配合物的晶体场理论和配位场理论
第4章 配合物的晶体场理论及配合物的光谱-4h
•
由磁矩可判断内轨或外轨型配合物
s n(n 2) B
(n—分子中未成对电子数)
价键理论
价键理论的局限性:
(1)定性理论:不能定量或半定量的说明配合物的性质;
( 2 )不能解释配合物的吸收光谱 ( 颜色)、反应机理等:只 能解释配合物处于基态时的性质,如配位数、几何构型。但 涉及到激发态的问题等就无能为力; (3)无法解释某些配合物稳定性规律和不正常氧化态配合物
4.1 晶体场理论(CFT)
4.1.2 d轨道的能级分裂能
设自由离子中每个d轨道的能量为E0(这时5个d轨道的能量相 同),球形场中每个d轨道的能量上升为Es。(这时5个d轨道的 能量仍然相同)。 以Es为零点,将分裂后轨道的能量差称为分裂能。
4.1 晶体场理论(CFT)
•八面体场:分裂能的大小用10Dq或△0表示
4.1 晶体场理论(CFT)
•正四面体场:分裂能相对于八面体场较小,分裂能的大小为4/9△0,用 △t表示。
3d 2d 0 4 d d 4.45Dq 0 t 9 8 2 4 3 d 1.78Dq 0 t d 2.67Dq 0 t 45 5 15 5
反之则称为弱场配体。
同样可计算出d1~10金属离子在四面体及八面体、正方形场中的 CFSE。
4.1 晶体场理论(CFT)
d1~10金属离子在四面体及八面体、正方形场中的CFSE
dn d0 d1 d2 d3 d4 d5 d6 d7 正八面体场 弱场 0 -4Dq -8Dq -12Dq -6Dq 0Dq -4Dq -8Dq 强场 0 -4Dq -8Dq -12Dq -16Dq+P -20Dq+2P -24Dq+2P -18Dq+P 正四面体场 弱场 0Dq -2.67Dq -5.34Dq -3.56Dq -1.78Dq 0Dq -2.67Dq -5.34Dq 强场 0 -2.67Dq -5.34Dq -8.01Dq+P -10.68Dq+2P -8.9Dq+2P -7.12Dq+P -5.34Dq 平面正方形场 弱场 0 -5.14Dq -10.28Dq -14.56Dq -12.28Dq 0Dq -5.14Dq -10.28Dq 强场 0Dq -5.14Dq -10.28Dq -14.56Dq -19.70Dq+P -24.82Dq+2P -29.12Dq+2P -26.84Dq+P
5-2 配合物的晶体场理论
△o
设Es3+ 13 则 2Eeg +3Et2g=0 =0, (1) 3+ d CFSE=1×(- 0.4 △oo))= --0.4 △o 如 Ti Cr d CFSE=3×(- 0.4 △ = 1.2 Eeg - Et2g = △o (2) 3 联立(1)、(2)式,得 Eeg = + 5 △o = +0.6 △o 2 - 5△o = - 0.4 △o Et2g = CFSE: d 电子进入分裂轨道比处于未分裂 轨道总能量降低值。
该二轨道处于和配体迎头相碰的位置, 其电子受到静电斥力较大,能量升高。 2-y2 dz2 eg dx E Es t2g E0 自由离子 球形场中 八面体场
该三轨道插在配体的空隙中间,其电子受 到静电斥力较小,能量比前二轨道低。 2-y2 dz2 eg dx E Es dxy dxz dyz t2g E0 自由离子 球形场中 八面体场
d1 ↑ d2 ↑ ↑ d3 ↑ ↑ ↑ d4 ↑ ↑ ↑ d5 ↑ ↑ ↑ d6 ↑ ↑ ↑ d7 ↑ ↑ ↑ d8 ↑ ↑ ↑ d9 ↑ ↑ ↑ d10 ↑ ↑ ↑
↑ ↑ ↑ ↑ ↑
1 2 3 ↑ 4 高 ↑↑ 5 ↑↑ 自 4 ↑↑ 旋 3 ↑↑ 2 ↑↑ 1 ↑↑ 0
1 2 3 2 低 1 自 0 旋 1 ↑ ↑↑ 2 ↑↑ 1 ↑↑ 0
↑ ↑ ↑
↑ ↑ ↑ ↑ ↑
↑ ↑ ↑ ↑ ↑ ↑
↑ ↑ ↑ ↑ ↑ ↑ ↑
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↑ ↑ ↑ ↑ ↑
d4d7构型的离子, d电子分布有高、低自 如 Cr2+ d4 旋两种方式。 [Cr(H2O)6]2+ [Cr(CN)6]4eg eg ´ △o △o t2g t2g 高自旋 低自 旋 电子成对能(P)和晶体场分裂能的相对大小 H2O是弱场 CN-是强场
配位化学讲义 第四章(1) 价键理论、晶体场理论
第三章配合物的化学键理论目标:解释性质,如配位数、几何结构、磁学性质、光谱、热力学稳定性、动力学反应性等。
三种理论:①价键理论、②晶体场理论、③分子轨道理论第一节价键理论(Valence bond theory)由L.Pauling提出要点:①配体的孤对电子可以进入中心原子的空轨道;②中心原子用于成键的轨道是杂化轨道(用于说明构型)。
一、轨道杂化及对配合物构型的解释能量相差不大的原子轨道可通过线性组合构成相同数目的杂化轨道。
对构型的解释(依据电子云最大重叠原理:杂化轨道极大值应指向配体)二、AB n型分子的杂化轨道1、原子轨道的变换性质考虑原子轨道波函数,在AB n分子所属点群的各种对称操作下的变换性质。
类型轨道多项式sp x xp p y yp z zd xy xyd xz xzd d yz yzd x2-y2x2-y2d z22z2-x2-y2(简记为z2)*s轨道总是按全对称表示变换的。
