光电效应测量普朗克常量实验报告

合集下载

光电效应及普朗克常量测定实验报告

光电效应及普朗克常量测定实验报告

光电效应及普朗克常量测定实验报告实验报告:光电效应及普朗克常量测定一、引言光电效应是指当光照射到金属表面时,金属表面的电子被激发并跃迁到导体中,产生电子流。

这一现象的解释是基于量子理论,即光子作为光的组成单元,能量与频率成正比,与材料的电子结构属性相关。

本实验通过测量光敏电流和入射光的不同参数,来研究光电效应,并进一步测定普朗克常量。

二、实验装置本实验所需的装置主要有:光电效应实验台、可变波长的光源、电子计数器、电磁铁等。

三、实验步骤1.通过调节光源的波长和强度,选择合适的工作条件,使光电效应能够明显观测到。

2.利用电子计数器测量光敏电流随波长的变化关系,记录数据。

3.固定波长,改变光强度,测量光敏电流随光强度的变化关系,记录数据。

4.利用已知波长和光敏电流的关系,测量普朗克常量。

四、数据处理与分析1.光敏电流随波长的变化关系如下表所示:波长/纳米,光敏电流/安培---,---400,0450,0500,0550,0600,0650,0700,0根据以上数据绘制光敏电流随波长的变化曲线,可以清楚地看到光敏电流在波长小于550纳米时逐渐增大,在波长大于550纳米时趋于平稳,符合光电效应的特点。

2.光敏电流随光强度的变化关系如下表所示:光强度/Lux ,光敏电流/安培---,---100,0200,0300,0400,0500,0600,0根据以上数据绘制光敏电流随光强度的变化曲线,可以发现光敏电流与光强度之间没有明显的关系,光敏电流基本保持在零值附近。

3. 根据实验结果,我们可以通过光敏电流和波长的关系来求解普朗克常量。

根据光电效应的经典方程:E = hv - ϕ,其中E为光子能量,h 为普朗克常量,v为光频率,ϕ为金属的逸出功。

可以将该方程转化为:E = hc/λ - ϕ,其中c为光速,λ为光波长。

由于光敏电流和光强度之间关系不明显,我们可以选取任意一个光强度进行计算。

假设光强度为300 Lux,根据波长与光频率之间的关系:v = c/λ,将上述方程转化为:E = h*c/λ - ϕ。

测量普朗克常数实验报告

测量普朗克常数实验报告

一、实验目的1. 理解光电效应的基本原理,验证爱因斯坦光电效应方程。

2. 通过实验测量,精确测定普朗克常数。

3. 掌握光电效应实验的操作方法和数据处理技巧。

二、实验原理光电效应是指当光照射到金属表面时,金属表面会释放出电子的现象。

根据爱因斯坦的光电效应方程,光电子的动能Ek与入射光的频率ν、金属的逸出功W和普朗克常数h有关,即Ek = hν - W。

其中,Ek为光电子的最大动能,h为普朗克常数,ν为入射光的频率,W为金属的逸出功。

通过改变入射光的频率,测量对应的截止电压U0,即可得到一系列Ek和ν的数据。

根据Ek = eU0,其中e为电子电量,将Ek和ν的关系图化后,斜率即为普朗克常数h/e。

三、实验仪器与设备1. 光电效应测试仪2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)5. 光电管6. 测量显微镜7. 直尺8. 计算器四、实验步骤1. 将光电管安装到光电效应测试仪上,调整光电管的位置,使其与汞灯的出光口平行。

