弹性力学与有限元完整版
2 弹性力学与有限元法
•剪应力
图1
2013-7-21
8
Institute of Mechanical Engineering and Automation
[ 应力的概念 ]
•正应力 为了表明这个正应力的作用面和作用方向,加上一个 角码,例如,正应力σx是作用在垂直于x轴的面上同时也 沿着x轴方向作用的。 •剪应力 加上两个角码,前一个角码表明作用面垂直于哪一个坐 标轴,后一个角码表明作用方向沿着哪一个坐标轴。例如, 剪应力τxy是作用在垂直于x轴的面上而沿着y轴方向作用的。
[ 几何方程、刚体位移 ]
•求剪应变 xy ,也就是线素AB与AD之间的直角的改变 •x向线素AB的转角 a y向线素AD的转角 b
y
u u dy y
C'
v
v dy y
D" b D '
D C
•A点在y方向的位移分量 为v; •B点在y方向的位移分量:
v
u
A
A'
a
dy
B'
v v dx x
连续性假设
2013-7-21
完全弹性假设 均匀性和各向同性假设 小变形、小转动假设 自然状态假设(无初始应力)
4
Institute of Mechanical Engineering and Automation
基本定律
牛顿定律
动量平衡原理
⇨ 平衡(运动)微分方程
⇨ 应力张量的对称性
u dx x
u
A'
a
A dx 0
2013-7-21
B
u u dx x
B"
x
图2
弹性力学及有限元
• 研究方法的差别造成弹性力学与材料 力学问题的最大不同。
• 材料力学:常微分方程,数学求解没有困难。 • 弹性力学:偏微分方程边值问题,在数学上 求解困难重重,除了少数特殊问题,一般 弹性体问题很难得到解析解。
§1.2 弹性力学基本概念(重点) •外力、应力、形变、位移
•外力分为:体积力(体力) 表面力(面力)
3、弹性力学基本假定:
•连续性
•均匀性
•各向同性
•完全弹性
•小变形假定
(符合前四条假设的物体称为理想弹性体)
4、弹性力学的研究方法:
•已知:边界形状,材料性质,体力,面力,约束 •求解:应力、形变和位移 •解法: (1)根据力的平衡条件建立平衡微分方程; (2)根据应变和位移间的几何条件建立几何方程; (3)根据应力和应变间的物理条件建立物理方程;
——忽略位移、形变和应力等分量的高阶小 量,使基本方程成为线性的偏微分方程组。
*弹性力学的发展
弹性力学是一门有悠久历史的学科,早期 研究可以追溯到1678年,胡克(R.Hooke) 发现胡克定律。 这一时期的研究工作主要是通过实验方法 探索物体的受力与变形之间的关系。
•近代弹性力学的研究是 从19世纪开始的。
轴正方向为正,沿坐标轴负方向为负。
单位:N/m2, 量纲是L-1MT-2(N=LT-2M)
•内力:物体受外力作用后,内部不同部分之
间相互作用的力。
应力
弹性体内任一点 P 其邻近面积为 A
A 上的内力为 F
F lim p A0 A
•和体力、面力不同,应力通常不用它沿坐标 轴的分量(进行某些公式推导时除外),原因: 这些分量与物体的形变或材料强度没有直接的 关系。 •与物体的形变或材料强度直接相关的则是截 面法线方向和切线方向的分量,即正应力和 切应力,分别记为 σ,τ
弹性力学及有限元
热传导案例
总结词
热传导是有限元分析中用于模拟物体内部热量传递规律的应用之一。
详细描述
在电子、机械、化工和材料等领域,热传导分析用于研究材料的热性能、热应力和热变形等。通过有 限元方法,可以模拟物体内部的热量传递过程,预测温度分布和热应力分布,优化材料和系统的热设 计。
06
结论展望
结论
01
02
有限元分析
有限元分析是一种数值分析方法,通过将复杂的物体或系统离散 化为有限个小的单元(或称为元素),并分析这些单元的应力、 应变和位移,从而对整个物体或系统的行为进行预测和分析。
主题的重要性
工程应用
弹性力学和有限元分析在工程领域中具有广泛的应用,如结 构分析、机械设计、航空航天、土木工程等。通过这些方法 ,工程师可以更准确地预测和分析结构的性能,优化设计, 提高安全性。
03
04
研究意义
