衡水中学-2016学年高一数学上学期期末试卷
3.导数(原卷版)
第三章 导数一.基础题组1.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】曲线3cos 02y x x π⎛⎫=≤≤ ⎪⎝⎭与x 轴所围图形的面积为( )A .4B .2C .52D .3 2.【湖南省师大附中、长沙一中、长郡中学、雅礼中学2016届高三四校联考数学(理)试题】已知⎰=211xdx S ,⎰=212dx e S x ,⎰=2123dx x S ,则1S ,2S ,3S 的大小关系为( )A .321S S S <<B .231S S S <<C .123S S S <<D .132S S S << 3.【江西省南昌市第二中学2016届高三上学期第四次考试数学(理)试题】曲线)230(cos π≤≤=x x y 与坐标轴所围成图形的面积为( )A. 2B. 3C. 2.5D. 44.【江西省南昌市第二中学2016届高三上学期第四次考试数学(理)试题】设)(x f 是定义在R 上的函数,其导函数为)(x f ',若)(x f +1()f x '<,()02015f =,则不等式201(4)x xe ef x ->(其中e 为自然对数的底数)的解集为( )A .()2014,2015B .()()02015, -∞+∞ ,C .()0+∞,D .()0∞-, 5.【山西省康杰中学、临汾一中、忻州一中、长治二中2016届上学期第二次联考数学(理)试题】定积分⎰=6.【河北省武邑中学2016届高三上学期期末考试数学(理)试题】若函数x a x x f ln )(+=不是单调函数,则实数a 的取值范围是_______.7.【河北省衡水中学2016届高三上学期七调考试数学(理)试题】设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x⎛⋅+ ⎝的展开式中常数项是 .二.能力题组1.【湖南省长沙市雅礼中学2016届高三月考试卷(三)数学(理)试题】若定义在R 上的函数()f x 满足()01f =-,其导函数()'f x 满足()'1f x k >>,则下列结论中一定错误的是( )A . 11f k k ⎛⎫<⎪⎝⎭ B .111f k k ⎛⎫>- ⎪⎝⎭ C .1111f k k ⎛⎫<⎪--⎝⎭D .111k f k k ⎛⎫> ⎪--⎝⎭2.【河北省衡水中学2016届高三上学期四调考数学(理)试题】设过曲线()xf x e x =--(e 为自然对数的底数)上任意一点处的切线为1l ,总存在过曲线()2cos g x ax x =+上一点处的切线2l ,使得12l l ^,则实数a 的取值范围为( )A .[]1,2-B .()1,2-C .[]2,1-D .()2,1-3.【河北省衡水中学2016届高三上学期四调考数学(理)试题】设函数()f x 满足()()22xex f x xf x x¢+=,()228e f =,则0x >时()f x ( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值4.【湖南省师大附中、长沙一中、长郡中学、雅礼中学2016届高三四校联考数学(理)试题】已知函数()ln f x x x x =+,若Z k ∈,且)()2(x f x k <-对任意的2>x 恒成立,则k 的最大值为( )A .3B .4C .5D .65.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】设()f x 是定义在R 上的函数,其导函数为()'f x ,若()()'1f x f x +>,()02015f =,则不等式()2014xxe f x e >+(其中e 为自然对数的底数)的解集为( )A .()(),00,-∞+∞B .()0,+∞C .()2014,+∞D .()(),02014,-∞+∞6.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】设函数()xf x mπ=,若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A .()(),22,-∞-+∞B .()(),44,-∞-+∞C .()(),66,-∞-+∞D .()(),11,-∞-+∞7.【湖南省衡阳市第八中学2016届高三上学期第三次月考数学(理)】由直线3π-=x ,3π=x ,0=y 与曲线x y cos =所围成的封闭图形的面积为8.【河北省衡水中学2016届高三上学期七调考试数学(理)试题】()f x 是定义在R 上的函数,其导函数为()'f x ,若()()()'1,02016f x f x f -<=,则不等式()20151xf x e >⋅+(其中e 为自然对数的底数)的解集为 .9.【江西省南昌市第二中学2016届高三上学期第四次考试数学(理)试题】(本小题满分12分) 已知函数2()ln (,)f x ax bx x a b R =+-∈.(Ⅰ)设a b -=2,求)(x f 的零点的个数;(Ⅱ)设0a >,且对于任意0x >,()(1)f x f ≥,试比较ln a 与2b -的大小.10.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】已知函数()1xf x e ax =+-(e 为自然对数的底数).(1)当1a =时,求过点()()1,1f 处的切线与坐标轴围成的三角形的面积; (2)若()2f x x ≥在(0,1)上恒成立,求实数a 的取值范围.11.【湖南省长沙市雅礼中学2016届高三月考试卷(三)数学(理)试题】(本小题满分12分) 已知函数()()2ln x a f x x-=(其中a 为常数).(1)当a =0时,求函数的单调区间;(2)当0<a <1时,设函数()f x 的3个极值点为123,,x x x ,且123x x x <<.证明:13x x +>12.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】已知函数()f x 满足()()22f x f x =+,且当()0,2x ∈时,()1ln 2f x x ax a ⎛⎫=+<- ⎪⎝⎭,当()4,2x ∈--时,()f x 的最大值为-4. (1)求实数a 的值;(2)设0b ≠,函数()()31,1,23g x bx bx x =-∈.若对任意()11,2x ∈,总存在()21,2x ∈,使()()12f x g x =,求实数b 的取值范围.13.【湖南省师大附中、长沙一中、长郡中学、雅礼中学2016届高三四校联考数学(理)试题】(本小题满分12分)已知函数e e bx ax x f x()12()(2-++=为自然对数的底数). (1)若21=a ,求函数)(x f 的单调区间; (2)若1)1(=f ,且方程1)(=x f 在)1,0(内有解,求实数a 的取值范围.14.【山西省康杰中学、临汾一中、忻州一中、长治二中2016届上学期第二次联考数学(理)试题】(本小题满分12分)已知函数12()ln .x xe f x e x x-=+(1)求曲线()y f x =在1x =处的切线方程; (2)证明:()1f x >.15.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】已知函数()()323257,ln 22f x x x ax bg x x x x b =+++=+++,(,a b 为常数). (1)若()g x 在1x =处的切线过点(0,-5),求b 的值;(2)设函数()f x 的导函数为()'f x ,若关于x 的方程()()'f x x xf x -=有唯一解,求实数b 的取值范围; (3)令()()()F x f x g x =-,若函数()F x 存在极值,且所有极值之和大于5ln 2+,求实数a 的取值范围.三.拔高题组1.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】已知函数()ln 1x f x x+=. (1)求函数()f x 的单调区间和极值;(2)若对任意的1x >,恒有()ln 11x k kx -++≤成立,求k 的取值范围;(3)证明:()()2222ln 2ln 3ln 21,24123++n n n n N n n n+--+⋅⋅⋅<∈≥+.2.【湖南省衡阳市第八中学2016届高三上学期第三次月考数学(理)】已知函数x x x x f +-=2ln )(. (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若关于x 的不等式112)(2-+⎪⎭⎫⎝⎛-≤ax x a x f 恒成立,求整数a 的最小值; (Ⅲ)若正实数21,x x 满足+)(1x f 0)(2)(2122212=+++x x x x x f ,证明21521-≥+x x . 3.【河北省冀州市中学2016届高三上学期一轮复习检测一数学(理)试题】(本题满分12分) 已知函数()mf x mx x=-,()2ln g x x =。
衡水中学度第一学期期末考试高一数学试题
河北省衡水中学2008-2009学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
第I 卷 (选择题 共60分)一、 选择题:(本大题共12小题,在每个小题所给出的四个选项中,有且只有一个是正确的,请将正确的选项选出,将其代码填涂到答题卡上.每小题5分,共60分)1. 设集合A 、B 是全集U 的两个子集,则A B 是U B A C U = )(的 A 、充分不必要条件 B 、必要不充分条件C 、充要条件 D 、既不充分也不必要条件2. 设0ab ≠,化简式子()()()61531222133ab baba ∙∙--的结果是A 、1ab -B 、()1ab - C 、a D 、1a -3. 设1a <-,则关于x 的不等式()10a x a x a ⎛⎫--< ⎪⎝⎭的解集为 A 、1,x x a x a ⎧⎫<>⎨⎬⎩⎭或 B 、1xx a a ⎧⎫<<⎨⎬⎩⎭C 、1,x x a x a ⎧⎫><⎨⎬⎩⎭或D 、1x a x a ⎧⎫<<⎨⎬⎩⎭4. 定义在R 上的函数()y f x =在()0,2上单调递减,其图象关于直线2x =对称,则下列式子可以成立的是A 、()15322f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B 、()51322f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C 、()15322f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D 、()51322f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭5. 如果函数()12x f x a-=+的反函数的图象经过定点P ,那么P 点的坐标为A 、()2,5B 、()1,3C 、()5,2D 、()3,16. 若一个等差数列前三项的和为34,最后三项的和为146,且所有项的和为390,则这个数列有A 、13项B 、12项C 、11项D 、10项 7. 函数2212x x y -++⎛⎫=⎪⎝⎭的单调增区间是⊂≠A 、1,2⎛⎤-∞ ⎥⎝⎦ B 、1,2⎡⎫+∞⎪⎢⎣⎭ C 、[)2,+∞ D 、(],1-∞-8. 若方程250x x m -+=与2100x x n -+=的四个根适当排列后,恰好组成一个首项为1的等比数列,则mn的值为 A 、4 B 、2 C 、12 D 、149. 函数()221y x x x =-≤的反函数为A、()11y x =≥- B、()11y x =≥-C、)11y x =≥- D、)11y x =-≥-10. 对任意实数x ,若不等式21x x k --+<恒成立,则实数k 的取值范围是A 、3k ≥B 、3k >C 、3k ≤-D 、3k <-11. 已知()()()()3141log 1a a x a x f x x x -+<⎧⎪=⎨≥⎪⎩是R 上的减函数,那么a 的取值范围是A 、()0,1B 、10,3⎛⎫ ⎪⎝⎭C 、11,73⎡⎫⎪⎢⎣⎭D 、1,17⎡⎫⎪⎢⎣⎭12. 若数列{}n a 满足321n n n na a k a a +++⋅=⋅(k 是常数,*n N ∈),则称{}n a 为邻积等比数列。
2023届河北省衡水中学高三上学期期末数学试题(PDF版)
2 cos2 A cos2 B
3 a2 2
3S
2
3
(1)求∠A 大小;
(2)若
D
为
BC
上近
C
三等分点(即
CD
1 3
BC
),且
AD
【答案】(1) π 3
2 ,求 S 最大值.
(2) 3 3 4
【解析】
【分析】(1)由向量的运
算整理可得
uur CB
uuur AO
1
c2
1
b2
,结合正弦定理、余
弦定理和面积
二、多选题:本题共 4 个小题,每题 5 分,共 20 分.在每个小题给出的四个选 项中,有多项是符合题目要求的.全部选对 5 分,部分选对得 2 分,有选错的得 0 分.
9.【答案】BCD 10.【答案】BD 11.【答案】AD 12.【答案】AC
三、填空题:本题共 4 小题,每小题 5 分,共 20 分 13.【答案】 559
A. 1
B. 2
C. 2
D.
1 2
uuur uuur uuur 3. 在△ABC 中,O 为重心,D 为 BC 边上近 C 点四等分点, DO mAB nAC ,则 m+n
=()
1
A.
3
B. 1 3
5
C.
3
D. 5 3
4. 一个灯罩可看作侧面有布料的圆台,在原形态下测得的布料最短宽度为 13,将其压扁变
1.
M
若集合
x∣y
ln
(
xN
y∣y2 4
,则()
A. 2 M N
B.