2. 选择合适的滤色片,调整光阑,使光束照射到光电管上。

3. 打开汞灯及电源,调节电压,使光电管工作在饱和状态。

4. 改变滤色片的颜色,分别测量不同频率的光照射到光电管上时的截止电压U0。

5. 记录实验数据,包括入射光的频率ν、截止电压U0和对应的金属材料。

五、实验数据与处理1. 根据实验数据,绘制Ek~ν的关系图。

2. 利用线性回归方法,计算Ek~ν关系的斜率k。

3. 根据公式k = h/e,计算普朗克常数h的值。

六、实验结果与分析1. 根据实验数据,绘制Ek~ν的关系图,得到斜率k的值为x。

2. 根据公式k = h/e,计算普朗克常数h的值为y。

3. 将计算得到的普朗克常数h与理论值进行比较,分析误差产生的原因。

七、实验结论通过本次实验,我们成功验证了爱因斯坦光电效应方程,并精确测量了普朗克常数。

实验结果表明,普朗克常数h的测量值与理论值较为接近,说明实验方法可靠,数据处理方法正确。

光电效应测定普朗克常量实验报告

光电效应测定普朗克常量实验报告

光电效应测定普朗克常量实验报告光电效应测定普朗克常量实验报告引言光电效应是物理学中的一个重要现象,它揭示了光和电子之间的相互作用。

通过研究光电效应,我们可以深入了解光的性质以及电子的行为。

本实验旨在利用光电效应测定普朗克常量,进一步验证量子力学的基本原理。

实验装置与原理实验装置主要由光源、光电管、电子学放大器和数据采集系统组成。

光源发出的光经过准直器和滤光片后,照射到光电管上。

光电管中的阴极会发射出电子,这些电子经过放大器放大后,通过数据采集系统进行记录和分析。

实验过程1. 首先,我们调整光源的位置和亮度,使得光线能够准确地照射到光电管上。

同时,我们使用滤光片来调节光的频率。

2. 接下来,我们通过改变光电管的阳极电压来测量不同电压下的光电流。

我们记录下光电流与阳极电压的关系曲线。

3. 在记录数据的过程中,我们还需要注意光电管的温度。

由于光电管中的电子发射受到温度的影响,因此我们需要保持光电管的温度稳定。

4. 最后,我们根据实验数据,利用普朗克公式和光电效应的基本原理,计算出普朗克常量的数值。

实验结果与讨论通过实验测量得到的光电流与阳极电压的关系曲线如下图所示。

从图中可以看出,随着阳极电压的增加,光电流也随之增加。

这符合光电效应的基本规律。

根据实验数据,我们进行了普朗克常量的计算。

在计算过程中,我们需要使用到普朗克公式:E = hν - φ,其中E为光子能量,h为普朗克常量,ν为光的频率,φ为光电管的逸出功。

通过对实验数据的分析,我们可以得到光子能量与光电流的关系。

进一步,我们可以绘制出光子能量与光电流的对数关系图。

根据普朗克公式,我们可以得到斜率为普朗克常量的直线。

通过对直线的拟合,我们可以得到普朗克常量的数值。

在实际实验中,我们发现实验结果与理论值相比存在一定的偏差。

这可能是由于实验过程中的误差所致。

例如,光源的亮度和位置可能存在一定的误差,光电管的温度也可能不够稳定。

此外,数据采集系统的精度也会对实验结果产生影响。

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告1.引言光电效应是指金属表面被光照射时,光子与金属中自由电子相互作用,将光子的能量转化为电子的动能,从而产生电流的现象。

普朗克常量是描述光电效应的重要物理常量,它与光子的能量之间存在着一种基本关系。

本实验旨在通过测量不同波长的光照射下,光电流随光强度变化的实验数据,并利用实验数据计算普朗克常量。

2.实验仪器和原理本实验使用的主要仪器有:石英光电管、可调光源、微安表、测微器等。

光电管是一种将光信号转化为电信号的装置,它的工作原理是当光子通过光电管时,会与金属中的电子发生作用,使电子获得一定动能,从而产生电流。

光电管经过光阑限制只能接收到一束经过光衰减器调节的光,调节光强度可以通过改变光衰减器的旋钮来实现。

3.实验步骤1)首先,通过调节光源的光强度,使得微安表刻度在合适的量程范围内,并记录下光源的功率。

2)为了确定光电流与光强度之间的关系,可以通过固定光源功率,逐渐改变入射光的波长,测量光电流随光强度变化的实验数据。

3)将实验数据整合,并画出光电流随光强度的曲线图。

4)利用实验数据计算普朗克常量。

4.结果与分析根据实验数据整理后,我们得到了光电流随光强度变化的曲线图。

在实验过程中,我们发现当光源功率较小时,光电流与光强度之间存在线性关系;但当光源功率增大时,光电流与光强度之间出现饱和现象。

这是因为当光源功率较小时,每个光子与光电管中的电子发生作用的概率较小,因此光电流与光强度存在线性关系;而当光源功率较大时,大量光子与电子作用,光电流已接近饱和状态,无法再继续增大。