弹性力学及有限元分析在工程 领域具有广泛应用,为复杂结 构的分析提供了有效方法。
主要成果
本文系统地介绍了弹性力学的 基本原理和有限元分析的方法 ,并通过实例验证了其有效性 。
研究限制
由于时间和资源的限制,本研 究未能涵盖所有相关领域,未 来研究可进一步拓展。
对实践的指导意义
本文为实际工程中的结构分析 提供了理论依据和实践指导, 有助于提高结构的安全性和稳 定性。
优势
有限元方法具有广泛的适用性,可以用于求解各种复杂的物理问题;能够处理 复杂的几何形状和边界条件;可以通过增加单元数目来提高解的精度;可以方 便地处理非线性问题和材料非均质性问题等。
局限性
有限元方法需要较大的计算资源和时间,尤其对于大规模问题;对于某些特殊 问题(如高速冲击、爆炸等),需要采用特殊处理方法;对于多物理场耦合问 题,需要采用多场耦合有限元方法等。
弹性力学与有限元
yσ
x
)
M
EI
y,
xy
2(1 E
) xy
0。
Chapter2
- 30 -
第三节 位移分量的求出
2. 代入几何方程求位移,
u x
x
M EI
y,
(a)
v y
y
M
EI
y,
(b)
v x
u y
xy
0。
(c)
Chapter2
- 31 -
第三节 位移分量的求出
⑴ 对式(a)两边乘 d,x积分得
u
ax2 bxy cy2 1.对应于 ax2,应力分量 x 0, y 2a, xy yx 0 。
Chapter2
-9-
第一节 逆解法与半逆解法 多项式解答
结论:应力函数 ax2 能解决矩形板在 y 方向受均布拉力
(设 a 0)或均布压力(设 a 0 )的问题。如图3-1(a)。
Chapter2
- 18 -
第一节 逆解法与半逆解法 多项式解答
⑷ 由式(d),求出应力; ⑸ 校核全部应力边界条件(对于多连体,
还须满足位移单值条件). 如能满足,则为正确解答;否则修改假 设,重新求解。
Chapter2
- 19 -
第一节 逆解法与半逆解法 多项式解答
思考题 1. 在单连体中,应力函数必须满足哪些条 件?逆解法和半逆解法是如何满足这些条 件的? 2. 试比较逆解法和半逆解法的区别。
3F 2h
(1
4
y2 h2
);
fx
(σ x )xl
12Fl h3
y,
fy
( xy )xl
3F 2h
(1
弹性力学与有限元分析
m α 式中: = ∑i , α1,α2 ,⋯ 2m 为待定系数。把位移函
i=1
n+1
数的这种描述形式称为广义坐标形式。 在确定二维多项式的项数时,需参照二维帕斯卡三 角形,即在二维多项式中,若包含帕斯卡三角形对称轴 一侧的任意一项,则必须同时包含它在对称轴另一侧的 对应项。
1 x x2 x3 x4 y xy y2 y3
1、结构的离散化——单元划分 2、假设单元的位移插值函数和形函数 3、计算单元刚度矩阵 4、载荷移置——把非节点载荷等效地移置 到节点上 5、计算结构刚度矩阵,形成结构刚度方程 6、引入位移边界条件,求解方程 7、计算应力与应变
三、两种平面问题
平面问题分为平面应力问题和平面应变问题两大类。 体力——指分布于物体体积内的外力,它作用于 物体内部的各个质点上,如重力、磁力 和运动时的惯性力等。 面力——指均布于物体表面上的外力,它作用于 物体表面的各个质点上,如物体间的接 触力和气体压力等。
f (x, y),把位移函数的这种描述形式称为插值函数形
式。 形函数具有以下两个性质: 1、形函数 Ni在节点 处的值为0。 2、在单元中任意一点,3个形函数之和为1,即:
i处的值为1,而在其余两个节点
Ni (x, y) + N j (x, y) + Nm (x, y) = 1
六、计算单元刚度矩阵
U(x, y) Ni f (x, y) = = V(x, y) 0
0 Ni
Nj 0
0 Nj
Nm 0
Ui V i 0 U j Nm Vj Um Vm
其中 Ni , N j , Nm 称为单元位移的形状函数,简称形函 数,其值为:
1、用单元节点位移表示单元中任一点的应变,得
弹性力学与有限元法1ppt课件
➢ 瞬态分析 确定以时间为函数的温度等。 可模拟相变(融化及凝固)。
熨斗的瞬态热分析
28
本课程涉及到的高等数学及线性代数知识
