3正比例应用题练习题

合集下载

六年级上册数学《比》3类必考应用题及练习

六年级上册数学《比》3类必考应用题及练习

六年级上册数学第四单元《比》3类必考应用题+练习(一)比例尺应用题数量关系:图上距离÷实际距离=比例尺例题如下:在比例尺是1:3000000的地图上,量得A城到B 城的距离是8厘米,A城到B城的实际距离是多少千米?思路分析:把比例尺写成分数的形式,把实际距离设为x,代入比例尺的关系式就可解答了。

所设未知数的计量单位名称要与已知的计量单位名称相同。

练习:1、一种精密零件长2毫米,用20∶1的比例尺画图,应画多少厘米?解:应画X毫米。

X/2=20/1X=40(mm)40mm=4cm(二)按比例分配应用题方法:先求出各部分的份数和,在确定各部分量占总数量的几分之几,最后根据求一个数的几分之几是多少,用乘法计算,求出各部分的数量。

按比例分配也可以用归一法来解。

例题如下:一种农药溶液是用药粉加水配制而成的,药粉和水的重量比是1:100。

2500千克水需要药粉多少千克?5.5千克药粉需加水多少千克?思路分析:已知药和水的份数,就可以知道药和水的总份数之和,也就可以知道药和水各自占总份数的几分之几,知道了分率,相应地也就可以求出各自相对量。

练习:1、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=101 5050÷101=50(千克)答:需要盐水50千克。

2、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=1015656÷101=56(千克)答:需石灰56千克。

(三)正、反比例应用题数量关系:如果用字母x、y表示两种相关联的量,用K表示比值(一定),两种相向关联的量成正比例时,用下面的式子来表示:kx=y(一定)。

如果两种相关联的量成反比例时,可用下面的式子来表示:×y=K(一定)。

例题如下:六一玩具厂要生产2080套儿童玩具。

前6天生产了960套,照这样计算,完成全部任务共需要多少天?思路分析:因为工作总量÷工作时间=工作效率,已知工作效率一定,所以工作总量与工作时间成正比例。

六年级正比例应用题

六年级正比例应用题

六年级正比例应用题一、行程问题中的正比例关系。

1. 一辆汽车2小时行驶120千米,照这样的速度,5小时行驶多少千米?- 解析:因为速度一定,路程和时间成正比例关系。

先求出速度,速度 = 路程÷时间,即120÷2 = 60(千米/小时)。

设5小时行驶x千米,根据正比例关系可得(120)/(2)=(x)/(5),解得x = 300千米。

2. 小明步行的速度是一定的,他走1500米用了30分钟,那么他走2500米需要多少分钟?- 解析:速度一定,路程与时间成正比例。

先求速度,速度=1500÷30 = 50(米/分钟)。

设走2500米需要x分钟,可得(1500)/(30)=(2500)/(x),交叉相乘得1500x = 2500×30,x=(2500×30)/(1500)=50分钟。

3. 飞机飞行的速度不变,飞行1800千米需要3小时,若要飞行3000千米需要多少小时?- 解析:速度不变,路程和时间成正比例。

速度为1800÷3 = 600(千米/小时)。

设飞行3000千米需要x小时,(1800)/(3)=(3000)/(x),解得x = 5小时。

二、工作效率问题中的正比例关系。

4. 工人师傅3小时生产零件180个,照这样计算,7小时生产多少个零件?- 解析:工作效率一定,工作总量和工作时间成正比例。

工作效率=180÷3 = 60(个/小时)。

设7小时生产x个零件,(180)/(3)=(x)/(7),解得x = 420个。

5. 某工厂的一台机器,4天可以生产240个产品,照这样计算,8天能生产多少个产品?- 解析:工作效率一定,工作总量和工作时间成正比例。

这台机器的工作效率为240÷4 = 60(个/天)。

设8天生产x个产品,(240)/(4)=(x)/(8),解得x = 480个。

6. 一个打字员2小时打了12000字,按照这样的速度,5小时能打多少字?- 解析:打字速度一定,打字总量和打字时间成正比例。

六年级下册 正比例应用题(附答案)

六年级下册 正比例应用题(附答案)

六年级下册正比例应用题(附答案)1、一艘轮船以一定速度航行,行驶时间和行驶距离成正比例。

已知轮船3小时行120千米,求航行400千米需要的时间。

设航行400千米需要X小时,根据速度一定,成正比例,可列式:3:120=X:400,解得X=10,所以航行400千米需要10小时。

2、某种型号的钢珠,每个的重量一定,重量和数量成正比例。

已知3个钢珠重22.5千克,求共重945千克的钢珠有多少个。

设共有X个钢珠,根据每个钢珠的重量一定,成正比例,可列式:3:22.5=X:945,解得X=1260,所以共重945千克的钢珠有1260个。

3、一个农场收小麦,收割时间和收割面积成正比例。

已知前3天收割了15公顷,求按照这样的速度,8天可以收割多少公顷。

设8天可以收割X公顷,根据每天收小麦的公顷数一定,成正比例,可列式:3:15=8:X,解得X=40,所以8天可以收割40公顷。

4、王叔叔以一定速度开车,行驶时间和行驶距离成正比例。

已知前2小时行了100km,3小时可以到达目的地,求甲乙两地相距多远。

设甲乙两地相距X千米,根据速度一定,成正比例,可列式:2:100=3:X,解得X=150,所以甲乙两地相距150千米。

5、小明以一定速度走路,行走时间和行走距离成正比例。

已知上学路程为1200米,今天早上上学3分钟共走了180米,求还要走多少分钟才能到学校。

设还要走X分钟,根据路程一定,成正比例,可列式:3:180=X:1200,解得X=20,所以还要走20分钟才能到学校。

6、修一条长6400米的公路,修建时间和修建长度成反比例。

已知修了20天后,还剩下4800米,求剩下的路要修多少天。

设还需要修X天,根据修建长度和修建时间成反比例,可列式:20:1600=X:4800,解得X=60,所以剩下的路要修60天。

7、修一段长12km的公路,修建时间和修建长度成反比例。

已知开工3天修了1.5km,求修完这段公路还需要多少天。

精品文档 正比例应用题(附答案)

精品文档  正比例应用题(附答案)

精品文档正比例应用题(附答案)1、一辆汽车2小时行驶64千米,用这样的速度从甲地到乙地行驶5小时,甲、乙两地之间的公路长多少千米2、一个榨油厂用100千克黄豆可以榨出13千克豆油,照这样计算,用3吨黄豆可以榨出多少吨豆油?3、明生4分钟走了250米,照这样的速度,他从家到学校走了14分钟,明生家离学校大约有多少米?4、一台织补袜机2小时织袜26双,照这样计算,7小时可以织补多少双?5、一种铁丝长30米,重量是7千克,现有这种铁丝980千克,长多少米?6、一辆汽车,行驶200千米节约汽油24千克,照这样计算,行驶1500千米,可以节约汽油多少千克?7、用同样的砖铺地,铺18平方米用砖618砖,如果铺24平方米,要用砖多少块?8、一个晒盐场用100克海水可以晒出3克盐,如果某晒盐场一次放入585000吨海水,可以晒出多少吨盐?9、一块长方形钢板,长与宽比是8:3,已知长是72厘米,宽是多少厘米?10、一种衣药,药液与水重量的比是1:1000。

①30 克药液要加水多少克?②如果用4000克水,要用多少克药液?答案1、设:5小时行X千米,根据速度一定,成正比例,可列式:2、设:3吨黄豆可以榨出X吨豆油根据出油率一定,成正比例,可列式:(说明:单位可以不用换算,因为比值相等,要的是比值,所以不用换算。

)3、设:明生家离学校大约有X米.根据速度一定,成正比例,可列式:4、设:7小时可以织补X双。

根据每小时织袜子数量一定(功效一定)成正比例,可列式:5、设:这种铁丝长X米,重980千克。

根据每米重量一定,成正比例,可列式:6、设:行驶1500千米,可以节约汽油多少千克?根据每千米节约汽油行多少千克一定,成正比例。

可列式:7、设:铺24平方米,要用砖X块。

根据每块砖的面积一定(同样的砖),成正比例。

可列式:8、设:585000吨海水,可以晒出X吨盐根据1克盐需要的海水一定(有份盐需要几份海水一定)成正比例。

可列式:9、设:长是72厘米,宽是X厘米根据题意可列比例式:72:X=8:310、①设:30克药液要加水X克。

比例的应用题六年级

比例的应用题六年级

比例的应用题六年级一、按比例分配问题。

1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。

三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。

然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。

最后用树的总数乘以各班所占比例得到各班应栽树的棵数。

- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。

2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。

如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。

然后计算每份的重量:20÷10 = 2吨。

最后根据各自的份数求出水泥、沙子和石子的重量。

- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。

3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。

根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。

则三个车间总人数为(8 +12+21)×20=41×20 = 820人。

二、比例尺问题。

4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。

一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。

2020翼教版六年级下数学3.正比例、反比例【含答案】

2020翼教版六年级下数学3.正比例、反比例【含答案】

2020翼教版六年级下数学3.正比例、反比例一、单选题1.王老师家到学校的距离是560米,他从家到学校需8分钟.他平均每分钟走多少米?问题是求()A. 速度B. 时间C. 路程2.下列关系式中,正确的是()。

A. 速度+时间=路程B. 速度×时间=路程C. 速度×路程=时间D. 时间×路程=速度3.分数值一定时,分子和分母( )A. 成正比例B. 成反比例C. 不成比例D. 不成正比例4.根据表格判断数量间的比例关系。

时间(小时)23578……路程(千米)100150250350400……时间与路程( )。

A. 成正比例B. 成反比例C. 不成比例5.如果x= y,那么与y成()比例.A. 正B. 反C. 不成D. 无法确定二、判断题6.飞机的速度为12千米/分,动车的速度为320千米/时,动车的速度比飞机快。

7.已知5x-3y=0,那么x与y成正比例。

8.比例尺一定,图上距离和实际距离成正比例9.两种相关联的量,不成正比例,就成反比例.三、填空题10.若a×b=c ,则当c一定时,________和________成反比例。