例:[HgI3]- (D3h群)平面三角形A1′:d z2、sE′:(p x、p y )、(d x2-y2、d xy)A2″:p zE″:(d xz、d yz)2、σ轨道杂化方案1)四面体分子AB4(Td)[CoCl4]2-以四个杂化轨道的集合作为分子点群(Td)表示的基,确定该表示的特征标:E 2 -1 2 0 0 (z2, x2-y2)T1 3 0 -1 1 -1T2 3 0 -1 -1 1 (xy,xz,yz) (x,y,z)a(A1)=1/24(1×4+8×1×1+3×1×0+6×1×0+6×1×2)=1a(A2)=1/24 [1×4+8×1×1+3×1×0+6×(-1)×0+ 6×(-1)×2]=0a(E)=1/24 [2×4+8×(-1)×1+3×2×0+6×0×0+ 6×0×2]=0a(T1)=1/24 [3×4+8×0×1+3×(-1)×0+6×1×0+6×(-1)×2]=0a(T2)=1/24 [3×4+8×0×1+3×(-1)×0+6×(-1)×0 +6×1×2]=1约化结果Γ=A1+T2由特征标表:A1T2s (p x、p y、p z)(d xy、d xz、d yz)可有两种组合:sp3(s、p x、p y、p z)、sd3(s、d xy、d xz、d yz)* 以一组杂化轨道为基的表示的特征标的简化计算规则:Γ 5 2 1 3 0 3约化结果:Γ= 2A1′+A2〞+E′A1′A2〞E′s p z (p x、p y)d z2(d xy、d x2-y2)两种可能的组合:(s、d z2、p z 、p x、p y)( s、d z2、p z、d xy、d x2-y2)约化得:Γ=A1g+B1g+E uA1g B1g E us d x2-y2(p x、p y)d z2两种类型:dsp2(d x2-y2、s、p x、p y)、d2p2(d z2、d x2-y2、p x、p y)5)八面体AB6(O h) 例:[Fe(H2O)6]3+(d z2、d x2-y2、s、p x、p y、p z) 3、π成键杂化方案在AB n分子中,原子A上要有2n个π型杂化轨道和在B原子上的2n个π原子轨道成键。
配合物的化学键理论
12
根据这个结构, 可以推测 Cu2+的配合物应当很容易地失去未配对的4p电子而迅速氧化为Cu3+, 但事实并非如 此。
因此, 价键理论有其局限性。它被配位场理论或分子轨道理论取代是必然的。
13
4.2 晶体场理论 1929年由Bethe提出, 30年代中期为Van Vleck等所发展, 及Puling的价键理论处于同一时代, 但当时并未引起
17
由于电子的总能量, 亦即各轨道总能量保持不变, eg能量的升高总值必然等于t2g轨道能量下降的总值, 这就是所谓的重 心守恒原理(原来简并的轨道在外电场作用下如果发生分裂, 则分裂后所有轨道的能量改变值的代数和为零)。
将eg和t2g这两组轨道间的能量差用△o或10Dq来表示, △o或10 Dq称为分裂能, 根据重心守恒原理, 则
的伸展较3d轨道远, 5d轨道在空间的伸展又比4d轨道远, 因而易受到配体场的强烈作用。
27
(4) 配体的本性 将一些常见配体按光谱实验测得的分裂能从小到大次序排列起来, 便得光谱化学序:
这个化学序代表了配位场的强度顺序。由此顺序可见:对同一金属离子, 造成△值最大的是CN-离子, 最小的是I -离子, 通常把CN-、NO2-等离子称作强场配体, I-、Br-、F-离子称为弱场配体。
优点:能够说明一些配合物的配位数、几何构型和稳定性。 缺点:将中心原子和配体都看作是没有内部结构的点电荷——离子键,不能说明配合物的磁学性质和光学性质。
3
➢价键理论 Sidgwick(1923)和Pauling(1928)提出了配位共价键模型,考虑了中心原子和配体的结构,能较好地说明许多配
合物的配位数、几何构型、磁性质和一些反应活性等问题。
显然, 配合物的配位数就是中心原子在成键时动用的空轨道数。
配位化学配合物的晶体场理论及光谱化学序列
配位体的性质和数量可以影响 配位化学配合物的稳定性、溶 解性和反应性。
03 晶体场理论
晶体场理论的定义
01
晶体场理论是研究过渡金属配合物中金属离子的电子能级变化 的理论。
02
它将配合物置于一个晶体场中,通过金属离子与配体的相互作
用,来描述配合物的电子能级变化。
这种理论主要关注配合物在晶体场中的电子排布和能级分裂。
晶体场理论和光谱化学序列是研究配 位化学配合物的重要理论工具,有助 于深入理解配合物的结构和性质。
研究意义
深入理解配位化学配合物的结构和性 质,有助于发现新型材料和催化剂, 推动相关领域的发展。
晶体场理论和光谱化学序列的应用, 有助于揭示配合物的电子结构和光谱 性质,为实验研究和应用提供理论支 持。
对未来研究的建议
进一步研究不同晶体场对配合物性质的影响,探索更 有效的理论模型来描述配合物的电子结构和性质。
输标02入题
开展更多光谱实验,收集更全面的光谱数据,以完善 光谱化学序列的数据库,提高预测新配合物物的研究,探索其在能源、环境、 生物医学等领域的应用潜力,为解决实际问题提供科
02 配位化学配合物的基本概念
配位化学配合物的定义
配位化学配合物是由一个或多个中心原子(或离子)与一定数目的配位体通过配 位键结合形成的复杂化合物。
中心原子通常具有可用的空轨道,而配位体则提供孤对电子,形成稳定的电子对 配位键。
配位化学配合物的分类
根据中心原子的类型,配位化学 配合物可分为金属配合物和无机
学依据和技术支持。
04
加强跨学科合作,将配位化学与其他领域(如物理、 材料科学等)相结合,开拓新的研究领域和应用前景。
THANKS
光谱化学序列的分类
配合物的化学键理论
杂化
轨道 sp3d2 d2sp3
sp3
dsp2
配键 类型 外轨型 内轨型
外轨型
内轨型
Kf 1014
稳定性
<
1042
107. 96
1031. 3
<
磁性
Ni2+的d电子构型 杂化轨道 配键类型
未成对电子数 磁性
[Ni(NH3)4]2+ [Ni(CN)4]2 d8
sp3 外轨型
dsp2 内轨型
2 顺磁性
弱场配体
强场配体
——以上称为光谱化学序列
4. 电子成对能和配合物高、低自旋
电子在分裂后轨道上的分布遵循: 能量最低原理和洪特规则
如 Cr3+ d3
eg
E t2g
八面体场
d4d7构型的离子, d电子分布有高、低自旋两种方式。
如 Cr2+ d4
[Cr(H2O)6]2+
eg
△o t2g
[Cr(CN)6]4-
中心离子和配体之间以静电引力相互作用而形 成化学键。
中心离子的5个能量相同的d轨道受配体负电场 的排斥作用,发生能级分裂(有的轨道能量升 高,有的能量降低)。
2. 正八面体场中d轨道的能级分裂
无外电场作用下的d轨道 Edxy= Edxz= Edyz= Edx2-y2= Edz2
在带负电荷均匀球形场的作用下,d轨道能量 均升高相同值,能级不发生分裂。
请问: [Zn(NH3)4]2+、 [Ag(NH3)2]+呈现什么颜色?