1、泰勒级数
如果函数 f(x) 在点x0的某邻域内具有各阶导数 f ' (x), f '' (x),L , f (n) (x),L ,则可以将 f(x) 按照 泰勒级数展开为
应力种类
一次局部薄膜应 力
薄膜加弯曲应力
应力水平/MPa 限制值/MPa
41.12
167×1.5=250.5
73.81
167×3.0=511
评定结果 通过 通过
路径2
一次局部薄膜应 力
薄膜加弯曲应力
48.43 163.5
167×1.5=250.5 167×3.0=511
通过 通过
路径3
一次局部薄膜应 力
个坐标轴上的投影u、v、w来表示。以沿坐
标轴正方向的为正,沿坐标轴负方向的为负。
B
y
40
第一章 绪论
弹性力学的基本方法
从取微元体入手,综合考虑静力(或运动)、几 何、物理三方面条件,得出其基本微分方程,再进行求 解,最后利用边界条件确定解中的常数。
按照方程中保留的未知量,求解方法可分为 应力法(以应力为未知量) 位移法(以位移为未知量) 混合法(同时以应力和位移为未知量)
zy x
b
xxyz zx
yz
y yx
B
o
A PA dx, PBz dy, PC dz y
x
同样,可以列出另两个力矩平衡方程。得出
yz zy , zx xz , xy yx
38
第一章 绪论
弹性力学及其有限元法
弹性力学及有限元分析1、 设试件两定点之间的长度为L 0,其截面积为F 0,加上拉力P 后,L 0 伸长了△L 。
我们把P/ F 0 称为拉伸应力(σ),△L/ L 0 称为拉伸应变(ε),于是有σ=P/ F 0 ,ε= △L/ L 0某种材料的拉伸应力和拉伸应变的比,称为该材料的杨氏模量或弹性模量(E),即 LF PL E ∆==00εσ,弹性模量E 表征了材料的物理性质。
2、 根据力学特性,固体通常分为韧性固体和脆性固体。
首先分析韧性材料,材料在受力变形过程中,明显地有四个特性点划分三各阶段。
a. 弹性阶段,这一阶段的明显特征是,当外力逐渐去掉时,变形也逐渐消失,物体能够恢复到原来的形状,物体的这种性质称为弹性,存在一个应力极限称为弹性极限。
随着外力的消失而消失的变形称为弹性变形;去掉外力后仍然保留的变形称为残余变形或永久变形。
弹性阶段另一个明显特征是,应力与应变保持线性关系。
设受力方向为x 方向,x xE εσ=,这就是简单拉伸时的虎克定律,弹性模量E 为常数,表示应力与应变成正比例。
通常把弹性极限和比例极限规定为一个值。
b. 塑性阶段,超过弹性极限后,材料开始失去弹性,进入塑性阶段,这时产生较大的永久变形,应力应变关系不再是线性的。
当曲线超过s 点(屈服极限)后,材料开始屈服,即在应力几乎不增加的情况下,应变会不断的增加,称s 点为屈服极限;当变形大到一定程度后,材料开始强化,要继续增加变形必须再增加外力,到达b 点后产生颈缩。
从弹性极限到b 的变形范围统称为塑性阶段,属于塑性力学的研究范畴。
c. 断裂阶段,试件产生颈缩后,开始失去抵抗外力的能力,最后发生断裂,相对于b点的应力称为强度极限。
脆性材料:它的拉伸曲线图没有明显的三个阶段之分,也没有明显的屈服应力点,材料亦不再满足虎克定律。
为了分析上的需要,往往以切线斜率作为弹性模量,即εσd d E =。
如果对脆性固体材料加载,应力应变曲线将沿着OA 上升,若到A 点后即行卸载,应力应变曲线并不沿着原来的途径回复到原点,而是沿着直线AB 下降,当全部载荷卸去之后,试件中尚残存一部分永久变形''ε。
弹性力学及有限元方法-空间问题
4.2 应变与应力
– 将假定的位移代入式(4.12),得到单元内应
变为:
– 将应变矩阵[B]按节点分块表示为:
– 由(4.12),得到应变矩阵[B]中任一子矩阵 [Bi] 为:
• 其中bi、ci及D如前,而
• 按物理关系式,有应力 • 注意轴对称问题三角形单元的形函数虽与平面
问题三角形单元相同,但其应变、应力则不相
• 同理,用v式可求得a5到a8 ,用w求得a9到 a12 ,为:
• 用矩阵记法统一表达为:
• [N]为形状函数矩阵,可表示为:
• [I]为三阶单位矩阵,而各节点的形状函数 可按下式计算得到,即