11.路程一定,________和________是两个变量。

12.小亮步行的速度是每分钟60米,可写作________;照这样的速度走15分钟,共走了多少米?解决这个问题用到的数量关系是________。

13.车轮周长一定,所行驶的路程和车轮的转数成________比例.14.判断下面各题中的两种量是否成比例,成比例的写出成什么比例。

①和一定,加数和另一个加数。

________②单价一定,总价和数量。

________③实际距离一定,图上距离与比例尺。

________④路程一定,时间和速度。

________⑤每箱鸡蛋重量一定,箱数和鸡蛋总重量。

________四、解答题15.王师傅每小时做30个零件,2小时、3小时……各需要多少个?(1)完成下表。

六年级下册 正比例应用题(附答案)

六年级下册 正比例应用题(附答案)

六年级下册正比例应用题(附答案)1、一艘轮船3小时行120千米.照这样的速度航行400千米需要几小时?2、某种型号的钢珠,3个重22.5千克,现在有些这种型号的钢珠共重945千克,共有多少个?3、一个农场收小麦,前3天收割了15公顷,按着这样的速度,8天可以收割多少公顷?4、王叔叔开车从甲地到乙地,前2小时行了100km,照这样的速度,从甲地到乙地一共要用3 小时,甲乙两地相距多远?5、小明家到学校共1200米。

今天早上上学3分钟共走了180米,照这样的速度,还要走多少分钟才能到学校?6、修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?7、修-段公路,总长12km.开工3天修了1.5km. 照这样计算,修完这修完这段公路还要多少天8、一个榨油厂用100千克黄豆可以榨出13千克豆油。

(1)用1千克黄豆可以榨出多少千克豆油?(2)榨1千克豆油要用多少千克黄豆?9、制作一批零件,甲单独完成要8小时,已知甲、乙的工作效率比是4:3,那么乙单独完成要多长时间?答案:1、设:400千米需要X小时。

根据速度一定,成正比例,可列式:2、设:X个这种型号的钢球重945千克。

根据每个球的重量一定(同一种型号),成正比例,可列式:945:X=22.5:33、设:8天可以收割X公顷根据每天收小麦的公顷数一定,成正比例,可列式:X:8=15:34、设:甲乙两地相距X千米X:3=100:25、设:略1200:X=180:36、设:略4800:X=(6400-4800):207、设:略12:(3+X)=1.5:38、(1)设:略X:1=13:100(2)设:略1:X=13:1009、设:略备注:文档中有不懂的问题,欢迎联系张老师解答,QQ加好友时验证信息填写为:百度文库文档答疑。

QQ:1364154090。

正比例与反比例练习题

正比例与反比例练习题

正比例与反比例练习题一、选择题1. 某商品的单价和数量成什么关系?A. 正比例B. 反比例C. 无关D. 无法确定2. 圆的周长与直径之间的关系是什么?A. 正比例B. 反比例C. 无关D. 无法确定3. 速度一定时,路程与时间成什么关系?A. 正比例B. 反比例C. 无关D. 无法确定4. 工作总量一定时,工作效率与工作时间成什么关系?A. 正比例B. 反比例C. 无关D. 无法确定5. 长方形的长一定时,面积与宽成什么关系?A. 正比例B. 反比例C. 无关D. 无法确定二、填空题6. 某工厂生产零件,每天生产的零件数与生产天数的乘积是______。

7. 某工厂生产零件,每天生产的零件数与生产天数的比值是______。

8. 某商品的单价为10元,买了5个,总价为______元。

9. 某商品的总价为100元,单价为10元,可以买______个。

10. 某商品的总价为100元,如果单价减少一半,可以买______个。

三、应用题11. 某工厂生产零件,如果每天生产100个零件,需要20天完成。

如果每天生产200个零件,需要多少天完成?12. 某工厂生产零件,如果每天生产100个零件,需要20天完成。

如果每天生产零件的数量减少一半,需要多少天完成?13. 某工厂生产零件,如果每天生产零件的数量增加一倍,生产天数会减少多少?14. 某工厂生产零件,生产总量为2000个。

如果每天生产100个,需要20天完成。

如果每天生产200个,需要多少天完成?15. 某工厂生产零件,生产总量为2000个。

如果每天生产200个,需要10天完成。

如果生产总量增加到4000个,需要多少天完成?四、探究题16. 某工厂生产零件,生产总量一定。

请探究每天生产零件的数量与生产天数之间的关系,并用数学公式表达。

17. 某工厂生产零件,生产总量一定。

如果每天生产零件的数量增加,生产天数会如何变化?18. 某工厂生产零件,生产总量一定。

小学六年级正反比例的应用题含答案

小学六年级正反比例的应用题含答案

小学六年级正反比例的应用题含答案1、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?2、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0. 25平方米的方砖铺地,需要方砖多少块?3、建筑工地原来用4辆汽车,每天运土60立方米,如果用6辆同样的汽车来运,每天可以运土多少立方米?4我国发射的人造地球卫星绕地球运行3周约3.6小时,运行20周约需多少小时?5、一种铁丝,7.5米长重3千克,现在有19.5米长的这种铁丝,重多少千克?6、汽车在高速公路上3小时行240千米,照这样计算,5小时行多少千米?7、修一条公路,4天修了200米,照这样计算,又修了6天,又修了多少米?8、小明读一本书,每天读12页,8天可以读完。

如果每天多读4页,几天可以读完?9、今春分配给学校一些植树任务,每天栽200棵6天可以完成任务,现在需要4天完成任务,实际每天比原计划多栽多少棵?10、农场用3辆拖拉机耕地,每天共耕225公顷,照这样速度,用5辆同样拖拉机,每天共耕地多少公顷?11、一艘轮船,从甲地从开往乙地,每小时航行20千米,12小时到达,从乙地返回甲地时,每小时多航行4千米,几小时可以到达?12、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?13、学校计划买54张桌子,每张30元,如果这笔钱买椅子,可以买90张,每张椅子多少钱?14、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?15、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?16、一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。

(5分)17、地图上的26厘米,在比例尺为1∶1300000的地图上约是多少千米?(5分)18、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?19、用一批纸装订同样的练习本,如果每本30页,可以装订80本。

六下数学 正比例与反比例 应用题训练30题 带答案

六下数学 正比例与反比例 应用题训练30题 带答案
则第二次相遇时,汽车经过的路程为:x+x-130=2x-130 摩托车经过的路程为:x+130
相同时间内,路程和速度成正比例,速度之比=路程之比
(2x-130):(x+130)=3:2 解得x=650
8、一辆卡车与一辆小轿车同时从甲、乙两城相对开出,相遇后两 车继续向前行驶.当小轿车到达甲地、卡车到达乙地后.立即返回 ,第二次相遇点距甲城120千米,已知:卡车与小轿车的速度比是3 :4,甲、乙两城相距多少千米?
13、用方砖铺一间教室的地面,如果用边长为2dm的方砖 ,需要用60块,如果改用边长为3dm的方砖,需要用多少 块? 27块 解析:解设需要用x块砖 教室的面积一定,所用的方砖的块数和每块方砖的面积成 反比例
2×2×60=3×3×x 解得 x=80/3 进一法,所以需要27块
14、有甲乙丙三个相互咬合的齿轮,当甲齿轮转动2圈时, 乙齿轮转动3圈,丙齿轮转动4圈,这三个齿轮的齿数之比 是( ):( ):( )。 6:4:3 解析:相互咬合的齿轮转动的总齿数是相同的,那么一圈 的齿数和转动的圈数是成反比例的,设三个齿轮的齿数分 别为x y z 则2x=3y=4z 得x:y :z=6:4:3
16、学校组织同学参观爱国主义纪念展,每60名同学配2
X=18
4、某修路队修一条公路,前6天修了180米,照这样的速度,修路 队又修了5天才全部修完,这条公路全长是多少米?
解设这条公路的全长是x米 每天修的长度一定,路的全长和时间成正比例关系 180:6=x:(6+5)
X=330
5、甲乙丙三人进行200米赛跑(他们的速度保持不变),甲到 终点时,乙还差20米,丙离终点还有25米,问乙到达终点时, 丙还差多少米?
解设:甲乙两城相距x千米 则第二次相遇时,卡车经过的路程为:x+x-120=2x-120 小轿车经过的路程为:x+120

