SATWE软件计算结果分析

合集下载

结构设计pkpm软件satwe计算结果分析 (2)

结构设计pkpm软件satwe计算结果分析 (2)

结构设计pkpm软件SATWE计算结果分析SATWE软件计算结果分析一、位移比、层间位移比控制规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架 1/550框架-剪力墙,框架-核心筒 1/800筒中筒,剪力墙 1/1000框支层 1/1000名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。

(mm)Ave-(X)、Ave-(Y)----X、Y平均位移。

(mm)Max-Dx ,Max-Dy : X,Y方向的最大层间位移Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。

结构设计pkpm软件SATWE计算结果分析

结构设计pkpm软件SATWE计算结果分析

结构设计pkpm软件SATWE计算结果分析分析与设计参数定义一.总信息1.墙元细分最大控制长度:墙元细分时需要的一个参数,对于尺寸较大的剪力墙,小墙元的边长不得大于给定的限制Dmax,程序限定1.0≤Dmax≤5.0,隐含值Dmax=2.0,Dmax=2.0.对一般工程,Dmax=2.0对于框支剪力墙结构,Dmax=1.5或者1.02.对搜有楼层强制采用刚性楼板假定当计算结构位移比时,需要选择此项。

除了位移比计算,其他的结构分析,设计不应选择此项。

3.墙元侧向节点信息这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”墙元的变形协调性好,分析结果符合剪力墙的实际,但计算量较大。

若选“内部”,这时带洞口的墙元两侧边中部的节点为变形不协调点,是对剪力墙的一种简化模拟,精度略逊于前者,但效率高,实用性好,计算量比前者少。

多层结构—(剪力墙较少,工程规模相对较小)选---出口高层结构—内部4.模拟施工加载3计算竖向力,采用分层刚度分层加载模型,与模拟施工加载1类似,只是在分层加载时去掉了没有用的刚度,使其更接近于施工过程。

计算恒载。

5.考虑偶然偏心如果考虑偶然偏心,程序将自动增加计算4个地震工况,分别是质心沿Y正、负向偏移5%的X地震和质心沿X正、负向偏移5%的Y 地震。

6.考虑双向地震作用若考虑,程序自动对X,Y的地震作用效应Sx,Sy进行修改。

Sx←sign(Sx)√Sx2+(0.85Sy)2Sy←sign(Sy)√Sy2+(0.85Sx)27.计算振型个数一般计算振型数应大于9 ,多塔结构多一些。

但是一个规则的两层结构,采用刚性楼板假定,每块刚性楼板只有三个有效动力自由度,整个结构共有6个有效动力自由度,系统自身只有6个特征值,最多取6个8.活荷质量折减系数计算重力荷载代表值时的活荷载组合值系数,缺省取值与荷载组合中的活荷载组合值系数相同(一般为0.5),如果用户需要,也可以自己修改。

9.周期折减系数为了充分考虑框架结构和框架-剪力墙结构的填充墙刚度对计算周期的影响。

satwe软件计算结果分析

satwe软件计算结果分析

SATWE软件计算结果分析SATWE软件是一款应用于聚合物防水材料的计算分析软件,它可以用于预测、计算和分析聚合物防水材料的性质、构造和使用寿命。

本文将从软件的特点、计算方法和计算结果分析三个方面来介绍SATWE软件的应用。

软件特点SATWE软件具有以下特点:多样化的防水材料计算支持SATWE软件可以用于计算多种类型的聚合物防水材料,比如SBS/SBR、HDPE、EVA、EPDM或TPO等。

用户可以选择不同的材料类型,并设置相应的参数来完成计算。

高质量的计算算法该软件采用专业的计算算法和数值模拟方法,可对防水材料进行多维度、多条件的计算和分析,可以预测聚合物材料的热稳定性、拉伸强度、耐磨性、耐老化性、抗紫外线性能等多项指标。

直观的用户界面软件提供了简单直观的用户界面,使操作者能够方便快捷地完成各项计算、设定参数等操作。

计算方法SATWE软件主要基于计算模拟方法来进行计算。

具体地,它采用封闭模型,根据材料的特性特性和使用状态,通过计算材料的物理、化学、力学和动态等指标,来预测和分析材料的性能和使用寿命。

以下是SATWE软件中主要的计算和模拟方法:星形连接模型星形连接模型是SATWE软件的主要计算模型之一,它主要用于分析聚合物防水材料的载荷分布、应变分布、剪切位移、热稳定性等性能。