中心离子d 轨道全空(d0)或全满(d10), 不能发生 d-d跃迁,其水合离子为无色。
解释配合物的稳定性
Eeg=+0.
配位化学讲义 第四章(1) 价键理论、晶体场理论
配位化学讲义第四章(1)价键理论、晶体场理论第三章配合物的化学键理论目标:解释性质,如配位数、几何结构、磁学性质、光谱、热力学稳定性、动力学反应性等。
三种理论:①价键理论、②晶体场理论、③分子轨道理论第一节价键理论(Valencebond theory)由L.Pauling提出要点:①配体的孤对电子可以进入中心原子的空轨道;②中心原子用于成键的轨道是杂化轨道(用于说明构型)。
一、轨道杂化及对配合物构型的解释能量相差不大的原子轨道可通过线性组合构成相同数目的杂化轨道。
对构型的解释(依据电子云最大重叠原理:杂化轨道极大值应指向配体)指向实例sp3、sd3杂化四面体顶点Ni(CO)4sp2、sd2、dp2、d3杂化三角形顶点[AgCl3]2-dsp2、d2p2 杂化正方形顶点[PtCl4]2-d2sp3杂化八面体顶点[Fe(CN)6]4-sp杂化直线型[AgCl2]-二、AB n型分子的杂化轨道1、原子轨道的变换性质考虑原子轨道波函数,在AB n分子所属点群的各种对称操作下的变换性质。
类型轨道多项式sp x xp p y yp z zd xy xyd xz xzd d yz yzd x2-y2x2-y2d z22z2-x2-y2(简记为z2)*s轨道总是按全对称表示变换的。
例:[HgI3]- (D3h群)平面三角形A1′:d z2、sE′:(p x、p y )、(d x2-y2、d xy)A 2″:p zE″:(d xz、d yz)2、σ轨道杂化方案1)四面体分子AB4(Td)[CoCl4]2-以四个杂化轨道的集合作为分子点群(Td)表示的基,确定该表示的特征标:r1r4r2r3恒等操作,χ(E)=4 C3操作,χ(C3)=1对C2、S4和σd用同样方法处理,得T d E 8C3 3C2 6S46σdΓ 4 1 00 2约化:T d E 8C3 3C2 6S4 6σdA1 1 1 1 11A2 1 1 1 -1 - 1E 2 -1 2 00 (z2, x2-y2)T1 3 0 -1 1 -1T2 3 0 -1 -11 (xy,xz,yz) (x,y,z)a(A1)=1/24(1×4+8×1×1+3×1×0+6×1×0+6×1×2)=1a(A2)=1/24 [1×4+8×1×1+3×1×0+6×(-1)×0+6×(-1)×2]=0a(E)=1/24 [2×4+8×(-1)×1+3×2×0+6×0×0+6×0×2]=0a(T1)=1/24 [3×4+8×0×1+3×(-1)×0+6×1×0+6×(-1)×2]=0a(T2)=1/24 [3×4+8×0×1+3×(-1)×0+6×(-1)×0+6×1×2]=1约化结果Γ=A1+T2由特征标表:A1T2s(p x、p y、p z)(d xy、d xz、d yz)可有两种组合:sp3(s、p x、p y、p z)、sd3(s、d xy、d xz、d yz)* 以一组杂化轨道为基的表示的特征标的简化计算规则:①不变(1)②改变符号(-1)③与其他函数变换(0)2)再以[CdCI5]3-三角双锥(D3h)为例:41325D3h E 2C33C2σh2S3 3σvΓ 5 2 13 0 3约化结果:Γ= 2A1′+A2〞+E′A1′A2〞E′s p z (p x、p y)d z2(d xy、d x2-y2)两种可能的组合:(s、d z2、p z 、p x、p y)( s、d z2、p z、d xy、d x2-y2)3)[HgI3]- ( D3h)123D3h E 2C3 3C2σh2S33σvΓ 3 0 13 0 1约化得:Γ=A1′+E′A1′E′s (p x、p y)d z2(d xy、d x2-y2)可能的组合有:(s、p x、p y)、(s、d xy、d x2-y2)、(d z2、p x、p y)、(d z2、d xy、d x2-y2)4)平面AB4型分子(D4h)例:[PtCl4]2-C2′C2″D4h E 2C4(C41,C43) C2(C42) 2C2′2C2″i 2S4σh 2σv2σdΓ 4 0 0 20 0 0 4 2 0约化得:Γ=A1g+B1g+E uA1g B1g E us d x2-y2(p x、p y)d z2两种类型:dsp2(d x2-y2、s、p x、p y)、d2p2(d z2、d x2-y2、p x、p y)5)八面体AB6(O h) 例:[Fe(H2O)6]3+O h E 8C3 6C26C4 3C2i 6S4′8S6 3σh 6σdΓ 6 0 0 2 2 0 0 0 4 2约化得:Γ=A1g+E g+T1u A1g E gT1us (d z2、d x2-y2) (p x、p y、p z)只有唯一的d2sp3杂化(d z2、d x2-y2、s、p x、p y、p z)3、π成键杂化方案在AB n分子中,原子A上要有2n个π型杂化轨道和在B原子上的2n个π原子轨道成键。
配合物的价键理论
sp sp2 sp3 d2sp2 d2sp3
直线型 三角形 正四面体 四方锥
正八面体 [Fe(CN)6]4-
一定程度上解释了配合物的磁学性 质
顺磁性的[Ni(H2O)6]2+:
•• •• •• •• •• ••Fra bibliotek3d4s
4p
4d
sp3d2杂化,外轨型
3、 价键理论的缺点
i. 不能预测配合物的高、低自旋状态
称为光谱化学序列 说明: (1)即配位场强的顺序,几乎和中心离子无关。 说明: )即配位场强的顺序,几乎和中心离子无关。 (2)强场配位体:∆o大 )强场配位体: 者 弱场配位体: 弱场配位体:∆o小者
值随中心离子而改变。 ②当配位体固定时, △o值随中心离子而改变。 当配位体固定时, A、中央离子电荷愈高,△o值愈大。 、中央离子电荷愈高, 值愈大。 例如