正比例方程应用题专项练习90题

正比例方程应用题专项练习90题

正比例应用题专项练习90题(有答案)1.某测量小组把一根长3米的竹竿直立在地上,测得影长为1.2米,同时测得一水塔的影长为7.2米,这座水塔的高是多少米?2.水果店3天售出苹果吨.照这样计算,剩下的吨苹果还要几天售完?3.修一条公路,开工3天修了1.5千米,照这样的速度,再修21天就可以完成任务,这条公路长多少千米?(用比例解)4.王华5天看完一本115页的书,照这样的速度,要看207页的一本书,需要多少天?(用比例方法解答)5.蜗牛5分钟爬行了31厘米,照这样的速度,蜗牛爬行了55.8厘米要几分钟?6.一辆汽车5小时行400km,照这样的速度7小时行多少千米?(用比例解答)7.兰兰家里搞装修.用同样大小的瓷砖铺一间18平方米的房间和一间27平方米的客厅.已知铺房间正好用了200块瓷砖,铺客厅要用多少块瓷砖?(用比例)8.农民伯伯按1:50的比例配制一种杀虫剂,有一瓶200ml的农药,可以配制多少升杀虫剂?9.240千克油菜籽可以榨油86.4千克,要榨得270吨油需要油菜籽多少吨?10.小明为了测量一棵大树的高度,他测量的结果是:标尺高度12分米,它的影长是2.5分米;测得大树的影长是3米.请你帮小明算一算大树的高度.11.挖一条长1800米的水渠,7天挖了840米,照这样的速度,完成这样的工程还需多少天?12.一种金属合金中银和铝的重量比是5:6.现有480千克铝,需要加多少千克的银,才可以制成这种合金?(用比例思路解)13.某车间计划加工540个零件,前2天做了180个,照这样计算,做完零件需要多少天?(用比例知识解答)14.一辆汽车前4小时共行驶240千米,以同样的速度又行驶5小时,后5小时行驶了多少千米?15.万丰集团生产一批汽车零件,前8天生产了1200箱,照这样计算,剩下的刚好4天完成.这批零件共有多少箱?(用比例解)16.某化肥厂7小时生产化肥630吨,照这样计算,要生产1350吨化肥需要多少小时?17.五一节假期中,小华原计划每天花40分钟,共读儿童小说60页.照这样算,如果他把每天的读书时间调整为50分钟,共可读多少页?(用比例解)18.修一条公路总长12千米,开工前3天修了3600米,照这样计算,修完这条路还需多少天?19.甲乙2人比赛爬楼梯,已知每层楼梯相同,当甲到3层时,乙到2层,照这样计算,当甲到9层时,乙到几层.20.“五一”假期,欣宇连续3天看了84页书,照这样计算,这个月一共可看书多少页?21.修一段高速公路,计划每天修500米,24天可以完成.实际5天修3000米,实际多少天完成?(用正、反比例两种方法解)22.一瓶“84”消毒液写明:清洗浴缸时,需要将原液和清水按1:300配制,李阿姨倒出原液10克清洗浴缸,要加清水多少千克?(用比例知识解答)23.小东身高1.4米,站在操场上他的影长是1米.同时测得教学楼的影长是7米,教学楼有多高?(用比例解)24.一根木料锯3段需要9分钟,照这样计算,如果锯6段,需要多少分钟.(用比例知识解答)25.某修路队修一条长1200米的路,前3天修72米,照这样计算,修完这条路还需多少天?26.工程队修筑公路,5天修了600米,照这样计算,再修3天,一共可以修筑公路多少米?27.一台织布机4小时可以织布24米,照这样计算,要织布54米,需要几小时?(用比例解)28.王师傅3天加工了120个零件,照这样计算,加工360个零件需要多少天?(用比例的思路解)29.食堂买3桶油用780元,照这样计算,买8桶同样的油要用多少钱?(用比例解)30.甲、乙两地相距504千米,一辆汽车从甲地开往乙地,6小时行了全程的,以这样的速度,还需几小时到达乙地?(用比例解)31.在一幅地图上,用3厘米的线段表示实际距离的900千米,一条长480千米的高速公路,在这幅地图上是多少厘米?(用比例解)32.修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条公路还需要多少天?(用比例解)33.汽车从学校出发到太湖玩,小时行驶了全程的,这时距太湖边还有4千米.照这样的速度,行完全程共用多少小时?34.100克蜂蜜里含30葡萄糖,多少克蜂蜜里含有240克葡萄糖?35.用5辆同样汽车运粮食一次能运22.5吨,照这样计算,要把36吨粮食一次运完,需要增加多少辆这样的汽车?36.一本书,如果每天读30页,6天可以读完,若每天读20页,要多少天才能读完?37.要测量一棵树的高度,量得树的影子长度是8.4米,同时用一根2米长的标杆直立在地面上,量得影子长度是1.2米,这棵树高是多少米?38.一种农药,由药粉和水按照1:400混合而成的.(1)2.5千克药粉,应加水多少千克?(2)用水600千克,需要药粉多少千克?39.学校买来塑料绳342米做短跳绳,先剪下同样长的5根,一共用去9米,照这样计算,买来的塑料绳可以做短跳绳多少根?40.一台收割机4小时收割小麦4.8公顷,照这样计算,收割72公顷小麦需要多少小时?(用比例知识解)41.服装厂生产制服,前3个月生产0.48万套,照这样计算,今年可以生产制服多少万套?42.飞机每小时飞行480千米,汽车每小时行60千米.飞机行4小时的路程,汽车要行多少小时?(用比例方法解)43.一列火车从甲地开往乙地,5小时行了350千米,照这样计算,共要行9小时.甲乙两地相距多少千米?44.雨上小学开展节约用水活动,7天节约用水112吨.照这样计算,今年2月该校共节约用水多少吨?45.测量小组把一米长的竹竿直立在地面上,测得它的影子长度是1.6米,同时测得电线杆的影子长度是4米,求电线杆高多少米?46.一台织布机7小时织布105米,照这样的速度,再织8小时,一共可以织布多少米?47.桃每千克售价1.8元,梨每千克售价2.4元.买40千克桃的钱,可以买多少千克梨?48.A地到B地480千米,一辆汽车前3.5小时行了全程的,按这样的速度,行完全程需要多少小时?(比例解)49.100克蜂蜜里含有34.5克葡萄糖.照这样计算,多少克蜂蜜里含有207克葡萄糖?(用比例的方法解)50.40千克小麦能磨面粉32千克,照这样计算,7吨小麦能磨面粉多少千克?51.钟面上,分针从上午11时到下午2时针尖走了188.4厘米,照这样计算,针尖一天能走多少厘米?(用比例解)52.某工厂2002年二月份前4天用电2.8万度,照这样计算,全月共用电多少万度?53.修一段长400米的路,3天修了120米,照这样计算,修完这段路还需几天?54.一辆汽车从甲地开往乙地,甲乙两地相距405千米,头4小时行驶了180千米,剩下的路程还要行多少小时?55.一本《趣味数学》共96页,小敏前3天看了24页.照这样的速度,看完全书还需多少天?56.某印刷厂计划三月份印刷课本20000本,结果上旬就印刷7000本,照这样速度,三月份可以多印刷多少本?57.某工程队修一条路,12天共修780米,还剩下325米没有修.照这样速度,修完这条公路,共需要多少天?(比例解)58.一种药水中药液和水重量的比是1:2000,5克药液要加水多少千克?如果用6千克水,需要用多少克药液?59.50千克花生仁可以榨油19千克.要榨200千克花生油需多少千克花生仁?(比例解)60.100吨甘蔗可以榨糖12吨,照这样计算,6000吨甘蔗可以榨糖多少吨?如果要榨糖360吨,需要用甘蔗多少吨?61.小杰家离学校的距离为1200米,学校到体育场的距离为2千米.小杰早晨从家步行到学校需要9分钟,如果下午放学后他用同样的速度步行去体育场,需要多少分钟?62.景区有一条面积为4200平方米的步行街,正在铺方砖,小林得知工人们已经干了2天,铺完了1000平方米.照这样的速度,铺完整条步行街还需要多少天?(用比例知识解答)63.用比例方法求解:一支粗细均匀的足够长的蜡烛点燃6分钟,蜡烛缩短3厘米,照这样的速度,蜡烛点燃16分钟缩短多少厘米?64.红红用25毫升蜂蜜和200毫升水调剂了一杯蜂蜜水.如果仍按这样的比例,800毫升水中应加入多少毫升蜂蜜?65.修路队3天修路120米.照这样计算,修完600米长的一段路需要多少天?66.公园里有13条游船,平均每天收入975元.照这样计算,32条游船一天可以收入多少元钱?67.某施工队要安装900米的下水道,6天安装了300米,照这样的速度剩下的任务,还要多少天可以完成?(用比例解)68.法国巴黎的埃菲尔铁塔高320m.北京的“世界公园”里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1:10.这座模型高多少米?(用比例解)69.有两个用同一种钢铁制成的零件,一个零件重9吨,体积是1.2立方米.另一个重7.9吨,它的体积是多少立方分米?70.4辆卡车共运480箱苹果,照这样计算,再增加3辆卡车一共可以运多少箱?71.一种药水是按药粉和水的比1:5000配制成的.现在用药粉30克配制成这样的药水,需要加水多少千克?(用比例解)72.修路队修一条长750米的路,前2天修了150米,照这样计算,修完这条路一共需要几天完成?(用比例解)73.一个晒盐场用100克海水可以晒出3克盐.照这样计算,25000吨这样的海水可以晒出多少吨盐?74.自然小组把4米长的竹竿直立在地上,量得它的影子长3.8米,同时量得水塔影子长17.1米.水塔的实际高度是多少米?75.吴师傅带领车工小组加工一批零件,前6天完成330个零件.照这样的速度,又用了14天完成了其余的任务,这批零件共有多少个?(用比例解)76.把2米长的竹竿直立在地上,量得它的影长是l.6米,同时量得一棵大树的影长是5.6米.你知道这棵大树有多高吗?(用比例解.)77.修路队修一段公路,前7天修了357米,照这样,又用了13天把路修完,这段路全长多少米?(比例解)78.学校领来一批树苗,按2:3:4分给四、五、六年级种植.已知四年级分到树苗24棵.五、六年级各分到多少棵?79.某车间要加工540个零件,前2天加工了180个,照这样计算,剩下的还要几天才能完成任务?(用比例解)80.张老师4分钟走了360米.照这样的速度,他从家到学校要走18分钟,张老师家到学校的路程是多少?(用比例知识解答)81.食堂买来5吨煤,6天烧了1.5吨,照这样计算,这批煤可以捎多少天?(用比例解)82.一本故事书共120页,李丽4天看了32页,照这样的速度,看完这本书还需多少天?(用比例解)83.一辆汽车从A城出发,4小时行了364千米,照这样计算,再行2小时就到达B城.AB两城相距多少千米?(用比例知识解答)84.甲、乙两个码头相距308.7千米,一艘轮船从甲码头开往乙码头,3小时行了73.5千米.照这样的速度,几小时可以到达乙码头?85.李洋看一本职工作264页的小说,前3天已经看了72页,照这样计算,这本小说他还要看多少天才能看完?86.某小区维修线路,需停电半小时,妈妈找来一根长20厘米的蜡烛,点燃8分钟后,还剩15厘米,请问,这根蜡烛够燃烧到送电吗?(用比例知识解答并简要说明理由)87.小红在同一时间、同一地点,测得自己的身高与影子的长度比是2:3,这时教学楼的影子长24米,则教学楼的高度是多少米?(用比例解)88.甲工厂有120人,乙工厂有80人.从乙工厂调几人到甲工厂才能使甲工厂与乙工厂人数的比是5:3?89.白寨距郑州有20km,一辆公交车从白寨开往郑州,2小时可以行60km,照这样计算.这辆公交车几小时可到达目的地?(用比例解答)90.李庄要修一条长1200千米长的水渠,前3天修了全长的60%.照这样计算,修完这条水渠一共要用多少天?参考答案1.设这座水塔的高是x米.3:1.2=x:7.2;1.2x=3×7.2;x=;x=18;答:这座水塔的高是18米.2.设剩下的吨苹果还要x天售完,由题意得3:=x :,x=3×,x=8.答:还要8天售完.3.设21天修路的长度为x千米,则有1.5:3=x:21,3x=21×1.5,3x=31.5,x=10.5;10.5+1.5=12(千米);答:这条公路长12千米4.设需要x天,115:5=207:x,115x=207×5,115x=1035,x=9;答:需要9天5.蜗牛5分钟爬行了31厘米,照这样的速度,蜗牛爬行了55.8厘米要几分钟?31:5=55.8:x.设蜗牛爬行了55.8厘米要x分钟,31:5=55.8:x;x=9.6.设7小时行x千米;400:5=x:7,5x=400×7,x=,x=560,答:7小时行560千米.7.设铺客厅要用x块瓷砖,18:200=27:x,18x=27×200,18x=5400,x=300;答:铺客厅要用300块瓷砖.8.设可以配制xml杀虫剂,1:(50+1)=200:x,x=200×52,x=10400;10400毫升=10.4升,答:可以配制10.4升杀虫剂9.设要榨得270吨油需要油菜籽x吨,86.4:240=270:x,86.4x=240×270,x=,x=750;答:要榨得270吨油需要油菜籽750吨10.设大树的高度为x米,2.5:12=3:x,2.5x=12×3,x=,x=14.4,答:大树的高度为14.4米.11.设完成这样的工程还需x天.840:7=(1800﹣840):x840x=7×960x=8;答:完成这样的工程还需8天12.