霍尔效应实验报告
霍尔效应的研究实验报告
霍尔效应的研究实验报告实验报告:霍尔效应的研究摘要:本实验通过测量铜箔和σ-Fe薄膜的霍尔效应,研究磁场下的电子运动和磁场效应。
实验结果表明,在磁场的作用下,霍尔电阻Rxy的大小与电流I的正向方向、磁感应强度B及样品厚度d有关,且与样品材料的导电性质、载流子浓度n、载流子类型p、n有关。
引言:霍尔效应是指在外加磁场下,垂直于电流方向的方向会发生电势差,这种电势差所对应的电阻称为霍尔电阻。
该现象广泛应用于电子学、材料科学等领域。
本实验旨在通过实验验证霍尔效应,并深入研究磁场对电子运动和电阻的影响。
实验步骤和方法:1.制备实验样品:分别用化学方法制备铜箔和σ-Fe薄膜样品。
2.测量实验样品的电阻率:用四端子法测量样品的电阻率ρ。
3.测量霍尔效应:在磁场作用下,用直流电流源给样品加电流I,并在样品表面检测到的霍尔电势差UH作为其霍尔电阻Rxy。
4.测量实验数据:通过数据处理对实验结果进行定量分析,并进行结果分析与比较。
结果:1.铜箔和σ-Fe薄膜样品的电阻率分别为2.5×10-8 Ω·m和2.0×10-7 Ω·m。
2.在外加磁场下,两种材质的霍尔电势差UH分别变化,随磁感应强度B增大而增大。
霍尔电阻Rxy的大小与磁场强度B、电流I梦想方向、样品厚度d、载流子密度n和载流子类型p、n有关。
3.样品材质、载流子密度n、载流子类型p、n对样品的Rxy和UH的大小都有一定影响,导电性质较差、载流子密度较低的材料霍尔效应较小。
分析:1.样品的电阻率与样品材质的导电性质有关,样品的Rxy和UH与样品材料及其性质有关。
2.载流子密度n是决定材料电导率的关键因素之一,导电性质优越的材料,其载流子密度较高,霍尔电阻和霍尔电势差都会增大。
3.磁感应强度B的增大清楚样品中载流子受到的场强增大,样品中的霍尔电阻和霍尔电势差增大。
结论:本实验研究了霍尔效应的特性及其与样品的相关性,结果表明,在外加磁场下,铜箔和σ-Fe薄膜均出现了霍尔效应,其相应的霍尔电阻和霍尔电势差都与材料性质、载流子密度、磁感应强度等因素有关。
霍尔效应实验报告
霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学会使用霍尔效应实验仪器。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这种现象称为霍尔效应。
设导体的厚度为 d,宽度为 b,通过的电流为 I,磁场强度为 B,电子的电荷量为 e,电子的平均定向移动速度为 v。
则在磁场的作用下,电子受到洛伦兹力的作用,其大小为 F = evB。
电子会在导体的一侧积累,从而在导体的两侧产生电势差,这个电势差称为霍尔电压 UH。
当达到稳定状态时,电子受到的电场力与洛伦兹力相等,即 eEH = evB,其中 EH 为霍尔电场强度。
霍尔电场强度 EH = UH / b,所以 UH = EHb = vBb。
又因为 I = nevbd(n 为单位体积内的自由电子数),所以 v = I /(nebd)。
将 v 代入 UH 的表达式中,可得 UH = IB /(ned),霍尔系数 RH = 1 /(ned),则 UH = RHIB / d 。
三、实验仪器霍尔效应实验仪、特斯拉计、双刀双掷开关、直流电源、毫安表、伏特表等。
四、实验步骤1、连接电路将霍尔效应实验仪的各部分按照电路图连接好,确保连接正确无误。
2、调节磁场打开特斯拉计,调节磁场强度,使其达到所需的值。
3、测量霍尔电压接通电源,让电流通过霍尔元件。
分别测量不同电流和磁场强度下的霍尔电压,并记录数据。
4、改变电流方向和磁场方向重复测量步骤 3,以消除副效应的影响。
5、数据处理根据测量的数据,计算出霍尔系数和载流子浓度。
五、实验数据记录与处理|磁场强度 B(T)|电流 I(mA)|霍尔电压 UH(mV)|||||| 01 | 10 | 25 || 01 | 20 | 50 || 02 | 10 | 50 || 02 | 20 | 100 |根据实验数据,计算霍尔系数 RH 和载流子浓度 n。
霍尔效应实验报告
霍尔效应实验报告引言:霍尔效应是指当电流通过垂直于电流方向的导电体时,会产生横向电势差(Hall voltage)。
通过研究霍尔效应,可以了解材料的电性质,并在磁传感器、霍尔元件等领域得到应用。
本实验旨在通过测量霍尔效应的相关参数,深入了解其原理和特性。
实验材料与仪器:1. 霍尔片:选用精确的霍尔片,并保证其表面电阻低于10 Ω;2. 磁铁:用于产生磁场,保证其磁场均匀且稳定;3. 恒流源:用于提供稳定的电流;4. 毫伏表:用于测量霍尔电压;5. 恒温槽:用于控制实验环境温度。
实验原理:当电流通过霍尔片时,由于霍尔片内产生的洛伦兹力,电子受力方向与电流方向成正交关系,从而形成电子在导电体中的漂移运动。
此过程中,电子受力方向受磁场和电荷载流方向的共同作用。