星形连接模型的优点在于可以近似地模拟材料的本质特性,在一定的误差范围内预测材料的性能,并且可以应对复杂的工程设计情况和操作条件。

热 aging 模拟软件还提供了热 aging 模拟方法,该方法主要用于分析聚合物防水材料在高温环境下的热衰减运动。

通过模拟材料的热异质性、热膨胀系数、热导率等因素,来预测材料的热老化程度和使用寿命。

计算结果分析SATWE软件可以输出多种计算结果,包括各项物理性质的值、计算曲线、表格等。

根据输出结果可以做出如下分析:材料强度预测通过计算材料的拉伸强度、抗裂强度等指标,用户可以预测材料的强度和承重能力,从而更准确地评估材料的使用寿命和安全性。

SATWE计算结果分析和调整方法

SATWE计算结果分析和调整方法

SATWE计算结果分析和调整方法SATWE(批判性阅读和写作能力测试)是SAT考试中的一个部分,旨在考察学生的批判性阅读和写作能力。

在SAT考试中,SATWE的分数是由两个评分员分别打分,然后将两个得分相加得到最终的分数。

SATWE的分数范围是0到24分,分数越高表示批判性阅读和写作能力越强。

对于SATWE的计算结果分析和调整方法,以下是一些建议和指导:1.理解SATWE的评分标准:了解SATWE的评分标准是非常重要的。

评分员会根据写作的内容、观点的准确性、文笔的流畅性和逻辑清晰性等方面给予评分。

这包括文章的结构、论证的逻辑性、篇章间的转换和观点的论证力等。

理解这些标准将帮助你理解为什么你得到了一些分数,以及如何改进你的写作能力。

2.分析评分结果:一旦你收到你的SATWE的评分结果,你应该仔细分析评分结果。

看看你在哪些方面得到了高分,以及在哪些方面需要改进。

这将帮助你更好地了解你的写作能力的优点和不足,并为接下来的备考提供指导。

3.寻求反馈和意见:如果可能的话,向评分员或老师寻求他们的意见和建议。

他们可以帮助你理解你的评分结果,并提供具体的改进方案。

这样的反馈是非常宝贵的,可以帮助你更好地了解如何提高你的写作能力。

4.制定备考计划:根据你的评分结果和反馈,制定一个备考计划。

确定你的写作弱点,并集中精力加以改进。

这可能包括加强你的阅读理解能力、提高写作技巧、扩展词汇量等。

确保你有明确的目标和时间表,这将帮助你更有效地准备。

5.练习和修正:练习是提高SATWE分数的关键。

通过写作练习题来锻炼你的写作能力,并根据批改反馈进行修正。

同时,也要多阅读各种类型的文章,提高阅读理解水平。

不断练习和修正是提高SATWE分数的有效途径。

6.寻求帮助:如果你觉得自己在准备SATWE时需要更多的帮助,不要犹豫寻求帮助。

你可以请教老师、辅导员或参加SAT写作课程。

他们可以提供专业的指导和支持,帮助你更好地准备。

7.坚持和信心:提高SATWE分数需要时间和努力,所以要保持坚持和信心。

SATWE计算参数使用说明

SATWE计算参数使用说明

一、总信息
1、水平力与整体坐标的夹角
一般并不建议用户修改该参数,原因有三:①考虑该角度后, 输出结果的整个图形会旋转一个角度,会给识图带来不便; ②构件的配筋应按考虑该角度和不考虑该角度两次的计算 结果做包络设计;③旋转后的方向并不一定是用户所希望 的风荷载作用方向.综上所述,建议用户
将最不利地震作用方向角填到斜交抗侧力构件夹角栏,这样 程序可以自动按最不利工况进行包络设计.
一、总信息
11、结构材料信息
分为{钢筋混凝土结构}、{钢与砼混合结构}、{有填 充墙钢结构}和{无填充墙钢结构}共4个选项.选定结构 材料即确定结构设计的相关规范,如0.2Q砼结构或0.25Q 钢结构调整.型钢混凝土和钢管混凝土结构属于钢筋砼结构. 有填充墙钢结构}和{无填充墙钢结构}之分是为了计算 风荷载中的脉动系数ξ.根据荷规164页7.4.2-2式计算,这是 10版采用的方法.新版程序相应在风荷载信息增加了风载 作用下的阻尼比参数,其初始值由结构材料信息控制.
一、总信息
8、对所有楼层强制采用刚性楼板假定 位移比、周期比计算时选择该项
层刚度比计算,严格来说要采用刚性板假定. 对于有弹性楼板或板厚为0的工程,可计算两次, 第一次选择强制刚性楼板假定,确定薄弱层.第二次 将薄弱层号填入,按真实情况计算内力及配筋.如果 工程中无弹性楼板、无开洞、无越层错层,则默认 的楼板假定就是刚性楼板假定.
一、总信息
1、水平力与整体坐标的夹角
这个角度与结构的刚度与质量及其位置有关,对结构可能会 造成最不利的影响,在这个方向地震作用下,结构的变形及 部分结构构件内力可能会达到最大.
当用户输入一个非 0角度比如 25度后,结构沿顺时针方向 旋转相应角度即25度,但地震力、风荷载仍沿屏幕的X向和 Y向作用,竖向荷载不受影响

