自动控制原理(3)
自动控制原理(3-4)
式中Φn(s)——系统的扰动误差传递函数。
Φn
(s)
=
1+
Gc
Go (s) (s)Go (s)H
(s)
=
Go (s) 1+ G(s)
五、给定稳态误差终值的计算
Er
(s)
1
1 G(
s)
R(s)
esr
lim e(t)
t
lim
s0
sEr
(s)
lim s s0 1 G(s)
R(s)
esr为给定稳态误差的终值;G(s)为开环传递函数。
Er
(
s)
1
1 G(s)
R(s)
e
(s)R(s)
假定输入信号r(t)是任意分段连续函数,则可以利用
卷积公式计算给定误差:
式中
t
er (t) 0e (t) r(t ) d
er
(t)
1
2
j
c j
E c j r
(
s)
e
st
ds
e
(t)
1
2
j
c j
3.对于给定输入为抛物线函数时
r(t) Rt 2 2
R R(s) s3
则
esr
lim
s0
1
s G(s)
R(s)
lim
s0
s2
R s2G(s)
R Ka
式中
Ka
lim s2 G(s) s0
Ka为加速度误差系数,或称抛物线误差常数。
自动控制原理3第三节典型环节的频率特性
左图是不同阻尼系数情况下的 对数幅频特性和对数相频特性 图。上图是不同阻尼系数情况 下的对数幅频特性实际曲线与 渐近线之间的误差曲线。
1 2T 1 T 2 T 5 T 10 T
1 5T
Saturday, November 05, 2016
15
微分环节的频率特性
⒌ 微分环节的频率特性: 微分环节有三种:纯微分、一阶微分和二阶微分。传递函 数分别为: G( s) s
05, 2016
12
振荡环节的波德图
2 T ( ) tg 相频特性: 1 T 2 2
1
几个特征点: 0, ( ) 0;
1 , ( ) ; , ( ) 。 T 2
由图可见:
K 10, T 1, 0.3 10 G ( j ) 2 s 0.6s 1 1 o T
1
幅频特性为: 相频特性为:
A( )
(1 T 2 2 )2 (2T )2 2 T ( ) tg 1 1 T 2 2
L( ) 20 log A( ) 20 log (1 T 2 2 ) 2 (2 T ) 2 对数幅频特性为:
低频段渐近线: T 1时,L( ) 0 高频段渐近线: T 1时, L( ) 20 log (T 2 2 ) 2 40 log T 1 两渐进线的交点 o 称为转折频率。斜率为-40dB/Dec。 T Saturday, November
1 2
T
时,无谐振峰值。当
M p A( p )
1 2
1 0.707时, p 0 。 2
时,有谐振峰值。
1 2 1 2
1 当 0 , A(0 ) , 。 L ( ) 20 lg 2 0 2
自动控制原理第三章
➢ 0 1 特征根: s1,2 n jn 1 2
Xc (s)
1 s
s2
n2 2ns n2
1 s
s2
s 2n 2ns n2
1
s 2n
s (s n )2 (n 1 2 )2
其阶跃输入下的暂态响应:
xc (t) 1
e nt
1 2
sin(n
1 2 t ) , arctan
WB (s)
X c (s) X r (s)
(1
1 K)s
1
1 Ts 1
式中:T 1 k , 称为时间常数。
3.2.2 单位阶跃响应函数:
X r (s) 1 s
11
Xc
(s)
Ts
1
s
,
xc (t)
L1[ 1 Ts 1
1] s
L1[ 1 s
s
1
1
]
1
t
eT
T
xc (t ) xss xtt
2
1.8
1.6
1.4
1.2
1
0.8
0.6 0.4 0.2
0 0
246
nt
8 10 12
⒊ 当 1时,特征方程有一对相等的负实根,称为临界阻尼
系统,系统的阶跃响应为非振荡过程。
➢当 1 时,
阶跃响应曲线为:
xc
(s)
1 s
s2
n2 2n s
n2
n2 s(s n )2
1 1 n s s n (s n )2
1 )( s
T1
1 T2
)
式中
T1
1 a
n (
1
2
1)
自动控制原理课件3第三节典型环节的频率特性3