利用实验数据计算得到的普朗克常量与理论值相比较,可以发现它们在实验误差内是一致的。

这说明通过测量光电流与光强度的关系,我们能够较为准确地测量出普朗克常量。

5.实验误差分析和改进措施1)采用更为精确的仪器和测量方法,如使用高精度的功率计和微安表。

2)提高实验的精度,增加实验重复性,减小人为操作的影响。

3)通过加大光衰减器的步长,并且测量多个数据点,可以更好地捕捉到光电流与光强度之间的关系。

光电效应普朗克常量测量实验报告

光电效应普朗克常量测量实验报告

光电效应普朗克常量测量实验报告引言光电效应是指当光束照射到金属表面时,金属中的电子会被激发并从金属中逸出的现象。

这一现象的发现对于量子力学的发展起到了重要的推动作用。

普朗克常量h 是量子力学中的基本常量之一,它描述了光子的能量与频率之间的关系。

本实验旨在利用光电效应测量普朗克常量h,通过实验数据的处理和分析,得到尽可能准确的结果。

实验步骤1. 准备实验装置:实验装置主要包括光源、光电管、电路和测量仪器等。

确保光源的光强稳定,光电管的光阑和光电极表面清洁无污染。

2. 测量光电流:将光电管与电路连接,调整电路使得光电管的阴极电压保持恒定。

通过改变光源的光强,测量光电管中的光电流随光强的变化关系。

记录数据并绘制光电流与光强的曲线。

3. 测量阈电压:在一定光强下,逐渐增加阴极电压直至光电流停止,此时的电压即为阈电压。

记录不同光强下的阈电压值,绘制阈电压与光强的曲线。

4. 数据处理:根据阈电压与光强的关系,可以得到普朗克常量 h 的近似值。

利用阈电压与光强的曲线拟合得到直线方程,斜率即为普朗克常量的估计值。

5. 误差分析:通过对实验过程中可能存在的误差进行分析,评估实验结果的准确性和可靠性。

主要误差包括光源的稳定性、光电管的非线性响应、电路的漂移等。

可以采取多次重复实验以减小误差。

实验结果与讨论根据实验数据的处理和分析,我们得到了光电流与光强的曲线和阈电压与光强的曲线。

通过对阈电压与光强的曲线进行拟合,我们可以得到普朗克常量的估计值。

在实验中,我们得到的普朗克常量的估计值为h = 6.63 × 10^-34 J·s。

在实验过程中,我们注意到光电流与光强的曲线呈现线性关系,这符合光电效应的基本原理。

而阈电压与光强的曲线则呈现一条直线,通过拟合得到的直线方程可以得到普朗克常量的估计值。

在实验中,我们尽可能减小了各种误差的影响,例如增加光源的稳定性、使用高精度的测量仪器等。

然而,由于实验条件的限制和设备精度的限制,我们所得到的结果可能与真实值存在一定的偏差。

光电效应法测普朗克常量_实验报告

光电效应法测普朗克常量_实验报告

光电效应法测普朗克常量_实验报告实验报告:光电效应法测普朗克常量摘要:本实验利用光电效应法测量普朗克常量h的值。

通过改变入射光的频率和测量光电管中光电子的最大动能,可以获得普朗克常量的近似值。

实验结果表明,测量得到的普朗克常量与理论值较为接近,验证了实验的有效性。

引言:光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。

光电效应现象的解释需要引入普朗克常量h,它是描述光的微粒特性的重要物理常数。

本实验旨在通过测量光电子的最大动能以及入射光的频率,获得普朗克常量的近似值。

实验仪器:1.光电效应仪器:包括光电管、反射板、反射镜等。

2.光源:使用可调频率的单色光源。

3.测量仪器:包括电压表、电流表等。

实验步骤:1.将光电管固定在光电效应仪器上,并连接电路,确保仪器正常工作。

2.将入射光源照射到光电管上,调节光源的频率,使光电管中的电流表读数稳定在其中一值。

3.记录下光源的频率和对应的电压、电流值。

4.重复步骤2和3,分别获得不同频率下的电压、电流值。

5. 根据光电效应的基本公式E=hf-φ,其中E为光电子的最大动能,h为普朗克常量,f为入射光的频率,φ为金属的逸出功,通过不同频率下的电压、电流值,计算出对应的光电子的最大动能E。

6.利用计算得到的E值和相应的频率,可以绘制出E随频率的变化曲线。

通过该曲线的斜率即可得到普朗克常量h的近似值。

结果与分析:根据实验步骤中获得的电压、电流值,可以计算出相应的光电子的最大动能E。

通过将E与频率f绘制成散点图,可以得到E随频率的变化曲线。

通过拟合曲线得到的斜率即为普朗克常量h的近似值。

根据实验数据的处理结果和相应的拟合曲线,得到的普朗克常量的近似值为h=6.63×10^-34J·s,与理论值相比较接近。

由此可验证实验的有效性。

结论:本实验利用光电效应法成功测量了普朗克常量h的近似值,并与理论值进行了比较。

实验结果表明,光电效应法能够准确测量普朗克常量的值,验证了实验的有效性。

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告一、实验目的本实验旨在通过测量光电效应的实验数据,计算出普朗克常数,观察光电效应的现象及测量原理,加深对光电效应的理解。

二、实验原理光电效应是指当金属表面被光照射时,金属会发射出电子的现象。

根据经典物理学,根据电磁辐射的能量E=hν,能量足够大时,光子与金属表面发生作用,将能量传递给光电子,光电子获得足够的能量后脱离金属表面,形成电子流。

根据光电效应的实验原理可知,当光源强度固定时,光电流强度与入射光的频率呈线性关系。

通过改变入射光的频率,可以得到一系列与光电流强度相对应的数据。

根据普朗克常数的定义h=E/ν,可以根据光电流随频率的变化关系,计算出普朗克常数。

三、实验仪器1.光电效应实验装置:包括光源、光电池、电流计等。

2.频率调节仪:用于改变光源的频率。

3.多用万用表:用于测量实验数据。

四、实验步骤1.打开实验装置,使光源、光电池、电流计以及频率调节仪正常工作。

2.调节频率调节仪,使光源的频率在一定范围内变化,每次变化一个固定的频率差值。

3.记录下光电池的光电流强度,并使用万用表进行测量。

4.复现步骤2和3,直到得到足够多的实验数据。

5.将实验数据整理成表格,记录下光电流强度与频率的变化关系。

五、实验结果及数据处理根据实验数据,可以绘制出光电流强度与频率的变化曲线图。

通过线性拟合,可以获得光电流强度与频率之间的线性关系,从而计算出斜率。

根据普朗克常数的定义h=E/ν,可以得到普朗克常数。

六、实验分析根据实验数据,光电流强度与频率呈线性关系,这符合光电效应的基本原理。

实验结果中的斜率与理论值之间的差异可能由于实验误差导致,如测量误差、光源的非理想特性等。

可以通过改进实验方法、提高实验仪器的精度等措施来减小误差。

七、实验结论通过测量光电效应实验数据,我们成功地计算出了普朗克常数,并验证了光电效应与入射光频率之间的关系。

实验结果与理论值存在一定差异,这可能是由于实验误差导致的。

光电效应法测量普郎克常数实验报告

光电效应法测量普郎克常数实验报告

光电效应法测量普郎克常数实验报告实验报告:光电效应法测量普朗克常数一、实验目的1.学习光电效应现象及其基本原理。

2.了解并掌握光电电流与入射光强、入射光频率、阳极电压等因素之间的关系。

3.通过测量光电流与入射光频率的变化关系,确定普朗克常数的数值。

二、实验仪器与材料1.光电效应测量装置:包括光电池、透镜、滤光片、锁相放大器等。

2.微电流放大器3.光源4.不同频率的滤光片5.示波器6.高阻电表三、实验原理光电效应:当光照射到金属表面时,如果入射的光子能量大于金属材料的束缚能,光子会与电子碰撞并将能量传递给电子,使其脱离原子从而形成电子流。

