连线的斜率.2.已知物体的运动方程为s =t 2+3t,则物体在t =2时的瞬时速度为( ) A.194 B.174 C.154 D.134答案 D解析 ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134. 3.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .4B .-14C .2D .-12答案 A解析 ∵f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=2+2=4.4.对于函数f (x )=e x x 2+ln x -2k x,若f ′(1)=1,则实数k 等于( ) A.e 2 B.e 3 C .-e 2 D .-e 3答案 A解析 因为f ′(x )=e x (x -2)x 3+1x +2k x 2, 所以f ′(1)=-e +1+2k =1,解得k =e 2,故选A.5.若曲线y =ln x 在点M 处的切线过原点,则该切线的斜率为( )A .1B .eC .-1e D.1e答案 D解析 设M (x 0,ln x 0),由y =ln x 得y ′=1x(x >0), 所以切线斜率为k =0=1|,x x y'x 0= 所以切线方程为y -ln x 0=1x 0(x -x 0). 由题意得0-ln x 0=1x 0(0-x 0), 即ln x 0=1,所以x 0=e.所以k =1x 0=1e,故选D. 6.已知f (x )=f ′(1)x+4x ,则f ′(1)=________. 答案 2解析 因为f (x )=f ′(1)x+4x , 所以f ′(x )=-f ′(1)x 2+4, 所以f ′(1)=-f ′(1)12+4,即f ′(1)=2. 7.若某物体做运动方程为s =(1-t )2(位移单位:m ,时间单位:s)的直线运动,则其在t =1.2 s 时的瞬时速度v 为________ m/s.答案 0.4解析 ∵s =t 2-2t +1,∴s ′=2t -2,∴v =s ′|t =1.2=2×1.2-2=0.4(m/s).8.设a ∈R ,函数f (x )=e x +a ·e -x 的导函数f ′(x )是奇函数,若曲线y =f (x )的一条切线的斜率是32,则a =________,切点的横坐标为________. 答案 1 ln 2解析 由题意可得,f ′(x )=e x -a e x 是奇函数,∴f ′(0)=1-a =0,∴a =1,∴f (x )=e x +1e x ,f ′(x )=e x -1e x .∵曲线y =f (x )的一条切线的斜率是32,∴32=e x -1e x ,可得e x =2(舍负),∴x =ln 2.9.求下列函数的导数:(1)f (x )=13x 3-12x 4+6; (2)f (x )=(5x -4)cos x ;(3)f (x )=ln (2x )x. 解 (1)f ′(x )=⎝⎛⎭⎫13x 3-12x 4+6′=x 2-2x 3. (2)f ′(x )=[(5x -4)cos x ]′=5cos x -5x sin x +4sin x .(3)f ′(x )=[ln (2x )]′×x -[ln (2x )]×(x )′x 2=1-ln (2x )x 2. 10.已知a >0,f (x )=ax 2-2x +1+ln(x +1),l 是曲线y =f (x )在点P (0,f (0))处的切线,求切线l 的方程.解 ∵f (x )=ax 2-2x +1+ln(x +1),∴f (0)=1,又f ′(x )=2ax -2+1x +1,∴f ′(0)=-1, ∴切点P 的坐标为(0,1),切线l 的斜率为-1,∴切线l 的方程为x +y -1=0.11.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,且对于任意实数x 有f (x )≥0,则f (1)f ′(0)的最小值为( ) A .3 B.52 C .2 D.32答案 C解析 f ′(0)=b >0.对于任意实数x 有f (x )≥0,故⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac ≤0,则2ac ≥b ,因此f (1)f ′(0)=a +c b +1≥2.当且仅当a =c =b 2时,取等号. 12.若函数f (x )=(x -1)(x -2)(x -3)(x -4)(x -5),且f ′(x )是函数f (x )的导函数,则f ′(1)等于( )A .24B .-24C .10D .-10答案 A解析 ∵f ′(x )=(x -1)′·(x -2)(x -3)(x -4)(x -5)+[(x -2)(x -3)(x -4)(x -5)]′·(x -1),∴f ′(1)=(1-2)×(1-3)×(1-4)×(1-5)=24.故选A.13.若函数f (x )=-1b e ax (a >0,b >0)的图象在x =0处的切线与圆x 2+y 2=1相切,则a +b 的最大值为( )A .4B .22C .2D.2答案 D解析 函数的导数为f ′(x )=-1be ax ·a , 所以f ′(0)=-1b e 0·a =-a b, 即在x =0处的切线斜率k =-a b, 又f (0)=-1b e 0=-1b, 所以切点坐标为⎝⎛⎭⎫0,-1b , 所以切线方程为y +1b =-a bx ,即ax +by +1=0. 圆心到直线ax +by +1=0的距离d =1a 2+b 2=1, 即a 2+b 2=1,所以a 2+b 2=1≥2ab ,即0<ab ≤12. 又a 2+b 2=(a +b )2-2ab =1,所以(a +b )2=2ab +1≤1+1=2,即0<a +b ≤2,当且仅当a =b =22时等号成立, 所以a +b 的最大值是2,故选D.14.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________. 答案 2解析 令y ′=2x -1x=1,解得x =1⎝⎛⎭⎫x =-12舍去, 故当点P 坐标为(1,1)时,它到已知直线的距离最小,最小距离为d =|1-1-2|2= 2.15.曲线y =e 2x cos 3x 在点(0,1)处的切线与过点(2,3)的直线l 垂直,则直线l 的方程为________________.答案 x +2y -8=0解析 由题意知y ′=(e 2x )′cos 3x +e 2x (cos 3x )′=2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2x sin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2.所以直线l 的斜率为-12,直线l 的方程为y -3=-12·(x -2),即x +2y -8=0. 16.已知函数f (x )=x 3-3x 及曲线y =f (x )上一点P (1,-2),过点P 作直线l .(1)若直线l 与曲线y =f (x )相切于点P ,求直线l 的方程;(2)若直线l 与曲线y =f (x )相切,且切点异于点P ,求直线l 的方程.解 (1)由f (x )=x 3-3x ,得f ′(x )=3x 2-3.过点P 且以P (1,-2)为切点的直线l 的斜率为f ′(1)=0,故所求直线l 的方程为y =-2.(2)设过点P (1,-2)的直线l 与曲线y =f (x )相切于点(x 0,x 30-3x 0).由f ′(x 0)=3x 20-3,得直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0).又直线l 过点P (1,-2),所以-2-(x 30-3x 0)=(3x 20-3)(1-x 0),即(x 0-1)2(x 0+2)=3(x 20-1)(x 0-1),解得x 0=1(舍去)或x 0=-12, 故直线l 的斜率k =-94, 故直线l 的方程为y -(-2)=-94(x -1), 即9x +4y -1=0.。
2023年人教版数学导数求解练习题及答案
2023年人教版数学导数求解练习题及答案数学是一门重要的学科,也是我们日常生活中不可或缺的一部分。
在数学学习中,导数是一个基础且重要的概念,涉及到各种应用问题的解决方法。
为了帮助学生更好地理解和掌握导数的求解方法,人教版在2023年的数学教材中特别编写了一系列导数求解练习题。
本文将为大家介绍这些练习题,并提供详细的答案。
第一章导数的概念与基本操作1. 已知函数y = x² + 3x,求其一阶导数。
解答:首先,我们可以使用求导的基本公式,对函数进行求导。
根据导数的定义,导数表示函数在某一点上的变化率。
对于一次幂函数,比如x²,其导数为2x。
对于常数函数,比如3x,其导数为3。
因此,函数y = x² + 3x的一阶导数为dy/dx = 2x + 3。
2. 已知函数y = sin(x) + cos(x),求其二阶导数。
解答:首先,我们对函数进行一阶导数运算。
根据导数的基本公式,sin(x)的导数为cos(x),cos(x)的导数为-sin(x)。
因此,函数y = sin(x) + cos(x)的一阶导数为dy/dx = cos(x) - sin(x)。
接下来,我们对一阶导数再进行一次导数运算。
根据导数的基本公式,cos(x)的导数为-sin(x),-sin(x)的导数为-cos(x)。
因此,函数y = sin(x) + cos(x)的二阶导数为d²y/dx² = -sin(x) - cos(x)。
第二章导数的应用3. 一个长方形的长是x,宽是y,若长的增长率为2cm/min,宽的减小率为3cm/min,则当长为10cm,宽为5cm时,长方形面积的变化率是多少?解答:首先,我们知道长方形的面积S等于长乘以宽,即S = x * y。
利用链式法则,可知面积的变化率dS/dt等于面积对长的变化率的导数乘以长对时间的变化率,再加上面积对宽的变化率的导数乘以宽对时间的变化率。
人教版高中数学选修二第二单元《一元函数的导数及其应用》检测题(有答案解析)
一、选择题1.函数tan 22tan y x x =-42x ππ⎛⎫<< ⎪⎝⎭的最大值为( )A .33-B .3C .0D .3-2.已知1x ,2x 是函数()3211232x b f ax x c x =+++(a ,b ,c ∈R )的两个极值点,()12,0x ∈-,()20,2x ∈,则2a b +的取值范围为( )A .(),2-∞-B .()2,4-C .()2,-+∞D .()4,4-3.对任意的0a b t <<<,都有ln ln b a a b <,则t 的最大值为( ) A .1B .eC .2eD .1e4.已知函数()=x e xf x x+,1(ln )a f e =,1()2b f =,1()c f e =,则( )A .a b c >>B .c b a >>C .b a c >>D .b c a >>5.函数()f x x =,2()=g x x 在[0,1]的平均变化率分别记为12,m m ,则下面结论正确的是 A .12m m = B .12m m C .21m m D .12m m ,的大小无法确定 6.函数()3sin cos 2xxf x x x =+在[]2,2ππ-的图象大致为( ) A . B .C .D .7.已知()'f x 是定义在上的函数()f x 的导函数,且2(1)(1)x f x f x e +=-,当1x >时,()()f x f x '>恒成立,则下列判断正确的是( ) A .()()523e f f ->B .()()523f e f ->C .()()523e f f <-D .()()523f e f >-8.若函数()33=-f x x x 在区间()5,21a a -+上有最小值,则实数a 的取值范围是( ) A .(]1,4- B .()1,4- C .11,2⎛⎤- ⎥⎝⎦D .11,2⎛⎫- ⎪⎝⎭9.已知函数()cos ln f x x x =-+,则()1f '的值为( ) A .sin11- B .1sin1- C .1sin1+ D .1sin1--10.若1x =是函数()ln f x ax x =+的极值点,则( ) A .()f x 有极大值1- B .()f x 有极小值1- C .()f x 有极大值0 D .()f x 有极小值011.α,,22ππβ⎡⎤∈-⎢⎥⎣⎦,且sin sin 0ααββ->,则下列结论正确的是( ) A .αβ>B .0αβ+>C .αβ<D .22αβ>12.已知函数f x =x+cosx (),则f'=6π⎛⎫⎪⎝⎭( )A .12B .32C .1 D第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知函数()xf x a x e =-有3个零点,则实数a 的取值范围为_______________.14.设函数()()21xf x e x ax a =--+,其中1a <,若仅存在两个整数n 使得()0f n <,则实数a 的取值范围是__________.15.若0<x 1<x 2<1,且1<x 3<x 4,下列命题:①3443ln ln x x e e x x ->-;②2121ln ln x x ee x x ->-;③3232x x x e x e <;④1221x xx e x e >;其中正确的有___________16.已知32()26f x x x m =-++(m 为常数)在[]22-,上有最小值3,那么此函数在[]22-,上的最大值为______.17.设曲线()(1)x f x ax e =-⋅在点()01,A x y 处的切线为1l ,()(1)x g x x e -=-⋅在点()02,B x y 处的切线为2l ,若存在030,2x ⎡⎤∈⎢⎥⎣⎦,使得12l l ⊥,则实数a 的取值范围是______.18.已知函数()ln ,(0,]f x mx x x e =-∈的最小值为2,则实数m 的值为____________. 19.已知函数()32331f x x ax x =-++在区间()2,3上至少有一个极值点,则a 的取值范围为__________.20.函数sin x y x e =+在点(0,1)处的切线方程是__________.三、解答题21.已知函数1()(2)ln 2f x a x ax x=-++, (1)当2a =时,求函数()f x 的极值; (2)当0a <时,讨论函数()f x 的单调性;(3)若对a ∀∈(-3,-2),12,x x ∈[1,3] ,不等式12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围. 22.已知函数()1ex f x a +=,()ln1xg x a=-,其中0a >. (1)若1a =,在平面直角坐标系xOy 中,过坐标原点O 分别作函数()y f x =与()y g x =的图象的切线1l ,2l ,求1l ,2l 的斜率之积;(2)若()()f x g x ≥在区间()0,∞+上恒成立,求a 的最小值.23.已知函数32()2(,)f x x ax bx a b R =+++∈在1x =-与3x =处均取得极值. (1)求实数a ,b 的值;(2)若函数()f x 在区间(),21m m -上单调递减,求实数m 的取值范围. 24.(1)已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围; (2)已知函数()()=ln f x x mx m m -+∈R .讨论函数()f x 的单调性.25.已知函数()e x f x ax b =-,且函数()f x 的图象在点(0,(0))f 处的切线斜率为1a -. (1)求b 的值; (2)求函数()f x 的最值;26.已知函数1()ln f x a x x x ⎛⎫=-- ⎪⎝⎭. (1)若1a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若函数()f x 在其定义域内为增函数,求a 的取值范围; (3)在(2)的条件下,设函数()eg x x=,若在[1,e]上至少存在一点0x ,使得()()00f x g x ≥成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】化简可得322tan 1tan xy x=-,令tan t x =,()1,t ∈+∞,则3221t y t =-,求出函数导数,利用导数判断函数的单调性即可求出最值. 【详解】可得3222tan 2tan tan 22tan 2tan 1tan 1tan x xy x x x x x =-=-=--, 令tan t x =,则()1,t ∈+∞,则3221t y t=-, 则()()()()()22322222261222311t t t t t t y t t --⨯--'==--,当(t ∈时,0y '>,函数单调递增,当)t ∈+∞时,0y '<,函数单调递减,所以当t =时,()3max 221y ⨯==--.故选:A. 【点睛】关键点睛:本题考查函数最值的求解,解题的关键是利用换元法将函数化为3221t y t =-,然后利用导数讨论其单调性即可求出最值.2.D解析:D 【分析】求()f x 的导函数,导函数根的分布建立不等关系,再由线性规划得解. 【详解】()22f x x ax b '=++为二次函数开口向上,∵1x 和2x 是()f x 的极值点,∴1x 和2x 是()f x '的两个零点 ∵()12,0x ∈-,()20,2x ∈,∴()()()200020f f f ⎧->⎪<⎨⎪>⎩,即20020a b b a b -+>⎧⎪<⎨⎪++>⎩ 如图为线性区域,令2t a b =+,则2b t a =-, 画出2b a =-平移至点A ,此时t 最小min 4t =- 平移至点C ,此时t 最大,则4t =, ∴2a b +的范围是()4,4-. 故选D . 【点睛】关键点睛:利用二次函数根的分布,建立关于,a b 的不等关系,再利用线性规划求最值.3.B解析:B 【分析】令ln xy x=,问题转化为函数在(0,)t 递增,求出函数的导数,求出函数的单调区间,从而求出t 的最大值即可. 【详解】0a b t <<<,ln ln b a a b <,∴ln ln a ba b<,()a b <, 令ln xy x=,则函数在(0,)t 递增,故21ln 0xy x -'=>, 解得:0x e <<,所以(0,)t 是(0,)e 的子集, 可得0t e <≤,故t 的最大值是e , 故选:B . 【点睛】利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间,a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围.4.B解析:B 【分析】求出()f x 的导数,根据导数判断出函数的单调性,再根据111ln ,,2e e的大小关系即可判断. 【详解】()=x e xf x x+,0x ≠ ()()()()2211xx x e x e x e x f x x x+-+-'∴==, 当(),0x ∈-∞时,()0f x '<,则()f x 单调递减, 当()0,1x ∈时,()0f x '<,则()f x 单调递减, 当()1,x ∈+∞时,()0f x '>,则()f x 单调递增,11012e <<<,112f f e ⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭,且1112f ⎛⎫=> ⎪⎝⎭, 1ln 10e =-<,()11ln 111f f e e ⎛⎫∴=-=-< ⎪⎝⎭, 111ln 2f f f e e ⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即c b a >>.故选:B. 【点睛】易错点睛:本题考查利用函数单调性判断大小,注意函数的定义域为{}0x x ≠,故单调区间有3个,故在判断1(ln )a f e=的大小的时候应从函数值判断,而不能直接利用单调性.5.A解析:A 【解析】因为1m =1,21010m -=-=1,所以12m m =,选A. 6.C解析:C 【分析】 利用()()'2,0f f π确定正确选项.【详解】()23sin 222cos 2202f ππππππ=+⋅=>,由此排除BD 选项. 当0x ≥时,()3sin cos 2xxf x x x =+, ()'3cos 3ln 2sin cos sin 2xx xf x x x x -⋅=+-,()'031040f =+-=>,由此排除A 选项.故选:C 【点睛】本小题主要考查函数图象识别,考查导数的运用.7.A解析:A 【分析】构造函数()()x f x g x e=,由(1)(1)g x g x -=+,可得()g x 的图象关于直线1x =对称, 利用导数研究函数的单调性,根据单调性即可比较大小. 【详解】构造函数()()xf xg x e=,因为2(1)(1)xf x f x e +=-,所以11(1)(1)x x f x f x e e +-+-=, 则(1)(1)g x g x -=+,所以()g x 的图象关于直线1x =对称,因为当1x >时,()()f x f x '>,所以()()()0xf x f xg x e''-=>, 所以()g x 在(1,)+∞上单调递增, 所以有(3)(2),(2)(3)g g g g ->->, 即3223(3)(2)(2)(3),f f f f e e e e---->>, 即5(3)(2)e f f ->,5(2)(3)e f f ->, 故选:A. 【点睛】本题考查了导数研究函数的单调性,解题的关键是构造函数,属于中档题.8.C解析:C 【分析】对函数()f x 进行求导,可得函数()f x 在区间(),1-∞-上单调递减,在区间()1,1-上单调递增,在区间()1,+∞上单调递减,可得(1)2f -=-,令()2f x =-,可得1x =-或2x =,可得()f x 的图像,由函数在区间()5,21a a -+上有最小值,数形结合可得关于a的不等式,计算可得答案. 【详解】解:由3()3f x x x =-,可得()2333(1)(1)f x x x x '=-+=--+,当11x -<<,()0f x '>,当1x <-或1x >时,()0f x '<,所以函数()f x 在区间(),1-∞-上单调递减,在区间()1,1-上单调递增,在区间()1,+∞上单调递减,可得(1)2f -=-,令()2f x =-,可得1x =-或2x =,则()f x 的图像如图所示,因为函数在区间()5,21a a -+上有最小值,故51212a a -<-<+, 解得:112a -<, 故选:C. 【点睛】本题主要考查利用导数研究含参函数的最值问题,体现了数形结合的数学思想,考查学生的计算能力,属于中档题.9.C解析:C 【分析】根据导数的运算法则先求出函数的导数()f x '的解析式,再把1x =代入()f x '的解析式运算求得结果. 【详解】∵函数()cos ln f x x x =-+,∴()1sin f x x x'=+, ∴()1sin11f ='+,故选C. 【点睛】本题主要考查求函数的导数,导数的加减法则的应用,属于基础题.10.A解析:A 【分析】先根据极值定义得a,再求导函数零点,根据导函数符号变化规律确定极值. 【详解】因为1x =是函数()ln f x ax x =+的极值点,所以1(1)0011f a a =∴+=∴=-' ,1()101,f x x x∴=-+=⇒=' 当1x >时,()0,f x '<当01x <<时,()0,f x '>因此()f x 有极大值1-,选A. 【点睛】函数极值问题的常见类型及解题策略(1)判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)已知函数求极值.求()'f x →求方程()0f x '=的根→列表检验()'f x 在()0f x '=的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数()f x 在点00(,)x y 处取得极值,则0()0f x '=,且在该点左、右两侧的导数值符号相反.11.D解析:D 【分析】构造函数()sin f x x x =,利用其导函数判断出单调区间,根据奇偶性和对称性可得正确选项. 【详解】构造()sin f x x x =形式,则()sin cos f x x x x +'=,0,2x π⎡⎤∈⎢⎥⎣⎦时导函数()0f x '≥,()f x 单调递增;,02x π⎡⎫∈-⎪⎢⎣⎭时导函数()0f x '<,()f x 单调递减.又 ()f x 为偶函数,根据单调性和对称性可知选D.故本小题选D.【点睛】本小题主要考查构造函数法,考查利用导数研究函数的单调性以及求解不等式,属于中档题.12.A解析:A 【分析】 求导,将6x π=代入即可求出6f π⎛⎫ ⎪⎝⎭'..