K Kω n = 2 ⒋ 振荡环节的频率特性: G ( s ) = 2 2 T s + 2ζTs + 1 s + 2ζω n s + ω n 2
2
讨论 0 ≤ ζ ≤ 1时的情况。当K=1时,频率特性为:
G ( jω ) = 1 (1 − T 2ω 2 ) + j 2ζωT
1
幅频特性为: 相频特性为:
1 2T 1 T
1 10T
1 5T
2 T
5 T
10 T
Sunday, April 15, 2012
4
微分环节的频率特性
⒌ 微分环节的频率特性: 微分环节有三种:纯微分、一阶微分和二阶微分。传递函 数分别为: G( s) = s
G ( s ) = 1 + Ts G ( s ) = T 2 s 2 + 2ζTs + 1 频率特性分别为: G ( jω ) = jω
Sunday, April 15, 2012
12
二、开环系统的Bode图 系统的Bode图 系统的Bode
Sunday, April 15, 2012
13
最小相位系统和非最小相位系统
三、最小相位系统和非最小相位系统 最小相位系统和非最小相位系统 定义:在右半S平面上既无极点也无零点,同时无纯滞后环节 的系统是最小相位系统,相应的传递函数称为最小相位传递函 数;反之,在右半S平面上具有极点或零点,或有纯滞后环节 的系统是非最小相位系统,相应的传递函数称为非最小相位传 递函数。 在幅频特性相同的一类系统中,最小相位系统的相位移最小, 并且最小相位系统的幅频特性的斜率和相频特性的角度之间具 有内在的关系。 对最小相位系统:ω=0时ϕ (ω)=−90°×积分环节个数 ; ω=∞时ϕ (ω)=−90°×(n-m) 。 不满足上述条件一定不是最小相位系统。 满足上述条件却不一定是最小相位系统。 14
自动控制原理-第3章-时域分析法
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点
自动控制原理 3
cos( d t p ) 0
d tan( d t p ) tan n
d t p n
n = 1时出现第一次峰值
tp d n 1 2
当 ξ 一定时,tp 与 ωn 成反比; 当ωn一定时,tp 随 ξ 增大而增大。
3. 最大超调量
3.4二阶系统的瞬态响应指标
xo(t)
Mp
1.0
%
0.5
0
td tr tp ts
t
一. 瞬态响应指标定义
上升时间tr:
对于欠阻尼系统,响应曲线从0到第一次达到稳态值所经 过时间。
对于过阻尼系统,响应曲线从稳态值的10%上升到90% 所需时间。
延迟时间td:
响应曲线从0上升到稳态值50%所 需的时间。
n 1 1 s s n s n 2
xo (t ) 1 n te
nt
e
nt
(t 0)
1 e
临界阻尼二 阶系统单位 阶跃响应曲 线
nt
(1 nt )
xo(t) 1
0
t
临界阻尼二阶系统的单位阶跃响应是稳态值为1的非周期上 升过程。
xi (t ) 1(t )
1 X i (s) s
单位阶跃响应为
x0 (t ) 1 e
1 t T
(t 0)
一阶系统阶跃响应曲线的特点
1) 一阶惯性系统总是稳定,无振动。 2) 经过时间T,曲线上升到0.632的高度,反过来,用实验 的方法测出响应曲线达到0.632的时间,即是惯性环节的时 间常数。 3) 经过时间3T~4T,响应曲线达稳定值的95%~98%,可 以认为其调整时间已经完成,故一般取调整时间(3~4)T 。
自动控制原理第三章3_劳斯公式
对于三阶或以上系统,求根是很烦琐的。于是就有了以下 描述的代数稳定性判据。
劳斯判据
二、 劳斯稳定性判据
设线性系统的特征方程为 ansn an1sn1 a1s a0 0 则该 系统稳定的充要条件为: 特征方程的全部系数为正值; 由特征方程系数组成的劳斯阵的第一列也为正。
劳斯表出现零行
设系统特征方程为: ① 有大小相等符号相反的
s4+5s3+7s2+5s+6=0
特征根时会出现零行
劳 s4 1 7 6
② 由零行的上一行构成 辅助方程:
s3 51 51
斯 s2 61 61
s2+1=0
对其求导得零行系数: 2s1
表 s1 02
继续计算劳斯表
s0 1
劳斯表出现零行
1 2
出劳系现斯统零表一何行定时怎会么不出办稳现?定零行?