需要加x千克的银,x:480=5:6,6x=480×5,6x=2400,x=400;答:需要加400千克的银,才可以制成这种合金.13.设做完零件需要x天,180:2=540:x,180x=2×540,180x=1080,x=6;答:做完零件需要6天.14.设后5小时行驶了x千米;240:4=x:5,4x=240×5,x=,x=300;答:后5小时行驶了300千米15.设这批零件共有x箱,1200:8=x:(8+4),8x=1200×12,x=,x=1800,答:这批零件共有1800箱16.设要生产1350吨化肥需要x小时,则有:630:7=1350:x,630x=1350×7,630x=9450,x=15;答:要生产1350吨化肥需要15小时17.设如果他把每天的读书时间调整为50分钟,共可读x页,则有60:40=x:50,40x=50×60,40x=3000,x=75;答:如果他把每天的读书时间调整为50分钟,共可读75页18.设修完这条路还需X天,12千米=12000米,3600:3=(12000﹣3600):x3600x=8400×3,3600x=25200,x=7;答:修完这条路还需7天.19.甲乙的速度之比:(3﹣1):(2﹣1)=2:1,乙跑的层数:(9﹣1)×=4(层),乙所在的楼层:4+1=5(层);答:当甲到9层时,乙到5层20.设这个月一共可看书x页,84:3=x:31,3x=84×31,x=,x=868;答:这个月一共可看书868页21.设实际x天完成,(1)(3000÷5)x=500×24,600x=12000,x=20;(2)(500×24):x=3000:5,12000:x=3000:5,3000x=12000×5,3000x=60000,x=20;答:实际20天完成.22.设要加水x千克.1:300=10:xx=300×10x=3000;3000克=3千克;答:要加水3千克.23.设教学楼的高度是x米,则1.4:1=x:7,x=1.4×7,x=9.8;答:教学楼的高度是9.8米.24.设需要x分钟,9:(3﹣1)=x:(6﹣1),9:2=x:5,2x=9×5,x=,x=22.5;答:需要22.5分钟.25.设修完这条路还需x天,72:3=(1200﹣72):x,72x=1128×3,x=3384÷72,x=47;答:修完这条路还需47天26.一共可以修筑公路x米;x:(5+3)=600:5,5x=600×(5+3),5x=600×8,x=,x=960;答:一共可以修筑公路960米27.需要x小时,24:4=54:x,24x=54×4,x=,x=9,答:需要9小时28.设加工360个零件需要x天,则有120:3=360:x,120x=360×3,120x=1080,x=9;答:加工360个零件需要9天29.设买8桶同样的油要用x元,x:8=780:3,3x=780×8,x=,x=2080;答:买8桶同样的油要用2080元30.设还需X小时到达乙地.:6=(1﹣):XX=6×,X=2;答:还需2小时到达乙地.31.设在这幅地图上是x厘米,3:900=x:480,900x=480×3,x=,x=1.6答:在这幅地图上是1.6厘米32.设修完这条公路还需要x天,1.5:3=(12﹣1.5):x,1.5x=3×(12﹣1.5),1.5x=31.5,x=31.5÷1.5,x=21;答:修完这条公路还需要21天33.1÷(),=1÷(×),=1÷,=(小时),答:行完全程共用小时34.设x克蜂蜜里含有240克葡萄糖,30:100=240:x,30x=100×240,x=24000÷30,x=800;答:800克蜂蜜里含有240克葡萄糖.35.设需要增加x辆这样的汽车.36:(x+5)=22.5:5,22.5×(x+5)=36×5,22.5x+22.5×5=180,22.5x=180﹣112.5,x=3;或:设要把36吨粮食一次运完,需要x辆这样的汽车.36:x=22.5:5,22.5x=36×5,x=180÷22.5,x=8;8﹣5=3(辆);答:需要增加3辆这样的汽车36.设要x天才能读完.20x=30×6x=180÷20x=9;答:要9天才能读完.37.这棵树高是x米,2:1.2=x:8.4,1.2x=8.4×2,x=14;答:这棵树高是14米.38.(1)设应加水x千克,1:400=2.5:xx=400×2.5x=100;答:应加水100千克.(2)设需要药粉y千克,1:400=y:600400y=600y=1.5;答:需要药粉1.5千克.39.设买来的塑料绳可以做短跳绳x根,9:5=342:x,9x=342×5,x=,x=190,答:买来的塑料绳可以做短跳绳190根40.设收割72公顷小麦需要x小时4.8:4=72:x4.8x=72×44.8x=288x=60答:收割72公顷小麦需要60小时.41.设今年可以生产制服x万套.0.48:3=x:123x=0.48×12x=1.92;答:今年可以生产制服1.92万套.42.设汽车要行x小时,则480×4=60x60x=2160x=36答:汽车要行36小时.43.甲乙两地相距x千米=5x=350×9x=630;答:甲乙两地相距630千米.44.因为今年的二月份有28天,设今年2月该校共节约用水x吨,则112:7=x:287x=112×287x=3136x=448答:今年2月该校共节约用水448吨.45.设电线杆的高是x米.1:1.6=x:41.6x=4x=2.5;答:电线杆的高是2.5米.46.设一共可以织布x米,105:7=x:(8+7),7x=105×(8+7),7x=105×15,x=,x=225,答:一共可以织布225米47.1.8×40÷2.4=72÷2.4=30(千克)答:可以买30千克梨.48.把全程看作单位“1”,设行完全程需要x小时,:3.5=1:x,x=3.5,x=3.5÷,x=3.5×,x=10;答:行完全程需要10小时49.设x克蜂蜜里含有207克葡萄糖;100:34.5=x:207,34.5x=100×207,x=,x=600;答:600克蜂蜜里含有207克葡萄糖50.设7吨小麦能磨面粉x千克.7吨=7000千克40:32=7000:x40x=32×7000x=5600答:7吨小麦能磨面粉5600千克.51.因为,从上午11时到下午2时针尖一共走了3小时:又因为一天是24小时,所以,设针尖一天能走x厘米,188.4:3=x:24,3x=188.4×24,x=,x=1507.2,答:针尖一天能走1507.2厘米52.设全月用电x万度.2.8:4=x:284x=2.8×28x=x=19.6;答:全月共用电19.6万度.53.修完这段路还需要x天.120:3=(400﹣120):x,120x=3×280,x=7;答:修完这段路还需要7天54.设剩下的路程还要行x千米.180:4=(405﹣180):x180x=4×225x=5;答:剩下的路程还要行5小时55.设看完全书还需x天,则:(96﹣24):x=24:3,24x=72×3,x=9;答:看完全书还需9天56.7000÷10×31﹣20000,=21700﹣20000,=1700(本);答:三月份可以多印1700本57.设共需要x天,(780+325):x=780:12,780x=1105×12,780x=13260,x=17;答:修完这条公路,共需要17天.58.①设需要加水x克.1:2000=5:x,x=2000×5,x=10000,10000克=10千克;②6千克=6000克设需要用y克药液.1:2000=y:6000,2000y=6000,y=3.答:5克药液要加水10千克.如果用6千克水,需要用3克药液59.设榨200千克花生油需x千克花生仁,由此可得比例:50:19=x:200,19x=10000,x≈526.32;答:大约需要526.32千克花生仁.60.(1)6000吨甘蔗可以榨糖x吨,100:12=6000:x,100x=12×6000,x=720;(2)如果要榨糖360吨,需要用甘蔗y吨,100:12=y:360,12y=100×360,y=,y=3000;答:6000吨甘蔗可以榨糖720吨;如果要榨糖360吨,需要用甘蔗3000吨61.设需要x分钟,则1200:9=2000:x,1200x=2000×9,1200x=18000,x=15;答:需要15分钟.62.设铺完整条步行街还需要x天,则1000:2=(4200﹣1000):x,1000x=3200×2,1000x=6400,x=6.4;答:铺完整条步行街还需要6.4天63.设蜡烛点燃16分钟缩短x厘米,6:3=16:x,6x=3×16,6x=48,x=8;答:蜡烛点燃16分钟缩短8厘米.64.设800毫升水中应加入x毫升蜂蜜,25:200=x:800,200x=800×25,x=,x=100;答:800毫升水中应加入100毫升蜂蜜.65.设需要x天,120:3=600:x,120x=600×3,x=,x=15;答:需要15天66.设32条游船一天可以收入x元钱,则有975:13=x:32,13x=975×32,13x=31200,x=2400;答:32条游船一天可以收入2400元钱.67.还要x天可以完成,300:6=(900﹣300):x300x=6×600x=12答:还要12天可以完成.68.设这座模型高x米,则x:320=1:10,10x=320,x=32;答:这座模型高32米.69.设它的体积是x立方米,9:1.2=7.9:x,9x=1.2×7.9,x=,x≈1.053,1.053立方米=1053立方分米,答:它的体积是1053立方分米70.设再增加3辆卡车一共可以运x箱;x:(4+3)=480:4,4x=480×(4+3),x=,x=840;答:再增加3辆卡车一共可以运840箱71.设需要加水x克,1:5000=30:x,x=30×5000,x=150000,150000克=150千克,答:需要加水150千克72.设修完这条路一共需要x天完成,750:x=150:2,150x=750×2,x=,x=10;答:修完这条路一共需要10天完成73.设25000吨这样的海水可以晒出x吨盐,3:100=x:25000,100x=3×25000,x=750,答:25000吨这样的海水可以晒出750吨盐74.设水塔的实际高度是x米,3.8:4=17.1:x,3.8x=4×17.1,3.8x=68.4,x=18.答:水塔的实际高度是18米75.设这批零件共有x个,330:6=x:(6+14),6x=330×(6+14),6x=330×20,x=,x=1100,答:这批零件共有1100个76.设这棵大树有x米高,1.6:2=5.6:x,1.6x=5.6×2,1.6x=11.2,x=11.2÷1.6,x=7;答:这棵大树有7米高.77.设这段路全长x米;357:7=x:(7+13),7x=357×(7+13),7x=357×20,x=,x=1020;答:这段路全长1020米.78.总份数:2+3+4=9(份);树苗总数:24÷=108(棵);五年级分到的棵树:108×=36(棵);六年级分到的棵树:108×=48(棵).答:五、六年级各分到36、48棵79.设剩下的还要x天才能完成任务,180:2=(540﹣180):x,180x=(540﹣180)×2,180x=360×2,x=,x=4,答:剩下的还要4天才能完成任务80.设张老师家到学校的路程是x米,360:4=x:18,4x=360×18,x=,x=1620;答:张老师家到学校的路程是1620米.81.这批煤可以烧x天,1.5:6=5:x,1.5x=6×5,x=,x=20;答:这批煤可以烧20天82.设看完这本书还需x天,则32:4=(120﹣32):x,32x=4×88,32x=352,x=11;答:看完这本书还需11天.83.设AB两城相距x千米,则有364:4=x:(2+4),4x=364×(2+4),4x=2184,x=546;答:AB两城相距546千米84.设x小时到达乙码头,则73.5:3=(308.7﹣73.5):x,73.5x=(308.7﹣73.5)×3,73.5x=235.2×3,73.5x=705.6,x=9.6;答:照这样的速度,9.6小时可以到达乙码头85.设还要看x天才能看完,72:3=(264﹣72):x,72:3=192:x,72x=192×3,x=,x=8,答:还要看8天才能看完.86.20厘米的蜡烛燃烧所用的时间为x分钟,(20﹣15):8=20:x,5:8=20:x,5x=8×20,x=,x=32,因为半小时=30分钟,32>30,所以这根蜡烛够燃烧到送电;答:这根蜡烛够燃烧到送电87.教学楼的高度是x米;2:3=x:24,3x=24×2,x=,x=16;答:教学楼的高度是16米.88.80﹣(120+80)×,=80﹣200×,=80﹣75,=5(人);答:从乙工厂调5人到甲工厂才能使甲工厂与乙工厂人数的比是5:3.89.设这辆公交车x小时可到达目的地;60:2=20:x,60x=20×2,x=,x=;答:这辆公交车小时可到达目的地90.设修完这条水渠一共要用x天,则有(1200×60%):3=1200:x,720:3=1200:x,720x=1200×3,720x=3600,x=5;答:修完这条水渠一共要用5天。