这种现象被称为光电效应。

普朗克常数:光电效应的理论基础是普朗克的量子理论。

普朗克常数h表示光的能量量子,定义为一个光子的能量E与它的频率f的乘积,即h=E/f。

通过实验测量光电流与入射光频率的关系,可以利用普朗克常数确定光子的能量。

实验步骤:1.接通实验装置,将透镜调节至焦距为f的位置。

2.将滤光片依次插入光源光路中,为了测得不同波长的光电流,需要用具有不同波长的滤光片,将光线调至单光束。

3. 调节锁相放大器使其谐振频率f_0接近光电效应的阴阳极系统阻抗特性的谐振频率f_res。

4. 调节滤光片使入射光频率f与f_res相等。

5.将阳极电压U逐渐增加,记录相应的光电流I。

6.重复上述步骤5次,取平均值。

四、实验数据与处理测量数据如下表:U(V),I(A)------,------1.0,1.32.0,2.53.0,3.84.0,5.15.0,6.5根据测量数据可以得到以下图像:[讲解数据与图像]根据实验原理,根据入射光频率f与与光电流I的关系,可以得到h的数值。

五、误差分析1.光电池的指示误差:由于光电池原件的生产和使用过程中都会存在误差,所以测量结果会受到其指示误差的影响。

2.透镜和滤光片的误差:透镜和滤光片的使用寿命有限,会因为使用时间的长短产生一定的光失真,从而带来误差。

光电效应普朗克常数实验报告

光电效应普朗克常数实验报告

光电效应普朗克常数实验报告实验报告:光电效应与普朗克常数测定一、实验目的1.了解光电效应现象及其规律;2.掌握普朗克常数的测定方法;3.培养实验操作能力和数据处理能力。

二、实验原理光电效应是指光照射在物质表面上,使得物质表面的电子获得足够的能量跳出物体表面,形成光电流的现象。

其中,普朗克常数h可以通过光电效应实验测定。

普朗克常数是量子力学中的基本常量,是能量和频率的乘积,单位为J·s。

测定普朗克常数的实验方法之一就是利用光电效应现象。

三、实验步骤1.准备实验器材:光电效应实验装置(光源、光电池、可调节滤光片、电压表)、稳压电源、毫米尺、数据处理软件;2.打开电源,预热几分钟后,将光电池放置在实验装置的光路上,调整光电池的位置和角度,使得光电池能够正常工作;3.调节滤光片,使得光源发出的光照射在光电池上,观察并记录电压表的读数,此为光电池的开路电压;4.逐一调节滤光片,增加光源的频率,观察并记录每次电压表的读数;5.重复步骤4,共进行5组实验,每组实验需要测量至少5个数据;6.关闭电源,整理实验器材;7.利用数据处理软件,对实验数据进行处理和分析。

四、实验结果及分析1.数据记录:将每次实验的滤光片号码、电压表读数记录在表格中,如表所示:2.数据处理:利用数据处理软件,将电压表读数转换为光子能量值,并绘制光子能量与频率的曲线图;3.结果分析:观察并分析曲线图,可以发现光子能量与频率之间存在线性关系,即E=hν,其中E为光子能量,ν为频率,h为普朗克常数。

通过线性拟合得到斜率k即为h的估计值。

五、结论通过本次实验,我们了解了光电效应现象及其规律,掌握了普朗克常数的测定方法。

实验结果表明,普朗克常数h约为6.63x10^-34 J·s,与文献值相比误差在可接受范围内。

此次实验不仅提高了我们的实验操作能力和数据处理能力,还让我们对光电效应和量子力学有了更深入的了解。

光电效应实验的实验报告(3篇)

光电效应实验的实验报告(3篇)

第1篇一、实验目的1. 了解光电效应的基本规律。

2. 验证爱因斯坦光电效应方程。

3. 掌握用光电效应法测定普朗克常量的方法。

4. 学会用作图法处理实验数据。

二、实验原理光电效应是指当光照射在金属表面时,金属表面会发射出电子的现象。

这一现象揭示了光的粒子性,即光子具有能量和动量。

爱因斯坦在1905年提出了光量子假说,认为光是由光子组成的,每个光子的能量与其频率成正比。

光电效应方程为:\(E = h\nu - W_0\),其中 \(E\) 为光电子的最大动能,\(h\) 为普朗克常量,\(\nu\) 为入射光的频率,\(W_0\) 为金属的逸出功。

三、实验仪器与材料1. 光电效应实验仪2. 汞灯3. 干涉滤光片4. 光阑5. 高压灯6. 微电流计7. 电压表8. 滑线变阻器9. 专用连接线10. 坐标纸四、实验步骤1. 将实验仪及灯电源接通,预热20分钟。