【详解】已知函数f x =x+cosx,'x =1-sinx,f ∴()() 则 11sin .662f ππ⎛⎫=-'= ⎪⎝⎭故选A. 【点睛】本题考查函数在一点处的导数的求法,属基础题.二、填空题13.【分析】对参数的取值分类讨论特别地考虑当时利用导数的几何意义求得相切状态时参数的临界值即可数形结合求得参数范围【详解】函数有3个零点也即的图象有3个交点当时没有零点故舍去;当时故此时也没有零点故舍去 解析:a e >【分析】对参数a 的取值分类讨论,特别地考虑当0a >时,利用导数的几何意义,求得相切状态时参数a 的临界值,即可数形结合求得参数范围. 【详解】函数()f x 有3个零点,也即,xy e y a x ==的图象有3个交点.当0a =时,()xf x e =没有零点,故舍去;当0a <时,0xa x e ≤<,故此时()f x 也没有零点,故舍去;当0a >时,画出,xy e y a x ==的函数图象,如下所示:数形结合可知,当a 大于,(0)y ax x =>与xy e =相切时切线的斜率即可.不妨设此时切线斜率为k ,切点为(),m n ,又xy e '=,则mm n e k e m m===,解得1m =,故可得k e =.即,(0)y ax x =>与xy e =相切时切线的斜率为1, 故要满足题意,只需a e >. 故答案为:a e >. 【点睛】本题考查由函数零点个数求参数范围,以及导数的几何意义,涉及数形结合的数学思想,属综合中档题.14.【分析】设则存在两个整数使得利用导数分析函数的单调性与极值作出函数的图象可得出关于的不等式组进而可求得实数的取值范围【详解】设由题意可知存在两个整数使得当时;当时函数的最小值为而直线恒过定点如下图所解析:253,32e e ⎡⎫⎪⎢⎣⎭【分析】设()()21xg x e x =-,y ax a =-,则存在两个整数1x 、2x ,使得()()1122g x ax a g x ax a ⎧<-⎪⎨<-⎪⎩,利用导数分析函数()y g x =的单调性与极值,作出函数()y g x =的图象,可得出关于a 的不等式组,进而可求得实数a 的取值范围. 【详解】 设()()21xg x ex =-,y ax a =-,由题意可知,存在两个整数1x 、2x 使得()()1122g x ax ag x ax a ⎧<-⎪⎨<-⎪⎩,()()21x g x e x '=+,当21x<-时,()0g x '<;当12x >-时,()0g x '>.∴函数()y g x =的最小值为()min 12g x g e ⎛⎫=-=- ⎪⎝⎭,()01g =-,()10g e =>,而直线y ax a =-恒过定点()1,0,如下图所示:则满足不等式()0f x <的两个整数解应分别为11x =-,20x =,所以()()1223g a g a ⎧-<-⎪⎨-≥-⎪⎩,即23253a ea e ⎧->-⎪⎪⎨⎪-≤-⎪⎩,解得25332a e e ≤<. 因此,实数a 的取值范围是253,32e e ⎡⎫⎪⎢⎣⎭.故答案为:253,32e e ⎡⎫⎪⎢⎣⎭. 【点睛】本题考查利用导数研究函数不等式的整数解问题,考查数形结合思想的应用,属于中等题.15.①④【分析】令求导后求得函数的单调性后即可判断①②;令求导求得函数的单调性后即可判断③④;即可得解【详解】令则易知当时单调递增由则存在使得当时单调递减;当时单调递增;当时即此时故②错误;即故①正确;解析:①④ 【分析】 令()()ln 0x f x e x x =->,求导后求得函数()f x 的单调性后,即可判断①、②;令()()0xe h x x x=>,求导求得函数()h x 的单调性后,即可判断③、④;即可得解.【详解】令()()ln 0x f x e x x =->,则()1x f x e x'=-, 易知当()0,x ∈+∞时,()f x '单调递增, 由131303f e ⎛⎫'=-< ⎪⎝⎭,()110f e '=->, 则存在01,13x ⎛⎫∈⎪⎝⎭使得()00f x '=, ∴当()00,x x ∈时,()0f x '<,()f x 单调递减;当()0,x x ∈+∞时,()0f x '>,()f x 单调递增; 1201x x ,∴当02x x =时,()()21f x f x <即2121ln ln x x e x e x -<-,∴此时2121ln ln x x e e x x -<-,故②错误;341x x <<,∴()()43f x f x >即3443ln ln x x e x e x ->-, ∴3443ln ln x x e e x x ->-,故①正确;令()()0xe h x x x =>,()()21x e x h x x -'=, ∴当()0,1x ∈时,()0h x '<,()h x 单调递减;当()1,x ∈+∞时,()0h x '>,()h x 单调递增;2301x x <<<,∴()2h x 与()3h x 的大小无法确定即23x x e 、32x x e 的大小无法确定,故③错误; 121x x ,∴()()21h x h x <即2121x x e e x x <,∴1221x x x e x e >,故④正确.故答案为:①④. 【点睛】本题考查了导数的应用,考查了构造新函数的能力和推理能力,属于中档题.16.43【分析】先求导数判断函数单调性和极值结合(为常数)在上有最小值3求出的值再根据单调性和极值求出函数的最大值【详解】令解得或当时单调递减当时单调递增当时单调递减所以在时有极小值也是上的最小值即函数解析:43. 【分析】先求导数,判断函数单调性和极值,结合32()26f x x x m =-++(m 为常数)在[]22-,上有最小值3,求出m 的值,再根据单调性和极值求出函数的最大值. 【详解】32()26f x x x m =-++, 2()6126(2)f x x x x x '∴=-+=--,令 ()0f x '=,解得 0x =或2x =,当20x -<<时,()0,()f x f x '<单调递减,当02x <<时,()0,()f x f x '>单调递增,当2x >时,()0,()f x f x '<单调递减,所以()f x 在0x =时有极小值,也是[]22-,上的最小值, 即(0)3f m ==,函数在[]22-,上的最大值在2x =-或2x =时取得, 3232(2)2(2)6(2)343;(2)2262311f f -=-⨯-+⨯-+==-⨯+⨯+=,∴函数在[]22-,上的最大值为43.故答案为:43 【点睛】本题主要考查了利用导数研究函数的单调性和极值,函数的最值,属于中档题.17.【分析】求出利用两切线垂直可以得到参变分离后可得令换元后可求函数的值域从而得到实数的取值范围【详解】存在使得即令∴故∴答案为【点睛】解决曲线的切线问题核心是切点的横坐标因为函数在横坐标处的导数就是切解析:31,2⎡⎤⎢⎥⎣⎦【分析】求出()()00,f x g x '',利用两切线垂直可以得到()()00121ax a x -+⋅-=-,参变分离后可得0003121x a x x -=⋅-+,令03t x =-,换元后可求函数0003121x y x x -=⋅-+的值域,从而得到实数a 的取值范围. 【详解】()(1)x f x ax a e '=-+,()(2)x g x x e -'=-,存在030,2x ⎡⎤∈⎢⎥⎣⎦,使得()()001f x g x ''⋅=-,即()()00121ax a x -+⋅-=-,()001112a x x -⋅+=+-,0003121x a x x -=⋅-+,令0333,2t x ⎡⎤=-∈--⎢⎥⎣⎦,14(4)(1)5t y t t t t==++++,13443t t -≤+≤-,∴312y ≤≤,故312a ≤≤,∴答案为31,2⎡⎤⎢⎥⎣⎦. 【点睛】解决曲线的切线问题,核心是切点的横坐标,因为函数在横坐标处的导数就是切线的斜率.含参数的方程的有解问题,可通过参变分离把问题转化为不含参数的函数的值域问题.18.【分析】求出分三种讨论函数的单调性可得函数的最小值从而得到的值【详解】当时为减函数故解得舍;当时为减函数故舍;当时若故在上为减函数;若故在上为增函数;所以故符合;综上故填【点睛】求函数的最值应结合函 解析:e【分析】 求出'()f x ,分0m ≤,10m e <≤,1m e>三种讨论函数的单调性可得函数的最小值,从而得到m 的值. 【详解】()1'(),0,mx f x x e x-=∈, 当0m ≤时,'()0f x <,()ln ,(0,]f x mx x x e =-∈为减函数,故 ()min 12f x me =-=,解得3m e=,舍;当10m e<≤时,'()0f x <,()ln ,(0,]f x mx x x e =-∈为减函数,()()min 12f x f e me ==-=,故3m e=,舍;当1m e >时,若10,x m ⎛⎫∈ ⎪⎝⎭,'()0f x <,故()f x 在10,m ⎛⎫⎪⎝⎭上为减函数; 若1,x m ⎛⎫∈+∞ ⎪⎝⎭,'()0f x >,故()f x 在1,m ⎛⎫+∞ ⎪⎝⎭上为增函数; 所以min 11()ln 2f x m m m=⨯-=,故m e =,符合; 综上,m e =,故填e . 【点睛】求函数的最值,应结合函数的定义域去讨论函数的单调性,有的函数的单调性可以利用基本初等函数的单调性、复合函数的单调性判断法则得到,有的函数的单调性需结合导数的符号进行判断,如果导数的符号还不能判断,则需构建新函数(也就是原函数的导函数),再利用导数判断其符号.19.【解析】【分析】由在区间中至少有一个极值点等价与方程在其判别式的条件下在区间有解即可求解【详解】因为而在区间中至少有一个极值点等价于方程在其判别式的条件下在区间有解所以由可得令求导数可得所以在上单调解析:55,43⎛⎫⎪⎝⎭【解析】 【分析】由()f x 在区间(2,3)中至少有一个极值点,等价与方程()0f x '=在其判别式>0∆的条件下在区间(2,3)有解,即可求解. 【详解】因为()22363f x x ax =-+',而()f x 在区间(2,3)中至少有一个极值点,等价于方程223630x ax -+=在其判别式>0∆的条件下在区间(2,3)有解, 所以由223630x ax -+=可得11()2a x x=+, 令()11()2g x x x =+,求导数可得()211(1)2g x x=-', 所以()g x 在(2,3)上单调递增,所以5115()423x x <+<, 解得5543a <<,此时满足>0∆,故实数a 的取值范围是55(,)43.【点睛】本题主要考查了利用导数在函数中的应用,解题的关键是()f x 在区间(2,3)中至少有一个极值点转化为方程()0f x '=在判别式>0∆的条件下在区间(2,3)有解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.20.【解析】分析:求出函数的导数求得切线的斜率由斜截式方程即可得到所求切线的方程详解:的导数为在点(01)处的切线斜率为即有在点(01)处的切线方程为故答案为点睛:近几年高考对导数的考查几乎年年都有利用 解析:210x y -+=【解析】分析:求出函数sin xy x e =+的导数,求得切线的斜率,由斜截式方程,即可得到所求切线的方程.详解:sin xy x e =+的导数为'cos xy x e =+, 在点(0,1)处的切线斜率为0cos02k e =+=, 即有在点(0,1)处的切线方程为210x y -+=. 故答案为210x y -+=.点睛:近几年高考对导数的考查几乎年年都有,利用导数的几何意义,求曲线的切线方程是导数的重要应用之一,曲线()y f x =在点0x 的导数0'()f x 就是曲线在该点的切线的斜率,我们通常用导数的这个几何意义来研究一些与曲线的切线有关的问题,用导数求切线方程的关键在于求切点坐标和斜率,分清是求在曲线某点处的切线方程,还是求过某点处的曲线切线方程.三、解答题21.(1)极小值为4,无极大值(2)答案见解析(3)133m ≤- 【分析】(1)利用导数可求得结果; (2)求导后,令()0f x '=得1x a =-或12x =,对1a -与12的大小分类讨论可求得结果;(3)转化为12max (ln3)2ln3()()m a f x f x +->-1max 2min ()()f x f x =-,根据(2)中的单调性求出1max ()f x 和2min ()f x 代入后得2(4)03m a +->对a ∀∈(-3,-2)恒成立,列式23(4)0322(4)03m m ⎧-+-≥⎪⎪⎨⎪-+-≥⎪⎩可解得结果. 【详解】(1)当2a =时,1()4f x x x =+(0)x >,222141()4x f x x x-'=-=, 当102x <<时,()0f x '<,当12x >时,()0f x '>,所以()f x 在1(0,)2上递减,在1(,)2+∞上递增, 所以()f x 在12x =处取得极小值1()42f =,无极大值.(2)当0a <时,1()(2)ln 2f x a x ax x=-++,定义域为(0,)+∞, 221()2a f x a x x -=-+'222(2)1ax a x x+--=2(1)(21)ax x x +-=, 令()0f x '=得1x a =-或12x =, 当112a ->,即20a -<<时,由()0f x '<得102x <<或1x a >-,由()0f x '>得112x a<<-, 所以()f x 在1(0,)2和1(,)a -+∞上单调递减,在11(,)2a-上单调递增,当112a -=,即2a =-时,22(21)()x f x x--'=0≤,所以()f x 在(0,)+∞上单调递减, 当112a -<,即2a <-时,由()0f x '<得10x a<<-或12x >,由()0f x '>得112x a -<<, 所以()f x 在1(0,)a -和1(,)2+∞上单调递减,在11(,)2a -上单调递增, (3)由(2)可知对a ∀∈(-3,-2),()f x 在[1,3]上单调递减, 因为不等式12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,等价于12max (ln3)2ln3()()m a f x f x +->-1max 2min ()()f x f x =-, 而1max ()(1)12f x f a ==+,2min 1()(3)(2)ln 363f x f a a ==-++, 所以1(ln 3)2ln 312(2)ln 363m a a a a +->+----, 即2(4)03m a +->对a ∀∈(-3,-2)恒成立, 所以23(4)0322(4)03m m ⎧-+-≥⎪⎪⎨⎪-+-≥⎪⎩,解得133m ≤-.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .22.(1)1;(2)21e . 【分析】(1)利用导数的运算法则和公式求得1()e x f x +'=,1()g x x'=,得到切线1l ,2l 的斜率∴111ex l k +=,221l k x =,根据两切线都经过原点,求得121,e x x ==,进而求得两直线的斜率之积;(2)问中是典型的无法分离参数的情况,进行转化并构造函数,1()e x F x x +=,转化为()ln 1x F x F a ⎛⎫≥- ⎪⎝⎭,分类讨论,并注意利用导数进一步研究函数()F x 的单调性,当ln 10,x a ->转化为1max ln 1e x x x x a a +⎛⎫≥-⇒≥ ⎪⎝⎭,进而再次造函数令1()ex x x ϕ+=,利用导数研究单调性并求得其最大值,即得a 的最小值. 【详解】解:(1)当1a =时,()1x f x e=+,()ln 1g x x =-设过原点O 的直线分别切()f x ,()g x 于点()111,P x y ,()222,P x y1()e x f x +'=,1()g x x'=, ∴111e x l k +=,221l k x =且11111122222e e 1e ln 11x x x x x x x x ++⎧=⎪=⎧⎪⇒⎨⎨=-⎩⎪=⎪⎩ ∴12221e 1e l l k k ⋅=⋅=. (2)由1eln 1x xa a+≥-在(0,)+∞上恒成立得∵0a >,∴111eln x x a a a+≥- ln 1eln 1ln 1e (*)xx ax x x x a a a +⎛⎫⎛⎫≥-=-⋅ ⎪ ⎪⎝⎭⎝⎭令1()e x F x x +=,∴()ln1x F x F a ⎛⎫≥- ⎪⎝⎭①当ln 10xa-≤时,(*)左边0,>右边0,≤显然成立 ②当ln10,xa->注意到1()(1)e 0x F x x +'=+> ∴()F x 在(0,)+∞上∴1maxln1e x x x x a a +⎛⎫≥-⇒≥ ⎪⎝⎭令1()e x x x ϕ+=,11221e e 1()e ex x x x x x x ϕ++++--'==,令()0x ϕ'= 得01x <<时,()0x ϕ'>,()x ϕ↗; 当1x >时,()0x ϕ'<,()x ϕ↘ ∴max 21()(1)x e ϕϕ==,∴21a e ≥.【点睛】本题考查求曲线上某点处的切线的斜率问题和利用导数研究不等式恒成立问题,属中档题,难度一般.关键是要熟练掌握导数的运算法则和求导公式,这是一切导数问题的基础,第(2)问中将不等式整理为为ln 1eln 1ln 1e (*)xx ax x x x a a a +⎛⎫⎛⎫≥-=-⋅ ⎪ ⎪⎝⎭⎝⎭令1()e x F x x +=,转化为()ln 1x F x F a ⎛⎫≥- ⎪⎝⎭,是难点也是解决问题的关键点,多次构造函数,并利用函数思想进行转化和求解是本题的显著特点,值得好好体会. 23.(1)3a =-,9b =-;(2)(]1,2. 【分析】(1)先对函数求导,根据极值点,列出方程求解,即可得出a ,b ,再检验,即可得出结果;(2)根据(1)的结果,由(2)中条件,列出不等式求解,即可得出结果. 【详解】(1)因为32()2f x x ax bx =+++所以2()32f x x ax b '=++因为函数()f x 在1x =-与3x =处均取得极值所以223(1)2(1)033230a b a b ⎧⨯-+⨯-+=⎨⨯+⨯+=⎩ 所以39a b =-⎧⎨=-⎩,此时()()2()369331'=--=-+f x x x x x ,由()0f x '>得1x <-或3x >;由()0f x '<得13x;所以()f x 在(,1)-∞-上单调递增,在(1,3)-上单调递减,在(3,)+∞上单调递增, 因此()f x 在1x =-上取得极大值,在3x =上取得极小值,符合题设; 即所求实数a ,b 的值分别是3-,9-;(2)由(1)知,()f x 在(,1)-∞-上单调递增,在(1,3)-上单调递减,在(3,)+∞上单调递增,若函数()f x 在区间(),21m m -上单调递减,则1213m m -≤<-≤ 所以12m <≤,即所求实数的取值范围是(]1,2. 【点睛】 思路点睛:由函数极值(极值点)求参数时,一般需要对函数求导,根据极值的定义,结合题中条件,列出方程求解,即可得出结果.(求出的结果要,要注意进行检验) 24.(1)1c ≥-.(2)答案见解析. 【分析】(1)不等式变形为()2f x x c -≤,求出()2f x x -的最大值后可得c 的范围;(2)求出导函数()'f x ,确定()'f x 的正负,得()f x 的单调性.【详解】(1)()f x 定义域是(0,)+∞,由()2f x x c ≤+得,2ln 12c x x ≥+-,设()2ln 12g x x x =+-,则22(1)()2x g x x x-'=-=, 当01x <<时,()0g x '>,当1x >时,()0g x '<,∴()g x 在(0,1)上递增,在(1,)+∞上递减, ∴max ()(1)2ln1121g x g ==+-=-,∴1c ≥-. (2)()()=ln f x x mx m m -+∈R ,定义域是(0,)+∞,1()f x m x'=-, 当0m ≤时,()0f x '>,()f x 在(0,)+∞上递增, 当0m >时,1()()m x mf x x-'=,当10x m <<时,()0f x '>,1x m>时,()0f x '<, ∴()f x 在1(0,)m上递增,在1(,)m+∞上递减.综上,0m ≤时,()f x 的增区间是(0,)+∞,0m >时,()f x 的增区间是1(0,)m,减区间是1(,)m+∞. 【点睛】方法点睛:本题考查函数的单调性,考查不等式恒成立问题.(1)已知()f x 的导函数是()'f x ,解不等式()0f x '>可得增区间,()0f x '<可得减区间.(2)()f x m ≥恒成立,则min ()m f x ≤,若()f x m ≤恒成立,则max ()m f x ≥. 25.(1)1;(2)当0a ≤时,()f x 没有最值;当0a >时,()f x 的最大值为ln a a a -,无最小值. 【分析】(1)对()f x 求导,又(0)1f a b a '=-=-,进而求出b 的值.(2)对a 进行讨论,利用导函数求函数的单调性,进一步求出最值. 【详解】(1)由题意,得()e xf x a b '=-,又(0)1f a b a '=-=-,1b ∴=. (2)()x f x a e '=-.当0a ≤时,()0f x '<,()f x 在R 上单调递减,()f x 没有最值; 当0a >时,令()0f x '<,得ln x a >, 令()0f x '>,得ln x a <,()f x ∴在区间(,ln )a -∞上单调递增,在区间(ln ,)a +∞上单调递减, ()f x ∴在ln x a =处取得唯一的极大值,即为最大值,且()()max ln ln f x f a a a a ==-. 综上所述,当0a ≤时,()f x 没有最值;当0a >时,()f x 的最大值为ln a a a -,无最小值. 【点睛】本题考查的是导函数的知识点,涉及到利用导函数求函数的最值,以及分类讨论的思想,属于常见的题型.26.(1)1y x =-;(2)1,2⎡⎫+∞⎪⎢⎣⎭;(3)22,1e e ⎡⎫+∞⎪⎢-⎣⎭. 【分析】(1)先(1)11ln10f =--=,再求导211()1f x x x'=+-,从而可得切线的斜率为11(1)1111f '=+-=,然后利用点斜式写出切线方程即可;(2)先求出导函数,要使()f x 在定义域(0,)+∞内是增函数,只需()0f x '≥在(0,)+∞内恒成立,然后将a 分离,利用基本不等式可求出实数a 的取值范围; (3)根据()eg x x=在[1,e]上的单调性求出函数的值域,然后根据(2)可求出()f x 的最大值,要使在[1,e]上至少存在一点0x ,使得()()00f x g x ≥成立,只需max min ()()f x g x ≥,然后建立不等式,即可求出实数a 的取值范围【详解】(1)当1a =时,函数1()ln f x x x x=--,∴(1)11ln10f =--=,211()1f x x x'=+-, 曲线()f x 在点(1,(1))f 处的切线的斜率为11(1)1111f '=+-=.从而曲线()f x 在点(1,(1))f 处的切线方程为01y x -=-,即1y x =-,(2)2221()a ax x af x a x x x-+'=+-=. . 要使()f x 在定义域(0,)+∞内是增函数,只需()0f x '≥在(0,)+∞内恒成立.即:20ax x a -+≥得2111x a x x x≥=++恒成立.∵12x x +≥,∴1112x x≤+,∴12a ≥. ∴()f x 在(0,)+∞内为增函数,实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭法二:2221()a ax x af x a x x x-+'=+-= 当0a ≤时,()0f x '<在定义域内恒成立,不合题意舍 当0a >时,2140a ∆=->即102a <<方程20ax x a -+=有两解1x ,2x , 1210x x a+=>,1210x x => 故20ax x a -+=在(0,)+∞恒有两解,()0f x '≥不恒成立,不合题意舍去; 2140a ∆=-≤即12a ≥,20ax x a -+≥即22()0ax x a f x x-+'=≥在(0,)+∞内恒成立,函数()f x 在其定义域内为增函数所以实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭(3)∵()eg x x=在[1,]e 上是减函数 ∴x e =时,min ()1g x =,1x =时,max ()g x e =,即()[1,]g x e ∈ 由(2)知,当12a ≥;在定义域(0,)+∞内是增函数,即1()1,1f x a e e ⎡⎤⎛⎫∈--- ⎪⎢⎥⎝⎭⎣⎦ 存在0[1,]x e ∈,()()00f x g x ≥只需满足max min ()()f x g x ≥,[1,e]x ∈,即1ln 1a e e e ⎛⎫--≥ ⎪⎝⎭,解得221e a e ≥- .∴实数a 的取值范围是22,1e e ⎡⎫+∞⎪⎢-⎣⎭【点睛】此题考查了导数的几何意义,考查利用导数研究函数的单调性和最值,考查了数学转化思想,属于中档题。