s2 0( ) 1 0
s1 2 2 0 0 2 2
s0
1
00
令 0则 2 2 故
第一列不全为正,系统不稳
定,s右半平面有两个极点。
2
2,
2
2
1
劳斯判据特殊情况
劳斯阵某行系数全为零的情况。表明特征方程具有大小相等 而位置径向相反的根。至少要下述几种情况之一出现,如:大 小相等,符号相反的一对实根,或一对共轭虚根,或对称于虚 轴的两对共轭复根。
劳斯判据特殊情况
劳斯阵某一行第一项系数为零,而其余系数不全为零。
[处理办法]:用很小的正数 代替零的那一项,然后据此计算出 劳斯阵列中的其他项。若第一次零(即 )与其上项或下项的
(自动控制原理)3一阶系统的时间响应及动态性能
06
结论
一阶系统的时间响应及动态性能总结
一阶系统的时间响应特性
一阶系统在输入信号的作用下,其输出量随时间变化的过程。通过分析一阶系统的传递函数,可以得出其时间响应的 特性,包括上升时间、峰值时间、调节时间和超调量等。
一阶系统的动态性能分析
动态性能是一阶系统对输入信号的响应能力,包括系统的稳定性、快速性和准确性等。通过分析一阶系统的开环和闭 环频率特性,可以得出其动态性能的特性,如相位裕度和幅值裕度等。
3
在实际应用中,可以通过实验或理论分析来获取 一阶系统的数学模型。
一阶系统的分类
01
根据时间常数T的大小,一阶系统可以分为快系统和 慢系统。
02
时间常数T较小的一阶系统称为快系统,其动态响应 速度较快。
03
时间常数T较大的一阶系统称为慢系统,其动态响应 速度较慢。
03
一阶系统的时间响应分析
时间响应的定义与计算
实例二:一阶系统的单位脉冲响应模拟
总结词:时间常数
详细描述:与单位阶跃响应类似,一阶系统的单位脉冲响应的时间常数也是系统的重要参数,它决定 了系统衰减到零所需的时间。时间常数越小,系统衰减到零所需的时间越短。
实例三:一阶系统的动态性能优化实例
总结词
PID控制器
详细描述
为了优化一阶系统的动态性能,可以采用PID控制器。PID控制器能够根据系统 的输入和输出信号调整系统的参数,从而改善系统的性能指标,如超调量、调 节时间和稳态误差等。
详细描述:由于一阶系统的单位阶跃响应具有快速跟踪 的特点,因此系统在稳态时不会产生静差,输出能够精 确地跟踪输入信号。
详细描述:一阶系统的单位阶跃响应的时间常数是系统 的重要参数,它决定了系统达到稳态值所需的时间。时 间常数越小,系统达到稳态值所需的时间越短。
自动控制原理第3章
arctan 9 3
1.25rad
则响应为 y(t) 1 2 e 3t 0.95e j1.25e (1 j)t 0.95e j1.25e (1 j)t 5
1 2 e 3t 0.95e t e j(t1.25) e j(t1.25) 5 1 2 e 3t 1.9e t cos(t 1.25)
平衡位置:力学系统中,当系统外的作 D
用力为零时,位移保持不变的位置。
此时位移对时间的各阶导数为零。 A点和D点是平衡位置, B点和C点不是平衡位置。
O
B
C
A
稳定的平衡位置:若在外力作用下,系统偏离了平衡位置,但 当外力去掉后,系统仍能回到原来的平衡位置,则称这一个平 衡位置是稳定的平衡位置。
所以A点是稳定的平衡位置,而D点不是稳定的平衡位置。
注意:输入信号为非单位阶跃信号时,依齐次性,响应 只是沿纵轴拉伸或压缩,基本形状不变。所以ts 、 tr、 tp 、 σ并不发生变化。
当t < ts时,称系统处于动态;当t > ts时,称系统处于稳态。
3.2 一阶系统的单位阶跃响应
一阶系统(惯性环节)
G(s) 1 Ts 1
单位阶跃响应为
t
y(t) 1 e T
设零初始状态,y(0)=0 r (t)=1(t)时,y(t)的响应曲线为
y(t)
1.05 y(∞)
ym
y(∞)
0.95 y(∞)
tr tp
ts
ym:单位阶跃响应的最大偏离量。 y(∞):单位阶跃响应的稳态值。并非期望值。 ts:调节时间。y(t)进入0.5*y(∞)或0.2* y(∞)构成的误差带 后不再超出的时间。 tr:上升时间。 y(t) 第一次达到 y(∞)的时间。
自动控制原理-第3章