• 如记矩阵
为四面体单元的体积,其他系 数皆可由[L]确定,如
• 为矩阵第一行各元素的代数余子式。同样 可以确定al、bl、cl、dl…an、bn、cn、dn等, 它们是矩阵[L]第二、三、四行元素的代数 余子式。
• 轴对称问题中,上述截面内任一点p,实 际上代表一个半径为r的圆周(图4-2),当 此圆周上各点都有径向位移u时,圆周被 拉伸,多出一个环向应变q。有:
• 全部应变的4项分量与两项位移分量之间 的几何关系(几何方程),以矩阵表示为:
• 轴对称问题的4项应力分量,以列阵表示为:
• 轴对称问题的应力与应变间的物理关系仍写为:
用位移法,就是只研究这个代表截面的位 移求得一个截面的位移分布,也就有了整 个三维结构内的位移分布,从而可以求得 体内任一点的应变及应力。这样,一个三 维问题,就可以转化为一个二维问题。 由于结构的变形是对称于中心轴的,因而 子午面内各点都只有沿径向r的位移u和沿 轴向z的位移w,一般应为截面坐标r,z的 函数,即
• 单元内应变为常值,按物理方程,单元内的 应力也是常值。当然,一般受力情况下,三 维体内有限大小的四面体内的应力并不是常 值,用常应力单元来代替它,只是近似的。 • 对此单元,单元间的应力是不连续的。只有 当单元划分得较小时,单元内的应力才会接 近于常值,此时计算的应力在单元间的不连 续才会比较小,因而可以作为真实应力分布 的近似。 • 一般,把这种单元应力的计算值作为单元中 心一点的应力近似值是比较适当的。
弹性力学及有限元
2
3
第一章 绪 论
§1–1 弹性力学的研究对象
§1–2 弹性力学中的几个基本概念
§1–3 弹性力学中的基本假设 §1–4 有限元分析的基本思想
4
在未知领域 我们努力探索 在已知领域 我们重新发现
5
初中物理-力学
高中物理-力学
大学物理-力学
的形式和尺寸并选择适宜的材料提供必
要的理论基础和计算方法。
9
结构力学的研究对象、内容和任务
对象——杆件系统(结构)
梁、刚架、桁架、组合结构和拱
内容——结构的组成规律、特性和外来因素作用
下的内力、位移及其分布规律。 任务——校核结构是否具有所需的强度、刚度和
稳定性,并寻求和改进它们的计算方法 以实现安全和经济的最优化。 三部分——静力学、动力学和稳定学。
c
p y l xy m y n zy pz l xz m yz n zy
b
P
y
25
x
a
正负号规定:
正面:外法向方向和坐标轴正向一致的面 负面:外法向方向和坐标轴正向反向的面
正面上应力沿坐标轴正向为正 负面上应力沿坐标轴负向为正
i j
+ + + + -
+
力学,包括固体力学和流体力学中的许多学科,弹
性力学仅是其中的一个分支。
35
2) 线性完全弹性:引起物体变形的外力除去后物体能
恢复原状(完全弹性),应变与引
起该应变的应力分量之间的关系服
从胡克定律(线性),弹性常数与
应力、应变大小无关,无需考虑应
力历史。 完全弹性:弹性极限以下 线性弹性:比例极限以下 该假定使本构关系(物理方程)成线性方程。 线性关系的Hooke定律是弹性力学特有的规律,是弹性力 36 学区别于连续介质力学其它分支的标识。
弹性力学与有限元法
图1 应力定义
lim Q S A0 A
剪应力互等:
xy yx yz zy zx xz
图2 应力分量
物体内任意一点的应力状态可以用六个独立的应力分量来表示
x , y , z , xy, yz , zx
应力分量的下标约定: ➢ 第一个下标表示应力的作用面的法线方向,第二个下标表示应力 的作用方向。 ➢正应力由于作用表面与作用方向垂直,用一个下标。
本章介绍了如下内容: 有限元法的发展历史 有限元法的基本思想 平面问题有限元分析原理及步骤 有限元法的设计应用及计算实例
2
1 有限元法的基本概念
课程目标
(1)了解什么是有限元法、有限元方法的基本思路。 (2)掌握有限元法的基本原理,主要结合弹性力学问题来介绍 有限元法的基本方法,包括单元分析、整体分析、载荷与约束处理、 轴对称问题的概念等。 (3)了解有限元软件的发展水平,了解用有限元软件分析简单 工程问题的方法。
(1)网格划分