个配体需要6个杂化轨道 解:6个配体需要 个杂化轨道 d2sp3或 sp3d2 个配体需要 或
Mn2+ 3d5:
µ实测表明有1个单电子:
有2个内层空d轨道,采取d2sp3杂化; 八面体,内轨型,较稳定
2、价键理论的优点 很好地解释了配合物的空间构型和配位数
配位数 2 3 4 5 6 杂化轨道 空间构型 举例 [Ag(CN)2][CuCl3]2[MnCl4]2NiBr3(PR3)
⑴定义 d电子从未分裂的d轨道进入分裂的d轨道所产生的总能量下降 值,称为晶体场稳定化能,并用CFSE表示。 dz2, d(x2-y2) eg 10Dq
6Dq
Es
自由离子d轨道 球形场
4Dq
dxz,dxy,dyz
t2g
d轨道在Oh场中轨道能级的分裂图
量子力学指出:
配合物中的化学键理论
3-
3-
3、 外轨型配合物和内轨型配合物 外轨型配合物: ①、外轨型配合物:
A、定义:指形成配合物时,中心离子全部采用 定义:指形成配合物时, 外层空轨道( nd)进行杂化, 外层空轨道(ns, np, nd)进行杂化,并与配体结 合而形成的配合物。 合而形成的配合物。
B、特点: 特点:
a 、 中心离子仅采用外层空轨道 ( ns, np, nd) 中心离子仅采用外层空轨道( nd) 进行杂化成键。 进行杂化成键。 b、杂化类型为:sp3和sp3d2杂化。 杂化类型为: 杂化。 c、配合物有较多的未成对电子。 配合物有较多的未成对电子。
4d
d2sp3
返回6 返回6
26
16
④、成键过程: 成键过程:
17
[Ag(NH3)2]+的形成过程 Ag+的价电子构型为 解:Ag+的价电子构型为 4d10 5s0
5p 5s 4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
SP杂化 杂化 5p
4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
sp
:NH3 :NH3
↑↓ ↑↓ ↑↓
5p
2NH3
↑↓ ↑↓
4d
↑↓ ↑↓
3
2、 配离子的空间构型 ①、配位数为2的配离子 配位数为2 中心离子sp杂化 空间构型为直线型。 杂化, 中心离子sp杂化,空间构型为直线型。 [Ag(CN)2]-等。 如 例: 配位数为4 ②、配位数为4的配离子 有两种成键方式 A、以sp3杂化轨道成键 : 中心离子sp 杂化, 中心离子sp3杂化,配离子的空间构型为 四面体。 正 四面体。 如: [Zn(NH3)4]2+、[HgI4]2-等。 例:
见例5 例:(见例5、例7、)
第一节-晶体场理论
一、什么是配合物
Wate is the complex compound
1.问题的发现
据历史记载的最早发现的配合物是亚铁氰化铁Fe4[Fe(CN)6]3,是普鲁士人1704年在染坊中 寻找蓝色染料时,将兽皮、兽血与碳酸钠在铁锅中强烈煮沸得到的,故称其为普鲁士蓝。
随着人们对物质的研究和进一步认识,又发现了结构上与亚铁氰化铁类似的很多物质。
y
级升高相对较多。
x
dx2-y2
z
② dz2 轨道
如图所示,在正八面体配位场中因中央离子的dz2 轨道
的两个极值,分别指向±z方向的两个配体;同时,dz2 轨道
y
的“腰环”极值指向±x、±y四个配体。
为了较好地解释配合物的磁性和高自旋和低自旋等问 题,1935年培特和冯弗莱克提出了晶体场理论(CFT)。
晶体场理论认为:配合物中央离子(原子)和配体之 间的相互作用,主要来源于类似于离子晶体中正负离子间 的静电作用;在此作用下,中心离子的原子轨道可能发生 分裂。
z
y
配体
x
中央离子
Hans Albrecht Bethe 1906-2005
【dx2-y2 轨道】
虽然 dx2-y2 轨道与 dz2 轨道的图象有所不同,由群论方法可得
出,dz2 轨道与 dx2-y2 轨道受配体静电的排斥相当。
即:两个轨道为简并轨道。
y
z
y x
dz2
b = a/1.414 a/2
x z
dx2-y2
⑶d轨道能级分裂图
从前面的简单分析不难看出, d 轨道在正四面体配位场静电的排斥作用下轨道能级升高,
☆pz 轨道受配体静电的排斥相对 较小,其能级升高相对较少。
配位场理论
配位场理论
有三种理论用于说明和解释配合物的结构和性能:价键理论、晶体场理论和分子轨道理论。
30年代初,鲍林将价键理论应用于配合物结构,能够解释一些
问题,但有些问题不能解释。
到50年代,引入晶体场理论和分子轨
道理论解释配合物中的化学结合和化学结构,形成了配位场理论。
配位场理论是晶体场理论的发展,其实质是配位化合物的分子轨道理论。
配位场理论在处理中心金属原子在其周围配体所产生的场作用下,金属原子轨道能级发生变化时,以分子理论轨道方法为主,采用类似的原子轨道线性组合等数学方法,根据配体场的对称性进行简化,并吸收晶体场理论的成果,阐明配位化合物的结构和性质。
在配位场理论中,中心离子的d轨道分裂及能级变化与晶体场相同。
在有些配合物中,中心离子(通常也称中心原子)周围被按照一定对称性分布的配位体所包围而形成一个结构单元。
配位场就是配位体对中心离子(这里大多是指过渡金属络合物)作用的静电势场。
由于配位体有各种对称性排布,遂有各种类型的配位场,如四面体配位化合物形成的四面体场,八面体配位化合物形成的八面体场等。
随着无机和有机配合物合成的日益增多和各种结构与性能的研究,配位场理论不断发展,成为近代重要的化学键理论之一,是理论物理和理论化学的一个重要分支。
它在解释配位化合物的结构与性能关系、催化反应机理,激光物质的工作原理以及晶体的物理性质等方面都得到广泛的应用。
配合物中的化学键理论
④、成键过程:
17
[Ag(NH3)2]+的形成过程 解:Ag+的价电子构型为 4d10 5s0
5p 5s 4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