M N {a∣a [2, 2](4, )}
C. N {a∣a (, 2) (2, )}
2023-2024学年河北省衡水中学高一下学期开学检测数学试题及答案
2023—2024学年高一第二学期开学检测考试数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.本试卷主要考试内容:人教A 版必修第一册。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}34M x x =−<<,1102N x x=+>,则M N = ( )A.()3,3− B.()3,6− C.()2,4− D.()3,2−2.“4a ≥”是“4a ≥”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知角α的终边经过点(,则角α的值可能为()A.3πB.6πC.23π D.56π4.已知0.33a −=,cos 2b =,lg11c =,则()A.c a b<< B.a b c<< C.b c a << D.b a c<<5.将函数()cos 2f x x =图象上所有的点都向左平移3π个单位长度后,再将所得函数图象上所有点的横坐标变为原来的2倍,得到函数()g x 的图象,则()g x =()A.cos 6x π+B.cos 43x π+C.2cos 3x π −D.2cos 3x π +6.函数()2e ,0,32,0x x x f x x x x +<= −+≥ 的零点个数为()A.1B.2C.3D.47.已知函数()sin 06y x πωω=+>在0,3π上有且只有一个最大值点(即取得最大值对应的自变量),则ω的取值范围是()A.[]1,7 B.(]1,7 C.()1,7 D.(]4,78.已知()()25321,1,log ,1mm x m x f x x x −−+<= ≥ 是R 上的单调函数,则m 的取值范围是( )A.(]10,1,22B.[)13,2,25 +∞ C.()13,2,25+∞D.[)10,2,2+∞二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题是真命题的是( )A.若函数()32f x x =+,则()84f =B.“x ∀∈R ,20x x +>”的否定是x ∃∈R ,20x x +≤” C.函数23y x =为奇函数D.函数()()100log 2199x a f x a x −=+−(0a >且1a ≠)的图象过定点(100,1) 10.若关于x 的不等式2420ax x −+<有实数解,则a 的值可能为()A.0B.3C.1D.-211.已知函数()()sin 0,0,2f x A x A πωϕωϕ=+>><的部分图象如图所示,若78OC =,tan 2NCM ∠=,则()A.()sin 8f x x ππ=+B.()f x 的单调递增区间为()53,88k k k −++∈ Z C.()f x 的图象关于点5,08对称D.()f x 的图象关于直线58x =−对称12.已知函数()22,1,41, 1.x x x f x x x+≤ = −> 若(),,,,m n k t c m n k t c <<<<满足()()()()()f m f n f k f t f c a =====,则下列结论正确的是()A.()0,1a ∈B.4m n k t +++=−C.若()()()()()b mf m nf n kf k tf t cf c =++++,则()2,0b ∈−D.若()()()s mf m tf t cf c =++,则(0,6s ∈三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.函数()()()ln 4ln 4f x x x =+−−的定义域为_____________.14.若正数m ,n 满足2212516m n +=,则mn 的最大值为____________.15.一扇环形砖雕如图所示,该扇环形砖雕可视为扇形OMN 截去同心扇形OPQ 所得的部分,已知6PM =分米,弧MN 长为4π分米,弧PQ 长为2π分米,则OP = ____________分米,此扇环形砖雕的面积为____________平方分米.16.若函数()1221log 2x xf x k+−=+在()1,+∞上满足()()f f x x =恒成立,则k =____________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分) 计算:(1)23lg 2log 27log 2+−×;(2)()122381sin14−−−−−.18.(12分)已知函数()log a h x x =(0a >且1a ≠),()()72322h h −=.(1)求方程2335h x x−=的解集;(2)求关于m 的不等式()()432h m h m −>+的解集.19.(12分) 已知33sin 25πα+=,3,2παπ∈. (1)求sin 24πα+的值;(2)求tan2α的值.20.(12分)已知函数())26sin cos 0f x ax ax ax a =+−>的最小正周期为π.(1)将()f x 化简成()()sin 0,0,3f x A x B A πωϕωϕ=++>><的形式;(2)设函数()2x g x f=,求函数()566h x g x g x ππ −+− 在5,66ππ 上的值域. 21.(12分)已知某批药品在2023年治愈效果的普姆克系数y (单位:pmk )与月份()112,x x x ≤≤∈N 的部分统计数据如下表:x /月 10 11 12普姆克系数y /pm 10240 20480 40960(1)根据上表数据,从下列两个函数模型①()0,1x y ma m a =>>,②()0,0y m n m =+>>中选取一个恰当的函数模型描述该批药品在2023年治愈效果的普姆克系数y 与月份x 之间的关系,并写出这个函数解析式;(2)用(1)中的函数模型,试问哪几个月该批药品治愈效果的普姆克系数在(1000,10000)内?22.(12分)已知函数()3322x x f x m −+⋅为偶函数.(1)求m 的值;(2)若关于x 的不等式233x x f kf≥−恒成立,求k 的取值范围; (3)若()84c f c c −=−+,证明:()1053314f c <<.2023—2024学年高一第二学期开学检测考试数学参考答案1.C 由题意得{}2Nx x =>−,则()2,4M N =− .2.A 由4a ≥,解得4a ≤−或4a ≥,则“4a ≥”是“4a ≥”的充分不必要条件.3.A由题意得tanα=α的终边在第一象限,所以角α的值可能为3π.4.D 因为0.3031a −<=<,cos 20b <,lg11lg101c =>=,所以b a c <<.5.C ()f x 的定义域为R ,排除选项D.因为()20f =,()40f =,所以排除A ,B.6.C 当0x ≥时,令2320x x −+=,解得1x =或2x =;当0x <时,令e 0xx +=,则e xx =−,画出函数e x y =与函数y x =−的图象(图略),可知在(],0−∞上有一个公共点.故()f x 的零点个数为3.7.A 当49S N =时,()11log 149log 50a a C W =+=,当2499SN=时,()22log 12499log 2500a a C W =+=,则12122112log 25002log 50a a W C W C W C C W =⋅==. 8.B 若()f x 在R 上单调递增,则2530,1,5321log 1,m m m m m −>> −−+≤ 解得2m ≥ .若()f x 在R 上单调递减,则2530,01,5321log 1,m m m m m −< << −−+≥解得1325m ≤<.故m 的取值范围是[)13,2,25+∞ . 9.ABD 令2x =,则()8224f =+=,A 正确.全称量词命题的否定是特称量词命题,B 正确.23y x =是偶函数,C 错误.令100x =,则()0100log 11a f a =+=,D 正确.10.ACD 当0a =时,不等式420x −+<有解,符合题意.当0a <时,得1680a =−>△,则不等式2420ax x −+<有解,当0a >时,由1680a =−>△,解得02a <<.综上,a 的取值范围为(),2−∞.11.ACD令0x y ==,得()()()()220000f f f f =−⋅=,A正确.令2x =,得()()()()2222222f y f f f y y y +=−⋅−=−,则()2f y y +=−,即()2f x x +=−,则函数()2y f x =+是减函数,B 错误.()()220f x f x x x −++=−=,C 正确.由()2f x x +=−,可得()2f x x =−+,则()()()22111xf x x x x =−+=−−+≤,D 正确.12.ABC 作出()f x 的图象,如图所示.由图可知,()0,1a ∈,A 正确.由对称性可得122m t n k++==−,所以4m n k t +++=−,B 正确. 令411x −=,解得2x =,令410x −=,解得4x =,则24c <<,()()4b a m n k t c a c =++++=−,41a c =−,则()416148b c c c c=−−=−−,()2,4c ∈,因为函数16y c c =+在(2,4)上单调递减,所以()168,10c c+∈,则()2,0b ∈−C 正确.()()48216s a m t c c c c c=++=−−=−−,8c c +≥当且仅当8c c ==时,等号成立,因为86404−−=,86202−−=,所以(0,6s ∈−,D 错误.13.()4,+∞ 由40,40,x x +> −>得4x >.14.10 因为221225165410m n mn mn +=≥=×=×,当且仅当222516m n =,即45m n ==成立,所以10mn ≤,故mn 的最大值为10. 15.6;18π设圆心角POQ α∠=,则2446OP OM OP πππα===+,解得6OP =分米,所以12OM =分米,则此扇环形砖雕的面积为11412261822πππ××−××=平方分米.16.-2设1221log 2x xy k +−=+,则12122x y x k +−=+,即21222y xy k −⋅−=−①,由()()f f x x =得()f y x =,则12122y xy k+−=+②,由①②可得12121222y y y y k k +−⋅−−=−+,即()()2222210y yk k ++−+= ,因为()22221y y k +−+不恒为0,所以20k +=,所以2k =−,经验证,符合题意.17.解:(1)原式23lg 5lg 23log 3log 2lg103132=+−×=−=−=−(2)原式211132324221101271271819939−−=−−=−−=−−=−. 18.解:(1)由()()72322h h −=,得log 723log 2log 72log 8log 92a a a a a −=−==, 则29a =,解得3a =.3223log 323335h x x x x x x−−==−=, 即23520x x −−=,解得2x =或13−,故方程2335h x x−=的解集为1,23−.(2)因为()3log h x x =是()0,+∞上的增函数,()()432h m h m −>+,所以40,320,432,m m m m −>+> −>+解得2132m −<<,则不等式()()432h m h m −>+的解集为21,32 −. 19.解:(1)()()()()()23sin cos sin sin 2tan cos cos sin cos 2f παπαααααπαααπα−− −⋅− ===−⋅−−+,则22353551tan tan 6663f πππ =−=−=−.(2)由(1)知2tan 4θ=,因为3,2πθπ∈,所以tan 2θ=. 方法一:22226sin 5sin cos 6sin 5sin cos sin cos θθθθθθθθ−−=+ 22222226sin 5sin cos 6tan 5tan 14cos sin cos tan 15cos θθθθθθθθθθ−−==++方法二:sin θ=cos θ=,22146sin 5sin cos 655θθθ −=×−××= .20.解:(1)令e e xt +=,得()ln e x t =−,e t >,因为()e e 1xf x +=+,所以()()ln e 1f t t =−+,所以()()ln e 1f x x =−+,()e,x ∈+∞.(2)由题意得()()ln ln ln 2g x x x =++.令ln x a =,由ee,e x ∈ ,得[]ln 1,e a x =∈,()()ln 2g x h a a a ==++,易得()h a 在[]1,e 上单调递增,所以()()()1e h h a h ≤≤,()1ln1123h =++=,()e ln e e 23e h =++=+,故()g x 在ee,e 上的值域为[]3,3e +.21.解:(1)因为函数模型①是指数型函数,其增长速度较快,函数模型②的增长速度较为缓慢,所以根据表中数据,应选函数模型①更为恰当.根据题意可得11x =时,20480y =;当12x =时,40960y =.由111220480,40960,ma ma = =解得10,2.m a = = 故该函数模型的解析式为()102112,x y x x =×≤≤∈N .(2)函数102x y =×在其定义域内单调递增.令100010210000x<×<,得22log 100log 1000x <<,又x ∈N ,所以79x ≤≤,故7月份,8月份,9月份这三个月该批药品治愈效果的普姆克系数在(1000,10000)内. 22.(1)解:因为()f x 为偶函数,所以()()f x f x −=,即33332222xx x x m m −−+⋅+⋅,()()331220x x m −−−=,得10m −=,1m =. (2)解:不等式233x x f kf≥−恒成立,即()2222220x x x xk −−+−+≥恒成立,因为220x x −+>,所以222222222222x xx x x xx xk −−−−+≤=+−++,令222xxt −=+≥=,当且仅当0x =时,等号成立,因为函数()2g t t t=−在[)2,+∞上单调递增,所以()()2211g t g ≥=−=,所以1k ≤,即k 的取值范围为(],1−∞.(3)证明:由()84c f c c −=−+,得8884cccc −−+=−+,即840c c +−=,设函数()84x x x ϕ=+−,则()x ϕ在R 上单调递增,因为()88log 33log 340ϕ=+−<,()8888log 3.5 3.5log 3.54log 3.50.5log 0.50ϕ=+−=−>−=,所以880log 3log 3.51c <<<<,设任意120x x <<,()()11223333122222x x x x f x f x −−−=+−−()12121212121288818888888x x x x x x x x x x x x ++−−=−−=−⋅⋅,因为12880x x −<,12810x x +−>,所以()()120f x f x −<,即()()12f x f x <, 所以()f x 在()0,+∞上单调递增,则()()()88log 3log 3.5f f c f <<, 因为()88883log 33log 3log 3log 38110log 32288333f −−=+=+=+=, ()88393log 3.53log 3.5log 3.5log 3.587253log 3.522882714f −−=+=+=+=,即()1053314f c <<.。
衡水中学2022-2023学年高一数学第一学期期末学业质量监测试题含解析
,解得 .
故选:B.
9、D
【解析】由对数函数的单调性判断出 ,再根据幂函数 在 上单调递减判断出 ,即可确定大小关系.
【详解】因为 , ,所以
故选:D
【点睛】本题考查利用对数函数及幂函数的单调性比较数的大小,属于基础题.
10、A
【解析】对于A,因为垂直于同一平面的两条直线相互平行,故A正确;对于B,如果一条直线平行于一个平面,那么平行于已知直线的直线与该平面的位置关系有平行或在平面内,故B错;对于C,因同平行于一个平面的两条直线异面、相交或平行,故C错;对于D,与一个平面的平行直线垂直的直线与已知平面是平行、相交或在面内,故D错,选A.
17.如图,已知 , 分别是正方体 的棱 , 的中点.求证:平面 平面 .
18.已知函数
(1)判断 的奇偶性,并加以证明;
(2)求函数的值域
19.已知
(1)化简 ;
(2)若 ,求 值
20.设 ,且 .
(1)求 的值;
(2)求 在区间 上的最大值.
21.已知函数 ,函数 的最小正周期为 .
(1)求函数 的解析式,及当 时, 的值域;
【小问2详解】
令 ,
且 , , 或 ,
或 , 的值域为 .
19、(1)
(2) .
【解析】(1)根据诱导公式及同角关系式化简即得;
(2)根据 可知 ,从而求得结果.
【小问1详解】
由诱导公式可得:
;
【小问2详解】
由于 ,有 ,得 ,
,可得
故 的值为 .
20、(1) ;(2)2
【解析】(1)直接由 求得 的值;
【点睛】本题考查含有一个量词的命题的否定,是基础题.