正比例

正比例

做一做
(用比例知识解)
1.某工厂八月份计划造一批机床,开工8天就 造了56台,照这样速度到月底可生产多少台? 2.火车3小时行135千米,用同样的速度5小时可 以行多少千米?
3、师傅2小时制成42个零件。照这样计算, 他制作56个零件,需要多少时间?
4、 150千克大豆可以榨大豆 油27千克。照这样计算, 再榨 300千克大豆,共可以榨油多 少千克?
140 2 350 χ
140χ = 350×2
χ= 5
答:从甲地到乙地需要行驶5小时。
做一做
1.食堂买3桶油用780元,照这样计算,买8桶 油要用多少钱? 成正比例
解:设买8桶油要用x元钱。 780 = x 3 8 3x = 780 × 8 x = 6240 ÷3 x = 2080 答:要用2080元钱。
解:设共可以榨油x克?
150 27
=
150 +300
x
5、一个工程队修一段下水道400米,
前3天完成180米,照这样计算, 剩下的工程还要几天才能完成?
解:设剩下的工程还要x天才能完成。
180 3
=
400
x
180
再见
李师傅生产一批零件,生产时间和零件总数如下表:
时间(时) 零件总数(个)
2 16
5
… …
x
1、表中的两种量成什么比例?( 成正比例) 2、每组的零件个数和时间的比值是多少?这个比值 的意义是什么?这两个比相等吗?
16 =8 2
x =8 516 2 Nhomakorabea=
x 5
例1一辆汽车2小时行驶140千米,照这样的速度,从甲
正比例应用题
制作:陈清
判断下面每题中的两种量成什么比例关系?