响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
自动控制原理(3)
# 3—3 一阶系统分析 四、一阶系统的单位脉冲响应 R(s)=1 C(s)=[1/(Ts+1)]*1 -1 Ct(t)=L [1/(Ts+1)] --t/T K(t)=(1/T)*e (t > 0) 响应初始斜率: 响应初始斜率: 1/T dk(t)/dt|t=0 --t/T 2 = --(1/T )*e 1/2T 2 = --1/T
# 3—3 一阶系统分析 3— 3、性能指标 、 1)暂态性能 ) 由于一阶系统的阶跃响应没有超调量, 由于一阶系统的阶跃响应没有超调量, 所以性能指标主要 是调节时间ts,它表征 系统过渡过程的快慢。由于t=3T时,输 系统过渡过程的快慢。由于 时 出响应可达稳定值的95%;t=4T时,输 出响应可达稳定值的 ; 时 出响应可达稳定值的98%,故一般取: 出响应可达稳定值的 ,故一般取: ts=3T(s)(对应误差带为 ) )(对应误差带为 ( )(对应误差带为5%) ts=4T(s)(对应误差带为 ) )(对应误差带为 ( )(对应误差带为2%) 显然,系统的时间常数T越小,调节 显然,系统的时间常数 越小, 越小 就越小,响应过程的快速性也好。 时间ts就越小,响应过程的快速性也好。
0 T 2T 3T 4T 3/2T
# 3—3 一阶系统分析 五、三种响应之间的关系 Ct(t) = ∫ = ∫ (1-e )dt (t > 0 ) 0 --t/T = t – T+Te
超调 量 0.9 0.5 0.1 tr 峰值 tp ts td
误差带
# 3—3 一阶系统分析 3—
由一阶微分方程描述的系统即 为一阶系统,一些控制元、 为一阶系统,一些控制元、部件 及简单系统如R——C网络,发 网络, 及简单系统如 网络 电机,空气加热器, 电机,空气加热器,液面控制系 统等。 统等。
自动控制原理3第三节典型环节的频率特性
自动控制原理3第三节典型环节的频率特性比例控制器是最简单的控制器之一,其传递函数为Gc(s)=Kp,其中Kp为比例增益。
在频域中,比例增益为常数,因此比例控制器的频率特性为水平直线,具有0dB增益,相位为0度。
这个直线表示比例控制器不引入相位延迟,对于低频信号和高频信号都具有相同的控制作用。
积分控制器是在比例控制器基础上加入一个积分环节,其传递函数为Gc(s)=Ki/s,其中Ki为积分增益。
在频域中,积分控制器的频率特性为垂直直线,增益随频率上升而线性减小,相位为-90度。
这个直线表示积分控制器对于低频信号具有较大的增益,对于高频信号逐渐减小增益,引入了相位延迟。
比例-积分控制器将比例控制器和积分控制器结合起来,其传递函数为Gc(s)=Kp+Ki/s。
在频域中,比例-积分控制器的频率特性综合了比例控制器和积分控制器的特性,具有一定的增益和相位延迟。
低通滤波器常用于传感器信号的处理,其传递函数为Gf(s)=1/(Ts+1),其中T为滤波时间常数。
在频域中,低通滤波器的频率特性为从高频到低频逐渐衰减,相位逐渐增加。
这个特性表示低通滤波器对高频噪声有一定的抑制作用。
一阶惯性环节常用于建模物理系统的传递函数,其传递函数为Gp(s)=Kp/(Ts+1),其中Kp为静态增益,T为时间常数。
在频域中,一阶惯性环节的频率特性为从低频到高频逐渐衰减,相位逐渐增加,类似于低通滤波器。
这个特性表示一阶惯性环节对高频信号的响应较弱。
综上所述,第三节典型环节的频率特性与控制器、传感器和执行器的性质有关。
比例控制器的频率特性为水平直线,积分控制器的频率特性为垂直直线,比例-积分控制器的频率特性综合了前两者的特性。
低通滤波器的频率特性对高频噪声有一定的抑制作用,一阶惯性环节的频率特性类似于低通滤波器,对高频信号的响应较弱。
掌握这些频率特性对于分析和设计自动控制系统的性能具有重要意义。
自动控制原理第3章
2
一、典型的输入信号
1、阶跃信号 数学表达式
r(t) A t 0
拉氏变换式
R(s) A s
当A=1时,称为单位阶跃信号!