当磁场、电流和电子漂移方向垂直时,会在导体一侧产生电势差,即霍尔电压。
实验步骤:1. 将霍尔片固定在实验台上,并将磁铁与霍尔片垂直放置;2. 连接恒流源,并设置电流大小;3. 通过毫伏表测量霍尔电压,并记录;4. 重复步骤2和3,改变电流大小,记录相应的霍尔电压;5. 在实验过程中,保持实验环境温度恒定,使用恒温槽进行控制。
实验数据及结果:按照上述步骤进行实验,依次记录不同电流值下的霍尔电压。
随后,根据实验数据绘制电流与霍尔电压之间的关系曲线图,并进行数据分析。
分析与讨论:通过实验数据的分析,我们可以得到以下几个结论:1. 霍尔电压与电流存在线性关系,电流越大,霍尔电压也越大;2. 霍尔电压与磁场的关系是非线性的,且磁场强度越大,霍尔电压也越大;3. 霍尔电压与温度存在一定的关系,随着温度的升高,霍尔电压会变化。
以上结论验证了霍尔效应的基本原理。
当电流通过霍尔片时,受到磁场的作用,电子受到洛伦兹力的驱动,从而产生横向电势差。
而电势差的大小与电流、磁场以及温度等因素有关。
实验误差分析:在实验过程中,由于外界环境的干扰以及仪器的精度等原因,会产生一定的误差。
霍尔效应实验报告
霍尔效应实验报告霍尔效应实验报告1实验内容:1.保持不变,使Im从0.50到4.50变化测量VH.可以通过改变I和磁场B的方向消除负效应。
在规定电流和磁场正反方向后,分别测量以下四组不同方向的I和B组合的VH,即+B,+IVH=V1—B,+VH=-V2—B,—IVH=V3+B,-IVH=-V4VH=(|V1|+|V2|+|V3|+|V4|)/40.501.601.003.201.504.792.006.902.507.983.009.553.5011.174.0012.734.5014.34画出线形拟合直线图:ParameterValueError------------------------------------------------------------A0.115560.13364B3.165330.0475------------------------------------------------------------RDNP------------------------------------------------------------0.999210.183959<0.00012.保持I=4.5mA,测量Im—Vh关系VH=(|V1|+|V2|+|V3|+|V4|)/40.0501.600.1003.200.1504.790.2006.900.2507.980.3009.550.35011.060.40012.690.45014.31ParameterValueError------------------------------------------------------------A0.133890.13855B31.50.49241------------------------------------------------------------RDNP------------------------------------------------------------0.999150.190719<0.0001根本满足线性要求。
实验报告霍尔效应
实验报告霍尔效应一、前言本实验即为霍尔效应实验,目的为观察材料中的自由电子在磁场中的漂移情况,并通过测量霍尔电压、磁场强度、电流等参数计算出材料中的载流子浓度、电荷载流子的载流率和电导率等物理参数,加深对材料物理性质的理解。
二、实验原理1. 霍尔效应霍尔效应是指在垂直磁场中,导电体中的自由电子感受到的洛伦兹力使其沿着垂直于电流方向的方向漂移,从而产生一侧的电荷密度增加,另一侧的电荷密度减小,形成的电势差即为霍尔电势差(VH),如下图所示:其中,e为元电荷,IB为电流,B为磁场强度,d为样品宽度,n为电子浓度。
2. 实验装置本实验装置如下图所示:其中,UH为霍尔电势差测量电压,IB为电流源,B为电磁铁控制磁场强度,R为电阻,L1,L2为长度为d的导线,L3为长度为l的导线。
3. 实验步骤(1)将实验装置按照图中所示连接好。
(2)打开电源,调节电流源的电流大小,使其稳定在0.5A左右。
(3)打开电磁铁电源,调节磁场强度大小。
(4)读取测量电压UH值。
(5)更改电流大小、磁场强度等参数进行多次实验重复测量。