SP杂化 5p
4d
↑↓ ↑↓ ↑↓ ↑↓ ↑↓
sp
:NH3 :NH3
↑↓ ↑↓ ↑↓
5p
2NH3
4d
↑↓ ↑↓ ↑↓ ↑↓
重叠
返回3
18
例:
[Ni(NH3)4]2+的形成 。
↑ ↑
3d
↑ ↑ ↑
4d
SP 3d2 杂化
3d
↑ ↑ ↑ ↑ ↑
sp3d2
23
6F重叠
4d
:F- :F- :F- :F- :F- ↑↓ ↑↓ ↑↓ ↑↓ ↑↓
↑ ↑
3d
↑ ↑ ↑
:F- ↑↓
sp3d2
返回5
24
例: [Fe(CN)6]3-的形成。 解:Fe3+ 的价电子构型为
4S 3d
↑ ↑ ↑ ↑ ↑
③规律:中心离子 SP3d2 与d2SP 3 杂化, 配离子的空间构型均为正八面体形。
7
3-
3-
3、 外轨型配合物和内轨型配合物 ①、外轨型配合物:
A、定义:指形成配合物时,中心离子全部采用 外层空轨道(ns, np, nd)进行杂化,并与配体结 合而形成的配合物。
B、特点:
a、中心离子仅采用外层空轨道(ns, np, nd) 进行杂化成键。 b、杂化类型为:sp3和sp3d2杂化。 c、配合物有较多的未成对电子。
4
B、以dsp2杂化轨道成键:
例:
成键结果分析比较: 2+ 2①Ni(NH3)4 ②Ni(CN)4 M 用以杂 4s 4p (4-1)d 4s 4s 化的轨道: ns np (n-1)d ns np 杂化特点:全部用外层轨道 使用内层轨道和 外层轨道 成键类型: 外轨配键 内轨配键 配合物的类型: 外轨型 内轨型 成单电子状态: 高自旋 低自旋 空间构型 正四面体 平面正方形
晶体场理论与分子轨道理论的比较及配位场理论
晶体场理论与分子轨道理论的比较及配位场理论黄珺(湖北师范学院化学与环境工程系0303班,湖北黄石,435002)摘要:配位化合物中的化学键主要是指中心离子和配位体之间的化学键。
自1893年维尔纳提出了配位理论后,有关配合物中的化学键理论主要有现代价键理论、晶体场理论、配位键理论和分子轨道理论。
本文主要讨论分子轨道理论和晶体场理论。
分子轨道理论以量子力学为基础,用于说明共价分子结构。
晶体场理论是1929年由皮赛和范弗雷克提出的,用于配合物化学键研究,成功地解释了配合物的磁性、光学性质及结构等,故在配合物的化学键理论中确立了重要地位。
关键词:晶体场理论、分子轨道理论、配位场理论、配位键、化学键Crystal field theory and molecular orbit theory comparison and legend field theoryHuang Jun(Chemistry and environment engineering department, Hubei Normal University, Huangshi, 435002)Abstract:In the coordination compound chemical bond mainly was refers to between the central ion and the legend chemical bond .The Vyell natrium proposed since 1893 the coordinate theory ,in the related preparation chemical bond theory mainly had the present price key theory and the crystal field theory ,the coordination bond theory and the molecular orbit theory .This article main discussion molecular orbit theory and the crystal field theory .Molecular orbit theory take the quantum mechanics as a foundation ,used in explaining the covalent molecule structure .The crystal field theory was in 1929 proposes by H.Bathe and J.H.Van Vleck ,used in the preparation chemical bond research ,successfully explained and preparation magnetism ,the optical quality and the structure and so on ,therefore has established the important status in the preparation chemical bond theory. Key words: Crystal field theory molecular orbital theory legend field theory coordinate bond chemical bond晶体场理论是20世纪50年代初,在价键理论和纯静电理论的基础上发展起来的.晶体场理论把中心离子看作是带正电的点电荷,把配位体看作是带负电的点电荷,它们之间的结合完全看作是静电和排斥作用.同时考虑到配位体对中心离子d轨道的影响,它在解释光学和磁学等性质方面很成功.(分子轨道理论把组成分子的所有原子作为一个分子整体来考虑,在分子中的电子不再从属于某些特定的原子,而是遍及整个分子范围内运动,分子中每个电子运动状态,可以用波函数来描述.)[1]首先,来比较这两种理论的基本观点.晶体场理论的基本观点:(1) 在配合物中,中心离子和配位体之间的相互作用类似于离子晶体中正、负离子间的静电作用,故它们间的化学键力纯属静电作用力.