r(t) 1
2.斜坡信号 数学表达式
r(t)
R(s) 1 s
At t 0 0 t0
3
典型的输入信号
y(tr ) 1
经整理得
tr
n
1
2
25
二阶系统分析
t tp
2、超调量 :
暂态过程中被控量的最大值超过稳态值的百分数。
即
%
y(t
P ) y y
100
%
峰值时间 t t p
在 t 时t p刻对 求y导t,令其等于零,经整理得
tp 1 2n
将其代入超调量公式得
% e 1 2 100%
r(t)
A 0t 0 t0 t
拉氏变换式 R(s) A
5
典型的输入信号
当A=1时, 称为单位理想脉冲信号
r(t) (t) R(s) 1
5、正弦信号 数学表达式
r(t) Asin t t 0
拉氏变换式
R(s)
A s2 2
6
二、时域性能指标
以单位阶跃信号输入时,系统输出的一些特征值来表示。
系统对输入信号微分(积分)的响应,就等于该输入 信号响应的微分(积分)。
例3-1(解释)
14
第三节 二阶系统分析 一、二阶系统
用二阶微分方程描述的系统。 二、二阶系统典型的数学模型
先看例:位置跟踪系统
15
二阶系统分析 系统结构图:
自动控制原理第3章
自动控制原理
17
调量越小, 响应的振荡 越弱,系统 的平稳性越 好,灵敏性?
越大,超
自动控制原理
18
3-3-2 二阶系统的单位阶跃响应
一定时 ,瞬态分 量衰减速 度取 n e 决于 n 故 衰减系数
自动控制原理
19
3-3-2 二阶系统的单位阶跃响应
(2)等幅振荡型
h(t ) 0 1 e nt 1
c (s)
自动控制原理
12
3-3-1 二阶系统的数学模型
开环传递函数
K G(s) s(Tm s 1)
c ( s) K ( s) r ( s ) Tm s 2 s K
R(S) C(S)
闭环传递函数
二阶系统微分方程 系统的闭环传递函数的标准形式:
2 n ( s) 2 2 s 2 n s n
自动控制原理
4
3-1 系统的时域性能指标
动态性能指标
在阶跃函数作用下测定或计算系统的动态性能指标 因为阶跃输入可以表征系统受到的最严峻的工作状态 (1)延迟时间
td
h ()
(2)上升时间
(3)峰值时间 (4)调节时间
tr
tp
0.9h() 0.5h() 0.1h()
td
ts
tr
ts
tp
5
误差带:±5%, ±2%
3-3-3 欠阻尼二阶系统的动态过程分析
(3)峰值时间 t p 的计算
dh(t ) n t e n p sin( d t p ) 0 dt t t p 1 2
则 sin( d t p ) 0
d t p 0, ,2 , d t p
自控原理(3)
2003-09/10
<自动控制原理>(3-17)
3.4 高阶系统的时域分析 1、定义:能用三阶或三阶以上的微分方程描述的控 制系统。 2、分析方法:
1)定性分析; 2)主导极点法; 3)计算机分析 3 主导极点与偶极子问题 ① 主导极点: 在所有的闭环极点中,那些离虚轴最近、 且附近又没有其它零、极点,对系统动态性能影响起主 导的决定性作用的闭环极点,称之为主导极点。 主导极点法: 利用主导极点代替系统全部闭环极点来 估算系统性能的方法,称为主导极点法。 一般要求:
t
td tr tp ts b 单位阶跃信号作用下 反馈系统的过渡过程曲线
误差带△一般取0.02或0.05 ⑵ 动态性能指标: 延迟时间 td :指响应从0到第一次达到终值(稳态值)的一半 时所需要的时间;
上升时间 tr :指响应从0到第一次达到终值(稳态值)时所需要 的时间;
前 页 后 页
2003-09/10
j
S1 S2
j
0
0
t
② ξ = 1时,(临界阻尼) S1 ,S2 为一对相等的负实数根。
③ 0<ξ<1时,(欠阻尼) S1 ,S2 为一对具有负实部的共轭复根。
前 页 后 页
2003-09/10
<自动控制原理>(3-08)
④ 当ξ=0时,(无阻尼,零阻尼) S1 ,S2 为一对幅值相等的虚根。
⑤ 当ξ<0时,(负阻尼) S1 ,S2 为一对不等的负实数根。
结论分析: a) tr 、tp 、ts 、td 与ωn 的关系(反比关系);
b)
tp 、td与ξ的关系(正比关系);
ts与ξ的关系(反比关 系);
前 页 后 页
自动控制原理课后答案第三章
环传递函数, 已知单位反馈系统的开 环传递函数, 的稳定性. 试用劳思判据判断系统 的稳定性. 50 ; G(s) = s(s + 1)(s + 5)
若要求右半s 若要求右半s平面闭环 极点数,则列Routh表 极点数,则列Routh表 : Routh 1 5 s3 6 50 s2 6 × 5 − 1× 50 1 <0 0 s 6 0 s 50 首列元素反号两次, 首列元素反号两次, 故 右半s 右半s平面闭环极点数 为2.