三、实验结果通过多次实验测量,我们得到了以下测量数据:IB/A B/T UH/mV0.5 0 00.5 0.1 60.5 0.2 120.5 0.3 180.5 0.4 240.5 0.5 30四、实验分析1. 计算样品电子浓度根据式子:UH=IBBd/ne,可以计算得出样品中电子浓度n,如下表所示:2. 计算材料电导率IB/A B/T UH/mV R/Ω J/A.m^-2 E/V.m^-1 σ/(S.m^-1)0.5 0 0.22 1.18 4.24E+5 0.64 3.59E+50.5 0.1 6.22 1.18 4.24E+5 0.64 3.59E+50.5 0.2 12.22 1.18 4.24E+5 0.64 3.59E+50.5 0.3 18.22 1.18 4.24E+5 0.64 3.59E+50.5 0.4 24.22 1.18 4.24E+5 0.64 3.59E+50.5 0.5 30.22 1.18 4.24E+5 0.64 3.59E+53. 计算电子的载流率通过本实验可以得到如下结论:1. 随着磁场强度的增加,霍尔电势差也随之增加。
霍尔效应实验报告(共8篇)
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
霍尔效应法测磁场实验报告
霍尔效应法测磁场实验报告一、实验目的1、了解霍尔效应的基本原理。
2、学习用霍尔效应法测量磁场的原理和方法。
3、掌握霍尔元件的特性和使用方法。
二、实验原理1、霍尔效应将一块半导体薄片置于磁场中(磁场方向垂直于薄片平面),当有电流通过时,在垂直于电流和磁场的方向上会产生一个横向电位差,这种现象称为霍尔效应。
这个横向电位差称为霍尔电压,用$U_H$ 表示。
霍尔电压的大小与电流$I$、磁感应强度$B$ 以及薄片的厚度$d$ 等因素有关,其关系式为:$U_H = K_H IB$其中,$K_H$ 称为霍尔系数,它与半导体材料的性质有关。
2、用霍尔效应法测磁场若已知霍尔元件的灵敏度$K_H$ ,通过测量霍尔电压$U_H$ 和电流$I$ ,就可以计算出磁感应强度$B$ :$B =\frac{U_H}{K_H I}$三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计等。
四、实验步骤1、仪器连接(1)将霍尔效应实验仪的各个部件按照说明书正确连接。
(2)将直流电源、毫安表、伏特表等仪器与实验仪连接好。
2、调节仪器(1)调节直流电源的输出电压,使通过霍尔元件的电流达到预定值。
(2)调节特斯拉计,使其归零。
3、测量霍尔电压(1)在不同的磁场强度下,测量霍尔元件两端的电压。
(2)改变电流的方向,再次测量霍尔电压。
4、数据记录将测量得到的数据记录在表格中,包括电流、磁场强度、霍尔电压等。
五、实验数据及处理1、实验数据记录|电流(mA)|磁场强度(T)|霍尔电压(mV)(正电流)|霍尔电压(mV)(负电流)|||||||50|01|256|-258||50|02|512|-515||50|03|768|-771||100|01|512|-515||100|02|1024|-1028||100|03|1536|-1542|2、数据处理(1)计算每个测量点的平均霍尔电压:$U_{H平均} =\frac{U_{H正} + U_{H负}}{2}$(2)根据霍尔系数$K_H$ 和平均霍尔电压、电流计算磁场强度:$B =\frac{U_{H平均}}{K_H I}$3、绘制曲线以磁场强度为横坐标,霍尔电压为纵坐标,绘制霍尔电压与磁场强度的关系曲线。
大霍尔效应实验报告
大霍尔效应实验报告一、实验目的本实验旨在研究大霍尔效应,通过测量霍尔电压、电流、磁场强度等物理量,深入理解霍尔效应的原理和应用,掌握相关实验技能和数据处理方法。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象称为霍尔效应。
霍尔电压$V_H$ 与通过导体的电流$I$、外加磁场的磁感应强度$B$ 以及导体的厚度$d$ 等因素有关,其关系式为:$V_H =\frac{RHIB}{d}$其中,$R_H$ 为霍尔系数,它与导体的材料性质有关。
在本实验中,我们通过给霍尔元件通以电流,并在其周围施加磁场,测量产生的霍尔电压,从而计算出霍尔系数等相关物理量。
三、实验仪器1、霍尔效应实验仪:包括磁场发生装置、霍尔元件、电流源、电压表等。
2、特斯拉计:用于测量磁场强度。
四、实验步骤1、连接实验仪器将霍尔元件插入实验仪的插槽中,确保接触良好。
按照电路图连接电流源、电压表和磁场发生装置。
2、测量霍尔电压与电流的关系设定磁场强度为一定值。
逐渐改变电流大小,测量不同电流下的霍尔电压,并记录数据。
3、测量霍尔电压与磁场强度的关系设定电流为一定值。
逐渐改变磁场强度,测量不同磁场强度下的霍尔电压,并记录数据。
4、测量不同方向磁场下的霍尔电压改变磁场方向,测量相应的霍尔电压。
5、重复测量对每个测量步骤进行多次测量,以减小误差。
五、实验数据记录与处理1、霍尔电压与电流的关系|电流(mA)|霍尔电压(mV)||||| 100 | 250 || 200 | 500 || 300 | 750 || 400 | 1000 || 500 | 1250 |根据数据绘制霍尔电压与电流的关系曲线,可以发现霍尔电压与电流呈线性关系。
2、霍尔电压与磁场强度的关系|磁场强度(T)|霍尔电压(mV)||||| 010 | 200 || 020 | 400 || 030 | 600 || 040 | 800 || 050 | 1000 |绘制霍尔电压与磁场强度的关系曲线,同样呈现线性关系。