河北省衡水市衡水中学2024-2025学年高二上学期综合素质评价二数学试题
河北省衡水市衡水中学2024-2025学年高二上学期综合素质评价二数学试题一、单选题130y --=的倾斜角为( )A .π3B .π6C .π4D .2π3 2.已知直线a 的方向向量为a r ,平面α的法向量为n r ,下列结论成立的是( )A .若//a n r r ,则//a αB .若a n ⊥r r ,则a α⊥C .若//a n r r ,则a α⊥D .若a n ⊥r r ,则//a α 3.已知圆22:10C x y mx +++=的面积为π,则m =( )A .2±B .±C .±D .8±4.已知两点()3,2A -,()2,1B ,过点()0,1P -的直线l 与线段AB (含端点)有交点,则直线l 的斜率的取值范围为( )A .(][),11,-∞-+∞UB .[]1, 1-C .[)1,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭ D .1,15⎡⎤-⎢⎥⎣⎦ 5.已知(0,1,1)A ,(2,1,0)B -,(3,5,7)C ,(1,2,4)D ,则直线AB 和直线CD 所成角的余弦值为( )A B . C D .6.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102AG λλ=<<,则点G 到平面1D EF 的距离为( )A B C D 7.若动点()11,M x y ,()22,N x y 分别在直线70x y ++=与直线50x y ++=上移动,则MN 的中点P 到原点的距离的最小值为( )A .B .C .D .8.边长为1的正方体1111ABCD A B C D -中,E ,F 分别是1AA ,11A D 中点,M 是DB 靠近B的四等分点,P 在正方体内部或表面,()0DP EF MF ⋅+=u u u r u u u r u u u r ,则DP u u u r 的最大值是( )A .1 BC D二、多选题9.如图,四棱柱1111ABCD A B C D -中,M 为1CD 的中点,Q 为1CA 上靠近点1A 的五等分点,则( )A .11132AM AB AD AA =++u u u u r u u u r u u u r u u u r B .122AM AB AD AA =++u u u u r u u u r u u u r u u u r C .1133545AQ AB AD AA =++u u u r u u u r u u u r u u u r D .154AQ AB AD AA =++u u u r u u u r u u u r u u u r10.已知两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +-=,下列结论正确的是( )A .若12//l l ,则6a =B .若12//l l ,则两条平行直线之间的距离为74C .若12l l ⊥,则323a =D .若6a ≠,则直线1l ,2l 一定相交11.如图,在多面体ABCDES 中,SA ⊥平面ABCD ,四边形ABCD 是正方形,且//DE SA ,22SA AB DE ===,M N ,分别是线段BC SB ,的中点,Q 是线段DC 上的一个动点(含端点D C ,),则下列说法正确的是( )A .存在点Q ,使得NQ SB ⊥B .存在点Q ,使得异面直线NQ 与SA 所成的角为60oC .三棱锥Q AMN -体积的最大值是23D .当点Q 自D 向C 处运动时,直线DC 与平面QMN 所成的角逐渐增大三、填空题12.已知点()4,2P -,点A 为圆224x y +=上任意一点,则PA 连线的中点轨迹方程是. 13.已知点(2,1)P --和直线:(12)(13)20l x y λλλ++-+-=,则点P 到直线l 的距离的取值范围是.14.如图,已知点A 是圆台1O O 的上底面圆1O 上的动点,,B C 在下底面圆O 上,11AO =,12OO =,3BO =,BC =AO 与平面1O BC 所成角的正弦值的最大值为.四、解答题15.在Rt ABC △中,90BAC ∠=︒,BC 边上的高AD 所在直线的方程为220x y -+=,A ∠的平分线所在直线的方程为0y =,点B 的坐标为()1,3.(1)求直线BC 的方程;(2)求直线AC 的方程及点C 的坐标.16.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为矩形,且12,,AA AB AD E F ==分别为111,C D DD 的中点.(1)证明://AF 平面1A EB .(2)求平面11A B B 与平面1A BE 夹角的余弦值.17.已知直线()1:340l kx y k k ---=∈R 过定点P .(1)求过点P 且在两坐标轴上截距的绝对值相等的直线2l 方程;(2)若直线1l 交x 轴正半轴于点A ,交y 轴负半轴于点B ,ABC V 的面积为S (O 为坐标原点),求S 的最小值并求此时直线1l 的方程.18.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,AB AD ⊥,PA PD =,1AB =,2AD =,AC CD =(1)求证:PD ⊥平面PAB .(2)求直线PB 与平面PCD 所成角的正弦值.(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求出AM AP的值;若不存在,请说明理由. 19.在空间直角坐标系O xyz -中,已知向量(),,u a b c =r ,点()0000,,P x y z 若直线l 以u r 为方向向量且经过点0P ,则直线l 的标准式方程可表示为000x x y y z z a b c---==(0abc ≠);若平面α以u r 为法向量且经过点0P ,则平面α的点法式方程表示为()()()0000a x x b y y c z z -+-+-=.(1)已知直线l 的标准式方程为112x z -==,平面1α的点法式方程可表示为50y z +-+=,求直线l 与平面1α所成角的余弦值;(2)已知平面2α的点法式方程可表示为2320x y z ++-=,平面外一点()1,2,1P ,点P 到平面2α的距离;(3)(ⅰ)若集合(){},,|2,1M x y z x y z =+≤≤,记集合M 中所有点构成的几何体为S ,求几何体S 的体积:(ⅱ)若集合(){},,|2,2,2N x y z x y y z z x =+≤+≤+≤.记集合N 中所有点构成的几何体为T ,求几何体T 相邻两个面(有公共棱)所成二面角的余弦值.。
河北省衡水市衡水中学2024-2025学年高三上学期检测一语文试题(含答案)
河北衡水中学2024-25届高三年级上学期检测一语文本试卷共8页,总分150分,考试时间150分钟。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:社会结构的现代化转型使社会呈现出个体化趋势,而个体化趋势下青年的社会心态也将随之转变。
在现代社会中,标准化的价值观不复存在,生活方式没有孰优孰劣,每个人经历的都是试验性的生活,生活方式的个人化与价值观的独立性显得越来越重要。
伴随着思想的解放,边界意识成为现代社会的首要意识而被强调,指出个人边界不容侵犯。
当前青年群体对社交边界感的强调,在某种意义上正是现代社会中个体独立意识和隐私意识的体现,是青年在现代社会中追求个性、渴望自由的情感表达。
社交边界感已经成为现代青年的新需求。
具体来看,此种需求体现在两个方面:一是拥有个人的边界。
拥有清晰的个人边界能使人学会评价人际关系,规避掉繁杂人际关系中的迷茫与压力,以及其对个人生活意志的主宰。
二是不侵犯他人的边界。
“已所不欲,勿施于人”,在坚持自我独立性的同时能够做到尊重他人的社交边界,才是社会互动中被崇尚的礼貌社交。
在高度倦怠的现代社会中,边界感成为现代青年自我保护与自我储能的方式。
德国社会学家齐美尔最早对社交中的边界予以重视,通过对现代社会的分析,他将社会生活中的社交距离视为自我与他人“内在关联”的心理距离,这其实是一种“内心的屏障”,起到屏保作用。
在快节奏的当今社会,频繁的社会流动让现代人每天要不断地与人接触,面对社交过载,如果没有这种人与人之间的“屏保效应”,人们终将会困于烦乱的社会交往中而感到精疲力竭,因此,边界感还为疲惫的年轻人提供了在内卷化社会中喘息的机会。
(摘编自王昕迪、胡鹏辉(边界感:现代社会青年社交需求及其建构》)材料二:2023年,“饭搭子”“旅游搭子’’“考研搭子”等名词层出不穷。
“搭子社交”以共同兴趣或需求为基础,秉持着严格的分寸感,满足青年们浅尝辄止的轻社交需求,成为更适应当代社会青年的社交方式。
优质金卷:河北省衡水中学2016-2017学年高一下学期期末考试文数试题(解析版)
1.C 【解析】由题意可得:210,a ++=∴= 10y ++=,据此可得,直线l 的倾斜角为60︒.本题选择C 选项.2.C 【解析】由题设()111,3,1C r --=, ()223,1,3C r -=,而两圆相离,应选答案C.5.A 【解析】由等比数列的性质得:S n ,S 2n −S n ,S 3n −S 2n 成等比数列, ∵等比数列的前n 项和为45,前2n 项和为60, ∴45,60−45,S 3n −60成等比数列,∴(60−15)2=45(S 3n −60),解得S 3n =65.本题选择A 选项.点睛: 熟练掌握等比数列的一些性质可提高解题速度,历年高考对等比数列的性质考查较多,主要是考查“等积性”,题目“小而巧”且背景不断更新.解题时要善于类比并且要能正确区分等差、等比数列的性质,不要把两者的性质搞混.6.C 【解析】取BC 中点O ,连结AO 、SO ,∵在正三棱锥S −ABC 中,SB =SC ,AB =A C , ∴SO ⊥BC ,AO ⊥BC ,∵SO ∩AO =O ,∴BC ⊥平面SOA ,∵SA ⊂平面SAO , ∴BC ⊥SA ,∴异面直线SA 与BC 所成角的大小为2π. 本题选择C 选项.点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; ④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.本题选择C 选项.8.D 【解析】由三视图可知几何体为长方体与半圆柱的组合体,作出几何体的直观图如图所示: 其中半圆柱的底面半径为2,高为4,长方体的棱长分别为4,2,2, ∴几何体的表面积21122442424224222124022S πππ=⨯⨯+⨯⨯⨯+⨯+⨯⨯+⨯+⨯⨯=+. 本题选择D 选项.点睛: 空间几何体的三视图是分别从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.11.D 【解析】2016年存款的本息和为()1m q + ,2015年存款的本息和为()21m q + ,2014年存款的本息和为()31m q + ,2013年存款的本息和为()41m q + ,三年存款的本息和为()()()()()()()()()4523411111111111m q q m q q m q m q m q m q q q ⎡⎤⎡⎤++-+-+⎣⎦⎣⎦+++++++==+-,选D .12.C 【解析】令2x y ==可得: ()02f =,令y x =-可得: ()()4f x f x +-=, 则: ()()220f x f x -+--=,据此可得:函数()()2g x f x =-是单调奇函数, 有函数的单调性可得: 13nn n a a a +=+,整理可得: 11111322n n a a +⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,即数列112n a ⎧⎫+⎨⎬⎩⎭是首项为1,公比为3的等比数列,则: 12231n n a -=⨯-,据此可得: 2017a 的值为20162231⨯- . 本题选择C 选项.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.13.4【解析】由题意可得:992134,2b b =+==,则221694b b b ==.14由题意可得:1145a b a b -=∴-=--,由两点之间距离公式可得:AB=点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.()1,-+∞【解析】递推公式中,令1n =可得: 1111312,5a a a λλ+=+-∴=,且由递推公式有: 11312,312n n n n S a S a λλ++=+-=+-,两式做差可得: 1112322,5n n n n n a a a a a +++=-∴=,据此可得: 11255n n a λ-+⎛⎫=⨯ ⎪⎝⎭,由题意可得: 11n n n n a a a a +-->-,即:1121212121255555555n n n n λλλλ---++++⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯>⨯-⨯ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,整理可得: 10,1λλ+>∴>-,即λ的取值范围是()1,-+∞. 17.【解析】试题分析:(1)利用题意求得 数列的首项和公差整理可得n a n =(*n N ∈),22n n nS +=(*n N ∈).(2)将数列的通项公式裂项后可得n T =21nn +.(Ⅱ)由(Ⅰ)得, ()121n n b S n n ==+ 1121n n ⎛⎫=- ⎪+⎝⎭. 则123111111121223341n n T b b b b n n ⎛⎫=+++⋯+=-+-+-+⋯+- ⎪+⎝⎭ 122111n n n ⎛⎫=-=⎪++⎝⎭. 18.【解析】试题分析:(Ⅰ)要证明线面平行,根据判断定理,可知平面外的线与平面内的线平行,则线面平行,所有连接AC 交BD 于点F ,连接EF , SAC ∆中,根据中位线的性质, //SC EF ;(Ⅱ)要证明面面垂直,即证明线面垂直,根据所给的条件,可证明,BC AB BC BS ⊥⊥,即BC ⊥平面ABS . 试题解析:(Ⅰ)连接AC 交BD 于F ,则F 为AC 中点,连接EF , ∵E 为SA 的中点, F 为AC 中点, ∴//EF SC ,又EF ⊂面BDE , SC ⊄面BDE , ∴//SC 平面BDE .(Ⅱ)∵2SB =, 3BC =,∴222SB BC SC +=,∴BC SB ⊥,又四边形ABCD 为矩形,∴BC AB ⊥,又AB 、SB 在平面SAB 内且相交, ∴BC ⊥平面SAB , 又BC ⊂平面ABCD , ∴平面ABCD ⊥平面SAB .19.【解析】试题分析:(1)由递推关系可得数列{}n a 是以1为首项,2为公差的等差数列, 21n a n =-(*n N ∈). (2)错位相减求得数列的前n 项和123662n n n T -+=-<.(Ⅱ)由(Ⅰ)知, 1212n n n b --=, 则0121135212222n n n T --=+++⋯+,①121113232122222n n n n n T ---=++⋯++,② ①-②,得01211122221222222n n n n T --=+++⋯+- 2112111222n n n --=+++⋯+-111212321312212n n n n n ---+=+-=--.所以123662n n n T -+=-<. 点睛: (1)一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式. 20.【解析】试题分析:(1)利用线面垂直的判断定理可证得BD ⊥平面SAC ,则BD AF ⊥. (2)利用体积的比值结合体积公式可得点E 到平面ABCD 的距离为12.又90DAC BAC ∠+∠=︒, 所以90ABD BAC ∠+∠=︒, 即AC BD ⊥, 又AC SA A ⋂=, 所以BD ⊥平面SAC .