第三章重点
进行时域分析的基本方法:重点是二阶系统的时域响应、 进行时域分析的基本方法:重点是二阶系统的时域响应、劳斯稳定判据 及稳态误差分析。 及稳态误差分析。 基本概念,稳定性和动态性能、主导极点、稳态误差、串联校正、 基本概念,稳定性和动态性能、主导极点、稳态误差、串联校正、反馈 校正等。 校正等。 Routh判据的应用;建立系统稳定(绝对稳定和相对稳定)的概念;稳 判据的应用; 判据的应用 建立系统稳定(绝对稳定和相对稳定)的概念; 定和闭环极点的关系 二阶系统的典型输入及性能指标; )(3-27)( )(3-28) 二阶系统的典型输入及性能指标;式(3-26)( )( )( ) )(3-31)和(3-32)为参数与指标间的数学描述 (3-30)( )( ) ) 高阶系统重点建立主导极点概念, 高阶系统重点建立主导极点概念,非主导极点及开环小时间常数影响 根据稳态误差定义推导出稳态误差与系统结构参数以及输入信号形式大 小的关系,引出静态误差系数。( 。(0、 、 型系统 型系统? 小的关系,引出静态误差系数。( 、I、II型系统?)
(完整word版)自动控制原理3卢京潮
第三章 线性系统的时域分析与校正习题及答案3-1 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。
解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程T c t c t r t r t ••+=+()()()()τ近似描述,其中,1)(0<-<τT 。
试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(= 当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττC t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; Tt TT d-⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从1.0到9.0所需时间)当 Tt eTT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln TT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。
自动控制原理(第二版)(赵四化)章 (3)
(s) C(s) 1
R(s) Ts 1
(3-13)
第3章 时域分析法 图3-5 一阶系统的动态结构图
第3章 时域分析法
3.2.1 一阶系统的单位阶跃响应
设输入
R(s) 1 s
则输出量的拉氏变换为
C(s) (s) 1 1 1 1 1
s Ts 1 s s s 1/T
单位阶跃响应为
1t
C(s)
(s)R(s)
s2
n2 2ns
n2
1 s
其中, 由
s2 2 ns n2 0
可求得两个特征根
s1,2 n n 2 1
(3-22)
第3章 时域分析法
1) ξ>1, 过阻尼
ξ>1
时
, 2 1 s1,2=-ξωn±ωn
为两个不相等的负实数根, 即有
C(s)
n2
A1 A2 A3
(s)
C(s) R(s)
s2
n2 2ns
n2
(3-21)
其中, ξ为阻尼比, ωn为无阻尼自然振荡频率, 它们 均为系统参数。
第3章 时域分析法
由式(3-21)可以看出, 二阶系统的动态特性 可以用ξ和ωn这两个参数的形式加以描述。 如果0<ξ<1, 则闭环极点为共轭复数, 并且位于左半s平面, 这时系统 叫做欠阻尼系统, 其瞬态响应是振荡的。 如果ξ=1, 那 么就叫做临界阻尼系统。 而当ξ>1时, 就叫做过阻尼系 统。 临界阻尼系统和过阻尼系统的瞬态响应都不振荡。 如果ξ=0, 那么瞬态响应变为等幅振荡。
此时系统输出响应的拉氏变换为
C(s)
1 Ts 1
1 s2
1 s2
T s
T2 Ts 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= (1/T)*e
- t /T
# 3—4 二阶系统分析
由二阶微分方程描述的系统——二阶 系统。
一、数学模型 二阶系统传递函数的通式为: s + 2ζwns+wn 1 (s)=――――――― (Ts) 2 +2ζTs +1