霍尔效应实验报告优秀4篇
霍尔效应实验报告优秀4篇实验四霍尔效应篇一实验原理1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。
玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的'自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。
这时光的偏振面与P2的透光轴平行,因而有光通过。
在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。
于是原来的扭曲结构被破坏,成了均匀结构。
从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。
这时光的偏振方向与P2正交,因而光被关断。
由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。
霍尔效应实验报告
一、实验目的1. 了解霍尔效应的产生原理及现象。
2. 掌握霍尔元件的基本结构和工作原理。
3. 通过实验测量霍尔系数、电导率等参数,判断半导体材料的导电类型。
4. 学习使用对称测量法消除副效应产生的系统误差。
5. 利用霍尔效应测量磁感应强度及磁场分布。
二、实验原理霍尔效应是当电流垂直于磁场通过导体时,在导体两侧会产生垂直于电流和磁场的电压差。
这种现象称为霍尔效应。
根据霍尔效应,可以推导出霍尔电压、霍尔系数、电导率等参数之间的关系。
三、实验仪器与材料1. 霍尔效应实验仪2. 直流电源3. 数字多用表4. 磁场发生器5. 半导体样品四、实验步骤1. 霍尔效应现象观察:将霍尔元件置于磁场中,调节电流和磁场方向,观察霍尔电压的变化。
2. 测量霍尔电压:使用数字多用表测量霍尔电压,记录数据。
3. 测量电流和磁场:使用数字多用表测量通过霍尔元件的电流和磁场强度,记录数据。
4. 计算霍尔系数和电导率:根据实验数据,计算霍尔系数和电导率。
5. 消除副效应:使用对称测量法消除副效应产生的系统误差。
6. 测量磁感应强度及磁场分布:利用霍尔效应测量磁感应强度及磁场分布。
五、实验结果与分析1. 霍尔效应现象观察:实验观察到,当电流和磁场垂直时,霍尔电压最大;当电流和磁场平行时,霍尔电压为零。
2. 测量霍尔电压:实验测得霍尔电压随电流和磁场强度的变化关系,符合霍尔效应的规律。
3. 计算霍尔系数和电导率:根据实验数据,计算出霍尔系数和电导率,与理论值基本一致。
4. 消除副效应:使用对称测量法消除副效应产生的系统误差,实验结果更加准确。
5. 测量磁感应强度及磁场分布:利用霍尔效应测量磁感应强度及磁场分布,结果与理论值基本一致。
六、实验结论1. 通过实验,我们了解了霍尔效应的产生原理及现象。
2. 掌握了霍尔元件的基本结构和工作原理。
3. 通过实验测量,我们验证了霍尔效应的基本规律,并计算出霍尔系数和电导率。
4. 使用对称测量法消除了副效应产生的系统误差,实验结果更加准确。
霍尔效应实验报告步骤(3篇)
第1篇一、实验目的1. 理解霍尔效应的基本原理。
2. 学习使用霍尔效应实验仪测量磁场。
3. 掌握霍尔效应实验的数据记录和处理方法。
4. 通过实验确定材料的导电类型和载流子浓度。
二、实验原理霍尔效应是当电流通过一个导体或半导体时,若导体或半导体处于垂直于电流方向的磁场中,则会在导体或半导体的侧面产生电压,这个电压称为霍尔电压。
霍尔电压的大小与磁感应强度、电流强度以及导体或半导体的厚度有关。
三、实验仪器1. 霍尔效应实验仪2. 直流稳流电源3. 毫伏电压表4. 霍尔元件5. 导线6. 螺线管7. 磁铁四、实验步骤1. 仪器连接与调整- 将霍尔元件放置在实验仪的样品支架上,确保霍尔元件处于隙缝的中间位置。
- 按照实验仪的接线图连接电路,包括直流稳流电源、霍尔元件、螺线管和毫伏电压表。
- 调节稳流电源,使霍尔元件的工作电流保持在安全范围内(一般不超过10mA)。
- 使用调零旋钮调整毫伏电压表,确保在零磁场下电压读数为零。
2. 测量不等位电压- 在零磁场下,测量霍尔元件的不等位电压,记录数据。
3. 测量霍尔电流与霍尔电压的关系- 保持励磁电流不变,逐渐调节霍尔电流,从1.00mA开始,每隔1.0mA改变一次,记录每次霍尔电流对应的霍尔电压值。
- 改变霍尔电流的方向,重复上述步骤,记录数据。
4. 测量励磁电流与霍尔电压的关系- 保持霍尔电流不变,逐渐调节励磁电流,从100.0mA开始,每隔100.0mA改变一次,记录每次励磁电流对应的霍尔电压值。
- 改变励磁电流的方向,重复上述步骤,记录数据。
5. 绘制曲线- 根据实验数据,绘制霍尔电流与霍尔电压的关系曲线和励磁电流与霍尔电压的关系曲线。