人教版导数测试题含答案
、选择题 1.函数y = x 3 + A (0, 2. f(x)3 ax 导数及其应用单元测试题x 的递增区间是( )3x 2• ( ,1)2,若 f ( 1) 4,则a 的值等于(•(1,3.已知对任意实数 x 0 时() 163 x ,有 13f ( x) f(x), g( x)10 • 3g(x),且 x 0时,f (x)0, g (x) 0,则A • f (x)0,g(x) B • f (x) 0, g(x)C • f (x) 0, g(x)D • f (x)0, g(x) 01 在(0,)内单调递增,x 2x 2 4. 设 p : f (x)则p 是q 的( A •充分不必要条件E.必要不充分条件C.充分必要条件 件5. 抛物线y=(1-2x) 2在点x= 3处的切线方程为( 2 e x In ) mx A. y=0 B.8x — y — 8=0 C . x=1 D.y=0 或者 8x — y — 8=0D •既不充分也不必要条6.设f (x)是函数f (x)的导函数,将y f (x)和y f (x)的图象画在同一个直角坐标7.已知 f (x) 2x 3 6x 2 m(m 为常数) 在[2,2]上有最大值3 ,那么此函数在[2,2]上的最小值为() A . -37 B -29 C -5 D -11二、填空题f(2)13. 函数y x 2cos x 在区间[o,—]上的最大值是 ___________ 三、解答题(共80分) 14. (本题满分12分)33 设f x x ,求函数f(x)的单调区间及其极值;x8.设函数f(x)3kx 3 3(k1)x 22k 1在区间(0,4)上是减函数,贝U k 的取值范围是()A . k3B. 0C . Ok13D.9.已知二次函数 f(x)2ax bx c 的导数为 f '(x), f'(0),对于任意实数x 都有 f(x)0,则f(1) 口、f '(0)的最小值为(5 210.函数yxe的导数In x11.若函数ybx 有三个单调区间,则 b 的取值范围是12.已知函数 f(x)3a 2x 2 axb ,当x 1时函数f (x)的极值为15.(本题满分14分)求证:若x>0,则ln(1+ x)T x;16.(本题满分14分)若函数f(x) ax3 bx4 4,当x 2时,函数f (x)有极值3 ,(1)求函数的解析式;( 2)若函数f (x) k有3个解,求实数k的取值范围.17 (本题满分14分)如图6所示,等腰三角形△ ABC的底边AB= 6「6,高CD=3 ,点E是线段BD上异于B、D的动点,点F在BC 边上,且EF丄AB,现沿EF将厶BEF折起到△ PEF的位置,使PE丄AE,记BE=x , V (x)表示四棱锥P-ACEF 的体积。
2023年人教版数学导数及其应用练习题及答案
2023年人教版数学导数及其应用练习题及答案首先,我们来介绍一下导数及其应用的相关概念。
在数学中,导数是一个非常重要的概念,它描述了函数在某一点的变化率。
导数的求解可以帮助我们了解函数的特征及其在不同点的变化情况。
导数在许多实际问题中都有广泛的应用,包括物理学、工程学等领域。
接下来,我们将给出一些关于导数的练习题以及它们的答案,供同学们进行练习和巩固知识。
练习题1:已知函数 f(x) = 3x^2 - 2x + 1,求 f(x) 的导数 f'(x)。
解答:根据导数的定义,我们可以使用求导法则来求解这个问题。
对于多项式函数而言,求导的方法非常简单,只需要将各个项的指数降低一次,并乘以原来的系数即可。
对于函数 f(x) = 3x^2 - 2x + 1,将每一项的指数降低一次,有 f'(x) = 2*3x^1 - 1*2x^0 + 0 = 6x - 2。
所以,f(x) 的导数 f'(x) = 6x - 2。
练习题2:已知函数 g(x) = e^x,求 g(x) 的导数 g'(x)。
解答:对于指数函数 e^x,其导数仍然是 e^x。
这是因为指数函数的变化率与自身相等。
所以,g(x) 的导数 g'(x) = e^x。
练习题3:已知函数 h(x) = sin(x),求 h(x) 的导数 h'(x)。
解答:对于三角函数 sin(x),其导数是余弦函数 cos(x)。
所以,h(x) 的导数 h'(x) = cos(x)。
练习题4:已知函数 i(x) = ln(x),求 i(x) 的导数 i'(x)。
解答:对于自然对数函数 ln(x),其导数是 1/x。
所以,i(x) 的导数 i'(x) = 1/x。
通过以上的练习题,我们可以初步掌握导数的求解方法及其在不同函数类型下的应用。
在实际问题中,导数可以帮助我们解决最优化问题、求取曲线的切线与法线、估算函数值等。
(完整版)导数基础练习测试
导数基础练习(共2页,共17题)一.选择题(共14题)1.函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x2.曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是()A.3x﹣y+1=0 B.3x﹣y﹣1=0 C.3x+y﹣1=0 D.3x﹣y﹣5=0 3.若函数f(x)=sin2x,则f′()的值为()A.B.0 C.1 D.﹣4.函数f(x)=xsinx+cosx的导数是()A.xcosx+sinx B.xcosx C.xcosx﹣sinx D.cosx﹣sinx 5.的导数是()A.B.C.D.6.y=xlnx的导数是()A.x B.lnx+1 C.3x D.17.函数y=cose xA.﹣e x sine x B.cose x C.﹣e x D.sine x8.已知,则f′()=()A.﹣1+ B.﹣1 C.1 D.09.函数的导数是()A.B.C.e x﹣e﹣x D.e x+e﹣x10.函数y=x2﹣2x在﹣2处的导数是()A.﹣2 B.﹣4 C.﹣6 D.﹣811.设y=ln(2x+3),则y′=()A.B.C.D.12.已知函数,则f′(x)等于()A.B.C.0 D.13.曲线y=x2+3x在点A(2,10)处的切线的斜率k是()A.4 B.5 C.6 D.714.曲线y=4x﹣x2上两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为()A.(1,3)B.(3,3)C.(6,﹣12) D.(2,4)二.填空题(共2题)15.求导:()′=_________.16.函数y=的导数是_________.三.解答题(共1题)17.求函数y=e x5 +2的导数.导数基础练习(试题解析)一.选择题(共14题)1.函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x考点:简单复合函数的导数.考查学生对复合函数的认识,要求学生会对简单复合函数求导.分析:将f(x)=sin2x看成外函数和内函数,分别求导即可.解答:将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,∴可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x.∴选D.红色sin2x、蓝色sin2x2.曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是()A.3x﹣y+1=0 B.3x﹣y﹣1=0 C.3x+y﹣1=0 D.3x﹣y﹣5=0考点:简单复合函数的导数;直线的点斜式方程.考查学生对切线方程的理解,要求写生能够熟练掌握.分析:先要求出在给定点的函数值,然后再求出给定点的导数值.将所求代入点斜式方程即可.解答:对f(x)=lnx+2x求导,得f′(x)=+2.∴在点(1,f(1))处可以得到f(1)=ln1+2=2,f′(1)=1+2=3.∴在点(1,f(1))处的切线方程是:y﹣f(1)=f′(1)(x﹣1),代入化简可得,3x﹣y﹣1=0.∴选B.3.若函数f(x)=sin2x,则f′()的值为()A.B.0 C.1 D.﹣考点:简单复合函数的导数.计算题.求函数在某点处的导数值,应该先利用导数的运算法则及初等函数的导数公式求出导函数,再求导函数值.分析:先利用复合函数的导数运算法则求出f(x)的导函数,将x=代入求出值.解答:解:f′(x)=cos2x(2x)′=2cos2x,∴f′()=2cos=1,∴选C.红色sin2x、蓝色2cos2x4.函数f(x)=xsinx+cosx的导数是()A.xcosx+sinx B.xcosx C.x cosx﹣sinx D.c osx﹣sinx考点:导数的乘法与除法法则;导数的加法与减法法则.计算题.本题考查导数的运算法则、基本初等函数的导数公式.属于基础试题.分析:利用和及积的导数运算法则及基本初等函数的导数公式求出函数的导数.解答:解:∵f(x)=xsinx+cosx,∴f′(x)=(xsinx+cosx)′=(xsinx)′+(cosx)′=x′sinx+x(sinx)′﹣sinx=sinx+xcosx﹣sinx=xcosx,∴选B.红色xsinx+cosx、蓝色xcosx5.的导数是()A.B.C.D.考点:导数的乘法与除法法则.计算题.本题考查导数的除法运算法则,解题时认真计算即可,属于基础题.分析:利用导数的四则运算法则,按规则认真求导即可解答:解:y′===∴选A.红色、绿色y′=6.y=xlnx的导数是()A.x B.lnx+1 C.3x D.1考点:导数的乘法与除法法则.导数的综合应用.本题考查导数的乘法法则,考查了基本初等函数的导数公式,属于基础题.分析:直接由导数的乘法法则结合基本初等函数的导数公式求解.解答:解:∵y=xlnx,∴y′=(xlnx)′=x′lnx+x(lnx)′=.∴选B.红色xlnx、绿色lnx+17.函数y=cose x的导数是()A.﹣e x sine x B.cose x C.﹣e x D.sine x考点:导数的乘法与除法法则.导数的概念及应用.本题主要考查导数的基本运算,要求熟练掌握常见函数的导数公式以及导数的运算法则.分析:根据导数的运算法则即可得到结论.解答:解:函数的导数为f′(x)=﹣sine x(e x)′=﹣e x sine x,∴选A.红色cose x、绿色﹣e x sine x8.已知,则f′()=()A.﹣1+B.﹣1 C.1 D.0考点:导数的加法与减法法则.计算题.本题主要考查了导数的运算,以及求函数值,解题的关键是正确求解导函数,属于基础题.分析:本题先对已知函数进行求导,再将代入导函数解之即可.解答:解:∴选B.红色、绿色-sinx9.函数的导数是()A.B.C.e x﹣e﹣x D.e x+e﹣x考点:导数的加法与减法法则.计算题.本题考查导数的运算,牢记求导公式是解本题的关键.分析:根据求导公式(u+v)′=u′+v′及(e x)′=e x即可求出函数的导数.解答:解:∵,∴y′==.∴选A.红色、蓝色10.函数y=x2﹣2x在﹣2处的导数是()A.﹣2 B.﹣4 C.﹣6 D.﹣8考点:导数的加法与减法法则.计算题;导数的概念及应用.本题考查导数的加法与减法法则,考查基本初等函数的导数公式,是基础的计算题.分析:求出原函数的导函数,在导函数解析中取x=﹣2计算即可得到答案.解答:解:由y=x2﹣2x,得y′=2x﹣2.∴y′|x=﹣2=2×(﹣2)﹣2=﹣6.∴选C.红色y=x2﹣2x、蓝色y′=2x﹣211.设y=ln(2x+3),则y′=()A.B.C.D.考点:导数的运算.导数的概念及应用.本题主要考查导数的计算,要求熟练掌握复合函数的导数公式,属于基础题.分析:根据复合函数的导数公式即可得到结论.解答:解:∵y=ln(2x+3),∴,∴选:D红色ln(2x+3)、蓝色12.已知函数,则f′(x)等于()A.B.C.0 D.考点:导数的运算.导数的概念及应用.本题考查了常数的导数,只要理解常数c′=0即可解决此问题.分析:我们知道:若函数f(x)=c为常数,则f′(x)=0,∴可得出答案.解答:解:∵函数,∴f′(x)=0.∴选C.13.曲线y=x2+3x在点A(2,10)处的切线的斜率k是()A.4 B.5 C.6 D.7考点:导数的几何意义.计算题.本题考查函数在某点导数的几何意义的应用.分析:曲线y=x2+3x在点A(2,10)处的切线的斜率k就等于函数y=x2+3x在点A(2,10)处的导数值.解答:解:曲线y=x2+3x在点A(2,10)处的切线的斜率,k=y′=2x+3=2×2+3=7,∴答案为7.红色x2+3x、蓝色2x+314.曲线y=4x﹣x2上两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为()A.(1,3)B.(3,3)C.(6,﹣12)D.(2,4)考点:导数的几何意义.考核导数的几何意义及两条直线平行斜率的关系.分析:首先求出弦AB的斜率,再利用导数的几何意义求出P点坐标.解答:解:设点P(x0,y0),∵A(4,0),B(2,4),∴kAB==﹣2.∵过点P的切线l平行于弦AB,∴kl=﹣2,∴根据导数的几何意义得知,曲线在点P的导数y′=4﹣2x=4﹣2x=﹣2,即x0=3,∵点P(x0,y)在曲线y=4x﹣x2上,∴y0=4x0﹣x02=3.∴选B.红色4x ﹣x 2、蓝色4﹣2x二.填空题(共2题)15.求导:()′=, .考点: 简单复合函数的导数.导数的概念及应用.本题主要考查导数的计算,根据复合函数的导数公式是解决本题的关键.分析: 根据复合函数的导数公式进行求解即可. 解答: 解:=(x 2+1)21,则函数的导数为y′=(x 2+1)21-(x 2+1)′=(x 2+1)21-×2x =,∴答案为:红色、蓝色精心整理16.函数y=的导数是.考点:简单复合函数的导数.导数的概念及应用.本题主要考查导数的计算,根据复合函数的导数公式进行计算是解决本题的关键.分析:根据复合函数的导数公式进行计算即可.解答:解:函数的导数为y′==,∴答案为:红色、蓝色三.解答题(共1题)17.求函数y=e x5-+2的导数.考点:简单复合函数的导数.导数的概念及应用.本题考查导数的运算,以及导数基本知识的考查.分析:直接利用复合函数的导数求解运算法则求解即可.解答:解:函数y=e x5-+2的导数:y′=﹣5e x5-.∴答案为:y′=﹣5e x5-.红色e x5-+2、蓝色﹣5e x5-。
高二导数单元测试题及参考答案人教版
高二导数单元测试题、选择题3、函数y =(x+1)2(x —1)在x=1处的导数等于()A. 1B. 2C. 3D. 4 4、与直线2x -y+4=0的平行的抛物线 y=x 2的切线方程是()5、函数f (x )=x3_3xy 在闭区间[-3, 0]上的最大值、最小值分别是 ()A. 1 , - 1B. 1 , -17 C, 3, -17 D , 9, -193 _ 2 6、曲线y=x -3x +1在点(1, —1)处的切线方程为()A. y=3x —4B. y = —3x+2C. y = —4x+3D. y = 4x —5 7、函数f (x) =x 3 -3x 2 +1是减函数的区间为()A . (2尸)B. (-°°,2)C. (-00,0)D. (0, 2) 8、函数f (x) =x 3 +4x+5的图象在x=1处的切线与圆x 2 + y 2 =50的位置关系是()A 相切 B.相交但不过圆心C.过圆心D.相离3 2 9、函数f(x)=x +ax +3x —9,已知f(x)在x = —3时取得极值,则 a=()A. 2B. 3C. 4D. 510、设f (x )是函数f (x )的导函数,y = f'(x )的图象如右图所示,则 y= f (x )的图象最有可能 的是() 3 . 11、曲线y = x 在点(1,1)处的切线与x 轴、直线x = 2所围成的三角形的面积为............ 1 4 . 一 ...... 1、物体运动的方程为 s= — t -3 ,则当t =5的瞬时速率为() 4A. 5B. 25C. 1252、已知函数f (x )在x=1处的导数为1,则 (1)A. 2B. 1C.一2 D. 625 l l m D. f (1 x )-f (1)=(2x A. 2x —y +3 =0 B. 2x —y —3 =0C. 2x — y+1=0D. 2x — y —1 = 012、已知f(x)=(x-1) 2+2 ,g(x)=x2-1,则f[g(x)]的单调递增区间是13、设y = f (x)是二次函数,方程f (x)=0有两个相等的实根,且f (x)=2x +2,则y = f (x)的表达式为。
人教版新课标高中数学选修2-2《导数及其应用》单元测试题(含答案)
11 Oyx导数单元测试题 2014.3.12一、选择题(共10小题,每小题5分,共50分)1. 函数3(21)y x =+在0x =处的导数是 ( ) A.0B.1C.3D.62.函数)0,4(2cos π在点x y =处的切线方程是 ( )A .024=++πy xB .024=+-πy xC .024=--πy xD .024=-+πy x3.设函数()f x 的导函数为()f x ',且2()2'(1)f x x x f =+⋅,则'(0)f 等于 ( )A .0 B. -4 C. -2 D. 2 4. 给出以下命题:① 若()0b af x dx >⎰,则()0f x >; ②20sin 4x dx =⎰π;③()f x 的原函数为()F x ,且()F x 是以T 为周期的函数,则()()a a T Tf x dx f x dx +=⎰⎰;其中正确命题的个数为 ( )A. 1B. 2C. 3D. 0 5.函数313y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3C. 极小值-1,极大值3D. 极小值-2,极大值26. 若函数32()33f x x bx b =-+在(0,1)内有极小值,则b 的取值范围是( )A. 02b <<B. 2b <C. 0b >D. 102b << 7. 方程0109623=-+-x x x 的实根个数是( ) A .3B .2C .1D .08. 已知自由下落物体的速度为V gt =,则物体从0t =到0t 所走过的路程为( )A .2012gt B .20gt C . 2013gt D .2014gt 9.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). A.3V B.32V C.34V D .32V 10.已知函数(1)()y x f x '=-的图象如图所示,其中()f x '为函数()f x 的导函数,则()y f x =的大致图象是( )二、填空题(共4小题,每小题5分,共20分)11.dx x ⎰--3329= , dx x x ⎰+20)sin (π= .12. 已知曲线323610y x x x =++-上一点P ,则过曲线上P 点的所有切线方程中,斜率最小的切线方程是 .13.由曲线22y x =+与3y x =,0x =,2x =所围成的平面图形的面积为 . 14.已知R 上可导函数()f x 的图象如图所示,则不等式2(23)()0x x f x '-->的解集 .三、解答题15.(本小题满分12分)已知函数32()f x x ax bx c =+++在2x =-处取得极值,并且它的图象与直线33y x =-+ 在点( 1 , 0 ) 处相切, 求,,a b c 的值.16.(本小题满分12分)平面向量13(3,1),(,)22a b =-=,若存在不同时为0的实数k 和t 使2(3),x a t b y ka tb =+-=-+且x y ⊥,试确定函数()k f t =的单调区间.17.(本小题满分12分)已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数'()y f x =的图象经过点(1,0),(2,0), 如图所示.求:(1)0x 的值; (2),,a b c 的值. (3)若曲线=y )(x f )20(≤≤x 与m y =有两个不同的交点,求实数m 的取值范围.18.(本小题满分13分)已知函数()32f x x ax bx c =-+++图像上的点),1(m P 处的切线方程为31y x =-+.(1)若函数()f x 在2x =-时有极值,求()f x 的表达式; (2)函数()f x 在区间[]2,0-上单调递增,求实数b 的取值范围.19.(本小题满分13分)定义在定义域D 内的函数)(x f y =,若对任意的D x x ∈21,都有12|()()|1f x f x -<,则称函数)(x f y =为“妈祖函数”,否则称“非妈祖函数”.试问函数]1,1[()(3-∈+-=x a x x x f ,R a ∈)是否为“妈祖函数”?如果是,请给出证明;如果不是,请说明理由.20.(本小题满分13分) 设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.周三练习题答案1—5 DDBBC 6—10 DCACB11. 92π,218π+ 12.3110x y --=13. 1 14. (,1)(1,1)(3,)-∞-⋃-⋃+∞15.'2'2'2:()32(2)3(2)2(2)01240(1)3231,8()(1,0)1106f x x ax b f a b a b f a b a b f x a b c c =++∴-=-+-+=∴-+==++=-∴==-∴+⨯+⨯+=∴=3解又又过点,116.解:由13(3,1),(,)22a b =-=得0,2,1a b a b === 22222[(3)]()0,(3)(3)0a t b ka tb ka ta b k t a b t t b +--+=-+--+-=33311430,(3),()(3)44k t t k t t f t t t -+-==-=- (t ≠0)'233()0,1,144f t t t t =-><->得或;2330,1144t t -<-<<得 且 t ≠0所以增区间为(,1),(1,)-∞-+∞;减区间为(1,0),(0,1)-。
新人教版高中数学选修二第二单元《一元函数的导数及其应用》测试(有答案解析)