六年级下册数学试题-小升初复习讲练:正反比例应用题(含答案)sc

六年级下册数学试题-小升初复习讲练:正反比例应用题(含答案)sc

正反比例应用题典题探究例1.有大小两个互相咬合的齿轮,大齿轮有90个齿,小齿轮有18个齿,如果大齿轮每分转100转,小齿轮5分钟转多少转?(用比例知识解答)例2.学校会议室用方砖铺地.用8平方分米的方砖铺需要500块;如果改用10平方分米的方砖铺,需要多少块?例3.修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?例4.从“六一”儿童节那天开始,小明前4天看了80页书,照这样计算,这个月小明一共可以看多少页书?(用比例知识解)演练方阵A档(巩固专练)选择题(共9小题)1.一个制服厂生产一批童装,每天生产350件,8天可完成任务;如果每天生产400件,多少天可以完成?设X天可以完成.正确列式是()A.400X=350x8B-8400350=xC.350:8=400:X2.(•广州模拟)生产一批零件,前3天生产124个,照这样计算,需再用12天完成全部任务.这批零件共有多少个?如果设这批零件共x个.正确的算式是()A.124x3=12B.124=x飞-=3+12C.12x=124x33.每100千克小麦可出X千克面粉,Y千克小麦可出面粉的千克数为()A.100yB.100xy c.100 D._^yToo4.一个会议室用方砖铺地.用边长3cm的方砖铺,需要350块,如果改用lOcn?的方砖铺,需要()块.A.280B.187C.390D.3155.小明在操场上插几根长短不同的竹竿,在同一时间测量竹竿长和相应的影长,情况如表:这时,小明身边的主强测量出了旗杆的影长是6米,可推算出旗杆的实际高度是()米. |影长(米)0.50.70.80.9 1.1 1.5竹竿长(米)1 1.4 1.6 1.8 2.23A.12米B.3米C.9米D.6米6.用正方形的地砖铺地,铺地的面积和需要地砖的块数()A.正比例B.反比例C.不成比例7.学校会议室用方砖铺地.用8平方分米的方砖铺,需要350块;如果改用10平方分米的方砖铺,需要()块.A.300B.280C.260D.2408.一辆拖拉机的后轮半径是前轮半径的1.2倍,后轮转动6周,前轮转动()A.7.2圈B.5圈C.8圈9.(•长沙)从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是()A.2:3B.3:2C.2:5填空题(共3小题)060120180km10.在一幅比例尺是____11—的地图上量得A、B两城之间的距离是3cm,A、B两城之间的实际距离是.11.(•当涂县)用3千克绿豆可以做出21千克绿豆芽•照这样计算,18千克绿豆可以做出多少千克绿豆芽?(1)"照这样计算"就是说是一定的.(2)和成比例.(3)所求结果用x表示,写出比例式:.12.一间教室,如果用面积6平方分米的方砖铺,要用96块,如果改用面积是9平方分米的方砖铺,要用多少块?三.解答题(共8小题)13.甲、乙两国的国土面积相等,但甲国人数是乙国人口数的16倍,若乙国的人均国土面积为296000平方米,那么甲国的人均国土面积是多少?14.生产了一批零件,每天生产200个,15天完成,实际每天生产了250个,实际多少天可以完成?(用比例方式列式)15.小伟家用面积是18平方分米的地砖需48块,如果改用面积是9平方分米的地砖,需多少块?16.一间教室用边长8分米的方块来铺,刚好要125块,如果改用边长1米的方砖来铺,需要多少块?比计划多用多少块?(用方程解答)17.学校电脑室计划用面积为9平方分米的瓷砖铺地,需480块,现改用边长为4分米的瓷砖铺地,需要多少块?(用比例解)18.用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?(用比例解)19.一间房子要用方砖铺地.用面积是9平方分米的方砖需要96块.如果改用边长为2分米的方砖,需要多少块?(用比例解)20.丽丽家客厅,用边长0.3m的方砖铺地,需要560块,如果改用边长0.4m的方砖铺地,需要多少块?(用比例解)B档(提升精练)选择题(共10小题)1.比例尺是1:5000000表示地图上1厘米的距离相当于地面上实际距离是()A.50千米B.500千米C.5千米2.下列正确的有()A,因为12=2x2x3,所以*能化成有限小数;12B.自行车行驶的路程一定,车轮转数和直径成反比例;C.正方形边长一定,面积和边长成正比例;D.任何一个三角形至多有两个锐角3.当一个物体两部分之间的比大致符合5:3时,会给人以美的感觉,这个比被称为“黄金比”.亮亮要为自己设计一个“乐学牌”书桌,如果书桌的长度是80厘米,书桌的宽度大约定为(),会给人以最美的感觉.A.80厘米B.40厘米C.48厘米4.一个长方形(如图),被两条直线分成四个长方形,其中三个的而积分别是45平方米, 15平方米和30平方米.图中阴影部分的面积是()平方米.451530A.60B.75C.80D.905.(•龙岗区)李老师准备给健身房铺正方形地砖,如果选择边长为3dm的地砖要400块.那么选择边长为2dm的地砖要()块.2d m3d mA.600B.900C.1200D.18006.甲、乙两辆自行车的车轮直径相同,以同样的速度蹬自行车,()跑得快.(下面是甲、乙两辆自行车的前后齿轮情况)40齿48齿7.半径为1厘米的小圆在半径为4厘米的固定大圆外滚动一周,则小圆滚动了()周.8.如图,在皮带传动中,大轮的直径是28cm,小轮的直径是12cm,如果传动中没有打滑现象,那么大轮转了12圈,小轮转了()圈.D.289.(•灵石县模拟)两个齿轮,其中一个齿轮的直径是6cm,当另一个齿轮转动一周时,它需转动3周,则另一个齿轮的直径是.()C.1810.一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上(不包括300枝),可以按批发价付款;购买300枝以下(包含300枝)只能按零售价付款.小明来该商店买铅笔,如果给学校六年级同学每人买1枝,那么只能按零售价付款,需要120元;如果多买60枝,那么可以按批发价付款,同样需要120元.若按批发价购买6枝与按零售价买5枝的款相同,那么这个学校六年级的学生有()人.A.240人B.260人C.280人D.300人二.填空题(共10小题)11.(•安次区模拟)张阿姨用计算机打字的个数和所用时间如下表.时间/分2468101214数量/个100200300400500600"Too张阿姨打750个字需要分钟.12.(•广州模拟)玩具厂按1:100的比例生产了一种飞机模型,若该模型的长度为12厘米,则飞机的实际长度约12米..13.(•吴江市)一列动车在高速铁路上行驶的时间和路程如图.看图填写下表:时间/小时2_____________路程/千米_____________800这列动车行驶的时间和路程成比例.14.(•海珠区)(1)如图是表示某种规格钢筋的质量与长度成比例关系的图象.(2)不计算,根据图象判断,6m的钢筋重____________kg.28642O46789长度为15.(•阜阳模拟)喜喜和欢欢一起照相,喜喜身局1.6米,在照片上她的局是5cm.欢欢在照片上高4cm,欢欢的身高是米.16.(•德宏州模拟)画一张长10cm、宽6cm的图,如果长缩小为2.5cm,按照这个比例,宽应缩小为cm.17.(•延庆县)2010年3月30日中午11:30,六(1)班同学们在学校国旗杆旁边垂直于地面立了一根20厘米长的木棒,测得它的阴影长度是12.5厘米.同时测得国旗杆的阴影长度是16.5米.国旗杆高米.18.(•海安县)当人的下肢长与身高的比值约为0.6时,身材显得最美.刘老师的身高是160厘米,下肢长94厘米,她穿的高跟鞋最佳高度为_____________厘米.19.(•涟源市模拟)用边长为15厘米的方砖铺地,需要2000块.如果改用边长30厘米的方砖铺地,需要块,20.(•江苏)生活中我们一般用摄氏度(°C)来描述温度,但也有一些国家用华氏度(°F)来描述.水的冰点是0°C,沸点是100°C,用华氏度描述水的冰点是32°F,沸点是212T,那么我们人体正常体温36©,用华氏度描述是°F.三.解答题(共8小题)21.(•海安县模拟)如图,求阴影部分的面积(单位:平方厘米).22.(•广州模拟)张老师准备在书房的地面上铺每块面积是900平方厘米的地砖,刚好用了200块.如果全部改铺每块面积是600平方厘米的地砖,需要多少块?23.(•临川区模拟)修一条路,计划每天修50米,40天完成,实际5天修了300米,照这样计算,多少天完成任务?(用正、反比例两种方法解答)24.(•临川区模拟)运一堆52吨重的钢材,3小时运了15.6吨,照这样计算,还要几小时才能运完?(用比例方法解)25.(•临川区模拟)某服装厂加工一批服装,计划每天加工250件,18天可以完成.实际每天比原计划多加工』,实际多少天可以完工?(用比例解)526.(•临川区模拟)学校操场上有棵大树,数学兴趣小组的同学们要测量树的高度,他们想了一个办法,在上午9时,由小王站在太阳下.已知小王身高1.40米,同时测得小王的影长和大树的影长分别是1.12米和8米,你知道树高多少米吗?27.(•永定区模拟)张阿姨家上个月用电65度,电费39元,王大爷家上个月的电费是27元,他家上个月用电多少度?(用比例解)28.(•雨花区)在比例尺是1:3500000的地图上,量得甲、乙两地之间的距离是2.4厘米,求甲、乙两地实际距离是多少千米?正反比例应用题答案W典题探究例1.有大小两个互相咬合的齿轮,大齿轮有90个齿,小齿轮有18个齿,如果大齿轮每分转100转,小齿轮5分钟转多少转?(用比例知识解答)考点:正、反比例应用题.专题:比和比例应用题.分析:因为两个齿轮是相互交合的,即转动齿数相等,所以转动的周数和每周齿数成反比,由此列出比例解决问题.解答:解:设小齿轮每分钟转x转,18x=90xl0018x=9000x=500500x5=2500(转)答:小齿轮5分钟转2500转.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例.例2.学校会议室用方砖铺地.用8平方分米的方砖铺需要500块;如果改用10平方分米的方砖铺,需要多少块?考点:正、反比例应用题.专题:比和比例应用题.分析:根据学校会议室面积一定,每块砖的面积和所需要的块数成反比例关系,列比例解答即可.解答:解:改用10平方分米的方砖需x块.10xx=8x50010x=4000x=400;答:改用10平方分米的方砖需400块.点评:此题应先判断每块砖的面积和所需要的块数成什么比例关系,列比例解答即可.例3.修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?考点:正、反比例应用题.专题:简单应用题和一般复合应用题;比和比例应用题.分析:根据题意知道,总工作量一定,工作时间和工作效率成反比例,由此列式解答即可.解答:解:设x天可以修完,4x=3.2xl54x=48x=12答:12天可以修完.点评:解答此题的关键是,弄清题意,根据工作效率,工作时间和工作量三者的关系,判断哪两种量成何比例,然后找出对应量,列式解答即可.例4.从"六一〃儿童节那天开始,小明前4天看了80页书,照这样计算,这个月小明一共可以看多少页书?(用比例知识解)考点:正、反比例应用题.专题:比和比例应用题.分析:抓住“照这样计算”是解题的关键,"照这样计算”意思是小明平均每天看的页数是一定的,即看的页数与看的时间的比的比值是一定的;看书的页数与看的时间成正比例关系,由此解答即可.解答:解:设小明一个月(30天)可以x页书,x:30=80:44x=80x30x=600.答:这个月小明一共可以看600页书.点评:此题属于正比例应用题,解题的关键是理解"照这样计算"这句话的意思,判断出两种相关联的量成正比例还是成反比列;如果是比值一定,那么这两种相关联的量就成正比例,如果是积一定,那么这两种相关联的量就成反比列;由此设未知数为x,用比例解答即可.常演练方阵七A档(巩固专练)选择题(共9小题)一.1.一个制服厂生产一批童装,每天生产350件,8天可完成任务;如果每天生产400件,多少天可以完成设X天可以完成.正确列式是()A.400X=350x8B.8400C.350:8=400:X350=x考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知:这批童装的数量是一定的,即每天生产的件数与需要的天数成反比例,据此即可列比例求解.