第二章 红外光谱简介及物质结构

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
也就是说,只有当ΔEV=Ea或者νa=ΔVν时,才可能发生振转 跃迁。例如当分子从基态(V=0)跃迁到第一激发态(V=1),
此时ΔV=1,即νቤተ መጻሕፍቲ ባይዱ= ν。
发生振动能级跃迁需要能量的大小取决于键两端原子的折合质 量和键的力常数,即取决于分子的结构特征!
3. 分子的振动
讨论分子的振动类型可以使我们了解红外吸收峰的起源,以便 推测分子中存在哪种基团和推断分子结构。 分子的振动实质上是 化学键的振动,分为伸缩振动和弯曲振动两类。 1). 伸缩振动 原子沿着价键方向来回运动,键长发生变化。
2)氢键效应 由于氢键的存在,使原来的键削弱,使伸缩振动频率下降。 (1) 分子内氢键,不受浓度影响; (2) 分子间氢键,受浓度影响,浓度越大,伸缩振动频率向 低波数位移越大。
O R
H NH R O
C=O 伸缩 N-H
游离 氢键 1690 1650 3500 3400
伸缩
N-H 变形
1620-1590
二. 傅立叶变换红外光谱仪 1.特点
1.灵敏度高,检出限可达10-9-10-12g; 2.分辨本领高,波数精度可达0.01cm-1; 3.测定精度高,重复性可达0.1%; 4.扫描速度快,适合仪器联用; 5. 没有光栅,没有狭缝限制,能量输出大,可测试透射比 很低的样品。
2.基本组成
1.红外光源 2.干涉仪 3.样品池 4.计算机 5.数据输出
3.3 谱图解析
1 Procedure 2 Standard File 3 CH Vibration
1. 准备工作:
1) 样品制备:根据样品情况采用合适的样品制备法,对 样品原始资料 的充分了解是非常必要的,这对最后谱图 解析鉴定非常有帮助。需要了解样品:纯度、外观、来 源、物化性质名称、用途等,了解越多越好。 2) 谱图测试:选择合适仪器条件绘制红外吸收光谱图。
2) 弯曲振动
弯曲振动:亦称变形振动,垂直于价键,键角发生变化。
说明: (1) 以上几种振动中,卷曲振动较少见, 往往与非平面摇摆重叠
(2)一般仪器面内面外弯曲振动不能再细分开 (3) 在中外科技文献中, 红外吸收峰的表示方法为: V· S S M W V· W 极强 强 中等 弱 极弱
如:νasCH3:2960cm-1(s) 表示甲基的反对称伸缩振动, 波数 为2960, 强吸收峰。 讨论分子的振动类型可以使我们了解红外吸收峰的起源,以 便推测分子中存在哪种基团和推断分子结构。
2. 应用 红外吸收光谱又称为分子振动转动光谱,红外光谱 在化学领域中的应用可分为两个方面: 1.分子结构的基础研究:应用红外光谱可以测定分子 的键长、健角,以此 推断出分子的立体构型,根据所 得的力常数可以知道化学键的强弱;由频率来计算热力 学函数,等等。 2.红外光谱用于化合物的定性分析具有鲜明 的特征性,根据化合物红外光谱的特征基团 频率来检定物质含有哪些基团,从而确定有 关化合物的类别。
线性分子振动自由度 =3N-5 非线性分子振动自由度=3N-6
如: H2O:F=3×3-6=3
νs = 3652
νas = 3751
δ = 1595
分子振动频率
在分子振动过程中, 同一类化学键或基团的振动频率是非常接 近的,它总是出现在某一范围内,但又相互有区别,即所谓特征 频率或基团频率。以双原子分子为例,用经典力学方法(虎克定 律),导出简谐振动公式:
1650-1620
HN H
3)振动偶合效应 当两个相同的基团在分子中靠的很近时,其相应的特征吸 收往往发生谱峰分裂而形成两个峰,一个高于原来频率,另 一个低于原来频率,这种现象称为振动偶合。
4)费米共振 一种振动的泛频靠近另一振动的基频时,产生振动的偶 合而产生强吸收峰或谱峰分裂,这种现象称费米共振。
显的特征性。这是因为连接原子的主要为价键力,处于不 同分子中的价键力受外界因素的影响有限!即各基团有其
自已特征的吸收谱带。通常,基团频率位于