一、选择题1.定义域为,22ππ⎛⎫- ⎪⎝⎭的函数()f x 满足()()0f x f x +-=,其导函数为()f x ',当02x π≤<时,有()()cos sin 0f x x f x x '+<成立,则关于x 的不等式()2cos 4f x f x π⎛⎫<⋅ ⎪⎝⎭的解集为( )A .,,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭ B .,42ππ⎛⎫⎪⎝⎭ C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .,0,442πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数()()221sin 1x xf x x ++=+,其中()f x '为函数()f x 的导数,则()()()()2020202020192019f f f f ''+-+--=( )A .0B .2C .2019D .20203.若幂函数()f x 的图象过点21,2⎛⎫ ⎪ ⎪⎝⎭,则函数()()e x f x g x =的递减区间为( ) A .()0,2 B .(),0-∞和()2,+∞ C .()2,0-D .()(),02,-∞+∞4.已知111ln 20x x y --+=,22262ln 20x y +--=,记()()221212M x x y y =-+-,则( )A .M 的最小值为25B .M 的最小值为45C .M 的最小值为85D .M 的最小值为1655.函数y =f (x )的导函数y =f ′(x )的图象如图所示,给出下列命题:①-3是函数y =f (x )的极值点; ②y =f (x )在区间(-3,1)上单调递增;③-1是函数y =f (x )的最小值点; ④y =f (x )在x =0处切线的斜率小于零. 以上正确命题的序号是( ) A .①②B .③④C .①③D .②④6.设()f x 是定义在()(),00,-∞⋃+∞上的函数,()f x '为其导函数,已知()()1221f x f x -=-,()20f -=,当0x >时,()()xf x f x '-<,则使得()0f x >成立的x 的取值范围是( ) A .()()2,00,2-B .()(),22,-∞-+∞C .()(),20,2-∞-D .()()0,22,+∞7.某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:31()1010V t H t ⎛⎫=- ⎪⎝⎭(H 为常数),其图象如图所示.记此堆雪从融化开始到结束的平均融化速度为()3m /h v .那么瞬时融化速度等于()3m /h v 的时刻是图中的( ).A .1tB .2tC .3tD .4t8.若函数()323f x x tx x =-+在区间[]1,4上单调递减,则实数t 的取值范围是( ) A .51[,)8+∞ B .(],3-∞C .51,8⎛⎤-∞ ⎥⎝⎦D .[)3,+∞ 9.已知定义在R 上函数()f x 的导函数为()f x ',()0,πx ∀∈,有()()sin cos f x x f x x '<,且()()0f x f x +-=.设π24a ⎛⎫= ⎪⎝⎭,23π33b f ⎛⎫=-- ⎪⎝⎭,π2c f ⎛⎫= ⎪⎝⎭,则( ).A .a b c <<B .b c a <<C .a c b <<D .c b a <<10.已知函数()f x 在R 上连续可导,导函数为()'f x ,(0)1f =,其满足()()01f x f x x '->-,函数()()x f x g x e=,下列结论错误..的是( ) A .函数()g x 在(1,)+∞上为单调递增函数 B .0x ≤时,不等式()x f x e ≥恒成立 C .函数()g x 有最小值,无最大值 D .1x =是函数()g x 的极大值点 11.α,,22ππβ⎡⎤∈-⎢⎥⎣⎦,且sin sin 0ααββ->,则下列结论正确的是( ) A .αβ>B .0αβ+>C .αβ<D .22αβ>12.若f ′(x 0)=-3,则()()0003limh f x h f x h h→+--等于( )A .-3B .-6C .-9D .-12二、填空题13.若函数3213()(4)32xf x e x kx kx =--+只有一个极值点,则k 的取值范围为________ 14.函数()sin cos f x x x x =+在,6ππ⎡⎤⎢⎥⎣⎦上的最大值为________. 15.若函数()12sin 2cos 2f x =x x a x ++在R 上递增,则a 的取值范围___________. 16.已知()f x '是函数()()322113f x mx m x n x =-+-+的导函数,若函数()x y f f '=⎡⎤⎣⎦在区间[],1m m +上单调递减,则实数m 的范围是______.17.已知函数()331xf x x e =++,其导函数为()f x ',则()()()()2020202020192019f f f f ''+-+--的值为_______.18.设定义在上的奇函数满足:时,(其中为常数).若,,,则,,的大小关系是_________.(用“”连接)19.已知函数322()3f x x ax bx a =+++,若函数()()sin 2g x f x x =+在点(0,(0))g 处的切线平行于x 轴,则实数b 的值是________.20.设函数()f x 的导函数为'()f x ,若3'()52(1)f x x xf =+,则(3)f '=______.参考答案三、解答题21.已知函数())2f x x ax =-.(1)当1a =时,求()f x 的单调区间; (2)若()f x 在区间[]0,2的最小值为23-,求a . 22.已知函数()()21ln ,2f x ax x x b a b R =-⋅+∈,()()g x f x '=. (1)判断函数()y g x =的单调性;(2)若(]()0, 2.718x e e ∈≈,判断是否存在实数a ,使函数()g x 的最小值为2?若存在求出a 的值;若不存在,请说明理由;23.已知函数()ln f x a x ax =+,2()2g x x x =+,其中a R ∈. (1)求函数()()()h x f x g x =+的极值; (2)若()g x 的图像在()()11,A x g x ,()()()2212,0B x g x xx <<处的切线互相垂直,求21x x -的最小值.24.已知函数32()21f x x ax =-+. (1)讨论()f x 的单调性;(2)是否存在a ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出a 的所有值;若不存在,说明理由.25.已知函数()()ln f x x x ax =+,()()g x f x '=.(1)若曲线()y f x =在点()()1,1f 处的切线与直线410x y +-=平行,求实数a 的值;(2)当13a =-时,求()g x 在[]1,2上的最大值.26.2020年5月政府工作报告提出,通过稳就业促增收保民生,提高居民消费意愿和能力.近日,多省市为流动商贩经营提供便利条件,放开“地摊经济”,但因其露天经营的特殊性,易受到天气的影响,一些平台公司纷纷推出帮扶措施,赋能“地摊经济”.某平台为某销售商“地摊经济”的发展和规范管理投入[]()4,8x x ∈万元的赞助费,已知该销售商出售的商品为每件40元,在收到平台投入的x 万元赞助费后,商品的销售量将增加到2102y x λ⎛⎫=⋅- ⎪+⎝⎭万件,[]0.6,1λ∈为气象相关系数,若该销售商出售y 万件商品还需成本费()40530x y ++万元.(1)求收到赞助后该销售商所获得的总利润p 万元与平台投入的赞助费x 万元的关系式;(注:总利润=赞助费+出售商品利润)(2)若对任意[]4,8x ∈万元,当入满足什么条件时,该销售商才能不亏损?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 引入()()cos f x g x x =,得()g x 是奇函数,由导数得()g x 在0,2π⎡⎫⎪⎢⎣⎭上的单调性,从而得()g x 在,22ππ⎛⎫- ⎪⎝⎭上的单调性,不等式转化为()()4g x g π<,由单调性可得解.【详解】∵()()0f x f x +-=且,22x ππ⎛⎫∈- ⎪⎝⎭,∴()f x 是奇函数, 设()()cos f x g x x =,则02x π≤<时,2()cos ()sin ()0cos f x x f x xg x x'+'=<,∴()g x 在0,2π⎡⎫⎪⎢⎣⎭是减函数. 又()f x 是奇函数,∴()()cos f x g x x=也是奇函数,因此()g x 在(,0]2π-是递减,从而()g x 在,22ππ⎛⎫- ⎪⎝⎭上是减函数,不等式()cos 4f x x π⎛⎫<⋅ ⎪⎝⎭为()4cos cos 4f f x x ππ⎛⎫ ⎪⎝⎭<,即()4g x g π⎛⎫< ⎪⎝⎭,∴42x ππ<<.故选:B . 【点睛】本题考查用导数确定函数的单调性解不等式,解题关键是引入新函数()()cos f x g x x=,然后由已知条件确定奇偶性,单调性.引入的新函数可根据要求的式的形式变换,可根据条件结合导数的运算法则确定.2.B解析:B 【分析】将函数解析式变形为()22sin 11x xf x x +=++,求得()f x ',进而可求得所求代数式的值. 【详解】()()222221sin 12sin 2sin 1111x x x x x x x f x x x x ++++++===++++,所以,()()()()()2222020sin 202022020sin 202020202020222020120201f f ⨯-+-⨯++-=++=+-+, ()()()()()2222cos 122sin 1x x x x x f x x++-+'=+,函数()f x '的定义域为R ,()()()()()2222cos 122sin 1x x x x x f x x ⎡⎤⎡⎤⎡⎤+-⋅-++-+-⎣⎦⎣⎦⎣⎦-=⎡⎤-+⎣⎦'()()()()()2222cos 122sin 1x x x x x f x x ++-+'==+, 所以,函数()f x '为偶函数,因此,()()()()20202020201920192f f f f ''+-+--=. 故选:B. 【点睛】结论点睛:本题考查利用函数奇偶性求值,关于奇函数、偶函数的导函数的奇偶性,有如下结论:(1)可导的奇函数的导函数为偶函数; (2)可导的偶函数的导函数为奇函数. 在应用该结论时,首先应对此结论进行证明.3.B解析:B 【分析】根据条件先求解出()f x 的解析式,然后利用导数求解出()()e xf xg x =的单调递减区间. 【详解】因为()f x为幂函数,且过点12⎫⎪⎪⎝⎭,所以设()f x x α=,所以1=22α⎛ ⎝⎭,所以2α=,所以()2f x x =,所以2()ex x g x =,则(2)()e xx x g x '-=, 当2x >或0x <时,()0g x '<;当02x <<时,()0g x '>, 所以()()ex f x g x =的递减区间为(),0-∞和()2,+∞,故选:B. 【点睛】关键点点睛:解答本题的关键是求解完()f x 的解析式之后,根据()0f x '<去分析()f x 的单调递减区间.4.D解析:D 【分析】设1(A x ,1)y ,2(B x ,2)y ,点A 在函数2y lnx x =-+的图象上,点B 在直线22260x y ln +--=上,则221212()()M x x y y =-+-的最小值转化为函数2y lnx x =-+的图象上的点与直线22260x y ln +--=上点距离最小值的平方,利用导数求出切点坐标,再由点到直线的距离公式求解.求出d 的最小值为两直线平行时的距离,即可得到M 的最小值,并可求出此时对应的2x 从而得解. 【详解】解:设1(A x ,1)y ,2(B x ,2)y ,点A 在函数2y lnx x =-+的图象上,点B 在直线24220x y ln +--=上,221212()()M x x y y =-+-的最小值转化为函数2y lnx x =-+的图象上的点与直线22260x y ln +--=上点距离最小值的平方.由2y lnx x =-+,得11y x'=-,与直线22260x y ln +--=平行的直线的斜率为12k =-.令1112x -=-,得2x =,则切点坐标为(2,2)ln ,切点(2,2)ln 到直线22260x y ln +--=的距离d == 即221212()()M x x y y =-+-的最小值为165. 又过(2,2)ln 且与22260x y ln +--=垂直的直线为22(2)y ln x -=-,即2420x y ln --+=,联立222602420x y ln x y ln +--=⎧⎨--+=⎩,解得145x =,即当M 最小时,2145x =. 故选:D . 【点睛】本题考查函数的最值及其几何意义,考查数学转化思想方法,训练了利用导数研究过曲线上某点处的切线方程,属于中档题.5.A解析:A 【分析】根据导函数图象可判定导函数的符号,从而确定函数的单调性,得到极值点,以及根据导数的几何意义可知在某点处的导数即为在该点处的切线斜率. 【详解】根据导函数图象可知:当(),3x ∈-∞-时,()0f x '<,在()3,1x ∈-时,()0f x '≥∴函数()y f x =在(),3-∞-上单调递减,在()3,1-上单调递增,故②正确;则3-是函数()y f x =的极小值点,故①正确;∵在()3,1-上单调递增,1∴-不是函数()y f x =的最小值点,故③不正确; ∵函数()y f x =在0x =处的导数大于0,∴切线的斜率大于零,故④不正确. 故选:A 【点睛】方法点睛:本题考查导函数图象在函数单调性和极值中的应用,考查导数的几何意义,其中利用导函数判断单调性的步骤为: 先求出原函数的定义域; 对原函数求导;令导数大于零;解出自变量的范围;该范围即为该函数的增区间;同理令导数小于零,得到减区间;若定义域在增区间内,则函数单增;若定义域在减区间内则函数单减,若以上都不满足,则函数不单调.6.B解析:B 【分析】由已知条件得函数()f x 为偶函数,引入()()g x xf x =,利用导数可得(0,)+∞上()g x 为增函数,结合(2)0=g 可解不等式()0>g x ,从而得()0f x >在(0,)+∞上的解,再由偶函数得出结论. 【详解】由()()1221f x f x -=-,可知()f x 为偶函数,构造新函数()()g x xf x =,则()()()g x xf x f x ''=+,当0x >时()0g x '>. 所以()()g x xf x =在()0,∞+上单调递增,又()20f =,即()20g =. 所以由()()0g x xf x =>可得2x >,此时()0f x >.又()f x 为偶函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为()(),22,-∞-+∞.故选:B . 【点睛】本题考查的奇偶性与单调性,考查由导数确定函数的单调性,具有奇偶性的函数的不等式求解时,如果是偶函数,可利用单调性求出(0,)+∞上的解,然后再利用奇偶性得出{|0}x x ≠上的解集,如果是奇函数可由奇函数定义得出函数在R 上的单调性,然后由单调性解不等式.7.C解析:C 【分析】根据题意可知,平均融化速度为(100)(0)1000V V v -=-,反映的是()V t 图象与坐标轴交点连线的斜率,通过观察某一时刻处瞬时速度(即切线的斜率),即可得到答案. 【详解】解:平均融化速度为(100)(0)1000V V v -=-,反映的是()V t 图象与坐标轴交点连线的斜率,观察可知3t 处瞬时速度(即切线的斜率)为平均速度一致, 故选:C .【点睛】本题考查了图象的识别,瞬时变化率和切线斜率的关系,理解平均速度表示的几何意义(即斜率)是解题的关键.8.A解析:A 【分析】由函数()f x 在区间[]1,4上单调递减,得到不等式'()0f x ≤在[]1,4x ∈恒成立,再根据二次函数根的分布,求实数t 的取值范围. 【详解】因为函数()323f x x tx x =-+在区间[]1,4上单调递减,所以'2()3230f x x tx =-+≤在[]1,4x ∈恒成立,所以(1)0,(4)0,f f '≤'≤⎧⎨⎩即40,5180,t t -≤⎧⎨-≤⎩解得:518t ≥.【点睛】本题考查利用导数研究函数的单调性、利用二次函数根的分布求参数取值范围,考查逻辑思维能力和运算求解能力,求解时要充分利用二次函数的图象特征,把恒成立问题转化成只要研究两个端点的函数值正负问题.9.D解析:D 【分析】 首先设函数()()sin f x g x x=,判断函数的单调性,和奇偶性,利用函数的性质比较大小. 【详解】 设()()sin f x g x x=, ()()()()()()sin sin sin f x f x f x g x g x x x x---====--,即()()g x g x -=,所以函数()g x 是偶函数, 并且()()()2sin cos 0sin f x x f x xg x x'-'=<,所以函数()g x 在()0,π单调递减,444sin 4f ag ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭,33333sin 3f b f g g πππππ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎝⎭=--==-= ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎝⎭,222sin 2f c fg ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭,因为0432ππππ<<<<,所以432g g g πππ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即a b c >>. 故选:D 【点睛】本题考查导数与函数性质的综合应用,重点考查构造函数,利用函数的性质比较大小,属于中档题型.10.D解析:D【分析】 对()()x f x g x e=求导,由条件可判断单调性,即可依次判断每个选项的正误. 【详解】()()x f x g x e =,()()()xf x f xg x e-=''∴,当1x >时,()()0f x f x '->,即()0g x '>,故()g x 在(1,)+∞上单调递增,故A 正确,不符合题意;当1x <时,()()0f x f x '-<,即()0g x '<,故()g x 在(,1)-∞上单调递减,1x ∴=是函数()g x 的极小值点,故D 错误,符合题意;()g x 在(,0]-∞上单调递减,(0)()(0)1f g x g e∴≥==,即()1x f x e ≥,()xf x e ∴≥,故B 正确,符合题意;可知()g x 在1x =处取得极小值即最小值,无最大值,故C 正确,不符合题意.故选:D. 【点睛】本题考查导数的应用,属于中档题.11.D解析:D 【分析】构造函数()sin f x x x =,利用其导函数判断出单调区间,根据奇偶性和对称性可得正确选项. 【详解】构造()sin f x x x =形式,则()sin cos f x x x x +'=,0,2x π⎡⎤∈⎢⎥⎣⎦时导函数()0f x '≥,()f x 单调递增;,02x π⎡⎫∈-⎪⎢⎣⎭时导函数()0f x '<,()f x 单调递减.又 ()f x 为偶函数,根据单调性和对称性可知选D.故本小题选D.【点睛】本小题主要考查构造函数法,考查利用导数研究函数的单调性以及求解不等式,属于中档题.12.D解析:D 【分析】 由于f ′(x 0)=()()000limx f x x f x x∆→+∆-∆=-3,而()()0003limh f x h f x h h→+--的形态与导数的定义形态不一样,故需要对()()0003limh f x h f x h h→+--转化成()()()()000003limh f x h f x f x f x h h→+-+--利用()()()()000003 limh f x h f x f x f x h h→+-+--=()()()()000003lim3lim3h h f x h f x f x h f x hh→→+---+⋅-即可求解. 【详解】 f ′(x 0)=()()000lim x f x x f x x∆→+∆-∆=-3,()()0003limh f x h f x h h→+--=()()()()000003limh f x h f x f x f x h h→+-+--=()()()()000003lim 33h f x h f x f x h f x h h →⎡⎤+---+⋅⎢⎥-⎣⎦=()()()()000003lim3lim3h h f x h f x f x h f x hh→→+---+⋅-=f ′(x 0)+3f ′(x 0)=4f ′(x 0)=-12. 答案:D 【点睛】本题主要考察导数的定义和极限的运算,本题的难点在于要把极限化成导数定义的形态,需要对分式进行合理变形.属于中等题.二、填空题13.【分析】函数有只有一个极值点函数只有一个变号零点分别讨论三种情况数形结合分析整理即可得答案【详解】函数有只有一个极值点函数只有一个变号零点则易知①当时显然不合题意;②当时当时为减函数当时为增函数所以解析:[]310,3e e ⎧⎫⋃⎨⎬⎩⎭【分析】函数()f x 有只有一个极值点⇔函数()'f x 只有一个变号零点,分别讨论0k <、0k =、0k >三种情况,数形结合,分析整理,即可得答案. 【详解】函数()f x 有只有一个极值点⇔函数()'f x 只有一个变号零点,则2()(3)3(3)()x xf x e x k k x k x x x e =--+-=-',易知(3)0,(0)3f f ''==-,①当0k <时,,()0,,()0x f x x f x →-∞>→+∞>,显然不合题意; ②当0k =时,()(3)x f x e x -'=,当3x <时()0f x '<,()f x 为减函数,当3x >时()0f x '>,()f x 为增函数, 所以3x =为函数()f x 唯一极值点,满足题意;③当0k >时,若3x =为()'f x 唯一的零点2(3)30x e x kx kx ⇒--+=,0k >只有唯一解,则3x =,可得0-=xe kx 无解,即(3)xe k x x=≠无解,设()x e h x x =,则2(1)()x e x h x x-'=,当1x <时,()0h x '<,()h x 为减函数, 当1x >时,()0h x '>,()h x 为增函数,min ()(1)h x h e ==, 所以0k e <<,经验证满足题意;④当0k >,若3x =不是()'f x 唯一的零点,()'f x 可能有2个或3个零点,当()'f x 有3个零点时候显然不合题意,当()'f x 有两个零点时,()xe h x x=有一个零点时,k e =,当()x e h x x =有两个零点时,结合题意,3x =为其中一个零点,所以33e k =,经验证满足题意;故答案为:[]310,3k e e ⎧⎫∈⋃⎨⎬⎩⎭【点睛】解题的关键是将()f x 只有一个极值点等价为函数()'f x 只有一个变号零点,分析()'f x 解析式,数形结合,可得答案,易错点为,x=3为x-3=0和0-=x e kx 共同零点时,也符合题意,属中档题.14.【分析】先求导根据单调性求函数最大值即可【详解】因为当时函数递增当时函数递减所以故答案为:【点睛】易错点睛:求函数的最值注意要把极值和端点函数值比较取其最小或最大不确定时要分类讨论解析:2π 【分析】 先求导,根据单调性求函数最大值即可. 【详解】因为()sin cos sin cos f x x x x x x x '=+-=, 当,62x ππ⎡⎤∈⎢⎥⎣⎦时,()0f x '≥,函数()f x 递增, 当,2x π⎛⎤∈π ⎥⎝⎦时,()0f x '<,函数()f x 递减, 所以max ()sin cos 22222f x f πππππ⎛⎫==+= ⎪⎝⎭. 故答案为:2π. 【点睛】易错点睛:求函数的最值注意要把极值和端点函数值比较,取其最小或最大,不确定时要分类讨论.15.【分析】根据函数求导由函数在上递增则在上恒成立令转化为在恒成立求解【详解】由函数所以因为函数在上递增所以在上恒成立令所以在恒成立令所以解得故答案为:【点睛】本题主要考查导数与函数单调性的应用还考查了 解析:11a -≤≤【分析】根据函数()12sin 2cos 2f x =x x a x ++,求导()22sin sin 3f x =x a x '--+,由函数()12sin 2cos 2f x =x x a x ++在R 上递增,则22sin sin 30x a x --+≥在R 上恒成立,令[]sin 1,1t x =∈-,转化为2230t at +-≤在[]1,1-恒成立求解. 【详解】 由函数()12sin 2cos 2f x =x x a x ++, 所以()22cos2sin 2sin sin 3f x =x a x=x a x '+---+, 因为函数()12sin 2cos 2f x =x x a x ++在R 上递增, 所以22sin sin 30x a x --+≥在R 上恒成立, 令[]sin 1,1t x =∈-,所以2230t at +-≤在[]1,1-恒成立,令()223g t t at =+-,所以()()12301230g a g a ⎧=--≤⎪⎨-=+-≤⎪⎩,解得11a -≤≤, 故答案为:11a -≤≤ 【点睛】本题主要考查导数与函数单调性的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.16.【分析】求出函数的导函数利用导函数研究原函数的单调区间再二次求导得从而得到的单调区间由导函数在区间上单调递增求出其值域将函数的单调性把问题转化为即可列出不等式即可求出的范围【详解】解:由函数得由得或 解析:[]1,0-【分析】求出函数()f x 的导函数,利用导函数研究原函数的单调区间,再二次求导得()22f x x m ''=-,从而得到()f x '的单调区间,由导函数在区间[m ,1]m +上单调递增求出其值域[]1,0-,将函数的单调性把问题转化为[][]1,01,1m m -⊆-+,即可列出不等式即可求出m 的范围. 【详解】解:由函数3221()(1)3f x x mx m x n =-+-+,得222()21()1f x x mx m x m '=-+-=--, 由2()10x m -->,得1x m <-或1x m >+,∴函数()f x 的增区间为(,1)m -∞-,(1,)m ++∞,由2(1)0x m --<,得11m x m -<<+,∴函数()f x 单调减区间为[]1,1m m -+,由()22f x x m ''=-,则()0f x ''>时,x m >;()0f x ''<时,x m <,得()'f x 的单调增区间为[),m +∞,单调减区间为(],m -∞,函数()f x '在[],1m m +上单调递增,∴函数()f x '在[],1m m +上的值域为[]1,0-, 又函数[()]y f f x '=在区间[],1m m +上单调递减, 也就是函数()y f x =在区间[]1,0-上单调递减,因此要满足条件[][]1,01,1m m -⊆-+,即1110m m -≤-⎧⎨+≥⎩,解得:10m -≤≤,∴实数m 的范围是[]1,0-.故答案为:[]1,0-. 