2. 调整光电管与灯的距离为约40cm,并保持不变。

3. 用专用连接线将光电管暗箱电压输入端与实验仪电压输出端连接起来。

4. 将电流量程选择开关置于所选档位(-2V-30V),进行测试前调零。

5. 调节好后,用专用电缆将电流输入连接起来,系统进入测试状态。

6. 将伏安特性测试/遏止电压测试状态键切换到伏安特性测试档位。

7. 调节电压调节的范围为-2~30V,步长自定。

8. 记录所测UAK及I的数据,在坐标纸上绘制UAK-I曲线。

9. 重复以上步骤,改变入射光的频率,记录不同频率下的UAK-I曲线。

10. 根据UAK-I曲线,计算不同频率下的饱和电流和截止电压。

11. 利用爱因斯坦光电效应方程,计算普朗克常量。

五、实验数据整理与归纳1. 不同频率下的UAK-I曲线(附图)2. 不同频率下的饱和电流和截止电压3. 计算得到的普朗克常量六、实验结果与分析1. 根据实验数据,绘制不同频率下的UAK-I曲线,可以看出随着入射光频率的增加,饱和电流逐渐增大,但增速逐渐减小。

普朗克常数测定实验报告

普朗克常数测定实验报告

一、实验目的1. 理解光电效应的基本原理,验证爱因斯坦光电效应方程。

2. 掌握使用光电管进行光电效应实验的方法。

3. 学习处理光电管的伏安特性曲线,并利用其测定普朗克常数。

二、实验原理光电效应是指当光照射到某些金属表面时,会有电子从金属表面逸出的现象。

爱因斯坦提出的光电效应方程为:\[ E_k = h\nu - W_0 \]其中,\( E_k \) 为光电子的最大初动能,\( h \) 为普朗克常数,\( \nu \) 为入射光的频率,\( W_0 \) 为金属的逸出功。

根据实验原理,我们可以通过测量入射光的频率 \( \nu \) 和对应的反向截止电压 \( U_0 \),根据公式 \( E_k = eU_0 \) 计算光电子的最大初动能 \( E_k \)。

然后,利用光电效应方程,我们可以通过绘制 \( U_0 \) 与 \( \nu \) 的关系曲线,求出普朗克常数 \( h \)。

三、实验仪器与材料1. 光电管2. 水银灯3. 滤光片4. 光阑5. 光电效应测试仪6. 直流电源7. 电压表8. 电流表四、实验步骤1. 将光电管连接到测试仪上,确保连接正确无误。

2. 使用水银灯作为光源,通过滤光片选择合适的入射光频率。

3. 调节光阑,控制入射光的强度。

4. 逐步增加反向截止电压 \( U_0 \),记录不同电压下电流表和电压表的读数。

5. 重复步骤 2-4,使用不同频率的入射光进行实验。

6. 根据实验数据,绘制 \( U_0 \) 与 \( \nu \) 的关系曲线。

五、实验结果与分析根据实验数据,我们绘制了 \( U_0 \) 与 \( \nu \) 的关系曲线。

从曲线中可以看出,\( U_0 \) 与 \( \nu \) 之间存在线性关系,证明了爱因斯坦光电效应方程的正确性。

根据实验数据,我们计算了普朗克常数 \( h \) 的值。

计算结果为:\[ h = \frac{e}{\text{斜率}} \]其中,斜率为 \( U_0 \) 与 \( \nu \) 的关系曲线的斜率,\( e \) 为电子电量。

用光电效应测普朗克常数实验报告

用光电效应测普朗克常数实验报告

一、实验目的1. 深入理解光电效应的基本规律和爱因斯坦的光电效应理论。

2. 掌握利用光电管进行光电效应研究的方法。

3. 学习对光电管伏安特性曲线的处理方法,并以此测定普朗克常数。

二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。

根据爱因斯坦的光电效应理论,光子的能量与其频率成正比,每个光子的能量为 \( E = hv \),其中 \( h \) 为普朗克常数,\( v \) 为光的频率。

当光子的能量大于金属的逸出功 \( W \) 时,光子会将能量传递给金属表面的电子,使其逸出金属表面。

实验中,我们通过测量不同频率的光照射到光电管上时产生的光电流,根据光电效应方程 \( E = hv - W \) 和光电子的最大初动能 \( E_k = eU_0 \),可以计算出普朗克常数 \( h \)。

三、实验仪器1. YGD-1 普朗克常量测定仪(内有 75W 卤钨灯、小型光栅单色仪、光电管和微电流测量放大器、A/D 转换器、物镜一套)2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)5. 光电管6. 测试仪四、实验步骤1. 将光电管和微电流测量放大器连接到测试仪上,调整测试仪至合适的电压和电流范围。

2. 将滤色片插入光栅单色仪,选择不同频率的光源。

3. 调节光阑,使光线照射到光电管上。

4. 测量不同频率的光照射到光电管上时产生的光电流,记录数据。

5. 根据光电效应方程和光电子的最大初动能,计算普朗克常数 \( h \)。

五、实验数据及结果1. 波长(nm):365, 405, 436, 546, 5772. 频率(\( 10^{14} \) Hz):8.214, 7.408, 6.879, 5.490, 5.1963. 截止电压(V):1.724, 1.408, 1.183, 0.624, 0.504根据实验数据,利用线性回归方法计算得到斜率 \( k \) 的值为 0.001819,根据公式 \( k = \frac{h}{e} \) 计算得到普朗克常数 \( h \) 的值为6.523×\( 10^{-34} \) J·s。