(2)当中心离子(指d区元素的离子)处于由配体所形成的非球形对称的负电场中时,中心离子的d 电子将受到配体负电场的排斥作用,使5个等价的d轨道发生能级分裂,有些轨道的能量降低.(3)中心离子的d轨道产生能级分裂后,致使中心离子的d电子排布也发生变化,导致体系的能量变化.(分子轨道理论的基本观点是把分子作为一个整体加以考虑,而分子中的每个电子是这个整体中的一员,不再从属于原来所属的原子.第一,原子形成分子后,电子就不再局限于个别原子的原子轨道,而是从属于整个分子的分子轨道,所以分子轨道强调分子的整体性.第二,分子轨道中电子的分布也和原子中的电子分布一样,遵循保里不相容原理,能量最低原理和洪特规则,在分子轨道中电子可以配对,也可以不配对.第三,分子轨道中可以近似地通过原子轨道的适当组合而得到,分子轨道的数目等于组合前原子轨道数目之和,原子轨道在组合成分子轨道时,要符合分子对称原则,最大重叠原则和能量相近原则,才能形成有效的分子轨道.)[3]研究络合物结构就是研究络合物中配位体与中央金属之间的化学键.晶体场理论把M—L作用看作是不同对称性,正、负离子的静电作用,完全不考虑共价键的因素。
晶体场理论
价键理论的优点和局限性
价键理论的优点:
★ 能简明解释配位化合物几何构型和磁性等性质; ★ 可以解释[Co(CN)6]4-存在高能态电子,非常容易被 氧化,是很强的还原剂,能把水中的H+还原为H2。
价键理论的不足:
★ 无法解释[Cu(NH3)4]2+稳定的事实 ★ 对配合物产生高低自旋的解释过于牵强. ★ 无法解释配离子的稳定性与中心离子电子构
在自由的过渡金属离子中,d轨道是五重简并的,但五个d轨 道的空间取向不同 。所以在具有不同对称性的配位体静电场的 作用下,将受到不同的影响, 使原来简并的5个d轨道产生能级 分裂。
(三)正八面体场 中d轨道的能级分 裂
八面体配位离子中,6个配位体沿± x,± y,± z 坐标接近M,
L的负电荷对 dZ2 、d x2y2 道的电子排斥作用大,使这两轨道能级上 升较多,而夹在两坐标之间 d xy、d xz、d yz受到推斥较小,能级上升较
提供的孤对电子,形成相应数目的配位键。配位键的 数目就是中心离子的配位数。
配位键的类型及配合物的空间构型
配位离子
3d
Fe(CN)64-
C+ o(NH3)63
Co(CN)64Ni(CN)42-
3-
4s 4p 5s
杂化轨道 几何形状
d2sp3 d2sp3 d2sp3 dsp2
—
八面体 八面体 八面体 平面四方 八面体
• 实验证明,对于第一过渡系金属离子的四面体配合物,因Δt = (4/9)Δo , 即Δ 较小,常常不易超过Ep,尚未发现低自旋配合物。
(3) 高自旋态即是Δ较小的弱场排列,不够稳定,未成对电子多而磁矩高, 具顺磁性。低自旋态即是Δ较大的强场排列,较稳定,未成对电子少而磁 矩低。
研究生配位化学第2章
自由离子是五重简并的d轨道,在八面 体场中分裂为两组:一组是能量较低 的三重简并的dxy、dyz、dxz轨道,称 t2g轨道;另一组是能量较高的二重简 并的dz2和dx2-y2轨道,称eg轨道。e是 二重简并,t是三重简并。下标g表示对 正八面体的中心是对称的,下标u则表 示对正八面体的中心是反对称的。
等性杂化和不等性杂化: 从价键理论看,有的配位体中的配位键可认为 是通过中心原子的不等性杂化轨道形成的。例 如可认为[Pb(OH)3]- 和[SnCl3]- 中的Sn2+和Pb2+都 以 sp3 杂化轨道与配体形成配位键,但四个杂化 轨道有一个为Sn2+或Pb2+的一对孤对电子所占据。 因此,这两个配离子的空间构型都是三角(棱)锥 体型的(与氨分子类似)。与此相似,可认为四方 锥体型的 [SbCl5]2- 中 Sb3+ 用不等性的 sp3d2 杂化轨 道与配体形成配位键,其中一个杂化轨道为Sb3+ 的一对孤对电子所占据。
这样,在平面正方形场中,五重简并的d轨道就分裂为 四组,即一组二重简并的轨道和三个非简并的轨道见 下图。
d轨道在常见几种对称场中的能级分裂
一般说来,场的对称性下降,d轨道分裂的组数 会增加。现将几种常见的对称场中d轨道分裂的 情况列于下表中,以便比较。
应该指出: (1) 以上在考虑 d 轨道的能级分 裂时,只考虑了配位体电场的作用,严格 来讲,上述能级分裂只能适用于一个 d 电 子的情况。对于多于一个d电子的(dn)体系, 这n个d电子之间有静电相互作用,这时我 们既要考虑配体电场的作用,也要考虑 n 个d电子之间的相互作用,这就会使d轨道 的能级分裂变得比较复杂,这是在研究配 合物的光谱性质时应该考虑的问题。
2.2.1 在配体电场中,中心离子d轨道的能级分裂 1.正八面体场中d轨道的能级分裂 在过渡金属的自由离子中,五个 d 轨道能量 是简并的,但五个d轨道波函数的角度分布并 不完全相同,见下图。
配位化学-中科院-3-化学键理论
***八面体与正方形之间的选择:
大多数情况: CFSE正方形>CFSE八面体 从键能考虑: 八面体构型有利
多数情况 八面体构型
当CFSE正方形》CFSE八面体 : 正方形构型有利。 * 例:弱场d4和 d9,强场d8构型易形成正方形配合物。 如: [Cu(NH3)4]2+、[Ni(CN)4]2-
(4) Jahn-Teller效应:
② 四面体场
dX2—Y2 z
dZ2 dxy
y dyz
轨道瓣指向面心, 能量降低。
dxz
x
轨道瓣指向立方体 棱边中心,能量升 高。
E(eg) = + 6 Dq
eg
E(t2) = 1.78 Dq
t2
o
t2g
E(t2g) = - 4 Dq
t = 4/9 o
E(e) = - 2.67 Dq
e
八面体场
电子排布: 电子排布三原则
能量最低原理 不相容原理 Hund规则
晶体场稳定化能 (CFSE)
电子在晶体场中排列后 体系的能量与未分裂前 相比降低的能量
CFSE 越小,配合物越稳定。