4000~1300cm-1之间。可分为三个区
5 影响基团频率位移的因素
1)电子效应:引起化学键电子分布不均匀的效应。 诱导效应(Induction effect):取代基电负性—静电诱导—电子 分布改变—k 增加—特征频率增加(移向高波数或“蓝移”)。
红外区的内部划分
红外谱图
主要以物质对红外光的吸收(透过)程度与波长(波数)的关系表示
注意换算公式: ν(波数)= 1/λ(cm) = 1×104/λ(μm)
红外光谱特点
1)红外吸收只有振-转跃迁,能量低; 2)应用范围广:除单原子分子及单核分子外,几乎所有
有机物均有红外吸收;
3)分子结构更为精细的表征:通过IR谱的波数位置、波 峰数目及强度确定分子基团、分子结构; 4)定量分析; 5)固、液、气态样均可用,且用量少、不破坏样品; 6)分析速度快; 7)与色谱等联用(GC-FTIR)具有强大的定性功能。
红外光谱的吸收强度 问题:C=O 强;C=C 弱;为什么? 吸收峰强度→跃迁几率→偶极矩变化;吸收峰强度∝偶极 矩的平方;偶极矩变化——结构对称性;对称性差→偶极 矩变化大→吸收峰强度大
红外光谱的特征性,基团频率 基团频率 通过对大量标准样品的红外光谱的研究,处于不同有
机物分子的同一种官能团的振动频率变化不大,即具有明
Detector
Small cover
Beamsplitter
Large cover
Source
(Rear)
迈克尔迅干涉仪
单色光干涉图
多色光干涉图
同一有机化合物的干涉图和红 外光谱图
3.工作原理
定镜 红外光源 样品(吸收) 光束分裂器 探测器 动镜 计算机(傅里叶变换) 光束分裂器(干涉作用) 打印机(红外吸收光谱图)
5)空间效应由于空间阻隔,分子平面与双键不在同一平面, 此时共轭效应下降,红外峰移向高波数。
空间效应的另一种情况是张力效应:四元环>五元环>六元 环。随环张力增加,红外峰向高波数移动。
6)物态效应:不同物态(气、液、固),分子间的作用力 不同,其峰位也要发生变化。 如:νC=O =1738cm-1(气态), νC=O =1715cm-1(液态)。
6 影响红外光谱强度变化的因素:
1) 吸收峰的强度与分子跃迁几率有关: 基频峰的跃迁几率大,倍频峰的跃迁几率小,组频峰跃迁 几率更小。 2)与分子的极性有关(偶极距与分子的极性、对称性和振动 方式有关): 一般极性强的分子或基团,吸收峰强, 如: C=O, O-SI, N -H, C-F…极性弱的分子或基团、吸收弱、如: C=C, C=N, N=N, S-S… 3)对称性: 对称性低的产生强吸收峰 4) 振动方式:当基团的振动方式不同时,其电荷分布也 不同,其吸收峰的强度依次为: νas > νs > δ
例题: 由表中查知C=C键的K =9.5 9.9 ,令其为9.6, 计算波数值 。
1 v 2c 1307 1 N A1 / 2 2c k k k 1307 M M
9.6 1650cm 1 12 / 2
M
M 1M 2 M1 M 2
正己烯中C=C键伸缩振动频率实测值为1652 cm-1
光栅型红外光谱仪结构示意图
双光束光学零位法红外光谱仪工作原理
光源
反光镜 I1 →样品池 I1’
反光镜 I2 →参比池 I2’ →光楔 扇形镜 → 入射狭缝 →
单色器
电机转动,扫描整个中红外区
记录纸同步横向转动
放大器 → 电机
记录笔:上下移动,记录峰强
光楔: 前后移动,使 I1’= I2’,电机停转
3. 红外光谱分析的特点
(1). 对研究的对象无限制,气、液、固都可以; (2). 特征性强,被称为“分子指纹”; (3). 样品用量少,测定速度快,仪器简单,操作方便; (4). 具有大量标准谱图可查。 红外光谱法也有局限性: (1). 有些物质不产生红外光谱,如原子,单原子离子, 同质双原子分子,有些物质不能用红外光谱法鉴别:如 光学异构,不同分子量的同种高聚物; (2). 有些复杂吸收带无法解释,特别是指纹区。有时必 须与拉曼光谱、核磁、 质谱等方法结合才能得出最后鉴 定; (3). 用于定量分析的准确度和灵敏度低于可见、紫外光 谱法。