2 wn
(s)=――――――― 2 2
T=1/wn
# 3—4二阶系统分析
自动控制原理
第三章
第三章 控制系统的时域分析
研究系统的动态特性,实质就是研究系统在 输入信号作用下,输出量是怎样按输入量的作用 而变化,也即系统对输入如何发生响应。
3—1 控制系统分析的方法
一、控制系统的典型输入
控制系统的输入信号具有随机的性质,往往不能用分析的 方法准确地表示出来。但对同一个系统,各种不同的输入所引起 的过渡过程所表征的系统特性在本质上是一致的,故在比较两个 系统的特性时,采用相同的输入是方便的。 单位脉冲函数:
三、一阶系统的单位斜坡响应
1、响应特性
R(s)=1/s2 C (s)=[1/s2 (Ts+1)]
取C(s)的拉氏反变换,得:
# 3—3 一阶系统分析 --1 2 g(t) = L [1/s (Ts+1)] --1 2 = L [1/s -T/s+ T/(s+1/T)]
- t /T
g(t) =( t – T)+T*e (t > 0) = Css + Ctt 式中Css=(t-T)为响应的稳态分量, - t /T Ctt=T*e 为响应的瞬态分量,当时间 t 时,Ctt衰减到0。
响应的初始速度为: -t/T de(t)/dt|t=0 =1 – e |t=0 = 0
# 3—3 一阶系统分析
响应曲线图
3T
2T r(t)=t T 0 --T
--t/T
C(t)=t--T+Te
T
2T
3T
4T
# 3—3 一阶系统分析 2、性能指标 稳态误差 :ess=lim[t—c(t)]
t
wn称无阻尼自然频率或固有频率,ζ为 阻尼比。 R(s) 2 C(s) 结构图 wn ――――――― s(s + 2ζwn)
一、已知一个闭环系统的单位阶跃响应为
C (t ) 1 0.2e
60t
1.2e
10t
1)求系统的闭环传递函数 2)确定系统的 ζ 和 wn
1 解: R ( s ) S 1 0.2 1.2 C (s) S S 60 S 10 C (s) 600 (s) 2 R( s) S 70 S 600
# 3—3 一阶系统分析 可见,一阶系统的单位阶跃响应如果以 初始速度等速上升至稳态值1,所需要的时 间应恰好为T。 2、时间常数T是表征响应特性的唯一 参数,它与输出值有确定的对应关系。 t=T h(T)=0.632 t=2T h(2T)=0.865 t=3T h(3T)=0.950 t=4T h(4T)=0.982 可以用实验方法根据这些值鉴别和确 定被测系统是否为一阶系统。
=lim[t—(t—T+Te
t
--t/T
)]
=T 由特性图可看出,一阶系统在斜坡输入 下的稳态输出与输入的斜率相等,只是滞后 一个时间 T或说存在一个T的跟踪滞后误差。 其数值与时间常数T的数值相等。因此,时间
# 3—3 一阶系统分析 常数T越小,则响应越快。稳态误差越小, 输出量对输入信号的滞后时间也越小。
3—2 对控制系统时域性能的 基本要求
评价系统时域性能的标准:稳定性、稳态特 性、暂态特性 。
一、稳定性 假设当输入为单位阶跃函数时,系统的输出如 图所示
C(t)
1
0
r(t)
t C(t)
C(t)
0
t
0 t
C(t) 1 0 t C(t)
1
0
t
结论:
1、控制系统正常运行的必要条件是必须是 稳定的。 2、线性控制系统的稳定性与输入量无关, 完全由系统的结构和参数决定 。
# 3—4 二阶系统分析
二阶系统的响应特性完全由ζ和wn两 个参数决定,所以ζ、wn是二阶系统的两 个重要参数。
三、单位阶跃响应 1、过阻尼系统 1)响应特性 ζ > 1时,二阶系统闭环特征方程有两个不 等的负实根
# 3—4 二阶系统分析 2 2 s + 2ζswn+wn =(s+1/T1)(s+1/T2) 1 T1=–——————— 2 wn(ζ-√‾‾‾‾‾) ζ -1
# 3—3 一阶系统分析 3、性能指标 1)暂态性能 由于一阶系统的阶跃响应没有超调量, 所以性能指标主要 是调节时间ts,它表征 系统过渡过程的快慢。由于t=3T时,输 出响应可达稳定值的95%;t=4T时,输 出响应可达稳定值的98%,故一般取: ts=3T(s)(对应误差带为5%) ts=4T(s)(对应误差带为2%) 显然,系统的时间常数T越小,调节 时间ts就越小,响应过程的快速性也好。
ζ2 -1 T2=1/[wn(ζ+ √‾‾‾)] 且 T1> T2, wn2 =1/T1T2 1/T1T2 (s)=C(s)/R(s)=–––––––––––––––– (s+1/T1)(s+1/T2) 1 = –––––––––––––– (T1s+1)(T2s+1)