例:八面体场
d1
t2g1
d2
t2g2
d3
t2g3
CFSE: - 4Dq
d4
t2g3eg1 t2g4
- 8Dq
d5
- 12Dq
例5: [Ni(CN)5]33d
Ni2+: 3d8 4s 4p
电子归并, 杂化 xx xx xx xx xx
dsp3 三角双锥
例6:[TiF5]2-
Ti3+: 3d1
3d
xx xx xx xx
4s
配位化合物的价键理论 配合物的晶体场理论
.配位化合物的价键理论配合物的晶体场理论一.配合物的构型与中心的杂化方式二中心杂化轨道的形成1. ns np nd 杂化1 个 4s 空轨道,3 个 4p 空轨道和2 个 4d 空轨道形成 sp3d2杂化轨道,正八面体分布。
6 个F-的 6 对孤对电子配入sp3d2空轨道中,形成正八面体构型的配合单元。
例 2 Ni(CO)4的成键情况在配体 CO 的作用下,Ni 的价层电子重排成 3d104s0形成 sp3杂化轨道,正四面体分布,4 个CO 配体与 sp3杂化轨道成配键,形成的 Ni(CO)4构型为正四面体。
例 1 和例 2 的相同点是,配体的孤对电子配入中心的外层空轨道, 即 ns np nd 杂化轨道, 形成的配合物称外轨型配合物. 所成的键称为电价配键. 电价配键不是很强.例 1 和例 2 的不同点是,CO 配体使中心的价电子发生重排,这样的配体称为强配体。
常见的强配体有 CO、 CN-、NO2-等;例1 中 F-不能使中心的价电子重排,称为弱配体。
常见的弱配体有 F-、Cl-、H2O 等。
而 NH3等则为中等强度配体。
对于不同的中心,相同的配体其强度也是不同的。
2. (n-1) d ns np 杂化例 3 讨论的成键情况形成 d2sp3杂化,使用 2 个 3d 轨道, 1 个 4s 轨道,3个4p 轨道。
用的内层 d 轨道。
形成的配离子为正八面体构型。
空出 1 个内层 d 轨道,形成 dsp2杂化轨道,呈正方形分布。
故构型为正方形。
例 3 和例 4 中,杂化轨道均用到了 ( n - 1 ) d 内层轨道,配体的孤对电子进入内层,能量低,称为内轨配合物,较外轨配合物稳定。
所成的配位键称为共价配键。
三价键理论中的能量问题内轨配合物稳定,说明其键能 E内大,大于外轨的 E外,那么怎样解释有时要形成外轨配合物呢?其能量因素如何?上面的例题中我们看到,形成内轨配合物时发生电子重排,使原来平行自旋的 d 电子进入成对状态,违反洪特规则,能量升高。
金属配合物晶体场理论
第九讲:多原子分子金属配合物晶体场理论1. 金属配合物2MLn: 金属离子或原子与它周围n 个离子或分子形成的化合物价键理论(VB)例如[Fe( H2O )6]3+配合物的中央离子(或原子)和配位体之间的化学键可分为电价配键和共价配键两种。
电价配合物,带正电的中心离子和带负电或具有偶极矩的配位体之间是靠静电引力结合成键,呈高自旋状态。
共价配合物,配位体的孤对电子和中心离子空的杂化价轨道形成共价配键,呈低自旋状态。
价键理论说明了高自旋配合物和低自旋配合物产生的原因,对配合物的磁性和几何构型也都给予了一定的说明。
但作为一个定性的理论,价键理论有很大的局限性。
1). 历史3晶体场(CFT)分子轨道法(MO)1929年,H.Bethe 用量子力学结合群论初步建立了晶体场方法。
将配合物视为一个大的分子,用MO法处理。
因包含金属d 轨道,MO成分较为复杂。
在MO法中,对称性匹配原则是关键因素。
1950年代以后,人们吸收上述理论的优点,发展了配位场理论。
1932年,van Vleck 在Bethe的工作基础上,提出过渡金属配合物的化学键理论,较好地解释金属配合物的磁性和稳定性。
1. 金属配合物5.3 金属配合物晶体场理论2. 晶体场理论1)、基本思想金属配合物的成键类似于离子晶体中正负离子的作用。
(i)金属与配体的作用为静电作用,配体视为点电荷。
(i i)配体的作用是建立一个负电荷势场(晶体场),在晶体场的微扰下,金属的d轨道发生能级分裂。
(i i i)金属的电子从低到高填充分裂后的d轨道,使总能量下降,产生附加成键效应。
分裂后总能量的下降称晶体场稳定化能(CFSE)。
42. 晶体场理论8(ii)d轨道分裂模式:由晶体场的对称性决定。
中心力场O h 的不可约表示对于正八面体场,5个d轨道按O h 群的不可约表示分类(查特征标表或相关表)原来简并的d 轨道分裂为两组:e g 和t 2g 。
gz y x gzx yz xy e d d t d d d ⎪⎭⎪⎬⎫⎪⎭⎪⎬⎫-22222. 晶体场理论10两组能级的高低(直观观察)ge 2gt ∆:∆分裂能2. 晶体场理论14(i)用群论知识了解d轨道分裂为几组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配位键的形成条件:
(1) 中心离子(或原子)必须有适当的空的价电子轨道,在 形成配合物时,这些能量相近的空的价电子轨道首先 进行杂化,形成数目相同,能量相等,且具有不同空 间构型的杂化轨道。
配合物配位个体的几何构型主要取决与中心离子的杂化 轨道类型。
(2) 配位体必须含有孤对电子。 (3) 中心离子的每一杂化轨道可以接受配体中配位原子所
价键理论的优点和局限性
价键理论的优点:
★ 能简明解释配位化合物几何构型和磁性等性质; ★ 可以解释[Co(CN)6]4-存在高能态电子,非常容易被 氧化,是很强的还原剂,能把水中的H+还原为H2。
价键理论的不足:
★ 无法解释[Cu(NH3)4]2+稳定的事实 ★ 对配合物产生高低自旋的解释过于牵强. ★ 无法解释配离子的稳定性与中心离子电子构
外轨型化合物 [FeF6]3– 成单电子多,高自旋
sp3d2杂化,外轨型配合物
内轨型配合物 例如:[Fe(CN)6]3- 成单电子少,低自旋
d2sp3杂化,内轨型配合物
配合物的磁性
n(n 2)(B.M.)