因为AF ⊂平面SAC ,所以BD AF ⊥. (Ⅱ)设点E 到平面ABCD 的距离为h , 因为B AEC E ABC V V --=,且25E ABC S ABCD V V --=,所11511532222132ABCD S ABCD E ABCABC S SA V V S h h --∆⋅⨯⨯⨯===⋅⨯⨯⨯梯形, 即12h =,故点E 到平面ABCD 的距离为12.21.【解析】试题分析:(1)由点到直线距离公式可得圆心()0,0O 到直线的距离1d =,设直线2l 的方程为 ()21y k x -=+,又过点P 且与x 轴垂直的直线1x =-显然符合要求,故满足题意的直线2l 应为两条;方法3:设点Q 的坐标为()11,x y , 则22119x y +=,则由三点A 、Q 、C 三点共线及直线l 的方程得点,表示出,BC BQ k k ,可证BQ BC k k ⋅为定值试题解析:(1)因直线与圆O 相交所得弦长等于,所以圆心()0,0O 到直线的距离设直线的方程为()21y k x -=+,即20kx y k -++=又过点P 且与x 轴垂直的直线1x =-显然符合要求 所以直线的方程是或3450x y +-=(2)方法1:设点C 的坐标为()6,h ,则直线AC 的方程为所以3BQ BC k k ⋅=-方法3:设点Q 的坐标为()11,x y , 则22119x y +=则三点A 、Q 、C 三点共线及直线l 的方程得点点睛:本题考查直线方程的求法,考查直线与圆的位置关系,注意等价的条件,同时考查联立方程,消去变量的运算能力,属于中档题. 22.【解析】试题分析:(1)利用题中的递推关系计算可得后项与前项的比值为定值1-,计算首项为13即可证得数列为等比数列;(2)原问题转化为()()211111221220932nn n n t ++⎡⎤--⎤⎡------>⎢⎥⎥⎢⎦⎣⎢⎥⎣⎦对任意的*n N ∈都成立,分类讨论可得:实数t 的取值范围是(),1-∞. 试题解析:(Ⅰ)因为12n n n a a ++=, 11a =, 123nn n b a =-⨯,所以11112233n n n n a a ++⎛⎫-⨯=--⨯ ⎪⎝⎭,所以111231123n n nn a a ++-⨯=--⨯, 又121033a -=≠,所以数列{}n b 是首项为13,公比为1-的等比数列.要使10n n n a a tS +->对任意的*n N ∈都成立,即()()211111221220932nn n n t ++⎡⎤--⎤⎡------>⎢⎥⎥⎢⎦⎣⎢⎥⎣⎦(*)对任意的*n N ∈都成立.①当n 为正奇数时,由(*)得, ()()211122121093n n n t+++--->, 即()()()111212121093n nn t ++-+-->, 因为1210n +->,所以()1213nt <+对任意的正奇数n 都成立, 当且仅当1n =时, ()1213n+有最小值1, 所以1t <.②当n 为正偶数时,由(*)得,()()211122122093n n n t ++---->, 即()()()112212121093n nn t ++--->, 因为210n->,所以()11216n t +<+对任意的正偶数n 都成立.当且仅当2n =时, ()11216n ++有最小值32,所以32t <. 综上所述,存在实数t ,使得10n n n a a tS +->对任意的*n N ∈都成立, 故实数t 的取值范围是(),1-∞.。
衡水中学学年高一数学上学期期末试卷含解析
衡水中学高一(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在下列四个选项中,只有一个是符合题目要求的)1.若角α与角β终边相同,则一定有()A.α+β=180°B.α+β=0°C.α﹣β=k360°,k∈Z D.α+β=k360°,k∈Z2.已知集合M={x|≤1},N={x|y=lg(1﹣x)},则下列关系中正确的是()A.(?R M)∩N=?B.M∪N=R C.M?N D.(?RM)∪N=R3.设α是第二象限角,且cos=﹣,则是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.下列四个函数中,既是(0,)上的增函数,又是以π为周期的偶函数的是()A.y=tanx B.y=|sinx| C.y=cosx D.y=|cosx|5.已知tanα=﹣,且tan(α+β)=1,则tanβ的值为()A.﹣7 B.7 C.﹣D.6.将函数y=sin2x的图象向左平移个单位,向上平移1个单位,得到的函数解析式为()A.y=sin(2x+)+1 B.y=sin(2x﹣)+1 C.y=sin(2x+)+1D.y=sin(2x﹣)+17.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式()A.y=﹣4sin(x﹣)B.y=4sin(x﹣)C.y=﹣4sin(x+)D.y=4sin(x+)8.在△ABC中,已知lgsinA﹣lgcosB﹣lgsinC=lg2,则三角形一定是()A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形9.已知函数f(x)=loga(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=a x+b 的大致图象是()A. B.C. D.10.若定义在区间D上的函数f(x)对于D上任意n个值x1,x2, (x)n总满足≤f(),则称f(x)为D的凸函数,现已知f(x)=sinx在(0,π)上是凸函数,则三角形ABC中,sinA+sinB+sinC的最大值为()A.B.3C.D.311.已知O为△ABC内任意的一点,若对任意k∈R有|﹣k|≥||,则△ABC一定是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定12.△ABC的内角A、B、C的对边分别为a,b,c,且a:b:c=:4:3,设=cosA,=sinA,又△ABC的面积为S,则=()A.S B.S C.S D.S二、填空题(本大题共4小题,每小题5分,共20分)13.设是奇函数,则a+b的取值范围是.14.函数y=3sin(x+10°)+5sin(x+70°)的最大值为.15.已知奇函f(x)数满足f(x+1)=﹣f(x),当x∈(0,1)时,f(x)=﹣2x,则f(log210)等于.16.给出下列命题:①存在实数x,使得sinx+cosx=;②函数y=2sin(2x+)的图象关于点(,0)对称;③若函数f(x)=ksinx+cosx的图象关于点(,0)对称,则k=﹣1;④在平行四边形ABCD中,若|+|=|+|,则四边形ABCD的形状一定是矩形.则其中正确的序号是(将正确的判断的序号都填上)三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.已知cos(α﹣)=,sin(+β)=,且β∈(0,),α∈(,),求sin(α+β)的值.18.设幂函数f(x)=(a﹣1)x k(a∈R,k∈Q)的图象过点.(1)求k,a的值;(2)若函数h(x)=﹣f(x)+2b+1﹣b在上的最大值为3,求实数b的值.19.锐角三角形ABC的三内角A、B、C所对边的长分别为a、b、c,设向量,且(1)求角B的大小;(2)若b=1,求a+c的取值范围.20.已知函数f(x)=2﹣2cos2(+x)﹣cos2x(1)求函数f(x)在x∈时的增区间;(2)求函数f(x)的对称轴;(3)若方程f(x)﹣k=0在x∈[,]上有解,求实数k的取值范围.21.如图,△ABC中,sin=,AB=2,点D在线段AC上,且AD=2DC,BD=.(Ⅰ)求:BC的长;(Ⅱ)求△DBC的面积.22.已知=(sinωx,cosωx),=(cosωx,cosωx)其中ω>0,若函数f(x)=﹣的图象上相邻两对称轴间得距离为2π(1)求方程f(x)﹣=0在区间内的解;(2)若=+,求sinx;(3)在△ABC中,a,b,c分别是角A,B,C的对边,且满足(2a﹣c)cosB=bcosC,求函数f(A)的值域.2015-2016学年河北省衡水中学高一(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在下列四个选项中,只有一个是符合题目要求的)1.若角α与角β终边相同,则一定有()A.α+β=180°B.α+β=0°C.α﹣β=k360°,k∈Z D.α+β=k360°,k∈Z【考点】终边相同的角.【专题】计算题;转化思想;定义法;三角函数的求值.【分析】根据终边相同的角的表示方法,直接判断即可.【解答】解:角α与角β终边相同,则α=β+k360°,k∈Z,故选:C.【点评】本题是基础题,考查终边相同的角的表示方法,定义题.2.已知集合M={x|≤1},N={x|y=lg(1﹣x)},则下列关系中正确的是()A.(?R M)∩N=?B.M∪N=R C.M?N D.(?RM)∪N=R【考点】交、并、补集的混合运算.【专题】集合.【分析】求出M中不等式的解集确定出M,求出N中x的范围确定出N,即可做出判断.【解答】解:M中的不等式,当x>0时,解得:x≥1;当x<0时,解得:x≤1,即x<0,∴M=(﹣∞,0)∪=0,可得(﹣2)×+φ=kπ,k∈z,再结合|φ|<,∴φ=,∴y=4sin(x+),故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.8.在△ABC中,已知lgsinA﹣lgcosB﹣lgsinC=lg2,则三角形一定是()A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形【考点】三角形的形状判断.【专题】计算题.【分析】由对数的运算性质可得sinA=2cosBsinC,利用三角形的内角和A=π﹣(B+C)及诱导公式及和差角公式可得B,C的关系,从而可判断三角形的形状【解答】解:由lgsinA﹣lgcosB﹣lgsinC=lg2可得∴sinA=2cosBsinC即sin(B+C)=2sinCcosB展开可得,sinBcosC+sinCcosB=2sinCcosB∴sinBcosC﹣sinCcosB=0∴sin(B﹣C)=0∴B=C∴△ABC为等腰三角形故选:A【点评】本题主要考查了对数的运算性质及三角函数的诱导公式、和差角公式的综合应用,属于中档试题.(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=a x+b 9.已知函数f(x)=loga的大致图象是()A.B.C.D.【考点】对数函数的图象与性质.【专题】压轴题.【分析】由函数f(x)=loga(x+b)的图象可求出a和b的范围,再进一步判断g(x)=a x+b 的图象即可.【解答】解:由函数f(x)=loga(x+b)的图象为减函数可知0<a<1,f(x)=loga (x+b)的图象由f(x)=logax向左平移可知0<b<1,故函数g(x)=a x+b的大致图象是B故选B【点评】本题考查指对函数的图象问题,是基本题.10.若定义在区间D上的函数f(x)对于D上任意n个值x1,x2, (x)n总满足≤f(),则称f(x)为D的凸函数,现已知f(x)=sinx在(0,π)上是凸函数,则三角形ABC中,sinA+sinB+sinC的最大值为()A.B.3C.D.3【考点】函数的值.【专题】转化思想;函数的性质及应用;三角函数的求值;不等式的解法及应用.【分析】由凸函数的性质可得:sinA+sinB+sinC≤3,即可得出.【解答】解:由凸函数的性质可得:sinA+sinB+sinC≤3==,当且仅当A=B=C=时取等号.∴sinA+sinB+sinC的最大值为.故选:C.【点评】本题考查了凸函数的性质、三角形内角和定理、不等式的性质,考查了推理能力与计算能力,属于中档题.11.已知O为△ABC内任意的一点,若对任意k∈R有|﹣k|≥||,则△ABC 一定是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定【考点】三角形的形状判断.【专题】计算题;数形结合.【分析】根据题意画出图形,在边BC上任取一点E,连接AE,根据已知不等式左边绝对值里的几何意义可得k=,再利用向量的减法运算法则化简,根据垂线段最短可得AC与EC垂直,进而确定出三角形为直角三角形.【解答】解:从几何图形考虑:|﹣k|≥||的几何意义表示:在BC上任取一点E,可得k=,∴|﹣k|=|﹣|=||≥||,又点E不论在任何位置都有不等式成立,∴由垂线段最短可得AC⊥EC,即∠C=90°,则△ABC一定是直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有:平面向量的减法的三角形法则的应用,及平面几何中两点之间垂线段最短的应用,利用了数形结合的思想,要注意数学图形的应用可以简化基本运算.12.△ABC的内角A、B、C的对边分别为a,b,c,且a:b:c=:4:3,设=cosA,=sinA,又△ABC的面积为S,则=()A.S B.S C.S D.S【考点】余弦定理;正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】由题意,利用比例的性质及余弦定理可求cosA=,结合A的范围可求A的值,利用三角形面积公式可求三角形面积,由已知可求向量,,利用平面向量的数量积的运算化简即可得解.【解答】解:由题意可设:a=x,b=4x,c=3x,x>0,则由余弦定理可得:cosA===,结合A∈(0,π),可得A=.从而解得△ABC的面积为S=||||sinA=||||,可得:=cosA=,=sinA=,可得:=||||cosA=||×||×=||||=S,故选:D.【点评】本题主要考查了比例的性质,余弦定理,三角形面积公式,平面向量的数量积的运算在解三角形中的应用,考查了计算能力和转化思想,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.设是奇函数,则a+b的取值范围是.【考点】奇函数.【专题】计算题.【分析】由题意和奇函数的定义f(﹣x)=﹣f(x)求出a的值,再由对数的真数大于零求出函数的定义域,则所给的区间应是定义域的子集,求出b的范围进而求出a+b的范围.【解答】解:∵定义在区间(﹣b,b)内的函数f(x)=是奇函数,∴任x∈(﹣b,b),f(﹣x)=﹣f(x),即=﹣,∴=,则有,即1﹣a2x2=1﹣4x2,解得a=±2,又∵a≠2,∴a=﹣2;则函数f(x)=,要使函数有意义,则>0,即(1+2x)(1﹣2x)>0解得:﹣<x<,即函数f(x)的定义域为:(﹣,),∴(﹣b,b)?(﹣,),∴0<b≤∴﹣2<a+b≤﹣,即所求的范围是;故答案为:.【点评】本题考查了奇函数的定义以及求对数函数的定义域,利用子集关系求出b的范围,考查了学生的运算能力和对定义的运用能力.14.函数y=3sin(x+10°)+5sin(x+70°)的最大值为7 .【考点】三角函数的化简求值.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】分别把(x+10°)与(x+70°)化为(x+40°﹣30°)与(x+40°+30°),展开两角和与差的三角函数,整理后利用辅助角公式化积,则答案可求.【解答】解:y=3sin(x+10°)+5sin(x+70°)=3sin(x+40°﹣30°)+5sin(x+40°+30°)=3+5=[sin(x+40°)﹣cos(x+40°)]+[sin(x+40°)+cos(x+40°)]=4sin(x+40°)+cos(x+40°)=7[sin(x+40°)+cos(x+40°)]=7sin≤7.故答案为:7.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,训练了辅助角公式的应用,是中档题.10)15.已知奇函f(x)数满足f(x+1)=﹣f(x),当x∈(0,1)时,f(x)=﹣2x,则f(log2等于.【考点】函数的值.【专题】函数思想;综合法;函数的性质及应用.【分析】利用奇偶性与条件得出f(x)的周期,根据函数奇偶性和周期计算.【解答】解:∵f(x+1)=﹣f(x),∴f(x+2)=﹣f(x+1)=f(x),∴函数f(x)是以2为周期的奇函数,∵3<log210<4,∴﹣1<﹣4+log210<0,∴0<4﹣log210<1.∴f(log210)=f(﹣4+log210)=﹣f(4﹣log210)=2==.故答案为:.