【点睛】本题考查利用导数研究函数的单调性以及根据复合函数的单调性求参数取值范围,考查转化思想和运算能力,属中档题.17.3【分析】根据解析式可得到解析式可求得;求导后可得到从而代入的值可求得结果【详解】故答案为:【点睛】本题考查根据函数的性质求解函数值的问题涉及到导数的运算关键是能够通过函数解析式得到原函数和导函数的解析:3 【分析】根据()f x 解析式可得到()f x -解析式,可求得()()3f x f x -+=;求导后可得到()()f x f x ''-=,从而代入x 的值可求得结果.【详解】()333311x x x e f x x x e e --=-=-++ ()()3f x f x ∴-+=()()202020203f f ∴+-=()()222223333332121xx x x x xx e e f x x x x e e e e e ---'=+=+=-++++++ ()()f x f x ''∴-= ()()201920190f f ''∴--= ()()()()20202020201920193f f f f ''∴+-+--=故答案为:3 【点睛】本题考查根据函数的性质求解函数值的问题,涉及到导数的运算,关键是能够通过函数解析式得到原函数和导函数的性质.18.a<c<b 【解析】【分析】先利用f0=0求出t 构建新函数gx=xfx 利用导数可判断gx 为-∞0上的增函数从而得到g-e<g-2<g-1即-ef-e<2f2<f1故可得a<c<b 【详解】因为fx 为R 上 解析:【解析】 【分析】 先利用求出,构建新函数,利用导数可判断为上的增函数,从而得到即,故可得.【详解】 因为为上的奇函数,故,而,所以,故当时,,令,则为上的偶函数, 当时,,, 当时,则,所以,故,所以为上的增函数,所以 ,即,所以,故.填.【点睛】判断给定的各数的大小,我们可依据它们的形式构建具体的函数,通过函数的单调性来判断它们的大小,而单调性可根据导数的符号来讨论.19.【分析】求g (x )的导数可得x=0处切线的斜率由两直线平行的条件:斜率相等得方程解方程可得b 的值【详解】函数g (x )=f (x )+sin2x=x3+2ax2+bx+a2+sin2x 则g′(x )=3x2 解析:2-【分析】求g (x )的导数,可得x=0处,切线的斜率,由两直线平行的条件:斜率相等,得方程,解方程可得b 的值. 【详解】函数g (x )=f (x )+sin2x=x 3+2ax 2+bx+a 2+sin2x 则g′(x )=3x 2+4ax+b+2cos2x ,可得g (x )在x=0处的切线的斜率为b+2,由题意可得b+2=0,可得b=-2. 【点睛】本题考查了通过导数求切线的斜率,考查了两直线平行的条件:斜率相等;解答本题的关键是列出函数的导数等于切线斜率的方程.20.【解析】结合导数的运算法则可得:则导函数的解析式为:据此可得: 解析:105【解析】结合导数的运算法则可得:()()2'152'1f x x f =+,则()()()'1152'1,'115f f f =+∴=-, 导函数的解析式为:()2'1530f x x =-,据此可得:()2'315330105f =⨯-=.三、解答题21.(1)单调递减区间为30,5⎡⎫⎪⎢⎣⎭,单调递增区间为3,5⎛⎫+∞ ⎪⎝⎭;(2)53.(1)由1a =得()5322f x x x =-,0x ≥,对函数求导,解对应的不等式,即可得出单调区间;(2)先对函数求导,分别讨论0a ≤,3025a <≤,325a >三种情况,利用导数的方法研究函数在区间[]0,2上的单调性,求出最值,列出等式求解,即可得出结果. 【详解】(1)当1a =时,())53222f x x x x x =-=-,0x ≥,所以())3122535322f x x x x '=-=-,由()0f x '>可得35x >;由()0f x '<可得305x ≤<,所以函数()f x 的单调递减区间为30,5⎡⎫⎪⎢⎣⎭,单调递增区间为3,5⎛⎫+∞ ⎪⎝⎭; (2)因为())53222f x x ax x ax =-=-,[]0,2x ∈,所以())3122535322f x x ax x a '=-=-,由()0f x '=得35x a =;若0a ≤时,())530f x x a '-≥在[]0,2上恒成立,所以()f x 在[]0,2上单调递增, 最小值为()00f =不满足题意;若3025a <≤,即1003a <≤时,当30,5x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,则函数()f x 单调递减;当3,25x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,则函数()f x 单调递增;所以()222min 393625255253f x f a a a a ⎛⎫⎫==-=-=- ⎪⎪⎝⎭⎭,则29125a , 即52315a ⎛⎫= ⎪⎝⎭,所以53a =,满足1003a <≤; 若325a >,即103a >时,()0f x '<在[]0,2上恒成立,所以函数()f x 在[]0,2上单调递减,因此()())min 22423f x f a =-=-,解得2a =,不满足103a >;综上,53a =. 【点睛】利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.22.(1)答案见解析;(2)存在,2a e =. 【分析】(1)先求()()g x f x '=,再对()y g x =求导,对参数a 进行讨论确定导数的正负,即得函数单调性;(2)对参数a 进行讨论确定()y g x =导数的正负,即得函数()y g x =单调性,再根据单调性确定最值等于2,解得符合条件的参数值即得结果; 【详解】 (1)由()21ln 2f x ax x x b =-⋅+,知()()ln 1g x f x ax x '==--,0x >,故 ()11ax g x a x x-'=-=. 当0a ≤时,()0g x '<,即()g x 在()0,∞+为减函数,当0a >时,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,所以()g x 在10,a ⎛⎫⎪⎝⎭为减函数, 在1,a ⎛⎫+∞⎪⎝⎭上()0g x '>,所以()g x 在1,a ⎛⎫+∞ ⎪⎝⎭增函数. (2)当0a ≤时,()g x 在(]0,e 为减函数,所以()()min 11g x g e ea ==-≤-.故不存在最小值3. 当10a e <≤时,1e a≥,()g x 在(]0,e 为减函数,所以 ()()min 1ln 2g x g e ea e ==--=,所以4a e=,不合题意,舍去. 当1a e >时,10e a <<,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,函数()g x 单调递减;在1,e a ⎡⎤⎢⎥⎣⎦上()0g x '>,函数()g x 单调递增,由此()min 1111ln 2g x g a a ⎛⎫==--= ⎪⎝⎭,所以ln 2a =.解得2a e =,故2a e =时,使函数()g x 的最小值为2. 【点睛】利用导数研究函数()f x 的单调性和最值的步骤:①写定义域,对函数()f x 求导()'f x ;②在定义域内,讨论不等式何时()0f x '>和()0f x '<③对应得到增区间和减区间及极值点,进而比较端点和极值点的值确定指定区间的最值即可.23.(1)答案见解析;(2)1. 【分析】(1)求导2(1)2()2(2)a x x a h x x a x x⎛⎫++ ⎪⎝⎭'=+++=,然后分0a ≥,0a <讨论求解. (2)求导()22g x x '=+,根据()g x 的图像在()()11,A x g x ,()()22,B x g x 处的切线互相垂直,得到()()1222221x x ++=-,即 ()121141x x =--+,然后由()21221141x x x x -=+++,利用基本不等式求解.【详解】(1)函数2()ln (2)h x a x x a x =+++的定义或为(0,)+∞,2(1)2()2(2)a x x a h x x a x x⎛⎫++ ⎪⎝⎭'=+++=, 若0a ≥,()0h x '>恒成立,此时()h x 在(0,)+∞上单调递增,无极值;若0a <时,()0h x '=,解得2a x =-, 当02ax <<-时,()0h x '<,()h x 单调递减; 当2ax >-时,()0h x '>,()h x 单调递增. ∴当2a x =-时,()h x 有极小值2ln 224a a ah a a ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭,无极大值.(2)()22g x x '=+,则()()1222221x x ++=-,其中,120x x <<,1222022x x ∴+<<+,且()121141x x =--+,210x -<<,()212211141x x x x ∴-=++≥=+,当且仅当21(1,0)2x =-∈-时取等号, ∴当212x =-,132x =-时,21x x -取最小值1.【点睛】结论点睛:(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值. 24.(1)答案见解析;(2)存在,4a =. 【分析】(1)对函数进行求导,求出导函数的零点,分为0a =,0a >和0a <三种情形进行讨论,可得函数单调性;(2)分为0a ≤,3a ≥和0<<3a 三种情形,得出函数()f x 在区间[]0,1上的单调性,结合最值得结果. 【详解】(1)()26263a f x x ax x x ⎛⎫'=-=-⎪⎝⎭. 令()603a f x x x ⎛⎫=-= ⎪⎝⎭′,解得0x =或3a . 当0a =时,()260f x x =≥′恒成立,函数()f x 在R 上单调递增; 当0a >时,令()0f x '>得3a x >或0x <,令()0f x '<得03ax <<, 即函数()f x 在(),0-∞和,3a ⎛⎫+∞⎪⎝⎭上单调递增,在0,3a ⎛⎫ ⎪⎝⎭上单调递减;当0a <时,令()0f x '>得0x >或3a x <,令()0f x '<得03ax <<, 即函数()f x 在,3a ⎛⎫-∞ ⎪⎝⎭和()0,∞+上单调递增,在,03a ⎛⎫⎪⎝⎭上单调递减; 综上所述:当0a =时,函数()f x 在R 上单调递增; 当0a >时,函数()f x 在(),0-∞和,3a ⎛⎫+∞ ⎪⎝⎭上单调递增,在0,3a ⎛⎫ ⎪⎝⎭上单调递减;当0a <时,函数()f x 在,3a ⎛⎫-∞ ⎪⎝⎭和()0,∞+上单调递增,在,03a ⎛⎫⎪⎝⎭上单调递减. (2)存在,理由如下:由(1)可得:当0a ≤时,函数()f x 在[0,1]上单调递增. 则最小值为()01f =,不合题意;当0a >时,函数()f x 在0,3a ⎡⎤⎢⎥⎣⎦上单调递减,在,3a⎡⎫+∞⎪⎢⎣⎭单调递增;当13a≥,即3a ≥时,函数()f x 在[]0,1上单调递减,()f x 的最大值为()01f =,最小值为()1211f a =-+=-,解得4a =,满足题意;当0<<3a 时,函数函数()f x 在0,3a ⎡⎤⎢⎥⎣⎦上单调递减,在,13a ⎡⎤⎢⎥⎣⎦单调递增,()f x 的最小值为32211333a a a f a ⎛⎫⎛⎫⎛⎫=⨯-⨯+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化为3227a -=-,解得3a =>,不合题意;综上可得:a 的值为4. 【点睛】 关键点点睛:(1)按照导函数的零点大小比较进行讨论;(2)按照导函数零点与所给区间端点的关系进行讨论. 25.(1)52a =-;(2)()max 3ln 2=g x .【分析】(1)求出函数的导数,求得()1f '的值,由题意可得124a +=-,从而可求出a 的值;(2)先求出()2ln 13g x x x =-+,然后对函数求导,通过列表判断函数的极值,得到函数只有极大值,从而可得其最大值 【详解】解:(1)由()()ln f x x x ax =+,得()ln 21f x x ax '=++,所以()112f a '=+, 因为曲线()y f x =在点()()1,1f 处的切线与直线410x y +-=平行, 所以()14f '=-得124a +=-,解得52a =-. (2)()2ln 13g x x x =-+,()123g x x '=-, ∵12x ≤≤,∴1112x≤≤∴()max ln 22g x g ⎛⎫==⎪⎝⎭.【点睛】此题考查了导数的几何意义的应用,考查利用导数求函数的最值,考查计算能力,属于基础题26.(1)2001004402p x x λλ=---+,[]4,8x ∈;(2)当λ满足[]0.9,1λ∈时,该销售商才能不亏损. 【分析】(1)根据总利润=赞助费+出售商品利润和已知得解; (2)由题得()()10225x x xλ++在[]4,8x ∈上恒成立,设()2012f x x x=++,利用导数求出函数()f x 的最大值即可得解. 【详解】(1)由题意得20204010405301022p x x x x λλ⎡⎤⎛⎫⎛⎫=+⋅--++⋅- ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦ 2001004402x x λλ=---+,[]4,8x ∈. (2)要使对任意[]4,8x ∈(万元)时,该销售商才能不亏损,即有0p ,变形得()()10225x x xλ++在[]4,8x ∈上恒成立,而()()210212202012x x x x x xxx++++==++,设()2012f x x x=++,()2201f x x =-',令0fx解得=±x ,所以函数()f x 在4,⎡⎣单调递减,在⎡⎤⎣⎦单调递增,()()(){}max max 4,8f x f f =,因为()()421822.5f f =<=,所以有2522.5λ,解得0.9λ,即当λ满足[]0.9,1λ∈时,该销售商才能不亏损. 【点睛】本题主要考查函数和不等式的应用,考查导数的应用,意在考查学生对这些知识的理解掌握水平.。
人教版高中数学选修二第二单元《一元函数的导数及其应用》测试卷(包含答案解析)
一、选择题1.已知函数(),0,,0.lnx x f x kx x >⎧=⎨≤⎩,若0x R ∃∈使得()()00 f x f x -=成立,则实数k 的取值范围是( ) A .(],1-∞B .1,e⎛⎤-∞ ⎥⎝⎦C .[)1,-+∞D .1,e ⎡⎫-+∞⎪⎢⎣⎭2.已知奇函数()f x 在(),-∞+∞上单调递减,且()11f =-,则“1x >-”是“()1xf x <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件.3.已知函数2()85f x x x =---,()x e exg x ex+=,实数m ,n 满足0m n <<,若1x ∀∈[],m n ,2x ∃∈()0,∞+,使得()()12f x g x =成立,则n m -的最大值为( )A .7B .6C .D .4.已知函数()2ln f x ax x x -=-有两个零点,则实数a 的取值范围是( ) A .(),1-∞B .()0,1C .21,e e +⎛⎫-∞ ⎪⎝⎭D .210,e e +⎛⎫⎪⎝⎭5.已知a R ∈,0b ≠,若x b =是函数()()()2f x x b x ax b =-++的极小值点,则实数b 的取值范围为( )A .1b <且0b ≠B .1b >C .2b <且0b ≠D .2b >6.设()f x 是定义在()(),00,-∞⋃+∞上的函数,()f x '为其导函数,已知()()1221f x f x -=-,()20f -=,当0x >时,()()xf x f x '-<,则使得()0f x >成立的x 的取值范围是( ) A .()()2,00,2- B .()(),22,-∞-+∞C .()(),20,2-∞-D .()()0,22,+∞7.已知定义在R 上函数()f x 的导函数为()f x ',()0,πx ∀∈,有()()sin cos f x x f x x '<,且()()0f x f x +-=.设π4a ⎛⎫= ⎪⎝⎭,π33b f ⎛⎫=-- ⎪⎝⎭,π2c f ⎛⎫= ⎪⎝⎭,则( ).A .a b c <<B .b c a <<C .a c b <<D .c b a <<8.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=+⋅的图象如图所示,则下列结论中一定成立的是( )A .函数()f x 有极大值()3f -和极小值()2fB .函数()f x 有极大值()1f -和极小值()2fC .函数()f x 在()3,2x ∈--单调递增D .函数()f x 在()1,2x ∈单调递增9.若函数()33=-f x x x 在区间()5,21a a -+上有最小值,则实数a 的取值范围是( ) A .(]1,4- B .()1,4- C .11,2⎛⎤- ⎥⎝⎦D .11,2⎛⎫- ⎪⎝⎭10.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7B .4C .0D .﹣411.已知()f x 的定义域为(0,)+∞,fx 为()f x 的导函数,且满足()()'f x xf x <-,则不等式(1)(1)f x x +>-()21f x -的解集是( )A .0,1B .2,C .1,2D .1,12.已知函数()f x 与()'f x 的图象如图所示,则函数()()x f x g x e=(其中e 为自然对数的底数)的单调递减区间为( )A .()4,1,,43⎛⎫-∞ ⎪⎝⎭B .()()0,1,4,+∞C .40,3⎛⎫ ⎪⎝⎭D .(0,4)二、填空题13.为了评估某种治疗肺炎药物的疗效,现有关部门对该药物在人体血管中的药物浓度进行测量.设该药物在人体血管中药物浓度c 与时间t 的关系为()c f t =,甲、乙两人服用该药物后,血管中药物浓度随时间t 变化的关系如下图所示.给出下列四个结论:① 在1t 时刻,甲、乙两人血管中的药物浓度相同;② 在2t 时刻,甲、乙两人血管中药物浓度的瞬时变化率相同;③ 在23[,]t t 这个时间段内,甲、乙两人血管中药物浓度的平均变化率相同; ④ 在12[,]t t ,23[,]t t 两个时间段内,甲血管中药物浓度的平均变化率不相同. 其中所有正确结论的序号是_____.14.已知定义在()0,∞+上的函数()f x 满足()()0xf x f x '-<,其中()f x '是函数()f x 的导函数.若()()()2202020202f m m f ->-,则实数m 的取值范围为______.15.已知()f x '是函数()()322113f x mx m x n x =-+-+的导函数,若函数()x y f f '=⎡⎤⎣⎦在区间[],1m m +上单调递减,则实数m 的范围是______.16.若点()()()112212,,,A x y B x y x x <是函数1,1()ln ,1x e x f x x x ⎧-+=⎨>⎩的图象上任意两点,且函数()f x 分别在点A 和点B 处的切线互相垂直,则12x x 的最小值为______. 17.已知函数()ln 2f x x x =-+,存在(]00,4x ∈,使得()0f x m ≥成立,则实数m 的取值范围是________. 18.若()()21ln 22f x x b x =-++在()1,-+∞上是减函数,则b 的取值范围是________. 19.已知函数(a ≤0),函数,若不存在,使,则实数的取值范围为___.20.已知函数()()221f x x xf '=+,则()1f 的值为__________.三、解答题21.已知函数1()(2)ln 2f x a x ax x=-++, (1)当2a =时,求函数()f x 的极值; (2)当0a <时,讨论函数()f x 的单调性;(3)若对a ∀∈(-3,-2),12,x x ∈[1,3] ,不等式12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.22.已知函数()2()2xx f x xe a x a R ⎛⎫=-+∈ ⎪⎝⎭. (1)当1a =时,求函数()f x 的极值; (2)讨论函数()f x 的单调性.23.已知函数32()f x x ax bx c =+++在0x 处取得极小值32-,其导函数为()'f x .当x 变化时,()'f x 变化情况如下表:(1)求0x 的值; (2)求,,a b c 的值.24.设函数32()23(1)6f x x a x ax b =-+++,其中,a b ∈R .(1)若曲线()y f x =在(1,(1))f --的切线方程为123y x =+,求a ,b 的值; (2)若()f x 在3x =处取得极值,求a 的值; (3)若()f x 在(,0)-∞上为增函数,求a 的取值范围. 25.已知函数()(0)x xf x x e=>. (1)求函数()f x 的最大值;(2)若函数()()g x f x m =-有两个零点,求实数m 的取值范围;(3)若不等式2()()0f x af x ->仅有一个整数解,求实数a 的取值范围.26.已知函数211()ln (,0)22f x x a x a R a =--∈≠. (1)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;(3)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由已知建立方程,反解出k ,将问题转化为求函数值域问题,然后利用函数的性质求出最值即可求解. 【详解】由题意可得:存在实数00x ≠,使得()()00 f x f x -=成立,假设00x >,则00x -<, 所以有00ln kx x -=, 则0ln x k x =-, 令()ln xh x x=-, 则()2ln 1x h x x -'=, 令()0h x '>,即ln 1x >, 解得x e >,令()0h x '<,即ln 1x <, 解得0x e <<,则()h x 在()0,e 上单调递减,在(),e +∞上单调递增, 所以()()()ln 1min e h x h x h e e e≥==-=-, 所以1k e≥-, 故选:D. 【点睛】关键点睛:本题考查了分段函数的存在性问题,构造函数,利用导函数求最值是解决本题的关键.2.B解析:B 【分析】根据奇函数的定义和单调性可确定()f x 和()f x '的符号,由奇偶性定义可知()g x 为偶函数,利用导数可确定()g x 单调性;根据()()111g g =-=,利用单调性可求得()1xf x <的解集,根据推出关系可确定结论. 【详解】()f x 为(),-∞+∞上的奇函数,∴()00f =,又()f x 单调递减,∴当0x <时,()0f x >;当0x >时,()0f x <,且()0f x '≤, 令()()g x xf x =,则()()()()g x xf x xf x g x -=--==,()g x ∴为偶函数, 当0x ≥时,()0xf x ≤;当0x <时,()0xf x <;()()g x xf x ∴=-,()()()()()g x f x xf x f x xf x '''∴=--=-+⎡⎤⎣⎦当0x ≥时,()0f x ≤,()0g x '∴≥,()g x ∴在[)0,+∞上单调递增, 由偶函数对称性知:()g x 在(],0-∞上单调递减;()()()1111g g f =-=-=,∴由()()1g x xf x =<得:11x -<<,()()1,11,≠-⊂-+∞,∴“1x >-”是“()1xf x <”的必要不充分条件.故选:B. 【点睛】结论点睛:本题考查充分条件与必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, 则q 对应的集合与p 对应集合互不包含.3.B解析:B 【分析】先用导数法研究()y g x =,然后的同一坐标系中作出函数()y f x =与()y g x =的图象,根据[]1,x m n ∀∈,()20,x ∃∈+∞,使得()()12f x g x =成立求解. 【详解】因为()x e exg x ex+=,所以()()211x x e x e g x ex ex '-⎛⎫'=+= ⎪⎝⎭, 当01x <<时,()0g x '<,当1x >时,()0g x '>,()10g '=, 所以()g x 在1x =处取得极小值,且为定义域内唯一极值,()()min 12g x g ∴==.()22185()4111f x x x x -==---++≤,作函数()y f x =与()y g x =的图象, 如图所示:当()2f x =时,方程两根分别为7-和1-, 则n m -的最大值为:()176---=. 