4.1 基础理论
1 2 3 4 5 6
红外吸收光谱概述 红外光谱的产生条件 分子的振动 振动自由度、振动频率 影响红外光谱频率变化的因素 影响红外光谱强度变化的因素
1.1 红外区的划分
分子的能级 E = E0+E平+E转+E振+E电 电子能级: △E=1~20 eV(0.06~1.25微米)出现在紫外可见光区 振动能级: △E=0.05~1eV(1.25~25微米)红外吸收光谱法研究的主要内 容(主要是基频吸收) 转动能级: △E=0.001~0.05eV(>25微米)转动能级间隔小,只需长波长的 红外光或微波即可。 E0是分子的零点能,E平只是温度的函数。电子能级跃迁时,必 伴随分子的振动能级和转动能级的变化,光谱带最宽;振动能级间隔 较大必伴随转动能级的变化,谱带较宽;转动能级间隔最小,所以谱 带尖锐。
4 分子振动自由度 、震动频率
分子基本振动数目称为振动自由度,即基频吸收峰的数目。在 N个原子的分子中: 1)各原子向各自X、Y、Z方向运动,即N个原子有3N个自由度; 2) 整个分子作为整体在三维空间平动,即有三个平动自由度; 3) 整个分子作为整体围绕分子重心转动,故有三个转动自由度,但 线 性分子有两 个转动自由度。
第二章 红外光谱分析 Infrared Spectroscopy
3.0 3.1 3.2 3.3 3.4
前言 基础知识 基本结构和工作原理 谱图解析 样品制备
3.0 前言 1. 发展史 1800: 英国物理学家W.Herschel在研究太阳光谱时发现了 红外光; 1892: 科学家发现凡含甲基的物质在3.4微米处均有一吸 收带; 1905: 科学家Coblentz 系统研究了上百种化合物的红外吸 收光谱,并总结了物质分子基团与其红外吸收带间的关 系; 1930: 光的二象性和量子力学理论的提出,使红外吸收光 谱法的研究更深入发展。
3.2 红外光谱仪基本结构和工作原理
一. 光栅分光红外光谱仪 二. 傅立叶变换红外光谱仪
一、光栅分光红外光谱仪的基本结构
1. 光源:能斯特灯、硅碳棒及氧化铝棒等。 2. 样品池:主要有气体池、液体池,固体样品制备有多种方法。 3. 单色器:以光栅分光为主。 4. 探测器:目前主要采用热电偶。 5. 机械传动部分: 6. 自动控制部分:
2 产生红外吸收的条件
分子吸收辐射产生振转跃迁必须满足两个条件: 条件一:辐射光子的能量应与振动跃迁所需能量相等。 根据量子力学原理,分子振动能量Ev 是量子化的,即 EV=(V+1/2)hν ν为分子振动频率,V为振动量子数,其值取0,1,2,… 分子中不同振动能级差为
ΔEV=(V1+1/2)hν-(V0+1/2)hν=ΔVhν
h E h 2 1 2c 1 k
k

3700 - 2500 cm-1: 2300 - 2000 cm-1: 1900 - 1500 cm-1: 1300 - 800 cm-1:
X-H stretching (X :C, N, O, S) C≡ X stretching (X :C or N) C=X stretching (X :C, N, O) C-X stretching (X :C, N, O)
因此在查阅标准红外图谱时,应注意试样状态和制样方法。 7)溶剂效应:溶剂极性越强,其伸缩振动频率越往低频 位移。 如羧酸中的羰基C=O: 气态时:νC=O =1780cm-1 非极性溶剂:νC=O =1760cm-1 乙醚溶剂:νC=O =1735cm-1 乙醇溶剂:νC=O =1720cm-1 因此红外光谱通常需在非极性溶剂中测量。
共轭效应(Conjugated effect):电子云密度平均化—键长 变长—k 降低—特征频率减小(移向低波数)。
当诱导与共轭两种效应同时存在时,振动频率的位移和程 度取决于它们的净效应。如:饱和酯
中介效应(Mesomeric effect):孤对电子与多重键 相连产生的p-π共轭,结果类似于共轭效应。
相关文档
最新文档