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告光电效应测普朗克常量实验报告引言:光电效应是指当光照射到金属表面时,光子的能量被电子吸收后,电子从金属中逸出的现象。

这一现象的发现和研究对于量子力学的发展起到了重要的推动作用。

本实验旨在通过测量光电流与入射光强度、频率之间的关系,来验证光电效应的基本原理,并测量普朗克常量。

实验装置与原理:实验装置主要由光源、光电管、电流计、电压源等组成。

光源产生可调节的光强度和频率的光束,光束照射到光电管的光敏表面上,产生光电效应。

光电管内部的电子被激发后,逸出金属表面,并形成光电流。

光电流通过电流计测量,进而得到与光强度和频率的关系。

实验步骤:1. 将实验装置连接好,并调整光源的光强度和频率。

2. 将光电管的光敏表面置于光源的照射下,打开电流计,记录下此时的光电流值。

3. 保持光强度不变,逐渐调整光源的频率,记录下对应的光电流值。

4. 保持光源的频率不变,逐渐调整光源的光强度,记录下对应的光电流值。

5. 根据测得的数据,绘制光电流与光强度、频率之间的关系曲线。

实验结果与分析:根据实验数据,我们可以得到光电流与光强度、频率之间的关系曲线。

在实验中,我们发现当光强度较小时,光电流随光强度的增加而线性增加;当光强度较大时,光电流趋于饱和,不再随光强度的增加而明显增加。

这一现象可以解释为,当光强度较小时,入射光子的能量不足以将电子从金属中逸出,因此光电流与光强度成正比;而当光强度较大时,入射光子的能量足以将电子逸出,此时光电流主要受到金属中自由电子的数量和能级分布的影响,因此光电流趋于饱和。

另外,我们还观察到光电流与光源频率之间的关系。

实验结果显示,光电流随着频率的增加而增加,并在某一频率达到峰值后逐渐减小。

这一现象可以通过光子能量与金属中电子能级之间的关系来解释。

根据普朗克的量子假设,光子的能量与其频率成正比,而金属中的电子只有在能级满足一定条件时才能被激发。

因此,当光源频率较小时,光子的能量不足以激发金属中的电子,导致光电流较小;而当光源频率逐渐增大时,光子的能量足以激发金属中的电子,光电流逐渐增大,并在某一频率达到峰值后逐渐减小,这是因为金属中电子能级的分布情况导致的。

光电效应法测量普郎克常数实验报告含数据

光电效应法测量普郎克常数实验报告含数据

光电效应法测量普郎克常数实验报告含数据实验目的:本实验通过光电效应测量普朗克常数h,并研究各实验因素对测量结果的影响。

实验器材:1.光电效应实验装置:包括光源、光电池、偏光片、红外滤光片、准直透镜、样品室等。

2.数字电压表:用于测量光电池产生的电压。

实验原理:根据光电效应原理,当光照射到物质表面时,如果光的能量大于物质的电离能,则光子能将电子从物质中解离出来,使光电池产生电压。

光电效应的变量包括光在物质中的波长、光强和光电池的电压。

根据普朗克常数h的定义,可以将光电效应表达式化简为V=A(λ-λ0),其中V是光电池产生的电压,A为一常数,λ为光的波长,λ0是光电池对应的截止波长。

实验步骤:1.将实验装置搭建好,并保证光源、光电池和偏光片的位置固定。

2.调节光源强度,使得光电池产生的电压在可测范围内。

3.通过调节样品室中的光强,测得光电池在不同光强下的电压值。

4.保持光强不变,通过调节偏光片的角度,测得光电池在不同偏振光条件下的电压值。

5.根据测量数据,绘制光电池电压与光强、偏振光的关系曲线,并通过曲线拟合求得普朗克常数h的值。

实验结果:实验中我们测得光电池在不同光强下的电压值如下表所示:光强(W/m^2)电压(V)10.4520.8031.1541.6552.20实验讨论:根据实验结果,我们绘制了光电池电压与光强的关系曲线,发现二者呈线性关系。

根据曲线拟合结果,我们得到普朗克常数h的值为6.62×10^-34J·s。

实验中我们还测试了光电效应在不同偏振光条件下的变化。

我们发现,在平行于偏光片方向的光照射下,光电池电压最大;而在垂直于偏光片方向的光照射下,光电池电压最小。

这与光电效应理论一致。

实验结论:通过光电效应测量普朗克常数h的实验,我们得到了h的值为6.62×10^-34J·s。

实验结果与理论值相符,证实了普朗克常数的存在,并说明光电效应是光子性质的重要实验证据。

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告一、实验目的1、了解光电效应的基本规律。

2、掌握用光电效应法测量普朗克常量。

3、学习测量截止电压的方法,并通过数据处理得出普朗克常量。

二、实验原理1、光电效应当光照射到金属表面时,金属中的电子会吸收光子的能量。

如果光子的能量足够大,电子就能克服金属表面的束缚而逸出,形成光电子。

2、爱因斯坦光电方程根据爱因斯坦的理论,光电子的最大初动能$E_{k}$与入射光的频率$ν$ 之间的关系可以表示为:\E_{k} =hν W\其中,$h$ 为普朗克常量,$W$ 为金属的逸出功。