故选:B 【点睛】关键点睛:利用导数和二次函数的性质,作出图像,利用数形结合进行求解,考查了转化化归的的思想、运算求解,以及数形结合的能力,属于中档题.4.B解析:B 【分析】函数()2()ln 0f x ax x x x =-->有两个零点,即方程2ln x xa x +=有两个根,设()2ln x xg x x+=,求出()g x ',研究出函数()g x 的单调性,由()g x 的图象与y a =有两个交点,得出a 参数的范围,即得结果. 【详解】 函数()2()ln 0f x ax x x x =-->有两个零点,由题意得方程2ln x x a x +=有两个根,设()2ln x xg x x+=,则y a =与()y g x =有两个不同的交点,又()2431(1)(ln (2)12ln )x x x x x x x g x x x +-+--'==, 设()12ln h x x x =--,则()210h x x'=--<所以()12ln h x x x =--在()0,∞+上单调递减,又(1)0h = 当()()(0,1),0,0x h x g x '∈>>,所以()g x 在(0,1)上单调递增,当()()(1,),0,0x h x g x '∈+∞<<,所以()g x 在(1,)+∞上单调递减,又(1)1g =,22111()01e g e e e e -==-<⎛⎫ ⎪⎝⎭,当(1,)x ∈+∞时,ln 0x x +>,则()0g x >,即()g x 在(1,)+∞上单调递减,但恒正. 作出函数()y g x =的大致图象如下:要使()y g x =的图象与y a =有两个交点, 所以实数a 的取值范围是()0,1. 故选:B. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.5.B解析:B 【分析】由x b =既是()f x 的极小值点,又是零点,且()f x 的最高次项系数为1,因此可设2()()()f x x b x m =-+,这样可求得1m =-,然后求出()'f x ,求得()'f x 的两个零点,一个零点是b ,另一个零点2x 必是极大值点,由2b x >可得b 的范围. 【详解】因为()0f b =,x b =是函数()f x 的极小值点,结合三次函数的图象可设2()()()f x x b x m =-+,又2()()()f x x b x ax b =-++,令0x =得22b m b =-,1m =-,即2()(1)()f x x x b =--,22()3(42)2f x x b x b b '=-+++()(32)x b x b =---,由()0f x '=得1x b =,223b x +=, x b =是极小值点,则23b +是极大值点,23b b +>,所以1b >. 故选:B . 【点睛】本题考查导数与极值点的关系,解题关键是结合零点与极值点,设出函数表达式,然后再求极值点,由极小值点大于极大值点可得所求范围.6.B解析:B 【分析】由已知条件得函数()f x 为偶函数,引入()()g x xf x =,利用导数可得(0,)+∞上()g x 为增函数,结合(2)0=g 可解不等式()0>g x ,从而得()0f x >在(0,)+∞上的解,再由偶函数得出结论. 【详解】由()()1221f x f x -=-,可知()f x 为偶函数,构造新函数()()g x xf x =,则()()()g x xf x f x ''=+,当0x >时()0g x '>. 所以()()g x xf x =在()0,∞+上单调递增,又()20f =,即()20g =. 所以由()()0g x xf x =>可得2x >,此时()0f x >.又()f x 为偶函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为()(),22,-∞-+∞.故选:B . 【点睛】本题考查的奇偶性与单调性,考查由导数确定函数的单调性,具有奇偶性的函数的不等式求解时,如果是偶函数,可利用单调性求出(0,)+∞上的解,然后再利用奇偶性得出{|0}x x ≠上的解集,如果是奇函数可由奇函数定义得出函数在R 上的单调性,然后由单调性解不等式.7.D解析:D 【分析】 首先设函数()()sin f x g x x=,判断函数的单调性,和奇偶性,利用函数的性质比较大小. 【详解】 设()()sin f x g x x=,()()()()()()sin sin sin f x f x f x g x g x x x x---====--,即()()g x g x -=,所以函数()g x 是偶函数, 并且()()()2sin cos 0sin f x x f x xg x x'-'=<,所以函数()g x 在()0,π单调递减,444sin 4f ag ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭,33333sin 3f b f g g πππππ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎝⎭=--==-= ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎝⎭,222sin 2f c fg ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭,因为0432ππππ<<<<,所以432g g g πππ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即a b c >>. 故选:D 【点睛】本题考查导数与函数性质的综合应用,重点考查构造函数,利用函数的性质比较大小,属于中档题型.8.A解析:A 【分析】根据图象判断出导函数()f x '的符号,由此求得()f x 的单调区间、极大值、极小值. 【详解】当3x <-时,()()()10010x f x f x x ⎧+<⇒>⎨+<'⎩',()f x 递增; 当31x -<<-时,()()()10010x f x f x x ⎧+>⇒<⎨+<'⎩',()f x 递减; 当12x -<<时,()()()10010x f x f x x ⎧+<⇒<⎨+>'⎩';当2x >时()()()10010x f x f x x ⎧+>⇒>⎨+>'⎩',()f x 递增;综上:函数()f x 有极大值()3f -和极小值()2f . 故选:A 【点睛】本小题主要考查利用图象判断函数的单调性和极值,属于中档题.9.C解析:C 【分析】对函数()f x 进行求导,可得函数()f x 在区间(),1-∞-上单调递减,在区间()1,1-上单调递增,在区间()1,+∞上单调递减,可得(1)2f -=-,令()2f x =-,可得1x =-或2x =,可得()f x 的图像,由函数在区间()5,21a a -+上有最小值,数形结合可得关于a的不等式,计算可得答案. 【详解】解:由3()3f x x x =-,可得()2333(1)(1)f x x x x '=-+=--+,当11x -<<,()0f x '>,当1x <-或1x >时,()0f x '<,所以函数()f x 在区间(),1-∞-上单调递减,在区间()1,1-上单调递增,在区间()1,+∞上单调递减,可得(1)2f -=-,令()2f x =-,可得1x =-或2x =,则()f x 的图像如图所示,因为函数在区间()5,21a a -+上有最小值,故51212a a -<-<+, 解得:112a -<, 故选:C. 【点睛】本题主要考查利用导数研究含参函数的最值问题,体现了数形结合的数学思想,考查学生的计算能力,属于中档题.10.A解析:A 【解析】()()()(),'1'f x x g x f x g x =-∴=-,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A . 11.B解析:B 【分析】构造函数()()F x xf x =,再根据单调性解不等式,即得结果. 【详解】令()()F x xf x =,则()()()0F x f x xf x ''=+<,所以()F x 在(0,)+∞上单调递减(1)(1)f x x +>-()21f x -,2(1)(1)(1)x f x x ∴++>-()21f x -,2(1)(1)F x F x ∴+>-, 2011,2x x x ∴<+<-∴>,故选:B 【点睛】本题考查利用导数解不等式,考查基本分析求解能力,属中档题.12.B解析:B 【分析】结合函数图象比较()f x 与()f x '的大小,求出()()0f x f x -<′成立的x 的范围,求出()g x 的导数,判断其与0的关系即可.【详解】结合图象:()01x ∈,和()4x ∈+∞,时,()()f x f x '<,即()()0f x f x -<′, 而()()()0xf x f xg x e -=<′′,故()g x 在()0,1,()4,+∞递减,故选B . 【点睛】本题主要考查了数形结合思想,考查函数的单调性与导数的关系,判断()f x 与()f x '的大小是解题的关键,属于中档题.二、填空题13.①③④【分析】理解平均变化率和瞬时变换率的意义结合图象判断选项【详解】①在时刻为两图象的交点即此时甲乙两人血管中的药物浓度相同故①正确;②甲乙两人在时刻的切线的斜率不相等即两人的不相同所以甲乙两人血解析:①③④ 【分析】理解平均变化率和瞬时变换率的意义,结合图象,判断选项. 【详解】①在1t 时刻,为两图象的交点,即此时甲、乙两人血管中的药物浓度相同,故①正确;②甲、乙两人在2t 时刻的切线的斜率不相等,即两人的()2f t '不相同,所以甲、乙两人血管中药物浓度的瞬时变化率不相同,故②不正确;③根据平均变换率公式可知,甲、乙两人的平均变化率都是()()3232f t f t t t --,故③正确;④在[]12,t t 时间段,甲的平均变化率是()()2121f t f t t t --,在[]23,t t 时间段,甲的平均变化率是()()3232f t f t t t --,显然不相等,故④正确.故答案为:①③④ 【点睛】思路点睛:本题是一道识图的实际应用问题,判断的关键是理解两个概念,瞬时变化率和平均变化率,结合导数的几何意义可知瞬时变化率就是在此点处切线的斜率,平均变化率是()()f t t f t t+-.14.【分析】令求得函数的导数根据函数的单调性把题设中的不等式转化为即可求解【详解】令则因为所以所以函数在为单调递减函数又由所以即所以即所以解得综上可得实数的取值范围为故答案为:【点睛】本题主要考查了利用 解析:()2020,2022【分析】令()(),(0,)f x h x x x=∈+∞,求得函数的导数,根据函数的单调性,把题设中的不等式转化为(2020)(2)h m h ->,即可求解.【详解】令()(),(0,)f x h x x x =∈+∞,则()()2()xf x f x h x x '-=, 因为()()0xf x f x '-<,所以()0h x '<,所以函数()h x 在(0,)+∞为单调递减函数, 又由()()()2202020202f m m f ->-, 所以20200m ->,即2020m >,所以()()2020220202f m f m ->-, 即(2020)(2)h m h ->,所以20202m -<,解得2022m <, 综上可得,实数m 的取值范围为()2020,2022.故答案为:()2020,2022. 【点睛】本题主要考查了利用导数求解函数的单调性,以及函数的单调性的应用,着重考查了构造、转化思想,以及推理与运算能力,属于中档试题.15.【分析】求出函数的导函数利用导函数研究原函数的单调区间再二次求导得从而得到的单调区间由导函数在区间上单调递增求出其值域将函数的单调性把问题转化为即可列出不等式即可求出的范围【详解】解:由函数得由得或 解析:[]1,0-【分析】求出函数()f x 的导函数,利用导函数研究原函数的单调区间,再二次求导得()22f x x m ''=-,从而得到()f x '的单调区间,由导函数在区间[m ,1]m +上单调递增求出其值域[]1,0-,将函数的单调性把问题转化为[][]1,01,1m m -⊆-+,即可列出不等式即可求出m 的范围. 【详解】解:由函数3221()(1)3f x x mx m x n =-+-+,得222()21()1f x x mx m x m '=-+-=--, 由2()10x m -->,得1x m <-或1x m >+,∴函数()f x 的增区间为(,1)m -∞-,(1,)m ++∞,由2(1)0x m --<,得11m x m -<<+,∴函数()f x 单调减区间为[]1,1m m -+,由()22f x x m ''=-,则()0f x ''>时,x m >;()0f x ''<时,x m <,得()'f x 的单调增区间为[),m +∞,单调减区间为(],m -∞,函数()f x '在[],1m m +上单调递增,∴函数()f x '在[],1m m +上的值域为[]1,0-, 又函数[()]y f f x '=在区间[],1m m +上单调递减, 也就是函数()y f x =在区间[]1,0-上单调递减,因此要满足条件[][]1,01,1m m -⊆-+,即1110m m -≤-⎧⎨+≥⎩,解得:10m -≤≤, ∴实数m 的范围是[]1,0-.故答案为:[]1,0-. 【点睛】本题考查利用导数研究函数的单调性以及根据复合函数的单调性求参数取值范围,考查转化思想和运算能力,属中档题.16.【分析】先判定再根据切线相互垂直可得的关系利用该关系式把转化为一元函数利用导数可求其最小值【详解】当时当时因为故所以即其中又令则当时;当时故故答案为:【点睛】本题考查导数的几何意义以及导数在函数最值解析:1e-【分析】先判定()()12,1,1,x x ∈-∞∈+∞,再根据切线相互垂直可得12,x x 的关系,利用该关系式把12x x 转化为一元函数,利用导数可求其最小值.【详解】当1x <时,()0xf x e '=-<,当1x >时,()10f x x'=>, 因为()()121f x f x ''=-,故()()12,1,1,x x ∈-∞∈+∞,所以1211x e x -⨯=-即12x x e =,其中11<x . 又1121xx x x e =,令(),1tg t te t =<,则()()1,1tg t t e t '=+<,当1t <-时,()0g t '<;当11t -<<时,()0g t '>, 故()()min 11g t g e=-=-, 故答案为:1e-. 【点睛】本题考查导数的几何意义以及导数在函数最值中的应用,注意根据导数的性质确定切点的位置,而多元函数的最值问题一般可转化为一元函数的最值问题,后者可利用导数来处理.17.【分析】由题意可得利用导数求出函数在区间上的最大值即可得出实数的取值范围【详解】存在使得成立等价为令得当时函数是增函数;当时函数是减函数当时函数在处取得最大值所以因此实数的取值范围是故答案为:【点睛解析:1,2e ⎛⎤-∞+ ⎥⎝⎦【分析】由题意可得()max m f x ≤,利用导数求出函数()y f x =在区间(]0,4上的最大值,即可得出实数m 的取值范围. 【详解】()ln 2f x x x =-+,存在(]00,4x ∈,使得()0f x m ≥成立等价为()max f x m ≥.()ln 1f x x '=--,令()0f x '=,得1x e=. 当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,函数()ln 2f x x x =-+是增函数;当1,4x e⎛⎤∈ ⎥⎝⎦时,()0f x '<,函数()ln 2f x x x =-+是减函数,当(]0,4x ∈时,函数()ln 2f x x x =-+在1x e =处取得最大值12e +,所以12m e≤+. 因此,实数m 的取值范围是1,2e ⎛⎤-∞+ ⎥⎝⎦. 故答案为:1,2e ⎛⎤-∞+ ⎥⎝⎦. 【点睛】本题考查利用导数研究不等式能成立问题,结合题意转化为与函数最值相等的不等式问题是解答的关键,考查计算能力,属于中等题.18.【分析】由题意得出对任意的恒成立利用参变量分离法得出求出二次函数在区间上的值域即可得出实数的取值范围【详解】由于函数在上是减函数则对任意的恒成立即得二次函数在区间上为增函数则因此实数的取值范围是故答 解析:(],1-∞-【分析】由题意得出()0f x '≤对任意的()1,x ∈-+∞恒成立,利用参变量分离法得出22b x x ≤+,求出二次函数22y x x =+在区间()1,-+∞上的值域,即可得出实数b 的取值范围.【详解】()()21ln 22f x x b x =-++,()2bf x x x '∴=-++,由于函数()()21ln 22f x x b x =-++在()1,-+∞上是减函数, 则()0f x '≤对任意的()1,x ∈-+∞恒成立,即2bx x ≤+,得()222b x x x x ≤+=+, 二次函数22y x x =+在区间()1,-+∞上为增函数,则()()21211y >-+⨯-=-,1b ∴≤-.因此,实数b 的取值范围是(],1-∞-. 故答案为:(],1-∞-. 【点睛】本题考查利用函数在区间上的单调性求参数,一般转化为导数不等式在区间上恒成立,利用参变量分离法求解是一种常用的方法,考查化归与转化思想的应用,属于中等题.19.-10【解析】【分析】先求导分别求出导函数的最值再根据不存在x1x2∈R使得f′(x1)=g′(x2)得到关于a 的不等式解得即可【详解】∵函数f (x )=ex ﹣ax 函数g (x )=﹣x3﹣ax2∴f′( 解析:【解析】 【分析】先求导,分别求出导函数的最值,再根据不存在x 1,x 2∈R ,使得f ′(x 1)=g ′(x 2),得到关于a 的不等式解得即可. 【详解】∵函数f (x )=e x ﹣ax ,函数g (x )=﹣x 3﹣ax 2, ∴f ′(x )=e x ﹣a >﹣a ,g ′(x )=﹣x 2﹣2ax =﹣(x )2,∵不存在x 1,x 2∈R ,使得f ′(x 1)=g ′(x 2), ∴,解得-1≤a ≤0,故答案为.【点睛】本题考查了导数的运算法则和函数的最值问题,以及不等式的解法,属于中档题.20.-3【解析】由函数则令所以解得即所以解析:-3 【解析】由函数()()221f x x xf =+',则()()221f x x f +''=,令1x =,所以()()1221f f =+'',解得()12f '=-,即()24f x x x =-,所以()211413f =-⨯=-.三、解答题21.(1)极小值为4,无极大值(2)答案见解析(3)133m ≤- 【分析】(1)利用导数可求得结果; (2)求导后,令()0f x '=得1x a =-或12x =,对1a -与12的大小分类讨论可求得结果;(3)转化为12max (ln3)2ln3()()m a f x f x +->-1max 2min ()()f x f x =-,根据(2)中的单调性求出1max ()f x 和2min ()f x 代入后得2(4)03m a +->对a ∀∈(-3,-2)恒成立,列式23(4)0322(4)03m m ⎧-+-≥⎪⎪⎨⎪-+-≥⎪⎩可解得结果. 【详解】(1)当2a =时,1()4f x x x =+(0)x >,222141()4x f x x x-'=-=, 当102x <<时,()0f x '<,当12x >时,()0f x '>,所以()f x 在1(0,)2上递减,在1(,)2+∞上递增, 所以()f x 在12x =处取得极小值1()42f =,无极大值.(2)当0a <时,1()(2)ln 2f x a x ax x=-++,定义域为(0,)+∞, 221()2a f x a x x -=-+'222(2)1ax a x x +--=2(1)(21)ax x x +-=,令()0f x '=得1x a =-或12x =, 当112a ->,即20a -<<时,由()0f x '<得102x <<或1x a >-,由()0f x '>得112x a<<-, 所以()f x 在1(0,)2和1(,)a -+∞上单调递减,在11(,)2a-上单调递增, 当112a -=,即2a =-时,22(21)()x f x x--'=0≤,所以()f x 在(0,)+∞上单调递减, 当112a -<,即2a <-时,由()0f x '<得10x a<<-或12x >,由()0f x '>得112x a -<<, 所以()f x 在1(0,)a -和1(,)2+∞上单调递减,在11(,)2a -上单调递增, (3)由(2)可知对a ∀∈(-3,-2),()f x 在[1,3]上单调递减, 因为不等式12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,等价于12max (ln3)2ln3()()m a f x f x +->-1max 2min ()()f x f x =-, 而1max ()(1)12f x f a ==+,2min 1()(3)(2)ln 363f x f a a ==-++,所以1(ln 3)2ln 312(2)ln 363m a a a a +->+----, 即2(4)03m a +->对a ∀∈(-3,-2)恒成立, 所以23(4)0322(4)03m m ⎧-+-≥⎪⎪⎨⎪-+-≥⎪⎩,解得133m ≤-.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 . 22.(1)极大值112e-,极小值0;(2)答案见解析. 【分析】(1)当1a =时,2()2xx f x xe x ⎛⎫=-+ ⎪⎝⎭,求导,令()0f x '=可得极值点和极值; (2)()()(1)xf x x e a '=+-,对a 分类讨论,利用导数研究其单调性即可得出. 【详解】(1)当1a =时,2()2xx f x xe x ⎛⎫=-+ ⎪⎝⎭,()()(1)(1)1x x x f x e xe x e x '=+-+=+-, 令()0f x '=,得1x =-或0x =.∴1x =-时,()f x 有极大值()12f e-=-, 0x =时,()f x 有极小值()00f =;(2)()()(1)(1)xxxf x a e e xe x x a '=+-+=+-,当0a ≤时,0x e a ->,由()0f x '>得1x >-, 即函数()f x 在()1,-+∞上单调递增,由()0f x '<得1x <-,即函数()f x 在(),1-∞-上单调递减; 当0a >时,令()0f x '=得1x =-或ln x a =.①当ln 1a =-,即1a e -=时,无论1x >-或1x <-,均有()0f x '>, 又()10f '-=,即在R 上()0f x '≥,从而函数()f x 在R 上单调递增; ②当ln 1a <-,即10ae 时,由()()(1)01xe f x x a x '=+->⇒>-或ln x a <时, 函数()f x 在()1,-+∞和(),ln a -∞上单调递增;由()()(1)0ln 1xf x x a a e x '=+-<⇒<<-时,函数()f x 在()ln ,1a -上单调递减; ③当ln 1a >-,即1a e ->时,由()()(1)0ln xf x x e a x a '=+->⇒>或1x <-时, 函数()f x 在()ln ,a +∞和(),1-∞-上单调递增; 由()()(1)01ln xf x x a x a e '=+-<⇒-<<时, 函数()f x 在()1,ln a -上单调递减.综上,当0a ≤时, ()f x 单调递增区间是()1,-+∞上, 单调递减区间是(),1-∞-上; 当10ae 时,()f x 单调递增区间是(),ln a -∞,()1,-+∞,单调递减区间是()ln ,1a -;当1a e -=时,()f x 单调递增区间为(,)-∞+∞;当1a e ->时,()f x 单调递增区间是(),1-∞-,()ln ,a +∞, 单调递减区间是()1,ln a -. 【点睛】关键点点睛:(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.(2)在研究函数单调性的过程中,要准确判断导数的符号,当()f x '含参时,要依据参数取值对不等式解集的影响进行分类讨论. 23.(1)01x =;(2)1,2,02a b c =-=-=. 【分析】(1)由表可得出1x =是极小值点;(2)由题可得()01f '=,3(1)2f =-,2()03f '-=,由此可求出. 【详解】解:(1)由题意可知,2()32f x x ax b '=++ 当2(,1)3x ∈-时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以()f x 在区间2(,1)3-上单调递减,在区间(1,)+∞上单调递增. 故1x =时,函数()f x 有极小值,所以01x =.(2)由(1)知1x =为函数()f x 的极小值点,得()01f '=,即320a b ++=.①因为函数()f x 的极小值为32-,所以3(1)2f =-, 即312a b c +++=-,整理得:52a b c ++=-.