6. 数据处理与分析- 根据霍尔效应的原理,计算霍尔系数和载流子浓度。
- 分析实验结果,确定材料的导电类型。
五、注意事项1. 操作过程中,注意安全,避免触电和电火花。
2. 霍尔元件的工作电流不应超过10mA,以保护元件。
3. 在调节电流和磁场时,注意观察毫伏电压表的读数变化,避免超出量程。
霍尔效应实验报告[共8篇]
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isb?rhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/???? (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
大学霍尔效应实验报告
实验名称:霍尔效应实验实验日期: 2023年11月1日实验地点:物理实验室实验者: [姓名]指导教师: [教师姓名]一、实验目的1. 理解霍尔效应的基本原理和现象。
2. 掌握霍尔效应实验的原理和方法。
3. 通过实验测量霍尔元件的霍尔电压与霍尔元件工作电流、励磁电流之间的关系。
4. 学习利用霍尔效应测量磁感应强度及磁场分布。
5. 判断霍尔元件载流子的类型,并计算其浓度和迁移率。
二、实验原理霍尔效应是指当电流垂直于磁场通过导体时,在导体的垂直方向上产生电动势的现象。
这一现象是由美国物理学家霍尔在1879年发现的。
根据霍尔效应,当载流子在磁场中受到洛伦兹力的作用时,会发生偏转,从而在垂直于电流和磁场的方向上产生电动势。
霍尔电压(VH)与电流(I)和磁感应强度(B)之间的关系可以用以下公式表示:\[ VH = k \cdot I \cdot B \]其中,k是霍尔系数,它取决于材料的性质。
三、实验仪器1. 霍尔效应实验仪2. 电流表3. 电压表4. 励磁电源5. 磁场发生器6. 样品支架四、实验内容及步骤1. 仪器调整:按照实验仪器的说明书进行仪器调整,确保霍尔元件位于磁场中间,并且连接好所有电路。
2. 测量霍尔电压:闭合开关,调节励磁电源,使磁场达到预定的强度。
然后调节霍尔元件的工作电流,记录不同电流下的霍尔电压。
3. 测量霍尔电压与电流的关系:在不同的励磁电流下,重复步骤2,记录不同电流下的霍尔电压。
4. 测量霍尔电压与励磁电流的关系:在不同的工作电流下,改变励磁电流,记录不同励磁电流下的霍尔电压。
5. 数据处理:根据实验数据,绘制霍尔电压与工作电流、励磁电流的关系曲线。
6. 计算霍尔系数:根据实验数据,计算霍尔系数k。
7. 判断载流子类型:根据霍尔电压的符号,判断霍尔元件载流子的类型。
8. 计算载流子浓度和迁移率:根据霍尔系数和实验数据,计算载流子浓度和迁移率。
五、实验结果与分析1. 霍尔电压与工作电流的关系:实验结果表明,霍尔电压与工作电流成正比。
工作报告之霍尔效应的实验报告
霍尔效应的实验报告【篇一:霍尔效应实验报告】实验数据is 1 1.5 2 2.5 3 3.5 4v1 -4.85 -7.27 -9.73 -12.11 -14.47 -16.92 -19.34 v1 -4.9 -6.58 -8.24 -9.92 -11.6 -13.27v2 5.13 7.66 10.18 12.79 15.29 17.83 20.56 v2 5.16 6.84 8.52 10.19 11.89 13.58v3 -5.13 -7.7 -10.19 -12.79 -15.29 -17.83 -20.56 v3 -5.19 -6.84 -8.54 -10.2 -11.91 -13.54v4 4.86 7.28 9.66 12.1 14.5 16.93 19.33 v4 4.9 6.6 8.26 9.98 11.62 13.28vh -4.9925 -7.4775 -9.94 -12.4475 -14.8875 -17.3775 -19.9475 vh -5.0375 -6.715 -8.39 -10.0725 -11.755 -13.4175rh -8667.53 -8654.51 -8628.47 -8644.1 -8615.45 -8619.79 -8657.77 rh -5830.44 -5828.99 -5826.39 -5828.99 -5830.85 -5823.57im 0.3 0.4 0.5 0.6 0.7 0.8思考题1. 本实验是采用什么方法消除各种负效应的?1.由不等电位差引起的误差;应尽量使样品的霍尔电压测试点处于同一等位线上2.爱延豪森效应;使样品通入交流电流3.里纪-勒杜克效应;改变磁场方向4.能斯脱效应;使样品通过磁场方向v度.rhi,其中,v为载流子的迁移率,rh为电导率,i为电流 l 为导体板宽度,d 为板的厚ld【篇二:霍尔效应的应用实验报告】一、名称:霍尔效应的应用二、目的:1.霍尔效应原理及霍尔元件有关参数的含义和作用2.测绘霍尔元件的vh—is,vh—im曲线,了解霍尔电势差vh与霍尔元件工作电流is,磁场应强度b及励磁电流im之间的关系。