3、截止电压当光电流为零时,所加的反向电压称为截止电压$U_{0}$。

此时有:\eU_{0} = E_{k}\结合上述两式可得:\U_{0} =\frac{hν}{e} \frac{W}{e}\当入射光的频率不变时,截止电压$U_{0}$与入射光的频率$ν$ 呈线性关系。

通过测量不同频率下的截止电压,作$U_{0} ν$ 图,其斜率$k =\frac{h}{e}$,从而可以求出普朗克常量$h$ 。

三、实验仪器光电管、汞灯、滤光片、直流电源、电压表、电流表、滑动变阻器等。

四、实验步骤1、仪器连接将光电管与直流电源、电压表、电流表等按电路图连接好。

2、预热打开汞灯预热 15 20 分钟,使其发光稳定。

3、测量暗电流在无光照的情况下,测量光电管的暗电流,调节滑动变阻器,使电流表的示数为零。

4、测量截止电压(1)依次换上不同波长的滤光片,使汞灯发出不同频率的单色光照射光电管。

(2)调节滑动变阻器,逐渐增大反向电压,直到电流表示数为零,此时的电压即为截止电压。

记录不同频率光对应的截止电压。

5、数据记录将测量得到的数据记录在表格中,包括光的频率和对应的截止电压。

五、实验数据|波长(nm)|频率(×10^14 Hz)|截止电压(V)|||||| 365 | 821 |-128 || 405 | 741 |-102 || 436 | 688 |-087 || 546 | 549 |-058 || 577 | 519 |-048 |六、数据处理1、以频率$ν$ 为横坐标,截止电压$U_{0}$为纵坐标,绘制$U_{0} ν$ 曲线。

光电效应和普朗克常量的测定实验报告

光电效应和普朗克常量的测定实验报告

光电效应和普朗克常量的测定实验报告光电效应和普朗克常数实验⼀、实验⽬的通过实验了解光电效应的基本规律,并⽤光电效应法测量普朗克常量。

在577.0nm、546.1nm、435.8nm、404.7nm四种单⾊光下分别测出光电管的伏安特性曲线,并根据此曲线确定遏⽌电位差值,计算普朗克常量。

⼆、实验仪器光电管,光源(汞灯),滤波⽚组(577.0nm,546.1nm,435.8nm,404.7nm,365nm滤波⽚,50%、25%,10%的透光⽚)。

光电效应测试仪包括:直流电源、检流计(或微电流计)、直流电压计等。

光源(汞灯):光电管:滤波⽚组盒⼦:光电效应测试仪:三、实验原理当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,⽽另⼀部分则转换为物体中某些电⼦的能量,使电⼦逸出物体表⾯,这种现象称为光电效应,逸出的电⼦称为光电⼦。

在光电效应中,光显⽰出它的粒⼦性质,所以这种现象对认识光的本性,具有极其重要的意义。

光电效应实验原理如图1所⽰。

其中S 为真空光电管,K为阴极,A为阳极。

当⽆光照射阴极时,由于阳极与阴极是断路,所以检流计G中⽆电流流过,当⽤⼀波长⽐较短的单⾊光照射到阴极K上时,形成光电流,光电流随加速电位差U变化的伏安特性曲线如图2所⽰1.光电流与⼊射光强度的关系光电流随加速电位差U的增加⽽增加,加速电位差增加到⼀定量值后,光电流达到饱和值IH,饱和电流与光强成正⽐2.光电⼦的初动能与⼊射光频率之间的关系光电⼦从阴极逸出时,具有初动能。

当U=UA -UK为负值时,光电⼦逆着电场⼒⽅向由K极向A极运动,随着U的增⼤,光电流迅速减⼩,当光电流为零,此时的电压的绝对值称为遏⽌电位差Uα。

在减速电压下,当U=Uα时,光电⼦不再能达到A极,光电流为零。

所以电⼦的初动能等于它克服电场⼒所作的功。

即1/2*mv2=eUα(1)根据爱因斯坦关于光的本性的假设,光光是⼀种微粒,即为光⼦。

每⼀光⼦的能量为,其中h为普朗克常量,v为光波的频率。

测定普朗克常数实验报告

测定普朗克常数实验报告

一、实验目的1. 通过光电效应实验,验证爱因斯坦的光电效应理论。

2. 掌握光电效应实验的基本操作和数据处理方法。

3. 测定普朗克常数,并了解实验误差及其来源。

二、实验原理光电效应是指当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出的现象。

爱因斯坦提出的光电效应方程为:\[ E_k = h\nu - W \]其中,\( E_k \) 为光电子的最大初动能,\( h \) 为普朗克常数,\( \nu \) 为入射光的频率,\( W \) 为金属的逸出功。

当光电子逸出金属表面后,在反向电压 \( U_0 \) 下,光电子会受到电场力的作用,最终达到平衡。

此时,光电子的动能等于电场力做的功,即:\[ E_k = eU_0 \]其中,\( e \) 为电子电量。

将上述两个公式联立,得到:\[ eU_0 = h\nu - W \]通过改变入射光的频率 \( \nu \),测量对应的反向截止电压 \( U_0 \),即可得到一系列 \( U_0 - \nu \) 数据。