② 由题可知23x =-为函数()f x 的极大值点,所以2()03f '-=, 即44033a b -+=.③ 联立①②③得:1,2,02a b c =-=-=.【点睛】关键点睛:本题考查函数的导数与极值的关系,解题得关键是知道函数在极值点处的函数值为0.24.(1)0a =,4b =-;(2)3a =;(3)[0,)a ∈+∞.【分析】(1)利用导数的几何意义,可得(1)12f '-=,(1)9f -=-,计算整理,即可求得a ,b 的值;(2)令'(3)0f =,即可求得a 的值,检验可得3x =为极值点,即可得答案;(3)令'()0f x =,解得1x a =,21x =,分别求得1a <和1a ≥时,()f x 的单调区间,结合题意,分析推理,即可得答案.【详解】(1)因为32()23(1)6f x x a x ax b =-+++,所以2()66(1)6f x x a x a '=-++,由题设可得(1)121212f a '-=+=,(1)959f a b -=-+-=-,解得0a =,4b =-.(2)因为()f x 在3x =取得极值,所以(3)12360f a '=-+=,解得3a =.当3a =时,'2()624186(1)(3)f x x x x x =-+=--,令'()0f x =,解得x=1或3,所以3x =为()f x 的极值点,故3a =满足题意.(3)令()6()(1)0f x x a x '=--=,得1x a =,21x =.当1a <时,若(,)(1,)x a ∈-∞+∞,则()0f x '>,所以()f x 在(,)a -∞和(1,)+∞上为增函数,故当01a ≤<时,()f x 在(,0)-∞上为增函数恒成立.当0a <时,()f x 在(,)a -∞上为增函数,不符合题意,当1a ≥时,若(,1)(,)x a ∈-∞+∞,则()0f x '>,所以()f x 在(,1)-∞和(,)a +∞上为增函数,从而()f x 在(,0)-∞上也为增函数,满足题意.综上所述,当[0,)a ∈+∞时,()f x 在(,0)-∞上为增函数.【点睛】本题考查导数的几何意义、利用导数求函数的单调区间和极值点问题,考查计算求值,分类讨论的能力,属中档题.25.(1)1e ;(2)10m e <<;(3)221,e e ⎡⎫⎪⎢⎣⎭. 【分析】(1)求导,利用导数可得函数的单调性,进而求得函数的最值;(2)函数()()g x f x m =-有两个零点,转化为函数()(0)x x f x x e =>的图象与直线y m =有两个交点.结合(1)中结论即可求得m 的取值范围;(3)由()0f x >,可得()f x a >只有一个整数解,由()f x 的极大值为()11f e =,012<<, ()222f e=,可得a 的取值范围. 【详解】(1)函数()(0)x x f x x e =>, 则1()x x f x e-'=,当(0,1)x ∈时,()0f x '>,函数()f x 单调递增;当(1,)x ∈+∞时,()0f x '<,函数()f x 单调递减,所以当1x =时,函数()f x 取得极大值,也是最大值为()11f e=.(2)函数()()g x f x m =-有两个零点,相当于函数()(0)x x f x x e =>的图象与直线y m =有两个交点.当0x =时,(0)0f =,x →+∞时,()0f x →,结合(1)中结论,可得10m e<<. (3)因为()0f x >,所以不等式2()()0f x af x ->仅有一个整数解, 即()f x a >只有一个整数解,因为()f x 的极大值为()11f e =,012<<,()222f e =, 所以当221,a e e ⎡⎫∈⎪⎢⎣⎭时,()f x a >只有一个整数解1x =, 即当221,a e e ⎡⎫∈⎪⎢⎣⎭时,不等式2()()0f x af x ->仅有一个整数解1x =. 所以实数a 的取值范围是221,e e ⎡⎫⎪⎢⎣⎭ 【点睛】本题主要考查利用导数研究函数的单调性和最值,考查函数与方程思想,属于中档题. 26.(1)10x y +-=;(2)答案见解析;(3)()(],00,1-∞. 【分析】(1)当2a =时,求出函数的导数,利用导数的几何意义即可求曲线()y f x =在点()1,()f x 处的切线方程;(2)求函数的导数,利用函数单调性和导数之间的关系即可求函数()f x 的单调区间; (3)根据函数的单调性求出函数的最小值即可实数a 的取值范围.【详解】解:(1)2a =时,211()2ln 22f x x x =--,(1)0f =, 2'()f x x x=- ,'(1)1f =- 曲线()y f x =在点(1,(1))f 处的切线方程10x y +-=(2)2'()(0)a x a f x x x x x -=-=>①当0a <时,2'()0x a f x x-=>恒成立,函数()f x 的递增区间为()0,∞+②当0a >时,令'()0f x =,解得x =x =所以函数()f x 的递增区间为+∞,递减区间为 (3)对任意的[1,)x ∈+∞,使()0f x ≥成立,只需任意的[1,)x ∈+∞,min ()0f x ≥ ①当0a <时,()f x 在[1,)+∞上是增函数,所以只需(1)0f ≥而11(1)ln1022f a =--= 所以0a <满足题意;②当01a <≤时,01<≤,()f x 在[1,)+∞上是增函数,所以只需(1)0f ≥ 而11(1)ln1022f a =--= 所以01a <≤满足题意;③当1a >1>,()f x 在上是减函数,)+∞上是增函数,所以只需0f ≥即可 而(1)0f f <= 从而1a >不满足题意;综合①②③实数a 的取值范围为()(],00,1-∞.【点睛】 本题主要考查函数切线的求解,以及函数单调性和函数最值的求解,综合考查函数的导数的应用,属于中档题.。
2023年人教版数学导数与微分练习题及答案
2023年人教版数学导数与微分练习题及答案数学是一门科学,也是一门重要的学科。
其中,导数与微分作为数学中的基础概念,在解析几何、微积分等领域具有重要作用。
为了帮助同学们更好地掌握导数与微分的知识,以下是2023年人教版数学导数与微分的练习题及答案。
希望能对同学们的学习有所帮助。
1. 练习题一:已知函数f(x) = x^3 - 2x^2 - 3x + 2,求f(x)在x = 1处的导数。
解答:首先,我们需要求函数f(x)的导数。
导数的定义是函数在某一点的斜率,可以用极限来表示。
对于题目中的函数f(x),我们可以利用幂函数的导数公式求得导数f'(x)。
f'(x) = 3x^2 - 4x - 3然后,我们代入x = 1,求得f'(1)。
f'(1) = 3(1)^2 - 4(1) - 3 = -4所以,函数f(x)在x = 1处的导数为-4。
2. 练习题二:已知函数g(x) = e^x + 2x - 1,求g(x)在x = 2处的导数。
解答:函数g(x)可以看作由指数函数和一次函数相加的形式。
我们知道,指数函数的导数仍然是指数函数,一次函数的导数是常数。
首先,我们求指数函数e^x的导数。
(e^x)' = e^x然后,我们求一次函数2x的导数。
(2x)' = 2因此,可以得到函数g(x)的导数公式。
g'(x) = (e^x)' + (2x)' = e^x + 2接下来,我们代入x = 2,求得g'(2)。
g'(2) = e^2 + 2 ≈ 9.39所以,函数g(x)在x = 2处的导数约为9.39。
3. 练习题三:已知函数h(x) = ln(x^2 + 1),求h(x)在x = 0处的导数。
解答:函数h(x)是一个以自然对数为底的对数函数,我们知道对数函数的导数可以用导数的链式法则来求解。
首先,我们求内层函数x^2 + 1的导数。
最新人教版高中数学选修二第二单元《一元函数的导数及其应用》测试卷(有答案解析)
一、选择题1.已知函数(),0,,0.lnx x f x kx x >⎧=⎨≤⎩,若0x R ∃∈使得()()00 f x f x -=成立,则实数k 的取值范围是( ) A .(],1-∞B .1,e⎛⎤-∞ ⎥⎝⎦C .[)1,-+∞D .1,e ⎡⎫-+∞⎪⎢⎣⎭2.已知函数2()85f x x x =---,()x e exg x ex+=,实数m ,n 满足0m n <<,若1x ∀∈[],m n ,2x ∃∈()0,∞+,使得()()12f x g x =成立,则n m -的最大值为( )A .7B .6C .25D .233.函数tan 22tan y x x =-42x ππ⎛⎫<< ⎪⎝⎭的最大值为( )A .33-B .3C .0D .3-4.已知函数()f x 与()f x '的图象如图所示,则函数()()x f x g x e=(其中e 为自然对数的底数)的单调递减区间为( )A .()0,4B .()4,1,43⎛⎫-∞⋃⎪⎝⎭ C .40,3⎛⎫ ⎪⎝⎭D .()0,1,()4,+∞5.若函数sin ()cos x a f x x +=在区间(0,)2π上单调递增,则实数a 的取值范围是( ) A .1a ≤-B .2a ≤C .1a ≥-D .1a ≤6.已知函数()=x e xf x x+,1(ln )a f e =,1()2b f =,1()c f e =,则( )A .a b c >>B .c b a >>C .b a c >>D .b c a >>7.已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则12a b+的最小值是( ) A .2B .2C .342+D .322+8.已知函数()22,22,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩,函数()()g x f x m =-有两个零点,则实数m 的取值范围为( )A .28,e ⎛⎫-∞ ⎪⎝⎭B .28,4e ⎛⎤⎥⎝⎦C .280,e ⎛⎫ ⎪⎝⎭D .[)28,4,e ⎛⎫-∞+∞ ⎪⎝⎭9.已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-10.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7B .4C .0D .﹣411.函数()ln 22f x x x x a =-++,若()f x 与()()f f x 有相同的值域,则a 的取值范围为( ) A .(],0-∞ B .1,02⎛⎤-⎥⎝⎦C .30,2⎡⎫⎪⎢⎣⎭D .[)0,+∞12.α,,22ππβ⎡⎤∈-⎢⎥⎣⎦,且sin sin 0ααββ->,则下列结论正确的是( ) A .αβ>B .0αβ+>C .αβ<D .22αβ>二、填空题13.已知函数()332f x x x =+,()2,2x ∈-,如果()()1120f a f a -+-<成立,则实数a 的取值范围为__________.14.函数f (x )=lnx+x 的图象在x=1处的切线方程为___. 15.点(),P x y 是曲线C :()10y x x=>上的一个动点,曲线C 在点P 处的切线与x 轴、y 轴分别交于A ,B 两点,点O 是坐标原点,①PA PB =;②OAB 的面积为定值;③曲线C 上存在两点,M N 使得OMN 是等边三角形;④曲线C 上存在两点M ,N 使得OMN 是等腰直角三角形,其中真命题的序号是______.16.已知定义在(0,)+∞上的单调函数()f x ,对任意的(0,)x ∈+∞,都有[]2()log 3f f x x -=,则函数()f x 的图象在1ln 2x =处的切线的倾斜角为________. 17.函数()1ln(12)2xf x x x-=+-的导函数是()f x ',则()f x '=______________. 18.已知32()26f x x x m =-++(m 为常数)在[]22-,上有最小值3,那么此函数在[]22-,上的最大值为______.19.对于三次函数()()320ax bx d a f x cx =+++≠,定义:设()f x "是函数()y f x =的导数()y f x ='的导数,若方程()0f x "=有实数解0x ,则称点()()00x f x ,为函数()y f x =的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,函数()3231324f x x x x =-+-,则它的对称中心为______.20.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)=f ________三、解答题21.设函数()21xf x e ax x =---,a R ∈.(1)0a =时,求()f x 的最小值.(2)若()0f x ≥在[)0,+∞恒成立,求a 的取值范围.22.已知函数(),()1x f x e g x ax ==-,其中 2.71828e =⋅⋅⋅为自然对数的底数. (1)讨论函数()()()h x f x g x =⋅的单调性;(2)设N ,()()a f x g x +∈≥恒成立,求a 的最大值(ln 3 1.1,ln 20.69)≈≈. 23.已知函数32()f x x ax bx c =+++在0x 处取得极小值32-,其导函数为()'f x .当x 变化时,()'f x 变化情况如下表:(1)求0x 的值; (2)求,,a b c 的值.24.已知函数()3f x x ax b =-+在1x =处的切线方程为0y =.(1)求实数a 、b 的值;(2)求函数()f x 在区间[]1,2-上的最大值与最小值之和. 25.已知函数()221xf x xe x x =---.(1)求函数()f x 在[1,1]-上的最大值; (2)证明:当0x >时,()1f x x >--.26.已知函数12()ln e e x f x x x=-- . (Ⅰ)求曲线()y f x =在点(1(1))f ,处的切线方程;(Ⅱ)求证:1ln x ex≥-; (Ⅲ)判断曲线()y f x =是否位于x 轴下方,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由已知建立方程,反解出k ,将问题转化为求函数值域问题,然后利用函数的性质求出最值即可求解. 【详解】由题意可得:存在实数00x ≠,使得()()00 f x f x -=成立,假设00x >,则00x -<, 所以有00ln kx x -=, 则0ln x k x =-, 令()ln xh x x=-, 则()2ln 1x h x x -'=, 令()0h x '>,即ln 1x >, 解得x e >,令()0h x '<,即ln 1x <, 解得0x e <<,则()h x 在()0,e 上单调递减,在(),e +∞上单调递增, 所以()()()ln 1min e h x h x h e e e≥==-=-, 所以1k e≥-, 故选:D. 【点睛】关键点睛:本题考查了分段函数的存在性问题,构造函数,利用导函数求最值是解决本题的关键.2.B解析:B 【分析】先用导数法研究()y g x =,然后的同一坐标系中作出函数()y f x =与()y g x =的图象,根据[]1,x m n ∀∈,()20,x ∃∈+∞,使得()()12f x g x =成立求解. 【详解】因为()x e exg x ex+=,所以()()211x x e x e g x ex ex '-⎛⎫'=+= ⎪⎝⎭, 当01x <<时,()0g x '<,当1x >时,()0g x '>,()10g '=, 所以()g x 在1x =处取得极小值,且为定义域内唯一极值,()()min 12g x g ∴==.()22185()4111f x x x x -==---++≤,作函数()y f x =与()y g x =的图象, 如图所示:当()2f x =时,方程两根分别为7-和1-, 则n m -的最大值为:()176---=. 故选:B 【点睛】关键点睛:利用导数和二次函数的性质,作出图像,利用数形结合进行求解,考查了转化化归的的思想、运算求解,以及数形结合的能力,属于中档题.3.A解析:A 【分析】化简可得322tan 1tan xy x=-,令tan t x =,()1,t ∈+∞,则3221t y t =-,求出函数导数,利用导数判断函数的单调性即可求出最值. 【详解】可得3222tan 2tan tan 22tan 2tan 1tan 1tan x xy x x x x x =-=-=--, 令tan t x =,则()1,t ∈+∞,则3221t y t=-, 则()()()()()22322222261222311t t t t t t y t t --⨯--'==--,当(t ∈时,0y '>,函数单调递增,当)t ∈+∞时,0y '<,函数单调递减,所以当t =时,()3max 221y ⨯==--.故选:A. 【点睛】关键点睛:本题考查函数最值的求解,解题的关键是利用换元法将函数化为3221t y t=-,然后利用导数讨论其单调性即可求出最值.4.D解析:D 【分析】利用图象求得不等式()()0f x f x '-<的解集,求得()()()xf x f xg x e'-'=,解不等式()0g x '<即可得出函数()g x 的单调递减区间.【详解】由图象可知,不等式()()0f x f x '-<的解集为()()0,14,+∞,因为()()xf xg x e =,所以,()()()()()()2x xxx f x e f x e f x f x g x e e ''--'==,解不等式()0g x '<,可得()()0f x f x '-<,解得()()0,14,x ∈+∞,因此,函数()g x 的单调递减区间为()0,1,()4,+∞. 故选:D. 【点睛】易错点睛:本题考查利用导数求解函数的单调递减区间,通过解不等式()0g x '<得到()()0,14,x ∈+∞,但需要注意的是,函数()g x 的两个单调递减区间不能取并集,而应分开表示.5.C解析:C 【分析】利用导函数研究原函数的单调性,利用单调性求解实数a 的取值范围. 【详解】 解:函数sin ()cos x af x x+= 则2cos cos sin (sin )()x x x x a f x cos x++'=(0,)2x π∈上,2cos 0x ∴>要使函数sin ()cos x a f x x +=在区间(0,)2π上单调递增, 22cos sin sin 0x x a x ∴++≥在(0,)2x π∈上恒成立,即:sin 10a x +≥在(0,)2x π∈上恒成立,(0,)2x π∈上,sin (0,1)x ∈1a ∴-故选:C . 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.6.B解析:B 【分析】求出()f x 的导数,根据导数判断出函数的单调性,再根据111ln ,,2e e的大小关系即可判断. 【详解】()=x e xf x x+,0x ≠()()()()2211xx x e x e x e x f x x x+-+-'∴==, 当(),0x ∈-∞时,()0f x '<,则()f x 单调递减, 当()0,1x ∈时,()0f x '<,则()f x 单调递减, 当()1,x ∈+∞时,()0f x '>,则()f x 单调递增,11012e <<<,112f f e ⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭,且1112f ⎛⎫=> ⎪⎝⎭, 1ln 10e =-<,()11ln 111f f e e ⎛⎫∴=-=-< ⎪⎝⎭,111ln 2f f f e e ⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即c b a >>.故选:B. 【点睛】易错点睛:本题考查利用函数单调性判断大小,注意函数的定义域为{}0x x ≠,故单调区间有3个,故在判断1(ln )a f e=的大小的时候应从函数值判断,而不能直接利用单调性.7.D解析:D 【分析】由导数的几何意义转化条件得1a b +=,进而可得1223b a a b a b+=++,由基本不等式即可得解. 【详解】因为函数ln()y x b =+的导数1y x b'=+, 由切线的方程y x a =-可得切线的斜率为1, 所以11x b=+即切点的横坐标为1b -,所以切点为(1,0)b -, 代入y x a =-得10b a --=,即1a b +=, 又a 、b 为正实数,所以()12122333b a a b a b a b a b ⎛⎫+=++=++≥+=+ ⎪⎝⎭,当且仅当1a =,2b =.所以12a b +的最小值是3+. 故选:D. 【点睛】本题考查了导数几何意义及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.8.C解析:C 【分析】当2x ≥时,利用导数研究函数的单调性,()()g x f x m =-有两个零点,即()y f x =的图象与直线y m =有两个交点,结合函数图象,即可求出参数的取值范围; 【详解】解:当2x ≥时,设()22x x x hx e +=,则()()()2222222x x x xx e x x e x h x e e +-+-'==-, 易知当2x >时,()0h x '<,即()h x 是减函数,∴2x =时,()()2max 82h eh x ==, 又x →+∞时,()0h x →且()0h x >,而2x ≤时,()2f x x =+是增函数,()24f =.()()g x f x m =-有两个零点,即()y f x =的图象与直线y m =有两个交点,函数()22,22,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象如下所示:所以280m e <<.故选:C . 【点睛】本题考查利用导数研究函数的单调性,函数方程思想与数形结合思想,属于中档题.9.D解析:D 【分析】作出函数()y f x =的图像,和函数y ax =的图像,结合图像可知直线y ax =介于l 与x 轴之间,利用导数求出直线l 的斜率,数形结合即可求解. 【详解】由题意可作出函数()y f x =的图像,和函数y ax =的图像.由图像可知:函数y ax =的图像是过原点的直线, 当直线介于l 与x 轴之间符合题意,直线l 为曲线的切线,且此时函数()y f x =在第二象限的部分的解析式为22y x x =-,求其导数可得22y x '=-,因为0x ≤,故2y '≤-, 故直线l 的斜率为2-,故只需直线y ax =的斜率a []2,0∈-. 故选:D 【点睛】本题考查了不等式恒成立求出参数取值范围,考查了数形结合的思想,属于中档题.10.A解析:A 【解析】()()()(),'1'f x x g x f x g x =-∴=-,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A . 11.B解析:B 【分析】判断()f x 的单调性,求出()f x 的值域,根据()y f x =与(())y f f x =有相同的值域得出()f x 的最小值与极小值点的关系,得出a 的范围.【详解】()f x lnx '=,故而当1x >时,()0f x '>,当01x <<时,()0f x '<,()f x ∴在(0,1)上单调递减,在(1,)+∞上单调递增,()f x ∴的最小值为()121f a =+,且x →+∞时,()f x →+∞即()f x 的值域为[)21,a ++∞,函数()y f x =与(())y f f x =有相同的值域,且()f x 的定义域为(0,)+∞,0211a ∴<+≤,解得:102-<≤a .故选:B【点睛】本题考查了导数研究函数的单调性,考查函数最值的计算,属于中档题. 12.D解析:D【分析】构造函数()sin f x x x =,利用其导函数判断出单调区间,根据奇偶性和对称性可得正确选项.【详解】构造()sin f x x x =形式,则()sin cos f x x x x +'=,0,2x π⎡⎤∈⎢⎥⎣⎦时导函数()0f x '≥,()f x 单调递增;,02x π⎡⎫∈-⎪⎢⎣⎭时导函数()0f x '<,()f x 单调递减.又 ()f x 为偶函数,根据单调性和对称性可知选D.故本小题选D.【点睛】 本小题主要考查构造函数法,考查利用导数研究函数的单调性以及求解不等式,属于中档题.二、填空题13.【详解】因为恒成立所以在R 上递增又所以为奇函数则可化为由递增得解得:0<a <故答案为 解析:3(0,)2【详解】因为23+6x 0f x '=()>恒成立,所以f x ()在R 上递增,又f x f x =(﹣)﹣(),所以f x ()为奇函数,则1120f a f a +(﹣)(﹣)<,可化为121f a f a (﹣)<(﹣),由f x ()递增,得1212122212a a a a --⎧⎪--⎨⎪--⎩<<<<<,解得:0<a <32,故答案为302⎛⎫ ⎪⎝⎭,. 