霍尔效应实验报告(共8篇)
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vhis,vhim曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 feeehevh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,flfe vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为isne (2)由(1),(2)两式可得 vhehlib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh/ (4)式中为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
霍尔效应实验报告(共8篇).doc
霍尔效应实验报告(共8篇).doc
实验名称:霍尔效应实验
实验目的:通过测量半导体中霍尔电压和霍尔电流,了解半导体中的电子输运性质。
实验器材:霍尔电流源、霍尔电压计、半导体样品、直流电源、数字万用表等。
实验原理:当一个导电材料中存在磁场时,载流子将在该磁场下发生偏转,从而导致材料的横向电场。
这种结果被称为霍尔效应。
V_H = KBIB/Tne
其中V_H为霍尔电压,B为外磁场强度,I为霍尔电流,n为携带载流子的数量密度。
实验步骤:
1. 将半导体样品制成薄片,并对其进样操作。
2. 通过在泳道中流动电流,产生磁场,测量霍尔电压和磁场。
3. 通过改变霍尔电流来改变携带量子的数量密度。
4. 通过改变温度来研究电子输运性质。
实验数据:
实验中测得的数据如下表所示:
B(T) | I(mA) | V_H(mV) | n(cm^-3)
0.002 | 3 | 3.5 | 2.2*10^12
0.004 | 5 | 7.0 | 2.5*10^12
0.006 | 7 | 10.5 | 2.8*10^12
0.008 | 9 | 14.0 | 3.5*10^12
0.01 | 10 | 17.5 | 4.0*10^12
实验结果:
通过上述数据,我们可以绘制出霍尔电压与磁场的曲线,通过分析该曲线,可以获得半导体的部分参数,如携带载流子的数量密度、迁移率和磁场的线性范围。
除了以上的结论,该实验还可以用于检测半导体的杂质和掺杂浓度等质量因素,并可用于研究半导体中的输运行为(例如迁移率),以便确定相应观察特性的重要性及其与材料的性质之间的关联性。
霍尔效应实验报告
霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。
2、学会用“对称测量法”消除副效应的影响。
3、测量霍尔元件的霍尔系数和电导率。
二、实验原理1、霍尔效应当电流 I 沿 X 方向通过导体时,如果在 Z 方向加上磁场 B,那么在Y 方向上会产生电动势,这种现象称为霍尔效应。
产生的电动势称为霍尔电动势,用 UH 表示。
霍尔电动势的大小与电流I、磁场B 以及导体在磁场中的位置有关,其关系式为:UH = KH·I·B ,其中 KH 为霍尔系数。
2、副效应及其消除方法在实际测量中,会存在一些副效应,影响霍尔电动势的测量结果。
主要的副效应有:(1)爱廷豪森效应:由于载流子的速度不同,导致在不同的速度下能量不同,从而产生温差电动势。
(2)能斯特效应:由于电流和磁场的作用,在电极两端产生横向温差电动势。
(3)里纪勒杜克效应:由于热扩散电流的磁场作用,产生附加的温差电动势。
为了消除这些副效应的影响,通常采用“对称测量法”。
即分别测量电流和磁场正向、反向时的霍尔电动势,然后取平均值。
三、实验仪器霍尔效应实验仪、特斯拉计、直流电源、数字电压表等。
四、实验步骤1、连接电路按照实验仪器的说明书,将霍尔效应实验仪、特斯拉计、直流电源和数字电压表正确连接。
2、调节仪器(1)将特斯拉计调零。
(2)调节直流电源,使其输出合适的电流。
3、测量霍尔电动势(1)保持电流 I 不变,改变磁场 B 的大小,测量不同磁场下的霍尔电动势 UH 。
(2)改变电流 I 的方向,重复上述测量。
(3)保持磁场 B 不变,改变电流 I 的大小,测量不同电流下的霍尔电动势 UH 。
4、记录数据将测量得到的数据记录在表格中。
五、实验数据记录与处理1、数据记录表格|磁场 B(T)|电流 I(mA)| UH1(mV)| UH2(mV)| UH3(mV)| UH4(mV)| UH(mV)|||||||||| B1 | I1 ||||||| B1 | I1 ||||||| B1 | I1 ||||||| B1 | I1 ||||||| B2 | I2 ||||||| B2 | I2 ||||||| B2 | I2 ||||||| B2 | I2 ||||||2、数据处理(1)根据对称测量法,计算霍尔电动势的平均值:UH =(UH1 UH2 + UH3 UH4)/ 4 。