【点评】本题考查了函数奇偶性与周期性的应用,找到函数周期是解题关键.16.给出下列命题:①存在实数x,使得sinx+cosx=;②函数y=2sin(2x+)的图象关于点(,0)对称;③若函数f(x)=ksinx+cosx的图象关于点(,0)对称,则k=﹣1;④在平行四边形ABCD中,若|+|=|+|,则四边形ABCD的形状一定是矩形.则其中正确的序号是③④(将正确的判断的序号都填上)【考点】命题的真假判断与应用.【专题】探究型;简易逻辑;推理和证明.【分析】根据正弦型函数的图象和性质,可判断①②③,根据向量模的几何意义,可判断④.【解答】解:sinx+cosx=sin(x+)∈,?,故①为假命题;当x=时,2x+=,此时函数取最大值,故函数y=2sin(2x+)的图象关于直线x=对称,故②为假命题;若函数f(x)=ksinx+cosx的图象关于点(,0)对称,则,解得:k=﹣1,故③为真命题;在平行四边形ABCD中,若|+|=|+|,即平行四边形ABCD的两条对角线长度相等,则四边形ABCD的形状一定是矩形,故④为真命题;故答案为:③④【点评】本题考查的知识点是和差角(辅助角)公式,三角函数的对称性,向量的模,向量加法的三角形法则,难度中档.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.已知cos(α﹣)=,sin(+β)=,且β∈(0,),α∈(,),求sin(α+β)的值.【考点】两角和与差的正弦函数.【专题】计算题;整体思想;数学模型法;三角函数的图像与性质.【分析】由α、β的范围求出的范围,结合已知求出sin (α﹣)和cos(+β)的值,则sin(α+β)的值可求.【解答】解:∵α∈(,),∴,又cos(α﹣)=,∴,又∵β∈(0,),∴,sin(+β)=,∴,则sin(α+β)=sin=sin()cos()+cos()sin()=.【点评】本题考查两角和与差正弦、余弦,关键是“拆角、配角”思想方法的运用,是中档题.18.设幂函数f(x)=(a﹣1)x k(a∈R,k∈Q)的图象过点.(1)求k,a的值;(2)若函数h(x)=﹣f(x)+2b+1﹣b在上的最大值为3,求实数b的值.【考点】二次函数的性质;幂函数的单调性、奇偶性及其应用.【专题】分类讨论;换元法;函数的性质及应用.【分析】(1)根据幂函数的定义和性质进行求解即可求k,a的值;(2)若函数h(x)=﹣f(x)+2b+1﹣b在上的最大值为3,利用换元法转化一元二次函数,利用一元二次函数的性质即可求实数b的值.【解答】解:(1)设幂函数f(x)=(a﹣1)x k(a∈R,k∈Q)的图象过点.则a﹣1=1,即a=2,此时f(x)=x k,即=2,即=2,解得k=4;(2)∵a=2,k=4,∴f(x)=x4,则h(x)=﹣f(x)+2b+1﹣b=﹣x4+2bx2+1﹣b=﹣(x2﹣b)2+1﹣b+b2,设t=x2,则0≤t≤4,则函数等价为g(t)=﹣(t﹣b)2+1﹣b+b2,若b≤0,则函数g(t)在上单调递减,最大值为g(0)=1﹣b=3,即b=﹣2,满足条件.若0<b≤4,此时当t=b时,最大值为g(b)=1﹣b+b2=3,即b2﹣b﹣2=0,解得b=2或b=﹣1(舍).若b>4,则函数g(t)在上单调递增,最大值为g(4)=3b﹣15=3,即3b=18,b=6,满足条件综上b=﹣2或b=2或b=6.【点评】本题主要考查幂函数的定义和性质的应用以及一元二次函数的性质,利用换元法结合一元二次函数的性质是解决本题的关键.注意要进行分类讨论.19.锐角三角形ABC的三内角A、B、C所对边的长分别为a、b、c,设向量,且(1)求角B的大小;(2)若b=1,求a+c的取值范围.【考点】余弦定理的应用;平面向量共线(平行)的坐标表示;正弦定理.【专题】计算题;函数思想.【分析】(1)首先运用向量的平行的充要条件得出边a、b、c的一个等,通过变形为分式再结合余弦定理可得cosB=,结合B∈(0,π)得B=;(2)根据正弦定理将a+c变形为关于角A的一个三角函数式,再结合已知条件得出A的取值范围,在此基础上求关于A的函数的值域,即为a+c的取值范围.【解答】解:(1)∵∴(c﹣a)c﹣(b﹣a)(a+b)=0∴a2+c2﹣b2=ac即三角形ABC中由余弦定理,得cosB=,结合B∈(0,π)得B=(2)∵B=∴A+C=由题意三角形是锐角三角形,得∴再由正弦定理:且b=1∴a+c==∵∴∴ 2∴【点评】本题综合了向量共线与正、余弦定理知识,解决角的取值和边的取值范围等问题,考查了函数应用与等价转化的思想,属于中档题.20.已知函数f(x)=2﹣2cos2(+x)﹣cos2x(1)求函数f(x)在x∈时的增区间;(2)求函数f(x)的对称轴;(3)若方程f(x)﹣k=0在x∈[,]上有解,求实数k的取值范围.【考点】三角函数中的恒等变换应用;正弦函数的图象.【专题】计算题;函数思想;综合法;空间位置关系与距离.【分析】(1)由条件化简得到f(x)=1+2sin(2x﹣),求出f(x)的单调递增区间,得出结论.(2)根据对称轴的定义即可求出.(3)由题意可得函数f(x)的图象和直线y=k在x∈[,]上有交点,根据正弦函数的定义域和值域求出f(x)的值域,可得k的范围.【解答】解:(1)f(x)=2﹣2cos2(+x)﹣cos2x=1+2sin(2x﹣),由2x﹣∈,k∈Z,得x∈,k∈Z,可得函数f(x)在x∈时的增区间为,[,π],(2)由2x﹣=kπ+,k∈Z,∴得函数f(x)的对称轴为x=+,k∈Z,(3)∵x∈[,],∴≤2x﹣≤,即2≤1+2sin(2x﹣)≤3,要使方程f(x)﹣k=0在x∈[,]上有解,只有k∈.【点评】本题主要考查三角函数的化简,正弦函数的图象的对称性、单调性,正弦函数的定义域和值域,属于中档题.21.如图,△ABC中,sin=,AB=2,点D在线段AC上,且AD=2DC,BD=.(Ⅰ)求:BC的长;(Ⅱ)求△DBC的面积.【考点】解三角形.【专题】计算题.【分析】(Ⅰ)由sin的值,利用二倍角的余弦函数公式即可求出cos∠ABC的值,设BC=a,AC=3b,由AD=2DC得到AD=2b,DC=b,在三角形ABC中,利用余弦定理得到关于a与b的关系式,记作①,在三角形ABD和三角形DBC中,利用余弦定理分别表示出cos∠ADB和cos∠BDC,由于两角互补,得到cos∠ADB等于﹣cos∠BDC,两个关系式互为相反数,得到a与b的另一个关系式,记作②,①②联立即可求出a与b的值,即可得到BC 的值;(Ⅱ)由角ABC的范围和cos∠ABC的值,利用同角三角函数间的基本关系求出sin∠ABC的值,由AB和BC的值,利用三角形的面积公式即可求出三角形ABC的面积,由AD=2DC,且三角形ABD和三角形BDC的高相等,得到三角形BDC的面积等于三角形ABC面积的,进而求出三角形BDC的面积.【解答】解:(Ⅰ)因为sin=,所以cos∠ABC=1﹣2=1﹣2×=.在△ABC中,设BC=a,AC=3b,由余弦定理可得:①在△ABD和△DBC中,由余弦定理可得:,.因为cos∠ADB=﹣cos∠BDC,所以有,所以3b2﹣a2=﹣6②由①②可得a=3,b=1,即BC=3.(Ⅱ)由(Ⅰ)知cos∠ABC=,则sin∠ABC==,又AB=2,BC=3,则△ABC的面积为ABBCsin∠ABC=,又因为AD=2DC,所以△DBC的面积为×2=.【点评】此题考查学生灵活运用同角三角函数间的基本关系及余弦定理化简求值,灵活运用三角形的面积公式化简求值,是一道中档题.22.已知=(sinωx,cosωx),=(cosωx,cosωx)其中ω>0,若函数f(x)=﹣的图象上相邻两对称轴间得距离为2π(1)求方程f(x)﹣=0在区间内的解;(2)若=+,求sinx;(3)在△ABC中,a,b,c分别是角A,B,C的对边,且满足(2a﹣c)cosB=bcosC,求函数f(A)的值域.【考点】平面向量数量积的运算;三角函数中的恒等变换应用;余弦定理.【专题】综合题;函数思想;整体思想;综合法;三角函数的图像与性质.【分析】(1)由数量积的坐标表示结合倍角公式、两角和的正弦化简f(x)的解析式,再由已知求得ω,最后求解三角方程得答案;(2)由=+,得,进一步得,转化为倍角的余弦求解;(3)由已知等式结合正弦定理求得B,由三角形内角和定理得到A的范围,则函数f(A)的值域可求.【解答】解:(1)=,∵函数f(x)的图象上相邻两对称轴间得距离为2π,∴,T=,得,∴f(x)=,由f(x)﹣=0,得=,即,∴,或.在区间内的解为;(2)若=+,则,得,∴cos(x+)=,得sinx=;(3)∵(2a﹣c)cosB=bcosC,∴由正弦定理得cosB=,则B=,∴A∈(0,),则,故函数f(A)的值域为(,].【点评】本题考查三角函数中的恒等变换应用,考查了平面向量的数量积运算,考查余弦定理在解三角形中的应用,是中档题.。
河北省衡水中学2024-2025学年高三上学期第一次综合素养测评数学试题
河北省衡水中学2024-2025学年高三上学期第一次综合素养测评数学试题一、单选题1.已知不等式2230x x --<的解集为A ,不等式302x x +<-的解集为B ,则A B ⋂为( ) A .[]3,3-B .()3,3-C .[]1,2-D .()1,2-2.已知1,9a b a b ==⋅=-r r r r ,则向量a r与b r 的夹角为( )A .2π3B .5π6 C .π3D .π63.如图所示,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角30MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒,从C 点测得60MCA ∠=︒,已知山高100m BC =,则山高MN =( )A .120mB .150m C. D .160m4.已知等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,若342n n S n T n +=+,则378210a a ab b ++=+( ) A .11113B .3713C .11126D .37265.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,P 是双曲线C 的一条渐近线上的点,且线段1PF 的中点N 在另一条渐近线上.若213cos 5PF F ∠=,则双曲线C 的离心率为( ) A .53B .54C .2 D6.点(2,1)P --到直线:(13)(1)240(R)l x y λλλλ+++--=∈的距离最大时,其最大值以及此时的直线方程分别为( ) A3250x y +-=B3250x y +-=C2310x y -+= D2310x y -+=7.已知函数()f x 的定义域为()3,3-,且()32lg ,303332lg ,0333xx x x f x x x x x -⎧+-<<⎪⎪+-=⎨+⎪-≤<⎪-+⎩若3[(2)]20f x x -+>,则x 的取值范围为( )A .(3,2)-B .(3,0)(0,1)(1,2)-⋃⋃C .(1,3)-D .(1,0)(0,2)(2,3)-⋃⋃8.已知1ln x ax x x-≥+对0x ∀>恒成立,则a 的最大值为( ) A .0B .1eC .eD .1二、多选题9.若数列{}n a 为递增数列,则{}n a 的通项公式可以为( ) A .1n n a n =+ B .21n a n =- C .23n a n n =-D .2n n a =10.函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图中实线所示,C 为函数()f x 与x 轴的交点,圆C 与()f x 的图象交于,M N 两点,且M 在y 轴上,则( )A .2ω= BC .函数()f x 的图象关于点4π,03⎛⎫⎪⎝⎭成中心对称D .函数()f x 在2021π2023π,1212⎡⎤⎢⎥⎣⎦上单调递增11.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,点P 在椭圆C 上,若1212,PF PF F PF ⊥V 的面积等于4.则下列结论正确的是( )A .若点P 是椭圆的短轴顶点,则椭圆C 的标准方程为22184x y +=B .若P 是动点,则b 的值恒为2C .若P 是动点,则椭圆的离心率的取值范围是1,12⎡⎫⎪⎢⎣⎭D .若P 是动点,则12PF PF +的取值范围是)⎡+∞⎣三、填空题12.已知α是第四象限角,且2sin 23α=-,则cos sin αα-=.13.已知()2cos f x x x =+,若34e af -⎛⎫= ⎪⎝⎭,4ln 5b f ⎛⎫= ⎪⎝⎭,14c f ⎛⎫=- ⎪⎝⎭,则a ,b ,c 按从小到大排列为:.14.定义:对于函数()f x 和数列{}n x ,若()()()10n n n n x x f x f x +'-+=,则称数列{}n x 具有“()f x 函数性质”.已知二次函数()f x 图象的最低点为()0,4-,且()()121f x f x x +=++,若数列{}n x 具有“()f x 函数性质”,且首项为1的数列{}n a 满足()()ln 2ln 2n n n a x x =+--,记{}n a 的前n 项和为n S ,则数列52n n S ⎧⎫⎛⎫⋅-⎨⎬⎪⎝⎭⎩⎭的最小值为.四、解答题15.已知数列{}n a 为递增的等比数列,n S 为数列{}n a 的前n 项和,且3214,4S a ==. (1)求数列{}n a 的通项公式;(2)记m b 为数列{}n a 在区间2(2,2]()m m m N ∈*中的所有项的和,求数列{}m b 的前m 项和m T .16.已知函数()()22log log 1442x x f x x =⋅≤≤,()44221x x x xg x a a --=+-⋅-⋅+.(1)求函数()f x 的最大值;(2)设不等式()0f x ≤的解集为A ,若对任意1x A ∈,存在[]20,1x ∈,使得()12x g x =,求实数a 的值.17.如图,抛物线2:2(0),(2,1)Γy px p M =>是抛物线内一点,过点M 作两条斜率存在且互相垂直的动直线12,l l ,设1l 与抛物线Γ相交于点2,,A B l 与抛物线Γ相交于点C ,D ,当M 恰好为线段AB 的中点时,||AB =(1)求抛物线Γ的方程;(2)求AC DB ⋅u u u r u u u r的最小值. 18.已知函数()ln f x x x a =-+.(1)若直线()e 1y x =-与函数()f x 的图象相切,求实数a 的值;(2)若函数()()g x xf x =有两个极值点1x 和2x ,且12x x <,证明:12121ln x x x x ⎛⎫+>+ ⎪⎝⎭.(e 为自然对数的底数)19.法国数学家费马在给意大利数学家托里拆利的一封信中提到“费马点”,即平面内到三角形三个顶点距离之和最小的点,托里拆利确定费马点的方法如下:①当ABC V 的三个内角均小于120o 时,满足120AOB BOC COA ∠=∠=∠=o 的点O 为费马点; ②当ABC V 有一个内角大于或等于120o 时,最大内角的顶点为费马点. 请用以上知识解决下面的问题:已知ABC V 的内角,,A B C 所对的边分别为,,a b c ,点M 为ABC V 的费马点,且cos2cos2cos21A B C +-=. (1)求C ;(2)若4c =,求MA MB MB MC MC MA ⋅+⋅+⋅的最大值; (3)若MA MB t MC +=,求实数t 的最小值.。
河北衡水中学2022年数学高一上期末检测试题含解析
答案
【详解】由 log2 log3a 1,可得 log3a 2,lga 2lg3,故 a=32 9 , 由 log3 log4b 1,可得 log4b 3,lgb 3lg 4 ,故 b 43 64 ,
2022-2023 学年高一上数学期末模拟试卷
注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
A. y f (2x 1) 2
B. y f (2x 1)
C. y f ( x 1) 22
D. y f ( x 1) 2
10.下列函数中,值域是 (0, ) 的是
A. y x2 2x 1
B. y x 2 (x (0, )) x 1
1
C.
y
x2
2x
(x N) 1
D.