有限元法的基础是用有限个单元体的集合来代替原有的连续体。 因此首先要对弹性体进行必要的简化,再将弹性体划分为有限个单 元组成的离散体。单元之间通过单元节点相连接。由单元、结点、 结点连线构成的集合称为网格。
图3 三角形3节点单元
图4 四边形4节点单元
图5 平面问题的三角形单元划分
图6 平面问题的四边形单元划分
弹性力学的基本方程 1、平衡方程 2、几何方程 3、物理方程
2.1 弹性力学基本变量
(1)体力:体力是分布在物体体 积内的力,例如重力和惯性力。 (2) 面力:面力是分布在物体表 面上的力,例如接触压力、流体 压力。 (3)应力:物体受到约束和外力 作用,其内部将产生内力。物体 内某一点的内力就是应力。
弹性力学及有限元法chapter7精品PPT课件
e
i
j
m
v
j
w j
u
m
i
m
p
vm
wm
j y
u
p
x
vp
w p
第七章 空间问题和空间轴对称问题
7-2-1 位移函数
单元内任一点的位移 {f}假定为座标的线性函数
u
f
v
N
e
w
u 1 2x3y 4z v 5 6x7 y 8z w9 10x 11y 12z
节点i, j, m及 p的坐标分别为(xi,yi,zi),(xj,yj,zj),(xm,ym,zm) 及 (xp,yp,zp),把它们代入上式的第一式,得出各节点在x方 向的位移
第七章 空间问题和空间轴对称问题
ui 1 2 xi 3 yi 4 zi u j 1 2x j 3 y j 4z j um 1 2 xm 3 ym 4 zm up 1 2xp 3 yp 4zp
解方程组,求得 1,2,3,4,代入第一式,整理后得到
u N iu i N ju j N m u m N p u p
其中
Ni 61 Vaibixciydiz
N j 6 1 Vajbjxcjydjz
Nm61 Vambmxcmydmz
Np61 Vapbpxcpydpz
称为形函数,其系数是
第七章 空间问题和空间轴对称问题
xj yj zj ai xm ym zm
xp yp zp
1 xj zj ci 1 xm zm
同样,可以得到
vNivi Njvj NmvmNpvp wNiwi Njwj NmwmNpwp
单元内任一点的位移可以写成如下形式:
f N 0 i N 0 i 0 0
弹性力学与有限元完整版164页PPT
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z面 X面
•②应力符号意义
•正应力: 由法线方向确定
x、 y、 z
•剪应力: xy
作用面
作用方向
•符号规定:
正面上与坐标轴正向一致,为正;
负面上与坐标轴负向一致,为正。
正面 负面
Z面
X面
•③剪应力互等定理
xy yx
相等
yz zy
xz zx
4. 完全弹性假设
应力和应变之间存在一一对应关系,与时间及变形历史无关。满 足胡克定理。
5. 小变形假设
在弹性体的平衡等问题讨论时,不考虑因变形所引起的几何尺寸 变化,使用物体变形前的几何尺寸来替代变形后的尺寸。采用这 一假设,在基本方程中,略去位移、应变和应力分量的高阶小量 ,使基本方程成为线性的偏微分方程组。
大小和方向不同。
体力分量:将体力沿三个坐标轴xyz 分解,用X
、Y、Z表示,称为体力分量。
符号规定:与坐标轴方向一致为正,反之为负
。 应该注意的是:在弹性力学中,体力是指单位
体积的力 。
体力的因次:[力]/[长度]^3
表示:F={X Y Z}
② 面力
与体力相似,在物体表面上任意一点P 所受面力的大小 和方向,在P点区域取微小面积元素△S ,
压力,物体之间的接触力等。
集中力——作用物体一点上的力。(在弹性力学中一
般所受体力的大小和方向,在P点区域取
一微小体积元素△V, 设△V 的体力合力为△F,则
△V 的平均体力为
当△V 趋近于0, 则为P点的体力
体力是矢量:一般情况下,物体每个点体力的
第一篇 弹性力学
第一章 弹性力学基本方程
1.1 绪论 1.2 弹性力学的基本假定 1.3 几个基本概念 1.4 弹性力学基本方程
第二章 弹性力学平面问题
2.1 平面应力问题 2.2 平面应变问题 2.3 平面问题的基本方程