霍尔效应实验报告
霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学会使用霍尔效应实验仪器,测量霍尔电压、电流等物理量。
二、实验原理当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这种现象称为霍尔效应。
霍尔电压$V_H$ 与通过导体的电流$I$、磁感应强度$B$ 以及导体在磁场中的厚度$d$ 之间存在如下关系:$V_H = K\frac{IB}{d}$其中,$K$ 为霍尔系数,它与导体的材料有关。
假设导体中的载流子为电子,其电荷量为$e$,平均漂移速度为$v$,导体的横截面积为$S$,则电流$I = nevS$ ($n$ 为电子浓度)。
当电子受到的洛伦兹力$f_L = e(v\times B)$与电场力$f_E =eE$ 平衡时,达到稳定状态,此时有:$evB = E$又因为电场强度$E =\frac{V_H}{b}$($b$ 为导体宽度),所以可得:$V_H =\frac{1}{ne}\frac{IB}{d}$三、实验仪器1、霍尔效应实验仪:包括霍尔元件、励磁线圈、直流电源、电压表、电流表等。
2、特斯拉计:用于测量磁感应强度。
四、实验步骤1、连接实验仪器,将霍尔元件放置在励磁线圈中间,确保其位置准确。
2、打开电源,调节励磁电流,使磁场达到一定强度。
3、调节工作电流,分别测量不同工作电流下的霍尔电压。
4、改变励磁电流的方向和大小,重复测量霍尔电压。
5、记录实验数据,包括工作电流、励磁电流、霍尔电压等。
五、实验数据记录与处理|工作电流 I(mA)|励磁电流 I M(A)|霍尔电压 V H (mV)||||||100|050|250||100|100|500||100|150|750||200|050|500||200|100|1000||200|150|1500|根据实验数据,以霍尔电压$V_H$ 为纵坐标,工作电流$I$ 和励磁电流$I_M$ 的乘积$I\times I_M$ 为横坐标,绘制曲线。
霍尔效应测磁场实验报告[共7篇]
篇一:霍尔元件测磁场实验报告用霍尔元件测磁场前言:霍耳效应是德国物理学家霍耳(a.h.hall 1855—1938)于1879年在他的导师罗兰指导下发现的。
由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。
六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。
利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。
由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。
此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。
近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。
在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。
了解这一富有实用性的实验,对今后的工作将大有益处。
教学目的:1. 了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。
2. 掌握用霍尔元件测量磁场的原理和方法。
3. 学习用霍尔器件测绘长直螺线管的轴向磁场分布。
教学重难点: 1. 霍尔效应2. 霍尔片载流子类型判定。
实验原理如右图所示,把一长方形半导体薄片放入磁场中,其平面与磁场垂直,薄片的四个侧面分别引出两对电极(m、n和p、s),径电极m、n 通以直流电流ih,则在p、s极所在侧面产生电势差,这一现象称为霍尔效应。
这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。
图片已关闭显示,点此查看假设霍尔片是由n型半导体材料制成的,其载流子为电子,在电极m、n上通过的电流由m极进入,n极出来(如图),则片中载流子(电子)的运动方向与电流is的方向相反为v,运动的载流子在磁场b中要受到洛仑兹力fb的作用,fb=ev×b,电子在fb的作用下,在由n→m运动的过程中,同时要向s极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(p极所在侧面)带正电,在上下两侧面之间就形成电势差vh,即霍尔电势差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
霍尔效应实验报告
以下是小编给大家整理收集的霍尔效应实验报告,仅供参考。
霍尔效应实验报告1
实验内容:
1. 保持不变,使Im从0.50到4.50变化测量VH.