y
|
x
1 1
|
二、填空题(本大题共 5 小题,请把答案填在答题卡中相应题中横线上)
11.函数 g x log2 x2 5x 6 在______单调递增(填写一个满足条件的区间)
12.命题“ x0 R, x02 x0 1 0 ”的否定是__________
13.已知 f x ln
x2 1 x
=0,1
,
2020-2021学年河北省衡水中学高一(上)期末数学试卷
2020-2021学年河北省衡水中学高一(上)期末数学试卷一、选择题(本大题共8小题,共40.0分)1.cos13π6=()A. √32B. −√32C. 12D. −122.设集合A={x|(x−1)(x+2)>0},B={x|−4≤x≤3},则A∩B=()A. [−4,−2)∪(1,3]B. (−2,3)C. RD. ⌀3.三个数logπ0.3,3π,sinπ10的大小关系是()A. logπ0.3<sinπ10<3π B. logπ0.3<3π<sinπ10C. sinπ10<logπ0.3<3π D. 3π<logπ0.3<sinπ104.已知向量a⃗=(x,2),b⃗ =(3,x2),若a⃗⊥(a⃗−b⃗ ),则x=()A. 1或4B. 1或−4C. −1或4D. −1或−45.函数y=sinx+cosx|x|在区间[−2π,2π]的图象大致是()A. B.C. D.6.函数f(x)=2x+3x的零点所在的区间为()A. (−1,0)B. (0,1)C. (−2,−1)D. (1,2)7.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36°的等腰三角形(另一种是顶角为108°的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,BCAC =√5−12.根据这些信息,可得sin234°=()A. 1−2√54B. −3+√58C. −√5+14D. −4+√588. 已知函数f(x)=sin(4x +π3)(x ∈[0,13π24]),函数g(x)=f(x)+a 有三个零点x 1,x 2,x 3,则x 1+x 2+x 3的取值范围是( )A. [10π3,7π2] B. [7π12,5π8]C. [0,5π8)D. [7π12,5π8)二、不定项选择题(本大题共4小题,共20.0分) 9. 下列说法正确的有( )A. 终边在y 轴上的角的集合为{θ|θ=π2+2kπ,k ∈Z} B. 已知3a =4b =12,则1a +1b =1C. 已知x ,y ∈R +,且1x +4y =1,则x +y 的最小值为8 D. 已知幂函数f(x)=kx a 的图象过点(2,4),则k +a =310. 已知角α的终边经过点P(sin120°,tan120°),则( )A. cosα=√55B. sinα=2√55C. tanα=−2D. sinα+cosα=−√5511. 在△ABC 中,|AB ⃗⃗⃗⃗⃗ |=2,|AC ⃗⃗⃗⃗⃗ |=1,AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AP⃗⃗⃗⃗⃗ ,则( ) A. PB ⃗⃗⃗⃗⃗ ⋅PC ⃗⃗⃗⃗⃗ >0 B. PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =0⃗ C. PB ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ −12AC ⃗⃗⃗⃗⃗ D. AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =−3412. 已知函数f(x)是定义在[1−2a,a +1]上的偶函数.当0≤x ≤a +1时,f(x)=x −3x+1,若f(log 2m)>1,则( )A. a =2B. a =3C. m 的值可能是4D. m 的值可能是6 三、填空题(本大题共4小题,共20.0分)13. 在矩形ABCD 中,O 是对角线的交点,若BC ⃗⃗⃗⃗⃗ =5e 1⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ =3e 2⃗⃗⃗ ,则OC ⃗⃗⃗⃗⃗ = ______ .(用e 1⃗⃗⃗ ,e 2⃗⃗⃗ 表示) 14. 若cos(π3−α)=35,则sin(π6+α)= ______15.若lg a,lg b是方程2x2−4x+1=0的两个根,则(lg ab)2=______ .16.已知α∈(−π2,π),且3cos2α+8sinα+5=0,则tanα=______ .四、解答题(本大题共6小题,共70.0分)17.已知cosα=17,cos(α−β)=1314,且0<β<α<π2,(1)求tan2α的值;(2)求β.18.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示.(1)求函数f(x)的解析式,并写出函数f(x)的单调递增区间;(2)将函数f(x)图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移m(0<m<π2)个单位长度,得到函数g(x)的图象.若函数g(x)的图象关于直线x=5π12对称,求函数g(x)在区间[π12,7π12]上的值域.19.已知函数g(x)=4x−n2x是奇函数,f(x)=log4(4x+1)+mx是偶函数(m,n∈R).(1)求m+n的值;(2)设ℎ(x)=f(x)+12x,若g(x)>ℎ[log4(2a+1)]对任意x∈[1,+∞)恒成立,求实数a的取值范围.20.在①函数f(x)=12sin(2ωx+φ)(ω>0,|φ|<π2)的图象向右平移π12个单位长度得到g(x)的图象,g(x)图象关于原点对称;②向量m⃗⃗⃗ =(√3sinωx,cos2ω),n⃗=(12cosωx,14),ω>0,f(x)=m⃗⃗⃗ ⋅n⃗;③函数f(x)=cosωxsin(ωx+π6)−14(ω>0)这三个条件中任选一个,补充在下面问题中,并解答.已知______,函数f(x)的图象相邻两条对称轴之间的距离为π2.(1)求f(π4);(2)求函数f(x)在[0,2π]上的单调递减区间.21.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD挖去扇形OBC后构成的).已知OA=10米,OB=x米(0<x<10),线段BA、线段CD与弧BC⏜、弧AD⏜的长度之和为30米,圆心角为θ弧度.(1)求θ关于x的函数解析式;(2)记铭牌的截面面积为y,试问x取何值时,y的值最大?并求出最大值.22.已知函数f(x)=2sinωx⋅cosωx+2√3cos2ωx+m,ω>0,图象上相邻两个最低点的距离为π.(1)若函数f(x)有一个零点为π,求m的值;3],使得f(a)+f(b)≤f(c)成立,求m的取值范围.(2)若存在a,b,c∈[0,π2答案和解析1.【答案】A【解析】解:cos13π6=cos(2π+π6)=cosπ6=√32.故选:A.直接利用三角函数的诱导公式化简求值.本题考查利用诱导公式化简求值,是基础的计算题.2.【答案】A【解析】解:∵A={x|x<−2或x>1},B={x|−4≤x≤3},∴A∩B=[−4,−2)∪(1,3].故选:A.可求出集合A,然后进行交集的运算即可.本题考查了描述法和区间的定义,一元二次不等式的解法,交集及其运算,考查了计算能力,属于基础题.3.【答案】A【解析】解:∵logπ0.3<logπ1=0,3π>30=1,0<sinπ10<1,∴logπ0.3<sinπ10<3π.故选:A.利用指数函数、对数函数、正弦函数的单调性直接求解.本题考查三个数的大小的判断,考查指数函数、对数函数、正弦函数的单调性等基础知识,考查运算求解能力,是基础题.4.【答案】B【解析】解:向量a⃗=(x,2),b⃗ =(3,x2),a⃗−b⃗ =(x−3,2−x2),a⃗⊥(a⃗−b⃗ ),可得x(x−3)+2(2−x2)=0,解得x=1或x=−4,故选:B.利用向量的坐标运算以及向量的垂直条件,转化求解即可.本题考查向量的数量积的应用,向量垂直条件的应用,是基础题.5.【答案】C【解析】解:f(x)=sinx+cosx|x|=√2sin(x+π4)|x|,x∈[−2π,2π],令f(x)=0,解得x=3π4或x=−5π4,由图观察可知,只有选项C符合题意,故选:C.求出函数f(x)的零点,由此即可得解.本题考查由函数解析式确定函数图象,同时也涉及了辅助角公式的运用及三角函数的性质,属于基础题.6.【答案】A【解析】解:∵函数f(x)=2x+3x是R上的连续函数,且单调递增,f(−1)=2−1+3×(−1)=−2.5<0,f(0)=20+0=1>0,∴f(−1)f(0)<0.∴f(x)=2x+3x的零点所在的一个区间为(−1,0),故选:A.将选项中各区间两端点值代入f(x),满足f(a)⋅f(b)<0的区间(a,b)为零点所在的一个区间.本题考查了函数零点的概念与零点定理的应用,属于容易题.7.【答案】C【解析】解:由图可知,∠ACB=72°,且cos72°=12BCAC=√5−14.∴cos144°=2cos272°−1=−√5+14.则sin234°=sin(144°+90°)=cos144°=−√5+14.故选:C.由已知求得∠ACB=72°,可得cos72°的值,再由二倍角的余弦及三角函数的诱导公式求解sin234°.本题考查三角函数的恒等变换,考查解读信息与应用信息的能力,是中档题.8.【答案】D【解析】解:根据题意画出函数f(x)的图象,如图所示:,函数g(x)=f(x)+a有三个零点,等价于函数y=f(x)与函数y=−a有三个交点,当直线l位于直线l1与直线l2之间时,符合题意,由图象可知:x1+x2=2×π24=π12,12π24≤x3<13π24,所以7π12≤x 1+x 2+x 3<5π8,故选:D .根据题意画出函数f(x)的图象,函数g(x)=f(x)+a 有三个零点,等价于函数y =f(x)与函数y =−a 有三个交点,利用数形结合法即可求出x 1+x 2+x 3的取值范围.本题主要考查了函数的零点与方程的根的关系,以及三角函数的图象和性质,是中档题. 9.【答案】BD【解析】解:终边在y 轴上的角的集合为{θ|θ=π2+kπ,k ∈Z},故选项A 不正确;因为3a =4b =12,所以a =log 312,b =log 412,则1a +1b =log 123+log 124=log 1212=1,故选项B 正确;因为x +y =(x +y)(1x+4y)=5+yx+4x y≥5+2√y x×4x y=9,所以x +y 的最小值为9,故选项C 不正确;因为幂函数f(x)=kx a 的图象过点(2,4),所以k =1,2a =4,即a =2,所以k +a =3,故选项D 正确. 故选:BD .根据终边在y 轴上的角的集合为{θ|θ=π2+kπ,k ∈Z}可判定选项A ,根据指数式与对数式互化可求出a 、b ,从而可判定选项B ,利用“1“的代换和基本不等式可判定选项C ,利用幂函数的定义可判定选项D .本题主要考查了命题的真假判断与应用,以及基本不等式的应用和幂函数的定义,同时考查了学生分析问题的能力和运算求解的能力,属于中档题. 10.【答案】ACD【解析】解:∵角α的终边经过点P(sin120°,tan120°),∴|OP|=√sin 2120°+tan 2120°=√34+3=√152,∴sinα=tan120°√152=−2√55,cosα=sin120°√152=√55,tanα=sinαcosα=−2,sinα+cosα=−√55. 故选:ACD .由题意利用任意角的三角函数的定义,求得α的三角函数的值,可得结论. 本题主要考查任意角的三角函数的定义,属于基础题. 11.【答案】BCD【解析】解:如图示:,由|AB ⃗⃗⃗⃗⃗ |=2,|AC ⃗⃗⃗⃗⃗ |=1,AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AP⃗⃗⃗⃗⃗ , 显然P 点是BC 的中点,对于A :PC ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =|PB ⃗⃗⃗⃗⃗ |⋅|PC⃗⃗⃗⃗⃗ |cos180°<0,故A 错误; 对于B :由P 点是BC 的中点,得BP ⃗⃗⃗⃗⃗ =PC⃗⃗⃗⃗⃗ , 故PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =−PC ⃗⃗⃗⃗⃗ +PC⃗⃗⃗⃗⃗ =0,故B 正确; 对于C :PB ⃗⃗⃗⃗⃗=PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =−12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )+AB ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ −12AC ⃗⃗⃗⃗⃗ ,故C 正确; 对于D :AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )⋅BP ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )⋅12(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=14(AC ⃗⃗⃗⃗⃗ 2−AB ⃗⃗⃗⃗⃗ 2)=−34,故D 正确; 故选:BCD .根据平面向量的数量积运算结合图象分别计算,从而判断正误. 本题考查了数量积的运算性质,考查数形结合思想,是一道基础题. 12.【答案】AD【解析】解:由题意可得1−2a +a +1=0,则a =2,故A 正确,B 错误; 因为f(x)是偶函数,所以f(−2)=f(2)=1. 当x ∈[0,3]时,f(x)=x −3x+1单调递增.因为f(x)是偶函数,所以当x ∈[−3,0]时,f(x)单调递减. 因为f(log 2m)>1,所以f(|log 2m|)>f(2)所以{−3≤log 2m ≤3|log 2m|>2,解得18≤m <14或4<m ≤8,故C 错误,D 正确.故选:AD .由偶函数的定义域关于原点对称,可求得a 值,根据函数解析式可求得函数单调性,由函数的单调性和奇偶性将不等式转化为{−3≤log 2m ≤3|log 2m|>2,再求出m 的取值范围,从而确定m 的值.本题主要考查函数奇偶性与单调性的综合,利用函数的性质解不等式,属于中档题. 13.【答案】52e 1⃗⃗⃗ +32e 2⃗⃗⃗【解析】解:画出图形,如图所示; 矩形ABCD 中,O 是对角线的交点, DC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =AD⃗⃗⃗⃗⃗⃗ , 所以OC ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ )=12(DC ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=12(3e 2⃗⃗⃗ +5e 1⃗⃗⃗ )=52e 1⃗⃗⃗ +32e 2⃗⃗⃗ .故答案为:52e 1⃗⃗⃗ +32e 2⃗⃗⃗ .在矩形ABCD 中,DC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =AD⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ ,由向量加法公式可得答案. 本题主要考查相等的向量,以及向量加法的平行四边形法则的应用,属于基础题.14.【答案】35【解析】解:cos(π3−α)=35,则sin(π6+α)=cos[π2−(π3−α)]=cos(π3−α)=35,故答案为:35.由题意利用诱导公式,求得所给式子的值.本题主要考查诱导公式的应用,属于基础题.15.