将 \( U_0 \) 作为因变量,\( \nu \) 作为自变量,作出 \( U_0 - \nu \) 关系曲线。

若该曲线呈线性关系,则斜率 \( k \) 即为 \( \frac{h}{e} \),从而可以求出普朗克常数 \( h \)。

三、实验仪器与材料1. 光电效应测试仪2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)6. 电压表7. 频率计8. 计算器四、实验步骤1. 将光电管接入测试仪,并调整测试仪至合适的工作状态。

2. 使用滤色片和光阑调节入射光的频率和强度。

3. 测量不同频率下光电管的反向截止电压 \( U_0 \)。

4. 将测量数据记录在表格中。

5. 根据实验数据,绘制 \( U_0 - \nu \) 关系曲线。

6. 计算普朗克常数 \( h \)。

五、实验结果与分析1. 根据实验数据,绘制 \( U_0 - \nu \) 关系曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竭诚为您提供优质文档/双击可除光电效应测量普朗克常量实验报告
篇一:光电效应测普朗克常量实验报告
三、实验原理1.光电效应
当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应。

所产生的电子,称为光电子。

光电效应是光的经典电磁理论所不能解释的。

当金属中的电子吸收一个频率为v的光子时,便获得这光子的全部能量hv,如果这能量大于电子摆脱金属表面的约束所需要的脱出功w,电子就会从金属中逸出。

按照能量守恒原理有:
(1)
上式称为爱因斯坦方程,其中m和?m是光电子的质量和最大速度,是光电子逸出表面
后所具有的最大动能。

它说明光子能量hv小于w时,电子不能逸出金属表面,因而没有光电效应产生;产生光电
效应的入射光最低频率v0=w/h,称为光电效应的极限频率(又称红限)。

不同的金属材料有不同的脱出功,因而υ0也是不同的。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。

这个相对于阴极为负值的阳极电位
被称为光电效应的截止电压。

显然,有
代入(1)式,即有
(3)
由上式可知,若光电子能量
,则不能产生光电子。

产生光电效应的最低频率是
(2)
,通常称为光电效应的截止频率。

不同材料有不同的逸出功,因而也不同。

由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。

又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子ν的频率成正比,,将(3)式改写为
(4)
上式表明,截止电压
是入射光频率ν的线性函数,如图2,当入射光的频率时,
截止电压,没有光电子逸出。

图中的直线的斜率是一个正的常数:
(5)
由此可见,只要用实验方法作出不同频率下的
通过式(5)求出普朗克常数h。

其中
曲线,并求出此曲线的斜率,就可以是电子的电量。

图2u0-v直线
2.光电效应的伏安特性曲线
图3是利用光电管进行光电效应实验的原理图。

频率为ν、强度为p的光线照射到光电管阴极上,即有光电子从阴极逸出。

如在阴极K和阳极A之间加正向电压,它使K、A 之间建立起的电场对从光电管阴极逸出的光电子起加速作用,随着电压
的增加,到达阳极的光电子将逐渐增多。

当正向电压
增加到
时,光电流达到最大,不再增加,此时即称为饱和状态,对应的光电流即称为饱和光电流。

图3光电效应原理图
由于光电子从阴极表面逸出时具有一定的初速度,所以当两极间电位差为零时,仍有光电流I存在,若在两极间施
加一反向电压,光电流随之减少;当反向电压达到截止电压时,光电流为零。

图4入射光频率不同的I-u曲线图5入射光强度不同
的I-u曲线爱因斯坦方程是在同种金属做阴极和阳极,且
阳极很小的理想状态下导出的。

实际上做阴极的金属逸出功比作阳极的金属逸出功小,所以实验中存在着如下问题:(1)暗电流和本底电流。

当光电管阴极没有受到光线照射时也会产生电子流,称为暗电流。

它是由电子的热运动和光电管管壳漏电等原因造成的。

室内各种漫反射光射入光电管造成的光电流称为本底电流。

暗电流和本底电流随着K、A 之间电压大小变化而变化。

(2)阳极电流。

制作光电管阴极时,阳极上也会被溅
射有阴极材料,所以光入射到阳极上或由阴极反射到阳极上,阳极上也有光电子发射,就形成阳极电流。

由于它们的存在,使得I~u曲线较理论曲线下移,如图6所示。

图6伏安特性曲线
五、数据记录与处理1、零电流法测h
第一组:普朗克常数:6.65×
J·s误差0.30%
第二组:普朗克常数:6.64×第三组:普朗克常数:6.64×2、补偿法测h
普朗克常数:6.68×
J·s误差0.88%
J·s误差0.26%J·s误差0.
21%
3、伏安特性曲线见下页。

六、思考讨论
1、什么是光电效应,及内,外光电效应和单光子,多
光子光电效应。

当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应。

所产生的电子,称为光电子。

常说的光电效应是外光电效应,即电子从金属表面逸出。

内光电效应是光电效应的一种,主要由于光量子作用,引发物质电化学性质变化。

内光电效应又可分为光电导效应和光生伏特效应。

光电导效应:当入射光子射入到半导体表面时,半导体吸收入射光子产生电子空穴对,使其自生电导增大。

光生伏特效应:当一定波长的光照射非均匀半导体(如pn 结),在自建场的作用下,半导体内部产生光电压。

篇二:光电效应测普朗克常量实验报告
光电效应测普朗克常量实验报告
一、实验题目
光电效应测普朗克常数
二、实验目的。

相关文档
最新文档