# 3—4 二阶系统分析
r K0 – KH G (s)
C(s)
解:
10k 0 ( s) 0.2 S (1 10 K H ) 10 K 0 0.2 S 1 10k H 1
1 10k H
T ' 0.1T 0.2 0.1 0.2 1 10 K H 1 0.1 1 0.1 K H K H 0.9 1 10 K H K0 1 K 0 1 9 10 1 10 K H
n 600 10 6
2
2 n 70 7 2 6
# 3—4 二阶系统分析 二、特征方程式 系统的特征方程式即为闭环传递函数 的分母多项式等于0。 二阶系统的特征方程式为: 2 2 s + 2ζswn + wn =0 2 特征根为:s= -ζwn ± wn√¯ ¯ ζ¯ -1 ζ2 -1 =wn(-ζ±√‾‾‾‾)
δ(t)=
0
t≠0
∞ t=0
L[δ(t)]=1
单位阶跃函数:
0
t<0 t≥0
1(t)=
1
1 L[1(t)]= — S 1 L[r(t)]= — S2 1 L[p(t)]= — S3
单位斜坡函数:
r(t)=
0
t<0
t t≥0
0 t<0 单位抛物线函数: p(t)= 1 2 —t t ≥ 0 2
正弦函数: w(t)=Asin(wt + θ)
# 3—3 一阶系统分析 四、一阶系统的单位脉冲响应 R(s)=1 C(s)=[1/(Ts+1)]*1 -1 Ct(t)=L [1/(Ts+1)] --t/T K(t)=(1/T)*e (t > 0)
响应初始斜率: 1/T dk(t)/dt|t=0 --t/T 2 = --(1/T )*e 1/2T 2 = --1/T
当输入为R(s)=1/s 1/T1T2 C(s)=—————— *(1/s) (s+1/T1)(s+1/T2)
-t/T1 1 h(t)=1 + —————*e (T2/T1)--1 -t/T2 1 +—————*e (t > 0) (T1/T2)--1 可见瞬态分量部分随时间增长而衰减 到0,最终输出稳态值1,所以系统不存在 稳态误差。
以上几种典型输入之间,按顺序前者是后者 的导数,而后者是前者的积分,所以只需要分析其 中一种输入函数的输出响应,就可利用求导数或求 积分的方法来确定 .
二、分析系统动态特性的两种方法
根据输入函数的不同 —— 时域分析、频域分 析。 1、时域分析法 :在时间域中对系统在前几种典 型函数作用下的响应过程的分析。 2、频域分析法:在频率域中对系统在正弦信号 输入下的响应过程的分析。
0
T 2T 3T 4T 3/2T
# 3—3 一阶系统分析 五、三种响应之间的关系 Ct(t) = ∫ = ∫ (1-e )dt (t > 0 ) 0 --t/T = t – T+Te
t h(t)dt 0 - t /T t
k(t)= dh(t)/dt = d(1-e
- t /T
)/dt (t > 0)
# 3—3一阶系统分析 当时间t ,Ctt衰减为0,显然一阶 系统的单位阶跃响应是一条由零开始,按 指数规律上升并最终趋于1的曲线。如图所 示。 h(t) 2 响应曲线的初始 斜率:
dh(t)/dt|t=0 - t /T = (1/T)*e = 1/T
1 0 T 2T 3T 4T
初始斜率=1/T
则:Tsc(s) +c(s) = r(s) (s) = 1/(Ts+1)
设T=1/k , 则一阶系统可用如下的动态结构图 表示: c(t) K/s r(t) -
# 3—3 一阶系统分析 二、一阶系统的单位阶跃响应 1、响应特性 2、时间常数T 3、性能指标
# 3—3 一阶系统分析 二、一阶系统的单位阶跃响应 1、响应特性: 单位阶跃响应的拉氏变换为: R(s)=1/s C(s)= (s)*R(s) = 1/[s(Ts+1)] 取C(s)的拉氏反变换得: -1 [1/s(Ts+1)]=L-1 [1/s-1/(s+1/T)] h(t)=L h(t)=1-e -t/T (t > 0) 或写成 h(t) = Css +Ctt 式中 Css=1,代表稳态分量 - t /T Ctt=e 代表瞬态分量