【答案】2【解析】解:∵lga,lg b是方程2x2−4x+1=0的两个根,∴lga+lgb=2,lga⋅lgb=12,∴(lg ab )2=(lga−lgb)2=(lga+lgb)2−4lga⋅lgb=4−4×12=2,故答案为2.由一元二次方程根与系数的关系可得lga+lgb=2,lga⋅lgb=12,再由(lg ab)2=(lga−lgb)2=(lga+lgb)2−4lga⋅lgb,运算求得结果.本题主要考查一元二次方程根与系数的关系,对数的运算性质,属于中档题.16.【答案】−2√55【解析】解:因为3cos2α+8sinα+5=3(1−2sin2α)+8sinα+5=0,整理可得3sin2α−4sinα−4=0,解得sinα=−23<0,或2(舍去),由于α∈(−π2,π),可得α∈(−π2,0),所以cosα=√1− sin2α=√53,tanα=sinαcosα=−2√55.故答案为:−2√55.利用二倍角公式化简已知等式可得3sin2α−4sinα−4=0,解得sinα的值,利用同角三角函数基本关系式即可求解cosα,进而可求tanα的值,本题主要考查了二倍角公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.17.【答案】解:(1)由0<β<α<π2,cosα=17,可得sinα=√1−cos2α=4√37,∴tanα=sinαcosα=4√3,则tan2α=2tanα1−tan2α=8√31−48=−8√347;(2)由cosα=17,cos(α−β)=1314,且0<β<α<π2,得sin(α−β)=√1−cos2(α−β)=3√314,可得,cosβ=cos[α−(α−β)]=cosαcos(α−β)+sinαsin(α−β)=17×1314+4√37×3√314=12∴β=π3.【解析】(1)由已知求得sinα,进一步得到tanα,再由二倍角的正切求解;(2)由已知求得sin(α−β),利用cosβ=cos[α−(α−β)],展开两角差的余弦得答案.本题考查两角和与差的余弦,关键是“拆角配角”思想的应用,是中档题.18.【答案】解:(1)由图象知:A=2,且:−23πω+φ=−π+2kπ,4 3π+φ=2kπ,k∈Z,|φ|<π,解得:ω=12,φ=−23π,所以函数f(x)=2sin(12x−23π);单调递增区间满足−π2+2kπ≤12x−23π≤π2+2kπk∈Z,解得:1 3π+4kπ≤x≤73π+4kπ,k∈Z,所以单调递增区间为:[π3+4kπ,73π+4kπ],k∈Z;(2)由(1)可得:将函数f(x)图象上所有点的横坐标缩短到原来的14(纵坐标不变),可得2sin(2x−23π),又左平移m(0<m<π2)个单位长度可得:g(x)=2sin(2x+2m−23π),由题意可得:2⋅512π+2m−23π=π2+kπ,k∈Z,0<m<π2,解得:m=π6,所以g(x)=2six(2x−π3),∵x∈[π12,7π12],∴2x−π3∈[−π6,56π],令t=2x−π3∈[−π6,56π],g(t)=2sint,t−π6,56π],如图所示;当t=−π6时,g(t)最小,且为:−1,当t=π2时g(t)最大且2,所以g(t)∈[−1,2],所以g(x)在[π12,7π12]的值域为:[−1,2].【解析】(1)由函数图象过的两点及最大值求出函数f(x)的解析式,进而求出函数的单调递增区间;(2)由题意求出函数g(x)的解析式换元,画出函数图象,有图象求出函数g(x)在所给区间的值域. 考查由函数图象求三角函数的解析式及三角函数的性质,属于中档题.19.【答案】解:(1)由于g(x)为奇函数,且定义域为R ,∴g(0)=0,即40−n 20=0,解之得n =1,…(2分)由于f(x)=log 4(4x +1)+mx ,∴f(−x)=log 4(4−x +1)−mx =log 4(4x +1)−(m +1)x ,∵f(x)=log 4(4x +1)+mx 是偶函数,∴f(−x)=f(x),得到m =−12,由此可得:m +n 的值为12;…(4分)(2)∵ℎ(x)=f(x)+12x =log 4(4x +1), ∴ℎ[log 4(2a +1)]=log 4(2a +2),…(6分)又∵g(x)=4x −12x =2x −2−x 在区间[1,+∞)上是增函数,∴当x ≥1时,g(x)min =g(1)=32…(8分)由题意得到{2a +2<4322a +1>02a +2>0,解之得−12<a <3,得a 的取值范围是:(−12,3).【解析】(1)根据定义在R 上奇函数满足g(0)=0,解出n =1,再根据f(−x)=f(x),化简整理得到m =−12,由此可得m +n 的值;(2)由(1)得ℎ(x)=log 4(4x +1),从而ℎ[log 4(2a +1)]=log 4(2a +2),根据g(x)在区间[1,+∞)上是增函数,得g(x)min =g(1)=32,可建立关于a 的不等式组,解之即可得到实数a 的取值范围.本题给出含有指数和对数的函数,讨论函数的奇偶性、单调性并解决关于x 的不等式恒成立的问题,着重考查了基本初等函数的图象与性质和不等式恒成立问题的处理等知识,属于中档题.20.【答案】解:方案一:选条件①由题意可知,T =2π2ω=π,∴ω=1,∴f(x)=12sin(2x +φ),∴g(x)=12sin(2x +φ−π6),又函数g(x)图象关于原点对称,∴φ=kπ+π6,k ∈Z ,∵|φ|<π2,∴φ=π6,∴f(x)=12sin(2x+π6),(1)f(π4)=12sin23π=√34;(2)由π2+2kπ≤2x+π6≤32π+2kπ,k∈Z,得π6+kπ≤x≤23π+kπ,k∈Z,令k=0,得π6≤x≤23π,令k=1,得76π≤x≤53π,所以函数f(x)在[0,2π]上的单调递减区间为[π6,23π],[76π,53π].方案二:选条件②∵m⃗⃗⃗ =(√3sinωx,cos2ωx),n⃗=(12cosωx,14),∴f(x)=m⃗⃗⃗ ⋅n⃗=√32sinωxcosωx+14cos2ωx=12(√32sin2ωx+12cos2ωx)=12sin(2ωx+π6),又T=2π2ω=π,∴ω=1,∴f(x)=12sin(2x+π6),(1)f(π4)=12sin23π=√34;(2)由π2+2kπ≤2x+π6≤32π+2kπ,k∈Z,得π6+kπ≤x≤23π+kπ,k∈Z,令k=0,得π6≤x≤23π,令k=1,得7π6≤x≤5π3,所以函数f(x)在[0,2π]上的单调递减区间为[π6,2π3],[7π6,5π3].方案三:选条件③f(x)=cosωxsin(ωx+π6)−14=cosωx(sinωxcos π6+cosωxsinπ6)−14=√32sinωxcosx+12cos2ωx−14=√34sin2ωx+14cos2ωx=12(√32sin2ωx+12cos2ωx)=12sin(2ωx+π6),又T=2π2ω=π,所以ω=1,所以f(x)=12sin(2x +π6),(1)f(π4)=12sin 23π=√34; (2)由π2+2kπ≤2x +π6≤32π+2kπ,k ∈Z ,得π6+kπ≤x ≤2π3+kπ,k ∈Z , 得π6≤x ≤2π3,令k =1,得7π6≤x ≤5π3.所以函数f(x)在[0.2π]上的单调递减区间为[π6,2π3],[7π6,5π3].【解析】选条件①,利用周期公式公式可求ω=1,利用三角函数的平移变换可得g(x)=12sin(2x +φ−π6),利用正弦函数的性质,结合范围|φ|<π2,可求φ=π6,可得函数解析式f(x)=12sin(2x +π6),(1)利用特殊角的三角函数值即可求解;(2)利用正弦函数的单调性即可求解.选条件②,利用平面向量数量积的运算,三角函数恒等变换的应用可求函数解析式,利用正弦函数的周期公式可求ω=1,可求函数解析式为f(x)=12sin(2x +π6),(1)利用特殊角的三角函数值即可求解(2)利用正弦函数的单调性即可求解f(x)在[0,2π]上的单调递减区间. 选条件③,利用三角函数恒等变换的应用可求函数解析式f(x)=12sin(2ωx +π6),利用周期公式可求ω=1,可得函数解析式f(x)=12sin(2x +π6),(1)利用特殊角的三角函数值即可得解;(2)利用正弦函数的单调性即可求解f(x)在[0.2π]上的单调递减区间. 本题主要考查了三角函数的平移变换,正弦函数的单调性,平面向量数量积的运算,三角函数恒等变换的应用以及正弦函数的周期公式等知识的综合应用,考查了转化思想和函数思想,属于中档题. 21.【答案】解:(1)根据题意,可算得弧BC =x ⋅θ(m),弧AD =10θ(m).∴2(10−x)+x ⋅θ+10θ=30,∴θ=2x+10x+10(0<x <10).(2)依据题意,可知y =S 扇OAD −S 扇OBC =12θ×102−12θx 2,化简得:y =−x 2+5x +50=−(x −52)2+2254. ∴当x =52,y max =2254(m 2). 答:当x =52米时铭牌的面积最大,且最大面积为2254平方米.【解析】本题考查了函数解析式的求解,函数最值的计算,属于中档题.(1)根据弧长公式和周长列方程得出θ关于x 的函数解析式;(2)根据面积公式求出y 关于x 的函数值,从而得出y 的最大值.22.【答案】解:(1)f(x)=sin2ωx +√3(1+cos2ωx)+m =2sin(2ωx +π3)+√3+m ,∵f(x)的图象上相邻两个最低点的距离为π,∴f(x)的最小正周期为:2π2ω=π,故ω=1.∵π3是f(x)的一个零点,∴f(π3)=2sinπ+√3+m=0,∴m=−√3,(2)f(x)=2sin(2x+π3)+√3+m,若x∈[0,π2],则2x+π3∈[π3,4π3],∴−√32≤sin(2x+π3)≤1,故f(x)在[0,π2]上的最大值为2+√3+m,最小值为m,若存在a,b,c∈[0,π2],使得f(a)+f(b)≤f(c)成立,则2m≤2+√3+m,∴m≤2+√3.【解析】(1)化简函数解析式,根据周期计算ω,根据零点计算m;(2)求出f(x)在[0,π2]上的最值,解不等式2f min(x)≤f max(x)得出m的范围.本题考查了三角恒等变换与化简,考查三角函数的性质,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
衡水中学高一(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在下列四个选项中,只有一个是符合题目要求的)1.若角α与角β终边相同,则一定有()A.α+β=180°B.α+β=0°C.α﹣β=k360°,k∈ZD.α+β=k360°,k∈Z2.已知集合M={x|≤1},N={x|y=lg(1﹣x)},则下列关系中正确的是()A.(?R M)∩N=?B.M∪N=R C.M?N D.(?R M)∪N=R3.设α是第二象限角,且cos=﹣,则是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.下列四个函数中,既是(0,)上的增函数,又是以π为周期的偶函数的是()A.y=tanx B.y=|sinx| C.y=cosx D.y=|cosx|5.已知tanα=﹣,且tan(α+β)=1,则tanβ的值为()A.﹣7 B.7 C.﹣D.6.将函数y=sin2x的图象向左平移个单位,向上平移1个单位,得到的函数解析式为()A.y=sin(2x+)+1 B.y=sin(2x﹣)+1 C.y=sin(2x+)+1 D.y=sin(2x﹣)+1 7.函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式()A.y=﹣4sin(x﹣)B.y=4sin(x﹣)C.y=﹣4sin(x+)D.y=4sin(x+)8.在△ABC中,已知lgsinA﹣lgcosB﹣lgsinC=lg2,则三角形一定是()A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形9.已知函数f(x)=log a(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=a x+b的大致图象是()A.B.C.D.10.若定义在区间D上的函数f(x)对于D上任意n个值x1,x2,…xn总满足≤f(),则称f(x)为D的凸函数,现已知f(x)=sinx在(0,π)上是凸函数,则三角形ABC中,sinA+sinB+sinC的最大值为()A.B.3 C.D.311.已知O为△ABC内任意的一点,若对任意k∈R有|﹣k|≥||,则△ABC一定是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定12.△ABC的内角A、B、C的对边分别为a,b,c,且a:b:c=:4:3,设=cosA, =sinA,又△ABC的面积为S,则=()A. S B. S C.S D. S二、填空题(本大题共4小题,每小题5分,共20分)13.设是奇函数,则a+b的取值范围是.14.函数y=3sin(x+10°)+5sin(x+70°)的最大值为.15.已知奇函f(x)数满足f(x+1)=﹣f(x),当x∈(0,1)时,f(x)=﹣2x,则f(log210)等于.16.给出下列命题:①存在实数x,使得sinx+cosx=;②函数y=2sin(2x+)的图象关于点(,0)对称;③若函数f(x)=ksinx+cosx的图象关于点(,0)对称,则k=﹣1;④在平行四边形ABCD中,若|+|=|+|,则四边形ABCD的形状一定是矩形.则其中正确的序号是(将正确的判断的序号都填上)三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.已知cos(α﹣)=,sin(+β)=,且β∈(0,),α∈(,),求sin(α+β)的值.18.设幂函数f(x)=(a﹣1)x k(a∈R,k∈Q)的图象过点.(1)求k,a的值;(2)若函数h(x)=﹣f(x)+2b+1﹣b在上的最大值为3,求实数b的值.19.锐角三角形ABC的三内角A、B、C所对边的长分别为a、b、c,设向量,且(1)求角B的大小;(2)若b=1,求a+c的取值范围.20.已知函数f(x)=2﹣2cos2(+x)﹣cos2x(1)求函数f(x)在x∈时的增区间;(2)求函数f(x)的对称轴;(3)若方程f(x)﹣k=0在x∈[,]上有解,求实数k的取值范围.21.如图,△ABC中,sin=,AB=2,点D在线段AC上,且AD=2DC,BD=.(Ⅰ)求:BC的长;(Ⅱ)求△DBC的面积.22.已知=(sinωx,cosωx),=(cosωx,cosωx)其中ω>0,若函数f(x)=﹣的图象上相邻两对称轴间得距离为2π(1)求方程f(x)﹣=0在区间内的解;(2)若=+,求sinx;(3)在△ABC中,a,b,c分别是角A,B,C的对边,且满足(2a﹣c)cosB=bcosC,求函数f(A)的值域.2015-2016学年河北省衡水中学高一(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在下列四个选项中,只有一个是符合题目要求的)1.若角α与角β终边相同,则一定有()A.α+β=180°B.α+β=0°C.α﹣β=k360°,k∈ZD.α+β=k360°,k∈Z【考点】终边相同的角.【专题】计算题;转化思想;定义法;三角函数的求值.【分析】根据终边相同的角的表示方法,直接判断即可.【解答】解:角α与角β终边相同,则α=β+k360°,k∈Z,故选:C.【点评】本题是基础题,考查终边相同的角的表示方法,定义题.2.已知集合M={x|≤1},N={x|y=lg(1﹣x)},则下列关系中正确的是()A.(?R M)∩N=?B.M∪N=R C.M?N D.(?R M)∪N=R 【考点】交、并、补集的混合运算.【专题】集合.【分析】求出M中不等式的解集确定出M,求出N中x的范围确定出N,即可做出判断.