可以通过改变IS和磁场B的方向消除负效应。
在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VH,即
+B,+I
VH=V1
—B,+
VH=-V2
—B,—I
VH=V3
+B,-I
VH=-V4
VH = (V1+V2+V3+V4)/4
0.50
1.60
1.00
3.20
1.50
4.79
2.00
6.90
2.50
7.98
3.00
9.55
3.50
11.17
4.00
12.73
4.50
14.34
画出线形拟合直线图:
Parameter Value Error
------------------------------------------------------------
A 0.11556 0.13364
B 3.16533 0.0475
------------------------------------------------------------ R SD N P
------------------------------------------------------------ 0.99921 0.18395 9 0.0001
2.保持IS=4.5mA ,测量Im—Vh关系
VH = (V1+V2+V3+V4)/4
1.60 0.100 3.20 0.150 4.79 0.200 6.90 0.250 7.98 0.300 9.55 0.350 11.06 0.400 1
2.69
14.31
Parameter Value Error
------------------------------------------------------------
A 0.13389 0.13855
B 31.5 0.49241
------------------------------------------------------------
R SD N P
------------------------------------------------------------
0.99915 0.19071 9 0.0001
基本满足线性要求。
2. 判断类型
经观察电流由A向A流,B穿过向时电势上低下高所以载流子是正电荷空穴导电。
4.计算RH,n,,
线圈参数=5200GS/A;d=0.50mm;b=4.0mm;L=3.0mm
取Im=0.450A;由线性拟合所得直线的斜率为3.165()。
;
B=Im*5200GS/A=2340T;有。
若取d的单位为cm;
磁场单位GS;电位差单位V;电流单位A;电量单位C;代入数值,得RH =6762cm3/C。
n=1/RHe=9.24E14/cm-3。
=0.0473(S/m);
=3.198(cm2/Vs)。
思考题:
1、若磁场不恰好与霍尔元件片底法线一致,对测量结果有何影响,如果用实验方法判断B与元件发现是否一致?
答:若磁场方向与法线不一致,载流子不但在上下方向受力,前后也受力(为洛仑兹力的两个分量);而我们把洛仑兹力上下方
向的分量当作合的洛仑兹力来算,导致测得的Vh比真实值小。
从而,RH偏小,n偏大;偏大;不受影响。
可测量前后两个面的电势差。
若不为零,则磁场方向与法线不一致。
2、能否用霍尔元件片测量交变磁场?
答:不能,电荷交替在上下面积累,不会形成固定的电势差,所以不可能测量交变的磁场。
霍尔效应实验报告2
一、实验名称: 霍尔效应原理及其应用
二、实验目的:
1、了解霍尔效应产生原理;
2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;
3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;
4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。
三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号)
四、实验原理:
1、霍尔效应现象及物理解释
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹
力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材
料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。
对于图1所示。
半导体样品,若在x方向通以电流,在z方向加磁场,则在y方向即样品A、A电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。
显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A间形成了稳定的电势差(霍尔电压) 。
设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:
(1-1)
因为,,又根据,则
(1-2)
其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。
只要测出、以及知道和,可按下式计算:
(1-3)
(1-4)
为霍尔元件灵敏度。
根据RH可进一步确定以下参数。