解答:解:设x天可以完成,由题意可得:400x=350x8,400x=2800,x=7;答:7天可以完成.故选:A.点评:解答此题的关键是:弄清楚哪两种量成何比例,于是列比例即可求解.2.(•广州模拟)生产一批零件,前3天生产124个,照这样计算,需再用12天完成全部任务.这批零件共有多少个?如果设这批零件共x个.正确的算式是()A.124_xB.124_xC.12x=124x3"T^12~3~=3+12考点:正、反比例应用题.分析:照这样计算,说明每一天生产的零件数是一定的,生产的零件总数和相对应生产的天数的比值一定,即两种量成正比例,由此列比例解答问题.解答:解:设这批零件共X个,由题意得,124二x.3=3+12’故选B.点评:此题主要考查对正比例的意义的运用:两种相关联的量,一种量变化,另一种量也随着变化,但两种量的相对应的比值一定,这两种量成正比例.3.每100千克小麦可出X千克面粉,Y千克小麦可出面粉的千克数为()A.100yB.100xC.100D.xyx y xy100考点:正、反比例应用题.专题:比和比例应用题.分析:根据每100千克小麦可出X千克面粉,得出小麦的出粉率一定,所以面粉的千克数和小麦的千克数成正比例,由此设出未知数,列比例解答即可.解答:解:Y千克小麦可出面粉Z千克,x_z100~y,100z=xy,7一xy100答:Y千克小麦可出面粉淄L千克.100故选:D.点评:此题首先判定两种量成正比例,再设出未知数,列出比例式进行解答即可.4.一个会议室用方砖铺地.用边长3cm的方砖铺,需要350块,如果改用lOcn?的方砖铺,需要()块.A.280B.187C.390D.315考点:正、反比例应用题.专题:比和比例应用题.分析:会议室的面积是不变的,每一块方砖的面积与所需块数的乘积是一定的,即两种量成反比例,由此设出未知数,列出比例式解答即可.解答:解:设需要x块砖,由题意得,10x=3x3x35010x=3150x=315;答:需要这样的方砖315块.故选:D.点评:此题首先利用正反比例的意义判定两种量的关系,若两个相关联量的乘积一定,则这两个量成反比例,从而可以列比例求解;解答时关键不要把边长当做面积进行计算.5.小明在操场上插几根长短不同的竹竿,在同一时间测量竹竿长和相应的影长,情况如表:这时,小明身边的王强测量出了旗杆的影长是6米,可推算出旗杆的实际高度是()米.影长(米)0.50.70.80.9 1.1 1.5竹竿长(米)1 1.4 1.6 1.8 2.23A.12米B.3米C.9米D.6米考点:正、反比例应用题;正比例和反比例的意义.专题:比和比例应用题.分析:由题意可知:同样条件下,竹竿的长度与它的影长的比是一定的,则旗杆的实际高度与其影长的比也是一定的,据此即可求解.且这两个比是相等的,据此即可列比例求解.解答:解:设旗杆的实际高度是x米,则有1:0.5=x:6,0.5x=6,x=12;答:旗杆的实际高度是12米.故选:A.点评:解答此题的关键是明白:同样条件下,物体的长度与它的影子的长度比是一定的.6.用正方形的地砖铺地,铺地的面积和需要地砖的块数()A.正比例B.反比例C.不成比例考点:正、反比例应用题.专题:比和比例应用题.分析:因为方砖的面积x所需方砖的块数=要铺的地面的面积,而要铺的地面的面积是一定的,进而根据反比例的意义进行选择.解答:解:铺地的面积x砖的块数=要铺的地面的面积(一定)是两个量对应的乘积一定,符合反比例的意义,所以铺地的面积和需要地砖的块数成反比例.故选:B.点评:解答此题的主要依据是如果两个量对应的乘积一定,则这两个量成反比例.7.学校会议室用方砖铺地.用8平方分米的方砖铺,需要350块;如果改用10平方分米的方砖铺,需要()块.A.300B.280C.260D.240考点:正、反比例应用题.专题:比和比例应用题.分析:此题根据面积一定,每块砖的面积和所需要的块数成反比例关系,列比例解答即可.解答:解:改用面积,10平方分米的方砖需X块.10xx=8x350,10x=2800,x=280;答:改用面积为10平方分米的方砖需280块.故选:B.点评:此题应先判断每块砖的面积和所需要的块数成什么比例关系,列比例解答即可.8.一辆拖拉机的后轮半径是前轮半径的1.2倍,后轮转动6周,前轮转动()A.7.2圈B.5圈C.8圈考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意,可设前轮半径为r,那么后轮半径为1.2r,根据圆的周长公式可计算出前轮滚动一圈的周长和后轮滚动一圈的周长,又因前轮和后轮转动的路程是一定的,也就是说前轮的周长乘圈数,与后轮的周长乘圈数的乘积是一定的,据此即可列比例求解.解答:解:设前轮半径为r,那么后轮半径为1.2r,前轮转动的圈数是x圈,贝lj nx2xrxx=nx2x1.2rx62nrx=14.4nrx=7.2答:前轮转动7.2圈.故选:A.点评:解答此题的关键是明白:前轮和后轮转动的路程是一定的,也就是说前轮的周长乘圈数,与后轮的周长乘圈数的乘积是一定的,从而列比例求解.9.(•长沙)从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是()A.2:3B.3:2C.2:5考点:正、反比例应用题.分析:两地之间的距离一定,速度和时间成反比例.解答:解:15:10=3:2故选:B.点评:此题首先判定两种量成反比例,列出比例式进行解答即可.填空题(共3小题)二.060120180km10.在一幅比例尺是—;1—的地图上量得A、B两城之间的距离是3cm,A、B两城之间的实际距离是180千米.考点:正、反比例应用题.专题:比和比例应用题.分析:由线段比例尺可知:图上1厘米代表实际距离60千米,则图上3厘米的距离代表实际距离,即求3个60千米是多少,用乘法解答即可.解答:解:60x3=180(千米)答:图上3厘米的距离表示的实际距离是180千米.故答案为:180千米.点评:解答此题的关键是:先理解该线段比例尺的含义,进而根据求几个相同加数的和是多少,用乘法解答.11.(•当涂县)用3千克绿豆可以做出21千克绿豆芽.照这样计算,18千克绿豆可以做出多少千克绿豆芽?(1)"照这样计算"就是说每千克绿豆做出的绿豆芽的量是一定的,(2)绿豆的重量和绿豆芽的重量成正比例.(3)所求结果用x表示,写出比例式:3:21=18:x.考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知:每千克绿豆做出的绿豆芽的重量是一定的,则绿豆的重量和做出的绿豆芽的重量的比值是一定的,则绿豆的重量和做出的绿豆芽的重量成正比例,据此即可列比例求解.解答:解:设18千克绿豆可以做出x千克绿豆芽,3:21=18:x,3x=21xl8,3x=378,x=126;答:18千克绿豆可以做出126千克绿豆芽.故答案为:每千克绿豆做出的绿豆芽的量;绿豆的重量、绿豆芽的重量、正;3:21=18:X.点评:解答此题的主要依据是:正比例的意义,即若两个相关联量的比值一定,则这两个量成正比例,于是可以列比例求解.12.一间教室,如果用面积6平方分米的方砖铺,要用96块,如果改用面积是9平方分米的方砖铺,要用多少块?考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知,教室的地板面积一定,即一块方砖的面积x方砖的块数=教室的地板面积(一定),由此得出一块方砖的面积与方砖的块数成反比例,设出未知数列出比例解答即可.解答:解:设需要x块,9x=6x96,x=6x96+9,x=64;点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.解答题(共8小题)三.13.甲、乙两国的国土面积相等,但甲国人数是乙国人口数的16倍,若乙国的人均国土面积为296000平方米,那么甲国的人均国土面积是多少?考点:正、反比例应用题.专题:比和比例应用题.分析:根据:人均国土面积x人数=国土面积(一定),国土面积一定,人均国土面积x人数成反比例,由此设出未知数,列出比例式解答即可.解答:解:设甲国的人均国土面积是x平方米,x:196000=1:1616x=196000x=12250答:甲国的人均国土面积是12250平方米.点评:本题主要考查比例在日常生活中的应用,要正确判断哪两种量成反比例.14.生产了一批零件,每天生产200个,15天完成,实际每天生产了250个,实际多少天可以完成?(用比例方式列式)考点:正、反比例应用题.分析:这道题里的这批零件的总数不变.每天生产零件的个数和生产的天数成反比例关系.所以实际和计划每天生产的个数和生产的天数的乘积是相等的.设实际x夭可以 完成,列出方程解方程即可.解答:解:设实际x天可以完成.250x=200xl5x=3000+250x=12;答:实际12天可以完成.点评:此题考查反比例的应用.15.小伟家用面积是18平方分米的地砖需48块,如果改用面积是9平方分米的地砖,需多少块?考点:正、反比例应用题.分析:小伟家铺地的总面积是一定的,每一块地砖的面积和所需的块数成反比例,由此设出未知数,列比例解答即可.解答:解:设需地砖X块,根据题意列比例得,9x=18x48,y_18X489x=96;点评:此题首先判定两种量成反比例,再设出未知数,列出比例式进行解答即可.16.一间教室用边长8分米的方块来铺,刚好要125块,如果改用边长1米的方砖来铺,需要多少块?比计划多用多少块?(用方程解答)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道,一间教室的地面的面积一定,一块方砖的面积x方砖的块数=一间教室的面积(一定),由此判断一块方砖的面积与方砖的块数成反比例,设出未知数,列比例解答即可.解答:解:1米=10分米设需要x块,10xl0x=8x8xl25100x=64xl25y_64X125100x=8O125-80=45(块)答:需要80块,比计划少用45块.点评:关键是判断出一块方砖的面积与方砖的块数成反比例,注意8分米与1米是方砖的边长,不是方砖的面积.17.学校电脑室计划用面积为9平方分米的瓷砖铺地,需480块,现改用边长为4分米的瓷砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知,地板面积一定,即一块瓷砖的面积x瓷砖的块数=地板面积(一定),由此得出一块瓷砖的面积与瓷砖的块数成反比例,设出未知数列出比例解答即可.解答:解:设需要x块,4x=9x480*_9X4804x=1080答:需要1080块.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.18.用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道铺地的面积一定,一块方砖的面积X方砖的块数=铺地的面积(一定),所以一块方砖的面积与方砖的块数成反比例,由此列出比例解答即可.解答:解:设需要X块,20x20xx=15xl5x2000400x=225x2000400x=450000x=1125;答:需要1125块.点评:解答此题关键是判断出一块方砖的面积与方砖的块数成反比例,注意15厘米与30厘米是方砖的边长,不是方砖的面积.19.一间房子要用方砖铺地.用面积是9平方分米的方砖需要96块.如果改用边长为2分米的方砖,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:设用边长为2分米的方砖铺地要用x块,根据房子的面积一定,可以列出比例(2x2)xx=96x9,解比例即可求解.解答:解:设用边长为2分米的方砖铺地要用x块,贝上(2x2)xx=96x94x=864x=864-?4x=216.答:要用216块.点评:考查了反比例的应用,本题注意是每块方砖的面积x方砖的块数的乘积一定.20.丽丽家客厅,用边长0.3m的方砖铺地,需要560块,如果改用边长0.4m的方砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道,客厅的面积一定,方砖的面积和方砖的块数成反比例,由此列式解答即可.解答:解:需要x块方砖,0.3x0.3x560=0.4x0.4xx0.16x=50.4x=315答:需要315块.点评:解答此题的关键是,根据题意,正确判断出两种相关联的量成什么比例,找出对应量,列式解答即可.B档(提升精练)。