外轨型配合物,中心原子的电子结构不发生改变,未成对 电子数多,µ较大, 一般为高自旋配合物; 内轨型配合物,中心原子的电子结构发生了重排,未成对 电子数减少, µ较小,一般为低自旋配合物。 顺磁性 反磁性
(五) d 轨道在平面正方形场中的分裂
dx2-y2
dxy
dz2
x
y
x
y
dxz, dyz
D4h场
平面正方形场中d轨道能级分裂图
(六) d轨道中电子的排布—高自旋态和低自旋态
1、分裂能Δ和成对能P (1) 八面体场中d轨道的分裂能
• 高能量的dx2-y2和dz2二重简并轨道,称为dγ能级 • 低 能能 级量的dxy、dxz和dyz三重简并轨道,称为dε • 分裂能Δo为dγ能级与dε能级之能量差
在自由的过渡金属离子中,d轨道是五重简并的,但五个d轨 道的空间取向不同 。所以在具有不同对称性的配位体静电场的 作用下,将受到不同的影响, 使原来简并的5个d轨道产生能级 分裂。
(三)正八面体场 中d轨道的能级分 裂
八面体配位离子中,6个配位体沿± x,± y,± z 坐标接近M,
L的负电荷对 dZ2 、dx2y2 道的电子排斥作用大,使这两轨道能级上 升较多,而夹在两坐标之间 d xy、d xz、d yz受到推斥较小,能级上升较
外轨型配合物和内轨型配合物
配位原子的电负性较大,如卤素、氧等,它们不易给出 孤对电子,对中心离子影响不大,使中心离子原有的电子层 结构不变,利用最外层的ns、np、nd空轨道组成杂化轨道与 配位原子形成的配位键叫外轨型配键,由外轨型配键所形成 的配合物叫外轨型配合物。
配位原子的电负性较小,如碳、氮等,它们较易给出孤 对电子,它们靠近中心离子时,对中心离子内层(n-1)d 轨道 影响较大,使(n-1)d电子发生重排,电子挤入少数(n-1)d 轨道, 而空出部分(n-1)d 轨道与最外层的ns、np轨道杂化,形成数 目相同,能量相等的杂化轨道与配位原子形成的配位键叫内 轨型配键,由内轨型配键所形成的配合物叫内轨型配合物。
少,这样d轨道分裂成两组:能级低的3个d轨道d xy、d xz、d yz通常用t2g 表示;高能级的2个d轨道dZ2 、d x2 y2 通常用eg表示。
(四) d 轨道在正四面体场中的分裂
dz2
dx2-y2
dxz, dyz, dxy
斥力小
斥力大
t2
Es
e Td场
在正四面体场中原来五重简并的d轨道分裂为两组: 一组是能量较高的t2(dxz、dxz、dyg); 另一组是能量较低的e(dz2 和dx2-y2)。 能级分裂图如下:
下,原来能量相同的5个简并d轨道能级发生 了分裂。有些d轨道能量升高,有些则降低。 ③ 由于d轨道能级发生分裂,中心原子d轨道上 的电子重新排布,使系统的总能量降低,配 合物更稳定。
(二)晶体场理论的主要内容:
把中心离子(M)和配体(L)的相互作用看作类似离子晶体中正 负离子的静电作用。
当L接近M时,M中的d轨道受到L负电荷的静电微扰作用, 使原来能级简并的d轨道发生分裂。按微扰理论可计算分裂能 的大小,因计算较繁,定性地将配体看作按一定对称性排布的 点电荷与M的d轨道电子云产生排斥作用。
型之间的关系 ★ 价键理论是定性理论,没有提到反键轨道,不涉及
激发态,不能满意地解释配位化合物的光谱数据, 不能满意说明有些化合物的磁性、几何构型和稳定 性。
原因:未考虑配体对中心离子的影响
二、晶体场理论
(一) 晶体场理论的基本要点: ① 将配体视为带负电荷的点电荷。中心原子与
配体之间存在静电作用力。 ② 中心原子在周围配体所形成的负电场的作用
配合物的晶体场理论和配位场理论
一、价键理论回顾
●价键理论基本要点:
配合物的中心离子与配位体之间的结合,一般是由配位原 子提供孤对电子,由中心离子(或原子)提供空轨道,两 者共享该电子对而形成配位键,因此形成的配位键从本质 上说是共价性质的。
根据配位化合物的性质,按杂化轨道理论用共价 配键和电价配键解释配位化合物中金属离子和配 体间的结合力。
八面体场中d轨道的分裂能 分裂能:八面体络合物,电子由t2g轨道跃迁到eg轨道所 需要的能量,即能级差Eeg-Et2g=Δ0即分裂能。以Δ表示。
量子力学原理指出,不管晶体场对称性如何,受到微扰的d轨道的 平均能量是不变的。选取Es能级为能量的零点。
Eeg Et2g 10Dq 2Eeg 3Et2g 0
得:
Eeg
6Dq
(或0.6
)
0
Et 2 g
Байду номын сангаас
4Dq
(或
0.4
)
0
可见,在八面体场中, d轨道分裂的结果是:与Es能级相比较, eg轨道能量上升了6Dq, t2g轨道能量下降了4Dq。
提供的孤对电子,形成相应数目的配位键。配位键的 数目就是中心离子的配位数。
配位键的类型及配合物的空间构型
配位离子
3d
Fe(CN)64-
C+ o(NH3)63
Co(CN)64Ni(CN)42-
3-
4s 4p 5s
杂化轨道 几何形状
d2sp3 d2sp3 d2sp3 dsp2
—
八面体 八面体 八面体 平面四方 八面体