六年级上册数学提升—易错难点试题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级上册数学提升—易错难点试题含答案

一、培优题易错题

1.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:

售出件数763545

售价(元)+2+2+10﹣1﹣2

【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为:

(45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)]

=13×30+[14+12+3+(-4)+(-10)]

=390+15

=405(元),

即该服装店在售完这30件连衣裙后,赚了405元

【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.

2.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m处. 商场在学校西200m处,医院在学校东500m处.若将马路近似地看做一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.

(1)在数轴上表示出四家公共场所的位置.

(2)列式计算青少年宫与商场之间的距离.

【答案】(1)解:如图所示:

(2)解:由题意可得:300-(-200)=500或︱-200-300︱=500.

答:青少年宫与商场之间的距离是500 m

【解析】【分析】(1)根据题意画出学校为原点的数轴,在数轴上表示出四家公共场所的位置;(2)根据题意青少年宫与商场之间的距离是300-(-200),再根据减去一个数等于加上这个数的相反数,求出青少年宫与商场之间的距离.

3.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。(单位:km)

(1)求收工时距A地多远?

(2)在第________次纪录时距A地最远。

(3)若每千米耗油0.3升,问共耗油多少升?

【答案】(1)解:根据题意列式-4+7-9+8+6-5-2=1km.

答:收工时距A地1km,在A的东面

(2)五

(3)解:根据题意得检修小组走的路程为:

|-4|+|+7|+|-9|+8|+|+6|+|-5|+|-2|=41(km)

41×0.3=12.3升.

答:检修小组工作一天需汽油12.3升

【解析】【解答】解:(2)由题意得,第一次距A地|-4|=4千米;第二次距A地-4+7=3千米;第三次距A地|-4+7-9|=6千米;第四次距A地|-4+7-9+8|=2千米;第五次距A地|-4+7-9+8+6|=8千米;第六次距A地|-4+7-9+8+6-5|=3千米;第五次距A地|-4+7-9+8+6-5-2|=1千米;所以在第五次纪录时距A地最远.

故答案为:五.

【分析】(1)根据题意得到收工时距A地(-4+7-9+8+6-5-2),正数在东,负数在西;(2)根据题意得到五次距A地最远;(3)根据题意和距离的定义,得到共走了的距离,再求出耗油量.

4.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占、和,已知三缸酒精溶液总量是千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达.那么,丙缸中纯酒精的量是多少千克?

【答案】解:设丙缸酒精溶液的重量为千克,则乙缸为千克。根据纯酒精的量可列方程:

所以丙缸中纯酒精的量是:(千克)。

答:丙缸中纯酒精的量是12千克。

【解析】【分析】根据三缸酒精溶液的容量和与倍数关系可知,甲缸共有50千克,乙和丙共有50千克。等量关系:甲缸纯酒精量+乙缸纯酒精量+丙缸纯酒精量=混合后纯酒精量,先设出未知数,再根据等量关系列出方程,解方程求出丙缸酒精溶液的量,进而求出丙缸中纯酒精的量。

5.一项工程,甲独做天完成,甲天的工作量,乙要天完成.两队合做天后由乙队独做,还要几天才能完成?

【答案】解:乙的工作效率:,

=

=(天)

答:还要天才能完成。

【解析】【分析】用甲的工作效率乘3再除以4即可求出乙的工作效率,用总工作量减去两队合作2天的工作量即可求出还剩的工作量,还剩的工作量由乙来做,用剩下的工作量除以乙的工作效率即可求出还需要的时间。

6.一件工程甲单独做小时完成,乙单独做小时完成.现在甲先做小时,然后乙做小时,再由甲做小时,接着乙做小时……两人如此交替工作,完成任务共需多少小时?

【答案】解:假设两队交替做4次,甲的工作量:,

乙的工作量:,

还剩下的工作量:,

甲还要做:(小时),

总时间:(1+3+5+7)+(2+4+6+8)+=(小时)。

答:完成任务共要小时。

【解析】【分析】交替4次,甲工作的时间是1、3、5、7小时,乙工作的时间是2、4、6、8小时。用每队的工作效率乘各自的工作时间求出各自完成的工作量,用1减去两队分别完成的工作量即可求出剩下的工作量。剩下的工作量该甲做了,因此用剩下的工作量除以甲的工作效率就是甲还需要做的时间。然后把两队工作的总时间相加即可求出共需要的时间。

7.一项工程,乙单独做要天完成.如果第一天甲做,第二天乙做,这样交替轮流做,那么恰好用整天数完成;如果第一天乙做,第二天甲做,这样交替轮流做,那么比上次轮流的做法多用半天完工.问:甲单独做需要几天?

【答案】解:设甲、乙工作效率分别为和,那么,

所以,乙单独做要用17天,甲的工作效率是乙的2倍,

所以甲单独做需要:17÷2=8.5(天)

答:甲单独做需要8.5天。

【解析】【分析】甲、乙轮流做,如果是偶数天完成,那么乙、甲轮流做必然也是偶数天完成,且等于甲、乙轮流做的天数,与题意不符;所以甲、乙轮流做是奇数天完成,最后一天是甲做的。那么乙、甲轮流做比甲、乙轮流做多用半天,这半天是甲做的。这样就可以设出两队的工作效率,根据工作效率的关系计算甲独做需要的天数。

8.甲、乙、丙3队要完成A,B两项工程.B工程的工作量比A工程的工作量多.甲、乙、丙3队单独完成A工程所需时间分别是20天、24天、30天.为了同时完成这两项工程,先派甲队做A工程,乙、丙两队共同做B工程;经过几天后,又调丙队与甲队共同完成A工程.那么,丙队与乙队合作了多少天?

【答案】解:总工作量:,

三队合做完成总工作量的时间:(天),

乙完成的工作量:,

B工程中丙完成的时间:(天)。

答:丙队与乙队合作了15天。

【解析】【分析】三队是同时开工,同时完成工程,实际就是三队合做完成了两项工程。

相关文档
最新文档