14.2x ﹣y ﹣1=0【分析】求出f (x )的导数可得切线的斜率和切点即可得到所求切线的方程【详解】函数f (x )=lnx+x 的导数为可得函数f (x )的图象在x=1处的切线斜率为k=2切点为(11)可得切线的解析:2x ﹣y ﹣1=0【分析】求出f (x )的导数,可得切线的斜率和切点,即可得到所求切线的方程.【详解】函数f (x )=lnx +x 的导数为()11f x x'=+, 可得函数f (x )的图象在x =1处的切线斜率为k =2,切点为(1,1),可得切线的方程为y ﹣1=2(x ﹣1);即2x ﹣y ﹣1=0.故答案为2x ﹣y ﹣1=0.【点睛】本题考查利用导数求切线的方程,是基本题.15.①②③④【分析】利用导数的几何意义求得过点的切线方程结合函数性质对每个选项进行逐一分析即可容易判断和选择【详解】设点由得切线方程:即∴∴为中点∴①正确;②正确;过原点作倾斜角等于和的2条射线与曲线的解析:①②③④【分析】利用导数的几何意义求得过点P 的切线方程,结合函数性质,对每个选项进行逐一分析,即可容易判断和选择.【详解】 设点()1,0P a a a ⎛⎫> ⎪⎝⎭, 由21y x '=-得切线方程:()211y x a a a -=--,即212y x a a=-+ ∴()2,0A a ,20,B a ⎛⎫ ⎪⎝⎭,∴1,P a a ⎛⎫ ⎪⎝⎭为AB 中点, ∴PA PB =,①正确;1122222AOB S OA OB a a=⋅=⨯⨯=△,②正确; 过原点作倾斜角等于15︒和75︒的2条射线与曲线的交点为,M N由对称性可知OMN 中,=OM ON ,又60MON ∠=︒, ∴OMN 为等边三角形,③正确;过原点作2条夹角等于45︒的射线与曲线交于点,M N ,当直线OM 的倾斜角从90︒减少到45︒的过程中,OM ON 的值从+∞变化到0, 在此变化过程中必然存在OM ON 2和22的时刻, 此时OMN 为等腰直角三角形,④正确.∴真命题的个数为4个.故答案为:①②③④.【点睛】本题考查导数的几何意义,涉及函数性质的应用,属综合中档题.16.【分析】设则求得的值进而得到的解析式然后利用对数函数的导数公式和导数的运算法则计算求解【详解】设则因为为单调函数故不随的变化而变化即是常数又切线斜率为1所以倾斜角为∴答案为:【点睛】本题考查利用换元 解析:45︒【分析】设2()log t f x x =-,则()3f t =,求得t 的值,进而得到()f x 的解析式,然后利用对数函数的导数公式和导数的运算法则计算求解.【详解】设2()log t f x x =-,则()3f t =.因为()f x 为单调函数,故t 不随x 的变化而变化即t 是常数.又2()log f x x t =+,,2log 3t t +=,2t =,2()log 2f x x =+,1()ln 2f x x '=,11ln 2f ⎛⎫'= ⎪⎝⎭,切线斜率为1, 所以倾斜角为45︒.∴答案为:45︒.【点睛】本题考查利用换元法和方程思想求函数的解析式,利用导数的几何意义研究函数的切线问题,涉及对数函数的导数公式和导数的运算,属小综合题,关键点在于利用换元法和方程思想求得函数的解析式,在于对数函数的导数公式的准确性掌握,难度一般.17.【分析】利用基本函数求导公式和导数运算法则求出导数然后代入求值【详解】解:因为由于且解得:且即的定义域为:即:故答案为:【点睛】本题考查基本函数求导公式和导数运算法则以及复合函数求导考查计算能力 解析:23242142x x x x -+--+ 【分析】利用基本函数求导公式和导数运算法则,求出导数,然后代入求值.【详解】解:因为()1ln(12)2x f x x x-=+-, 由于20x ≠且120x ->,解得:12x <且0x ≠, 即()f x 的定义域为:()1,00,2⎛⎫-∞⋃ ⎪⎝⎭, ()()11()ln 12()ln 1222x x f x x x x x '--⎡⎤''∴=+-='+-⎡⎤⎣⎦⎢⎥⎣⎦ 2223222(1)14214122122242x x x x x x x x x x -----+-=-+=+=-+---, 即:()23242142x x f x x x -+-'=-+. 故答案为:23242142x x x x -+--+. 【点睛】本题考查基本函数求导公式和导数运算法则,以及复合函数求导,考查计算能力. 18.43【分析】先求导数判断函数单调性和极值结合(为常数)在上有最小值3求出的值再根据单调性和极值求出函数的最大值【详解】令解得或当时单调递减当时单调递增当时单调递减所以在时有极小值也是上的最小值即函数 解析:43.【分析】先求导数,判断函数单调性和极值,结合32()26f x x x m =-++(m 为常数)在[]22-,上有最小值3,求出m 的值,再根据单调性和极值求出函数的最大值.【详解】32()26f x x x m =-++,2()6126(2)f x x x x x '∴=-+=--,令 ()0f x '=,解得 0x =或2x =,当20x -<<时,()0,()f x f x '<单调递减,当02x <<时,()0,()f x f x '>单调递增,当2x >时,()0,()f x f x '<单调递减, 所以()f x 在0x =时有极小值,也是[]22-,上的最小值, 即(0)3f m ==,函数在[]22-,上的最大值在2x =-或2x =时取得, 3232(2)2(2)6(2)343;(2)2262311f f -=-⨯-+⨯-+==-⨯+⨯+=, ∴函数在[]22-,上的最大值为43.故答案为:43【点睛】本题主要考查了利用导数研究函数的单调性和极值,函数的最值,属于中档题. 19.【分析】根据拐点的定义令解得则由拐点的性质可得结果【详解】∵函数∴∴令解得且所以函数对称中心为故答案为【点睛】本题主要考查导数的运算以及新定义问题属于中档题新定义题型的特点是:通过给出一个新概念或约 解析:1,12⎛⎫ ⎪⎝⎭ 【分析】根据拐点的定义,令()630f x x "=-=,解得12x =,则112f ⎛⎫= ⎪⎝⎭,由拐点的性质可得结果.【详解】∵函数()3231324f x x x x =-+-, ∴()2333f x x x '=-+,∴()63f x x "=-. 令()630f x x "=-=,解得12x =,且112f ⎛⎫= ⎪⎝⎭, 所以函数()3231324f x x x x =-+-对称中心为1,12⎛⎫ ⎪⎝⎭, 故答案为1,12⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查导数的运算,以及新定义问题,属于中档题. 新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.20.-1【解析】【分析】首先对函数求导然后利用方程思想求解的值即可【详解】由函数的解析式可得:令可得:则【点睛】本题主要考查导数的运算法则基本初等函数的导数公式方程的数学思想等知识意在考查学生的转化能力 解析:-1【解析】【分析】首先对函数求导,然后利用方程思想求解()'1f 的值即可.【详解】由函数的解析式可得:()()1'2'1f x f x=+, 令1x =可得:()()1'12'11f f =+,则()'11f =-.【点睛】本题主要考查导数的运算法则,基本初等函数的导数公式,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力. 三、解答题21.(1)0;(2)1(,]2-∞.【分析】(1)当0a =时,求导可得()1x f x e '=-,令()0f x '=,解得0x =,分别讨论(),0x ∈-∞和()0,∞+时,()'f x 的正负,即可得()f x 的单调性,即可求得答案;(2)求导可得()21x f x e ax '=--,设()21(0)x h x e ax x =--≥,分别讨论12a ≤和12a >时()h x '的正负,可得()h x 的单调性,进而可得()f x 的单调性,综合分析,即可得答案.【详解】 (1)当0a =时,()1x f x e x =--,则()1xf x e '=-, 令()0f x '=,解得0x =,当(),0x ∈-∞时,()0f x '<,所以()f x 在(),0-∞单调递减函数;当()0,x ∈+∞时,()0f x '>,所以()f x 在()0,∞+单调递增函数;所以()()min 00f x f ==.(2)()21x f x e ax x =---,则()21x f x e ax '=--,设()21(0)xh x e ax x =--≥,则()2x h x e a '=-, 当12a ≤时,()0h x '≥,所以()h x 在[)0,+∞上为增函数, 又(0)0h =,所以()(0)0h x h ≥=,即()0f x '≥,所以()f x 在在[)0,+∞上为增函数,又(0)0f =,所以()(0)0f x f ≥=,满足题意; 当12a >时,令()0h x '=,解得ln2x a =, 当(0,ln 2)x a ∈时,()0h x '<,所以()h x 在(0,ln 2)a 为减函数,所以当[0,ln 2)x a ∈时,()(0)0h x h ≤=,即()0f x '≤,所以()f x 在[0,ln 2)x a ∈为减函数,又(0)0f =所以()(0)0f x f ,不满足题意,综上:a 的取值范围是1(,]2-∞【点睛】解题的关键是熟练掌握利用导数求解函数单调性,极(最)值的方法,若处理恒成立问题时,需满足min ()0f x ≥,若处理存在性问题时,需满足max ()0f x ≥,需仔细审题,进行求解,属中档题.22.(1)答案见解析;(2)3.【分析】(1)求函数导数得()(1)x h x e ax a -'=+,再分0a =、0a >和0a <,由导数的正负判断单调性即可;(2)设函数()()()1x F x f x g x e ax =-=-+,通过求导得min ()(ln )ln 10F x F a a a a ==-+≥,再构造()ln 1G a a a a =-+,1a ≥,求导数根据单调性,结合零点存在性定理即可得解.【详解】(1)由题意得()()()(1)x h x f x g x e ax =⋅=-,则()(1)(1)x x x h x e ax ae e ax a =-+=-+'当0a =时,()0x h x e =-<'恒成立,函数()h x 单调递减;当0a >时,令()0h x '>得1a x a ->,令()0h x '<得1a x a -<, 函数()h x 在1,a a -⎛⎫+∞ ⎪⎝⎭单调递增,在1,a a -⎛⎫-∞ ⎪⎝⎭单调递减. 当0a <时,令()0h x '>得1a x a -<,令()0h x '<得1a x a ->, 函数()h x 在1,a a -⎛⎫-∞ ⎪⎝⎭单调递增,在1,a a -⎛⎫+∞ ⎪⎝⎭单调递减. (2)设函数()()()1x F x f x g x e ax =-=-+,所以()xF x e a =-',令()0F x '=得ln ,(0)x a a =>. 当ln x a <时,()0F x '<;当ln x a >时,()0F x '>所以()F x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增,所以min ()(ln )ln 1F x F a a a a ==-+因为要使得()()f x g x ≥恒成立,只要()0F x ≥恒成立即min ()(ln )ln 10F x F a a a a ==-+≥设()ln 1G a a a a =-+,1a ≥∴()ln 0G a a =-≤',∴()G a 在1a ≥上单调递减,又(3)33ln 314 3.30G =-+≈->,(4)44ln 415 5.520G =-+≈-<,且()G a 图象连续不断,又a N +∈,所以满足条件的a 的最大值为3.【点睛】思路点睛:由不等式恒成立(或能成立)求参数时,一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.23.(1)01x =;(2)1,2,02a b c =-=-=.【分析】(1)由表可得出1x =是极小值点;(2)由题可得()01f '=,3(1)2f =-,2()03f '-=,由此可求出. 【详解】解:(1)由题意可知,2()32f x x ax b '=++ 当2(,1)3x ∈-时,()0f x '<;当(1,)x ∈+∞时,()0f x '>.所以()f x 在区间2(,1)3-上单调递减,在区间(1,)+∞上单调递增. 故1x =时,函数()f x 有极小值,所以01x =.(2)由(1)知1x =为函数()f x 的极小值点,得()01f '=,即320a b ++=.①因为函数()f x 的极小值为32-,所以3(1)2f =-, 即312a b c +++=-,整理得:52a b c ++=-.② 由题可知23x =-为函数()f x 的极大值点,所以2()03f '-=, 即44033a b -+=.③ 联立①②③得:1,2,02a b c =-=-=.【点睛】关键点睛:本题考查函数的导数与极值的关系,解题得关键是知道函数在极值点处的函数值为0.24.(1)3a =,2b =;(2)4.【分析】(1)求出切点的坐标,利用切线的斜率和切点的坐标可得出关于实数a 、b 的方程组,进而可解得实数a 、b 的值;(2)利用导数分析函数()f x 在区间[]1,2-上的单调性,可求得该函数在区间[]1,2-上的最大值和最小值,由此可求得结果.【详解】(1)由已知得切点为()1,0,且()23f x x a '=-, ()()110130f a b f a ⎧=-+=⎪∴⎨=-='⎪⎩,解得3a =,2b =; (2)由(1)知()332f x x x =-+,233f x x ,当12x <≤时,()0f x '>,此时函数()f x 单调递增;当11x -<<时,()0f x '<,此时函数()f x 单调递减.所以,()()min 10f x f ==,又()14f -=,()24f =,()max 4f x ∴=.因此,函数()f x 在区间[]1,2-上的最大值与最小值之和为4.【点睛】在利用导数求解函数的最值的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数()y f x =在[],a b 内所有使()0f x '=的点,再计算函数()y f x =在区间内所有使()0f x '=的点和区间端点处的函数值,最后比较即得.25.(1)1e -;(2)证明见解析.【分析】(1)利用导数得到()f x 单调性,确定()()(){}max max 1,1f x f f =-,进而可得结果; (2)将所证不等式转化为证明10x e x -->,构造函数()1x g x e x =--,利用导数可证得()0g x >,从而得到结论.【详解】(1)()()()2212x x x f x e xe x x e '=+--=+-, 当()1,ln 2x ∈-时,()0f x '<;当()ln 2,1x ∈时,()0f x '>,()f x ∴在[)1,ln 2-上单调递减,在(]ln 2,1上单调递增,()()(){}max max 1,1f x f f ∴=-,又()111121f e e-=--+-=-,()11214f e e =---=-, ()()max 11f x f e∴=-=-. (2)要证()1f x x >--,只需证()210x f x x xe x x ++=-->, 0x ,∴只需证:10x e x -->.令()1x g x e x =--,则()1x g x e '=-,当0x >时,e 1x >,()0g x '∴>在()0,∞+上恒成立,()g x ∴在()0,∞+上单调递增, ()0010g x e ∴>--=,即当0x >时,10x e x -->恒成立,则原命题得证, ∴当0x >时,()1f x x >--.【点睛】关键点点睛:本题考查利用导数证明不等式,解题关键是能够通过分析法将所证不等式进行等价转化,从而构造新函数,利用导数求得新函数的最值使得结论得证.26.(Ⅰ)12()+10e e x y -1--=;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】试题分析:(1)求导()2112x f x e x ex =--+',得到切线斜率()111ef '=-,利用点斜式得到直线的方程;(2)“要证明()1ln 0x x ex ≥->”等价于“1ln e x x ≥-”,构造新函数确定函数的最小值大于等于1e -即可;(3)曲线()y f x =是位于x 轴下方即证明(f x ) 0<,利用(Ⅱ)可知()1111x x x f x e ex x e e ⎛⎫≤-=- ⎪⎝⎭,转证()10x x k x e e=-<即可. 试题函数的定义域为()0,+∞, ()2112x f x e x ex =--+'. (Ⅰ)()111e f '=-,又()11e f =-, 曲线()y f x =在1x =处的切线方程为11111e e ey x ⎛⎫+=--+ ⎪⎝⎭, 即121+10x y e e ⎛⎫---= ⎪⎝⎭. (Ⅱ)“要证明1ln (0)x x ex ≥->”等价于“1ln e x x ≥-” 设函数()ln g x x x =.令()=1+ln 0g x x '=,解得1x e=.因此,函数()g x 的最小值为11g e e ⎛⎫=- ⎪⎝⎭.故1ln x x e ≥-. 即1ln x ex≥-. (Ⅲ)曲线()y f x =位于x 轴下方. 理由如下:由(Ⅱ)可知1ln x ex≥-,所以()1111x x x f x e ex x e e ⎛⎫≤-=- ⎪⎝⎭. 设()1x x k x e e =-,则()1x x k x e='-. 令()0k x '>得01x <<;令()0k x '<得1x >.所以()k x 在()0,1上为增函数,()1+∞,上为减函数. 所以当0x >时,()()1=0k x k ≤恒成立,当且仅当1x =时,()10k =. 又因为()110ef =-<, 所以()0f x <恒成立. 故曲线()y f x =位于x 轴下方.点睛:在导函数中证明不等式的方法:(1)直接构造新函数,转为新函数的最值问题;(2)构造两个函数,转化为两个函数的最值比较,即最小值大于最大值; (3)利用上一问进行合理的放缩,简化后再进行证明.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数及其应用单元测试题
一、选择题
1.函数3y x x =+的递增区间是( )
A .),0(+∞
B .)1,(-∞
C .),(+∞-∞
D .),1(+∞ 2.3
2
()32f x ax x =++,若(1)4f '-=,则a 的值等于( )
A .319
B .
316 C .3
13
D .310
3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则
0x <时( )
A .()0()0f x g x ''>>,
B .()0()0f x g x ''><,
C .()0()0f x g x ''<>,
D .
()0()0f x g x ''<<,
4. 设2
:()e ln 21x
p f x x x mx =++++在(0)+∞,
内单调递增,:5q m -≥, 则p 是q 的( )
A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件
5.抛物线y=(1-2x)2
在点x=32
处的切线方程为( )
A. y=0
B.8x -y -8=0 C .x=1 D.y=0或者8x -y -8=0
6. 设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )
7.已知32()26(f x x x m m =-+为常数)在[2,2]-上有最大值3,那么此函数在[2,2]-上的最小值为( )
A .-37
B .-29
C .-5
D .-11
8.设函数322()3(1)1f x kx k x k =+--+在区间(0,4)上是减函数,则k 的取值范围是
()
A .13
k <
B .103
k <≤
C .103
k ≤<
D .13
k ≤
9. 已知二次函数2()f x ax bx c =++的导数为'()f x ,
'(0)0f >,对于任
意实数x 都有
()0f x ≥,则(1)
'(0)
f f 的最小值为( )
A .3
B .52
C .2
D .32
二、填空题
10.函数ln x e y x
=的导数'
y =_____________
11.若函数3
43
y x bx =-
+有三个单调区间,则b 的取值范围是 . 12.已知函数3221
()3
f x x a x ax b =+++,当
1x =-时函数
()f x 的极值为7
12
-
,则
(2)f = .
13.函数
2cos y x x =+在区间[0,]2
π上的最大值是 .
三、解答题(共80分) 14.(本题满分12分) 设()3
3
f x x x
=+
,求函数f(x)的单调区间及其极值;
F 图6
P
E
D B
A
15. (本题满分14分) 求证:若x>0,则ln(1+x)>x 1x
+;
16. (本题满分14分)
若函数4)(3
+-=bx ax x f ,当2=x 时,函数)(x f 有极值3
4-
, (1)求函数的解析式;(2)若函数k x f =)(有3个解,求实数k 的取值范围.
17(本题满分14分)
如图6所示,等腰三角形△ABC 的底边
AB=CD=3,点E 是线段BD 上异于B 、D 的动点,点F 在BC 边上,且E F ⊥AB ,现沿EF 将△BEF 折起到△PEF 的位置,使P E ⊥AE ,记BE=x ,V (x )表示四棱锥P-ACEF 的体积。
(1)求V(x)的表达式;
(2)当x 为何值时,V(x)取得最大值?
18.(本题满分12分) 已知函数x x
a
ax x f ln 2)(--
=)0(≥a ,若函数)(x f 在其定义域内为单调函数,
求a 的取值范围;
19.(本题满分14分) 已知二次函数
y f x =()经过点(2,4),其导数经过点(0,-5)和(2,-1),当
x n n ∈+(],1(n N ∈*)时,f x ()是整数的个数记为a n 。
求数列{}a n 的通项公
式;
导数及其应用周测题答案
一、选择CDB ,BBD ,ADC
二、填空10. (2
ln 1
(ln )
x
x x e x x -);11.b>0 12.53
;13.6π+三.解答题
14.增区间(,1),(1,)-∞-+∞减区间(1,0),(0,1)-极大值为f(-1)=-4, 极小值为f(1)=4
15. 解:令()ln(1),01x
f x x x x
=+-
>+,则22
11()1(1)(1)x f x x x x '=-=+++ 当0x >时,()0f x '>,即()f x 在()0,+∞上单调递增,又(0)0f =,
()(0)0f x f ∴>=即ln(1)x +>1x x
+.
16.(1)1,22a b =-=-(2)增区间2(,),(1,)3
-∞-+∞减区间
2(,1)3- 极大值为249()327f -=,极小值为1
(1)2
f =-(3)301c c <-<<或
(4)221272
c -
<≤- 17.(1)由折起的过程可知,P E ⊥平面ABC
,ABC S ∆=
,
225412BEF
BDC x S S x ∆∆=⋅=
V(x)=21(9)312
x x -
(0x << (2
)21
'())4
V x x =
-,所以(0,6)x ∈时,'()0v x > ,V(x)
单调递增;6x <<'()0v x < ,V(x)单调递减;
因此x=6时,V(x)
取得最大值;
18.解: x x
a a x f 2
)(2
-+
='∴.要使函数)(x f 在定义域),0(+∞内为单调函数,则在),0(+∞内)(x f '恒大于0或恒小于0, 当02
)(0<-
='=x
x f a 时,在),0(+∞内恒成立; 当时,0>a 要使01
)11()(2>-+-='a
a a x a x f 恒成立,则01≥-a a ,解得
1≥a
所以a 的取值范围为
1≥a 或0=a
19.解:设f x ax bx c ()=++2
,将点(2,4)代入后,得4a+2b+c =4
f x ax b '()=+2,将点(0,-5)和(2,-1)分别代入,得
b=-5,4a+b=-1
解
得
5
1-==b a ,,c=10,所以
f x x x x ()()=-+=-+225105215
4
f x ()在(1,2]上的值域为[4,6),所以a 12=
f x ()在(2,3]上的值域为(4
15
,4],所以a 21=
当n
≥3时,f x ()在(n ,n +1]上单调递增,其值域为(f n f n ()(),+1]
所以a f n f n n n
=+-=-()()124
所以a n n n n n ===-≥⎧⎨⎪⎩
⎪21
12243,,,。