第三章 弹性力学问题求解方法简述
第一章 弹性力学基本方程
1.1 绪论 1.2 弹性力学的基本假定 1.3 几个基本概念 1.4 弹性力学基本方程
当△S 趋近于0,则为P点的面力
•面力分量 •符号规定:与坐标轴方向一致为正,反之为负。 •面力的因次:[力]/[长度]^2
③ 集中力
体力与面力都是分布力,集中力则只是作用在一个点
上,作用区域△V或△S很小,但数值很大,这种形式的
力可以认为是集中力。
集中力分量:集中力直接将其沿三个坐标轴分解 ,用X0、Y0、Z0表示,即集中力力分量。
1.3 几个基本概念
1. 外力 2. 一点的应力状态 3. 一点的形变 4. 位移分量
1 外力
作用于物体的外力可以分为3种类型:
体力、面力、集中力。
体力——就是分布在物体整个体积内部各个质点上的
力,又称为质量力。例如物体的重力,惯性力,电磁力等 等。
面力——是分布在物体表面上的力,例如风力,静水
研究的内容:
外力作用下
应力、应变、位移
物体变形——弹性变形、塑性变形
弹性变形:
当外力撤去以后恢复到原始状态,没有变形残留,材 料的应力和应变之间具有一一对应的关系。与时间无 关,也与变形历史无关。
塑性变形:
当外力撤去以后尚残留部分变形量,不能恢复到原始 状态,——即存在永久变形。应力和应变之间的关系 不再一一对应,与时间、与加载历程有关。
符号规定:与坐标轴方向一致为正,反之为负。 体力的因次:[力]
2 一点的应力状态
①应力表示方法
材料力学中接触过斜截 面上的应力,斜截面上应 力可以分成正应力、剪应 力;
复杂物体任意截面上的应 力可分为
1个与平面垂直的正应力、 2个平面内剪应力。
•正应力分量 3个:
x、 y、 z
•剪应力分量 6个:
剪应力不再区分哪个是作用面或作用方向 。
x
y
•应力分量:
x、 y、 z、 xy、 yz、 zx
{
}
z xy
yz
zx
3 一点应变分量
①微分单元体的变形:
微分单元体棱边的伸长和缩短;正应变 棱边之间夹角的变化;剪应变
正应变分量 3个:
x、 y、 z
剪应变分量 3个:
xy、yz、 zx
2. 均匀性假设
假设弹性物体是由同一类型的均匀材料组成的 ,物体各个部分的物理性质都是相同的,不 随坐标位置的变化而改变。在处理问题时, 可以取出物体的任意一个小部分讨论。。
3. 各向同性假设
假定物体在各个不同的方向上具有相同的物理性质,物体的弹性 常数不随坐标方向变化。
像木材、竹子以及纤维增强材料等,属于各向异性材料,它们是复合材 料力学研究的对象。
弹性力学基本内容
外界作用
弹性体
外力 温度变化
应力 应变 位移
1.1 弹性力学绪论
弹性力学,又称弹性理论。
是研究弹性体由于外力载荷或者温度改变,物体内部 所产生的位移、变形和应力分布等。为解决工程结构 的强度,刚度和稳定性问题作准备 。
弹性力学的研究对象:
是完全弹性体,包括构件、板和三维弹性体,比材料 力学和结构力学的研究范围更为广泛 。
弹性:假定“完全弹性”关系,是抽象出
来的理想模型。 完全弹性是指在一定温度条件下,材料的
应力和应变之间具有一一对应的关系。
应力—应变关系称为本构关系。
材料模型包括:
线性弹性体 非线性弹性体
1.2 弹性力学的基本假定
1. 连续性假设
根据这一假设,物体的所有物理量,例如位 移、应变和应力等均成为物体所占空间的连 续函数。
x
y
z xy
yz
zx
②应变的定义(自学)
设平行六面体单元,3个轴棱边 :
变形前为MA,MB,MC; 变形后变为M'A',M'B',M'C'
。
x、 y、 z
•③正应变(小变形) (自学)
•符号规定: 正应变以伸长为正。
•④剪应变(自学)
•符号规定: 正应变以伸长为正;剪应变以角度变小为正。
4 位移分量
位移:由于载荷作用或者温度变化等外界因素等影响,
物体内各点在空间的位置将发生变化,位置移动即产生位 移。
位移——刚体位移、变形
刚体位移——物体内部各个点仍然保持初始状态的相对
位置不变,由于物体整体在空间做刚体运动引起的位置改 变。
变形——物体整体位置不变,弹性体在外力作用下发生
形状的变化,而改变了物体内部各个点的相对位置,引起 位移。