六下数学每日一练:正比例应用题练习题及答案_2020年解答题版

六下数学每日一练:正比例应用题练习题及答案_2020年解答题版

六下数学每日一练:正比例应用题练习题及答案_2020
年解答题版答案答案答案答案答案2020年六下数学:数的认识及运算_比与比例_正比例应用题练习题
~~第1题~~
(2019泗洪.六下期中) 一种药水是由药粉和水按照1:200的质量比配制而成的.
药粉/克
1246810水/克200400 (1) 补充表格.
(2) 根据表格中的数据在下面的方格纸上描点连线.
(3) 12克药粉需要加入多少克水?要把2.5千克水配成药水,需要药粉多少克?
考点: 成正比例的量及其意义;正比例应用题;~~第2题~~
(2019微山.六下期中) 修一条长12千米的公路,开工3天修了1.5千米。

照这样计算,修完这条路还要多少天?(用比例解)
考点: 正比例应用题;~~第3题~~
(2019成武.六下期中
) 农场收割小麦,前3天收割了165公顷。

照这样计算,8天可以收割小麦多少公顷?(用比例解)考点: 正比例应用题;~~第4题~~
(2019东.六下期中) 一种大豆,10kg 可以榨油2kg .照这样计算,要榨油20t ,需要这样的大豆多少吨?
考点: 正比例应用题;~~第5题~~
(2019南海.六下期中) 某部队行军演习,4小时走了22.4km ,照这样的速度又走了6小时,一共走了多少km ?(用比例知识来解)
考点: 正比例应用题;2020年六下数学:数的认识及运算_比与比例_正比例应用题练习题答案
1.答案:
2.答案:
3.答案:
4.答案:
5.答案:。

正比例函数应用题50道

正比例函数应用题50道

正比例函数应用题50道正比例函数是数学中常见的一类函数,它的基本定义是:若两个变量之间的关系满足y=ax(a>0),就称两变量之间存在正比例关系,称y=ax(a>0)为正比例函数。

比如面积与边长关系就是一个正比例函数,因为面积和边长之间存在正比例关系,即面积与边长之比是一个常数,这样的函数就可以用y=ax来表示。

换句话说,正比例函数就是说随着一个变量的增大而另一个变量也会跟着增大(或减小),两者之间存在着线性的关系。

正比例函数的应用非常广泛,最常见的应用是在物理、化学、经济等领域。

在物理领域,比如速度和时间的关系就是正比例关系,比如力和位移的关系也是正比例关系。

在化学领域,温度和压力之间是正比例关系,它们之间的关系可以表示为y=ax。

在经济领域,货币和汇率的关系也是正比例的,这也可以表示为y=ax。

正比例函数的习题是一个经常被考察的知识点,最常见的应用题就是求正比例函数的斜率、不定形式、参数形式和经验公式等。

以下是50道正比例函数应用题:1.已知函数f(x)满足f(x)=x+3,求f(5)的值。

2.已知函数f(x)满足f(2)=1,求f(x)的不定形式。

3.已知函数f(x)满足f(1)=2,求f(x)的斜率。

4.已知函数f(x)满足f(0)=4,求f(x)的参数形式。

5.已知函数f(x)满足f(3)=7,求f(x)的经验公式。

6.已知函数f(x)=2x+3,求f(-1)的值。

8.已知函数f(x)=2x+7,求f(x)的斜率。

9.已知函数f(x)=3x+4,求f(x)的参数形式。

10.已知函数f(x)=3x+6,求f(x)的经验公式。

11.已知函数f(x)=4x+1,求f(-1)的值。

12.已知函数f(x)=4x+3,求f(x)的不定形式。

13.已知函数f(x)=4x+5,求f(x)的斜率。

14.已知函数f(x)=5x+2,求f(x)的参数形式。

15.已知函数f(x)=5x+4,求f(x)的经验公式。

正比例函数练习题

正比例函数练习题

正比例函数练习题一、选择题1. 正比例函数的一般形式是()A. y = kx + bB. y = kxC. y = k/xD. y = x^k2. 如果正比例函数y = 2x,当x增加1时,y的值将()A. 增加2B. 减少2C. 不变D. 增加13. 正比例函数的图象是一条()A. 垂直线B. 水平线C. 抛物线D. 直线4. 当k > 0时,正比例函数y = kx的图象在坐标平面的()A. 第一象限和第二象限B. 第一象限和第三象限C. 第二象限和第四象限D. 第三象限和第四象限5. 下列哪个选项不是正比例函数?A. y = 3xB. y = -5xC. y = x^2D. y = 2/x二、填空题6. 正比例函数y = kx中,k的值决定了图象的_________。

7. 如果正比例函数y = kx的图象经过点(1,3),则k的值为_______。

8. 当k < 0时,正比例函数y = kx的图象将经过坐标平面的_______象限。

三、解答题9. 已知正比例函数y = 4x,求当x = 5时,y的值。

10. 假设正比例函数y = kx的图象经过点(-2,6),求k的值,并描述该函数的增减性。

11. 给定正比例函数y = kx,如果图象经过原点,说明k的值是多少?12. 某物体在直线运动中,其速度v与时间t成正比,即v = kt。

若物体在前2秒内移动了4米,求速度v与时间t的比例系数k。

四、应用题13. 某工厂生产产品,每件产品的成本是固定的,设为c元。

如果生产n件产品,总成本为C元。

请写出总成本与产品数量之间的函数关系,并解释该函数的性质。

14. 某公司销售产品,每件产品的利润是固定的,设为p元。

如果销售m件产品,总利润为P元。

请根据正比例函数的性质,解释为什么在不考虑其他因素的情况下,增加销售量可以增加总利润。

15. 已知正比例函数y = kx的图象经过点(3,-6),求k的值,并根据k的值判断该函数的增减性。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、判断。

1、工作总量一定,工作效率和工作时间成正比例。

()
2、图上距离和实际距离成正比例。

()
3、X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y不成比例。

()
4、分数的大小一定,它的分子和分母成正比例。

()
5、在一定的距离内,车轮周长和它转动的圈数成正比例。

()
6、两种相关联的量,一定成正比例。

()
二、判断下面每题中的两种量是不是成正比例。

1、装配一批电视机,每天装配台数和所需的天数()。

2、正方形的边长和周长()。

3、水池的容积一定,水管每小时注水量和所用时间()。

4、房间面积一定,每块砖的面积和铺砖的块数()。

5、在一定时间里,加工每个零件所用的时间和加工零件的个数()。

6、在一定时间里,每小时加工零件的个数和加工零件的个数()。

三、用正比例的知识解答下列各题。

1、小明买9本练习本花了元,如果买同样的练习本20本需要付多少元
2、小明买9本练习本花了元,如果用20元钱买同样的练习本,可以买多少本
3、运一批煤,18次运了90吨,照这样计算,再有14次可以运完,这一批煤多少吨
4、运一批煤,18次运了90吨,照这样计算,多少次才能运完140吨煤
5、用8辆卡车每天可运货128吨,照这样计算,用同样的卡车11辆,每天可运货多少吨
6、一种水管,40米重60千克。

现称得一捆水管重270千克,这捆水管共长多少米
7、一榨油厂用400千克芝麻可以榨油144千克。

照这样计算,要榨10吨油要多少吨芝麻
8、一辆汽车3小时行了180千米,照这样的速度,5小时可行驶多少千米
9、一位工人2小时加工80个零件,照这样计算,4小时加工多少个零件。

10、一辆汽车从甲地到乙地2小时行140千米,照这样的速度,又行驶5小时到达乙地。

甲乙两地之间的公路长多少千米
11、把2米长的竹竿直立在地上,量得它的影子长是1.6米,同时量得电线杆的影长是4.8米。


根电线杆高多少米
12、一辆汽车2小时行140千米,照这样的速度,从甲地到乙地还有350千米,共需行驶几小时
13、食堂买3桶油用780元,照这样计算,买8桶油要用多少钱
14、500千克胡麻能榨200千克油,照这样计算,1吨胡麻能榨多少千克油
15、一个工人 6天生产零件 240个,照这样计算, 30天可以生产零件多少个
16、一艘轮船3小时航行80千米,照这样速度,航行200千米,需要多少小时
17、把一种农药和水按照1∶2500配制成药水。

在1000千克的水中,应放这种农药多少千克
18、一台拖拉机3小时耕地120公亩,照这样计算,10小时可以耕地多少公亩
19、生产一批零件,某车间3小时生产零件246个,照这样的效率,再制造2214个同样的零件就完成任务,生产这批零件共需要几小时
20、配制一种药水,药和水的比1:800,药配制这种药水1602克。

需要药多少克13、两辆汽车从甲地开往乙地,它们速度的比是10∶9,如果第一辆汽车用2小时,第二辆汽车要用多少小时?
21、一个运输队有载重量相同的汽车32辆,每天运货物256吨。

照这样计算,增加8辆这样的汽车,每天要比原来多运货物多少吨
22、甲乙两个齿轮齿数的比是5∶9,乙齿轮每分钟转40周,甲齿轮每分钟转多少周?
23、用100千克海水可以晒出3千克盐,照这样计算,45吨海水可以晒多少吨盐?
24、2000吨的油菜籽可榨出菜油900吨,照这样计算。

(1)500千克油菜籽可榨油多少千克(2)要榨出菜油500千克需油籽多少千克?
25、某一时刻测得一烟囱的影长为16.2米,同样测得一长4米的竹杆影长为1.8米,求烟囱的高
度。

相关文档
最新文档