【解答】解:M中的不等式,当x>0时,解得:x≥1;当x<0时,解得:x≤1,即x<0,∴M=(﹣∞,0)∪=0,可得(﹣2)×+φ=kπ,k∈z,再结合|φ|<,∴φ=,∴y=4sin(x+),故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.8.在△ABC中,已知lgsinA﹣lgcosB﹣lgsinC=lg2,则三角形一定是()A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形【考点】三角形的形状判断.【专题】计算题.【分析】由对数的运算性质可得sinA=2cosBsinC,利用三角形的内角和A=π﹣(B+C)及诱导公式及和差角公式可得B,C的关系,从而可判断三角形的形状【解答】解:由lgsinA﹣lgcosB﹣lgsinC=lg2可得∴sinA=2cosBsinC即sin(B+C)=2sinCcosB展开可得,sinBcosC+sinCcosB=2sinCcosB∴sinBcosC﹣sinCcosB=0∴sin(B﹣C)=0∴B=C∴△ABC为等腰三角形故选:A【点评】本题主要考查了对数的运算性质及三角函数的诱导公式、和差角公式的综合应用,属于中档试题.9.已知函数f(x)=log a(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=a x+b的大致图象是()A.B.C.D.【考点】对数函数的图象与性质.【专题】压轴题.【分析】由函数f(x)=log a(x+b)的图象可求出a和b的范围,再进一步判断g(x)=a x+b 的图象即可.【解答】解:由函数f(x)=log a(x+b)的图象为减函数可知0<a<1,f(x)=log a(x+b)的图象由f(x)=log a x向左平移可知0<b<1,故函数g(x)=a x+b的大致图象是 B故选B【点评】本题考查指对函数的图象问题,是基本题.10.若定义在区间D上的函数f(x)对于D上任意n个值x1,x2,…xn总满足≤f(),则称f(x)为D的凸函数,现已知f(x)=sinx在(0,π)上是凸函数,则三角形ABC中,sinA+sinB+sinC的最大值为()A.B.3C.D.3【考点】函数的值.【专题】转化思想;函数的性质及应用;三角函数的求值;不等式的解法及应用.【分析】由凸函数的性质可得:sinA+sinB+sinC≤3,即可得出.【解答】解:由凸函数的性质可得:sinA+sinB+sinC≤3==,当且仅当A=B=C=时取等号.∴sinA+sinB+sinC的最大值为.故选:C.【点评】本题考查了凸函数的性质、三角形内角和定理、不等式的性质,考查了推理能力与计算能力,属于中档题.11.已知O为△ABC内任意的一点,若对任意k∈R有|﹣k|≥||,则△ABC一定是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定【考点】三角形的形状判断.【专题】计算题;数形结合.【分析】根据题意画出图形,在边BC上任取一点E,连接AE,根据已知不等式左边绝对值里的几何意义可得k=,再利用向量的减法运算法则化简,根据垂线段最短可得AC与EC垂直,进而确定出三角形为直角三角形.【解答】解:从几何图形考虑:|﹣k|≥||的几何意义表示:在BC上任取一点E,可得k=,∴|﹣k|=|﹣|=||≥||,又点E不论在任何位置都有不等式成立,∴由垂线段最短可得AC⊥EC,即∠C=90°,则△ABC一定是直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有:平面向量的减法的三角形法则的应用,及平面几何中两点之间垂线段最短的应用,利用了数形结合的思想,要注意数学图形的应用可以简化基本运算.12.△ABC的内角A、B、C的对边分别为a,b,c,且a:b:c=:4:3,设=cosA,=sinA,又△ABC的面积为S,则=()A. S B. S C.S D. S【考点】余弦定理;正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】由题意,利用比例的性质及余弦定理可求cosA=,结合A的范围可求A的值,利用三角形面积公式可求三角形面积,由已知可求向量,,利用平面向量的数量积的运算化简即可得解.【解答】解:由题意可设:a=x,b=4x,c=3x,x>0,则由余弦定理可得:cosA===,结合A∈(0,π),可得A=.从而解得△ABC的面积为S=||||sinA=||||,可得: =cosA=, =sinA=,可得: =||||cosA=||×||×=||||=S,故选:D.【点评】本题主要考查了比例的性质,余弦定理,三角形面积公式,平面向量的数量积的运算在解三角形中的应用,考查了计算能力和转化思想,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.设是奇函数,则a+b的取值范围是.【考点】奇函数.【专题】计算题.【分析】由题意和奇函数的定义f(﹣x)=﹣f(x)求出a的值,再由对数的真数大于零求出函数的定义域,则所给的区间应是定义域的子集,求出b的范围进而求出a+b的范围.【解答】解:∵定义在区间(﹣b,b)内的函数f(x)=是奇函数,∴任x∈(﹣b,b),f(﹣x)=﹣f(x),即=﹣,∴=,则有,即1﹣a2x2=1﹣4x2,解得a=±2,又∵a≠2,∴a=﹣2;则函数f(x)=,要使函数有意义,则>0,即(1+2x)(1﹣2x)>0解得:﹣<x<,即函数f(x)的定义域为:(﹣,),∴(﹣b,b)?(﹣,),∴0<b≤∴﹣2<a+b≤﹣,即所求的范围是;故答案为:.【点评】本题考查了奇函数的定义以及求对数函数的定义域,利用子集关系求出b的范围,考查了学生的运算能力和对定义的运用能力.14.函数y=3sin(x+10°)+5sin(x+70°)的最大值为7 .【考点】三角函数的化简求值.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】分别把(x+10°)与(x+70°)化为(x+40°﹣30°)与(x+40°+30°),展开两角和与差的三角函数,整理后利用辅助角公式化积,则答案可求.【解答】解:y=3sin(x+10°)+5sin(x+70°)=3sin(x+40°﹣30°)+5sin(x+40°+30°)=3+5= [sin(x+40°)﹣cos(x+40°)]+ [ sin(x+40°)+cos(x+40°)]=4sin(x+40°)+cos(x+40°)=7[sin(x+40°)+cos(x+40°)]=7sin≤7.故答案为:7.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,训练了辅助角公式的应用,是中档题.15.已知奇函f(x)数满足f(x+1)=﹣f(x),当x∈(0,1)时,f(x)=﹣2x,则f(log210)等于.【考点】函数的值.【专题】函数思想;综合法;函数的性质及应用.【分析】利用奇偶性与条件得出f(x)的周期,根据函数奇偶性和周期计算.【解答】解:∵f(x+1)=﹣f(x),∴f(x+2)=﹣f(x+1)=f(x),∴函数f(x)是以2为周期的奇函数,∵3<log210<4,∴﹣1<﹣4+log210<0,∴0<4﹣log210<1.∴f(log210)=f(﹣4+log210)=﹣f(4﹣log210)=2==.故答案为:.【点评】本题考查了函数奇偶性与周期性的应用,找到函数周期是解题关键.16.给出下列命题:①存在实数x,使得sinx+cosx=;②函数y=2sin(2x+)的图象关于点(,0)对称;③若函数f(x)=ksinx+cosx的图象关于点(,0)对称,则k=﹣1;④在平行四边形ABCD中,若|+|=|+|,则四边形ABCD的形状一定是矩形.则其中正确的序号是③④(将正确的判断的序号都填上)【考点】命题的真假判断与应用.【专题】探究型;简易逻辑;推理和证明.【分析】根据正弦型函数的图象和性质,可判断①②③,根据向量模的几何意义,可判断④.【解答】解:sinx+cosx=sin(x+)∈,?,故①为假命题;当x=时,2x+=,此时函数取最大值,故函数y=2sin(2x+)的图象关于直线x=对称,故②为假命题;若函数f(x)=ksinx+cosx的图象关于点(,0)对称,则,解得:k=﹣1,故③为真命题;在平行四边形ABCD中,若|+|=|+|,即平行四边形ABCD的两条对角线长度相等,则四边形ABCD的形状一定是矩形,故④为真命题;故答案为:③④【点评】本题考查的知识点是和差角(辅助角)公式,三角函数的对称性,向量的模,向量加法的三角形法则,难度中档.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.已知cos(α﹣)=,sin(+β)=,且β∈(0,),α∈(,),求sin(α+β)的值.【考点】两角和与差的正弦函数.【专题】计算题;整体思想;数学模型法;三角函数的图像与性质.【分析】由α、β的范围求出的范围,结合已知求出sin(α﹣)和cos (+β)的值,则sin(α+β)的值可求.【解答】解:∵α∈(,),∴,又cos(α﹣)=,∴,又∵β∈(0,),∴,sin(+β)=,∴,则sin(α+β)=sin=sin()cos()+cos()sin()=.【点评】本题考查两角和与差正弦、余弦,关键是“拆角、配角”思想方法的运用,是中档题.18.设幂函数f(x)=(a﹣1)x k(a∈R,k∈Q)的图象过点.(1)求k,a的值;(2)若函数h(x)=﹣f(x)+2b+1﹣b在上的最大值为3,求实数b的值.【考点】二次函数的性质;幂函数的单调性、奇偶性及其应用.【专题】分类讨论;换元法;函数的性质及应用.【分析】(1)根据幂函数的定义和性质进行求解即可求k,a的值;(2)若函数h(x)=﹣f(x)+2b+1﹣b在上的最大值为3,利用换元法转化一元二次函数,利用一元二次函数的性质即可求实数b的值.【解答】解:(1)设幂函数f(x)=(a﹣1)x k(a∈R,k∈Q)的图象过点.则a﹣1=1,即a=2,此时f(x)=x k,即=2,即=2,解得k=4;(2)∵a=2,k=4,∴f(x)=x4,则h(x)=﹣f(x)+2b+1﹣b=﹣x4+2bx2+1﹣b=﹣(x2﹣b)2+1﹣b+b2,设t=x2,则0≤t≤4,则函数等价为g(t)=﹣(t﹣b)2+1﹣b+b2,若b≤0,则函数g(t)在上单调递减,最大值为g(0)=1﹣b=3,即b=﹣2,满足条件.若0<b≤4,此时当t=b时,最大值为g(b)=1﹣b+b2=3,即b2﹣b﹣2=0,解得b=2或b=﹣1(舍).若b>4,则函数g(t)在上单调递增,最大值为g(4)=3b﹣15=3,即3b=18,b=6,满足条件综上b=﹣2或b=2或b=6.【点评】本题主要考查幂函数的定义和性质的应用以及一元二次函数的性质,利用换元法结合一元二次函数的性质是解决本题的关键.注意要进行分类讨论.19.锐角三角形ABC的三内角A、B、C所对边的长分别为a、b、c,设向量,且(1)求角B的大小;(2)若b=1,求a+c的取值范围.【考点】余弦定理的应用;平面向量共线(平行)的坐标表示;正弦定理.【专题】计算题;函数思想.【分析】(1)首先运用向量的平行的充要条件得出边a、b、c的一个等,通过变形为分式再结合余弦定理可得cosB=,结合B∈(0,π)得B=;(2)根据正弦定理将a+c变形为关于角A的一个三角函数式,再结合已知条件得出A的取值范围,在此基础上求关于A的函数的值域,即为a+c的取值范围.【解答】解:(1)∵∴(c﹣a)c﹣(b﹣a)(a+b)=0∴a2+c2﹣b2=ac 即三角形ABC中由余弦定理,得cosB=,结合B∈(0,π)得B=(2)∵B=∴A+C=由题意三角形是锐角三角形,得∴再由正弦定理:且b=1∴a+c==∵∴∴ 2∴【点评】本题综合了向量共线与正、余弦定理知识,解决角的取值和边的取值范围等问题,考查了函数应用与等价转化的思想,属于中档题.20.已知函数f(x)=2﹣2cos2(+x)﹣cos2x(1)求函数f(x)在x∈时的增区间;(2)求函数f(x)的对称轴;(3)若方程f(x)﹣k=0在x∈[,]上有解,求实数k的取值范围.【考点】三角函数中的恒等变换应用;正弦函数的图象.【专题】计算题;函数思想;综合法;空间位置关系与距离.【分析】(1)由条件化简得到f(x)=1+2sin(2x﹣),求出f(x)的单调递增区间,得出结论.(2)根据对称轴的定义即可求出.(3)由题意可得函数f(x)的图象和直线y=k在x∈[,]上有交点,根据正弦函数的定义域和值域求出f(x)的值域,可得k的范围.【解答】解:(1)f(x)=2﹣2cos2(+x)﹣cos2x=1+2sin(2x﹣),由2x﹣∈,k∈Z,得x∈,k∈Z,可得函数f(x)在x∈时的增区间为,[,π],(2)由2x﹣=kπ+,k∈Z,∴得函数f(x)的对称轴为x=+,k∈Z,(3)∵x∈[,],∴≤2x﹣≤,即2≤1+2sin(2x﹣)≤3,要使方程f(x)﹣k=0在x∈[,]上有解,只有k∈.【点评】本题主要考查三角函数的化简,正弦函数的图象的对称性、单调性,正弦函数的定义域和值域,属于中档题.21.如图,△ABC中,sin=,AB=2,点D在线段AC上,且AD=2DC,BD=.(Ⅰ)求:BC的长;(Ⅱ)求△DBC的面积.【考点】解三角形.【专题】计算题.【分析】(Ⅰ)由sin的值,利用二倍角的余弦函数公式即可求出cos∠ABC的值,设BC=a,AC=3b,由AD=2DC得到AD=2b,DC=b,在三角形ABC中,利用余弦定理得到关于a与b 的关系式,记作①,在三角形ABD和三角形DBC中,利用余弦定理分别表示出cos∠ADB和cos∠BDC,由于两角互补,得到cos∠ADB等于﹣cos∠BDC,两个关系式互为相反数,得到a 与b的另一个关系式,记作②,①②联立即可求出a与b的值,即可得到BC的值;(Ⅱ)由角ABC的范围和cos∠ABC的值,利用同角三角函数间的基本关系求出sin∠ABC的值,由AB和BC的值,利用三角形的面积公式即可求出三角形ABC的面积,由AD=2DC,且三角形ABD和三角形BDC的高相等,得到三角形BDC的面积等于三角形ABC面积的,进而求出三角形BDC的面积.【解答】解:(Ⅰ)因为sin=,所以cos∠ABC=1﹣2=1﹣2×=.在△ABC中,设BC=a,AC=3b,由余弦定理可得:①在△ABD和△DBC中,由余弦定理可得:,.因为cos∠ADB=﹣cos∠BDC,所以有,所以3b2﹣a2=﹣6 ②由①②可得a=3,b=1,即BC=3.(Ⅱ)由(Ⅰ)知cos∠ABC=,则sin∠ABC==,又AB=2,BC=3,则△ABC的面积为ABBCsin∠ABC=,又因为AD=2DC,所以△DBC的面积为×2=.【点评】此题考查学生灵活运用同角三角函数间的基本关系及余弦定理化简求值,灵活运用三角形的面积公式化简求值,是一道中档题.22.已知=(sinωx,cosωx),=(cosωx,cosωx)其中ω>0,若函数f(x)=﹣的图象上相邻两对称轴间得距离为2π(1)求方程f(x)﹣=0在区间内的解;(2)若=+,求sinx;(3)在△ABC中,a,b,c分别是角A,B,C的对边,且满足(2a﹣c)cosB=bcosC,求函数f(A)的值域.【考点】平面向量数量积的运算;三角函数中的恒等变换应用;余弦定理.【专题】综合题;函数思想;整体思想;综合法;三角函数的图像与性质.【分析】(1)由数量积的坐标表示结合倍角公式、两角和的正弦化简f(x)的解析式,再由已知求得ω,最后求解三角方程得答案;(2)由=+,得,进一步得,转化为倍角的余弦求解;(3)由已知等式结合正弦定理求得B,由三角形内角和定理得到A的范围,则函数f(A)的值域可求.【解答】解:(1)=,∵函数f(x)的图象上相邻两对称轴间得距离为2π,∴,T=,得,∴f(x)=,由f(x)﹣=0,得=,即,∴,或.在区间内的解为;(2)若=+,则,得,∴cos(x+)=,得sinx=;(3)∵(2a﹣c)cosB=bcosC,∴由正弦定理得cosB=,则B=,∴A∈(0,),则,故函数f(A)的值域为(,].【点评】本题考查三角函数中的恒等变换应用,考查了平面向量的数量积运算,考查余弦定理在解三角形中的应用,是中档题.。