PKPM2024版SATWE计算结果分析

PKPM2024版SATWE计算结果分析

PKPM2024版SATWE计算结果分析SATWE(拼装结构自由度七杆架)是PKPM软件中的一种计算模块,用于分析和设计拼装结构。

而PKPM2024版则是PKPM软件的早期版本,其计算模块相对较简单。

本文将对PKPM2024版SATWE计算结果进行分析,并对其存在的问题进行讨论。

首先,需要明确SATWE计算模块的基本原理和应用范围。

SATWE是基于静力学原理,通过对各个杆件进行应力和变形计算,判断构件的稳定性,并进行极限承载力和刚度分析。

SATWE适用于开展拼装结构的结构分析、验算和设计。

在PKPM2024版中,SATWE计算模块的算法相对较为简单,仅考虑静力学原理,并未考虑材料的非线性特性和构件的几何非线性。

这导致计算结果存在一定的偏差,可能与实际情况存在较大差异。

另外,PKPM2024版SATWE计算模块对于拼装结构的复杂性和多样性处理能力较弱。

该版本中的计算模块主要针对简单和常见的拼装结构进行分析,对于非常规的结构形式和载荷情况处理能力有限。

这可能导致计算结果在一些情况下不准确或不适用。

此外,PKPM2024版SATWE计算模块在计算结果的输出和可视化方面也存在一些不足。

该版本的计算结果输出界面较为简单,仅提供了基本的计算参数和结果,缺乏对结果的详细解释和分析。

同时,该版本的可视化功能也较为有限,无法直观展示结构的应力、变形等信息。

为了克服上述问题,建议在进行拼装结构分析时,尽量使用更新版本的PKPM软件,如PKPM2024版或更高版本。

这些更新版本的软件在算法、计算能力和结果展示方面都有较大的改进和提升。

此外,使用其他专业的结构分析软件也是一个不错的选择,如ANSYS、ABAQUS等。

satwe软件计算结果分析

satwe软件计算结果分析

SATWE软件计算结果分析一、位移比、层间位移比控制规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架1/550框架-剪力墙,框架-核心筒 1/800筒中筒,剪力墙 1/1000框支层 1/1000名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。

(mm)Ave-(X)、Ave-(Y)----X、Y平均位移。

(mm)Max-Dx ,Max-Dy : X,Y方向的最大层间位移Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。

PKPM如何根据SATWE计算结果配筋

PKPM如何根据SATWE计算结果配筋

PKPM如何根据SATWE计算结果配筋PKPM(结构设计软件)可以根据SATWE(静载试验计算系统)的结果进行配筋设计。

以下是一个关于如何使用PKPM根据SATWE计算结果进行配筋的详细说明。

1.静载试验计算系统(SATWE)的计算结果SATWE是一种在梁柱结构上进行施工前的静载试验的计算系统。

它通过施加一定的静载荷载来测定试件的抗力和变形能力,并计算出结构的刚度、强度等参数。

其中包括梁柱构件的应变、应力、弯矩、剪力等数据。

2.PKPM的配筋设计PKPM是一种常用的结构设计软件,它能够根据结构的受力分析和设计要求,进行钢筋的配筋计算和设计。

配筋设计的目的是确保结构在承受设计荷载时具有足够的强度和刚度。

3.输入SATWE计算结果在PKPM中,可以将SATWE计算得到的梁柱构件的荷载、应变、应力、弯矩、剪力等数据输入到软件中。

这些数据将作为配筋设计的基础。

4.确定设计要求和参数在进行配筋设计之前,需要确定设计要求和参数,如允许应力、构件尺寸、混凝土和钢筋的性能参数等。

这些参数将影响配筋的计算和选择。

5.进行配筋计算PKPM根据输入的SATWE计算结果和设计要求参数,进行配筋计算。

根据结构的受力情况和荷载要求,计算得出满足安全和强度要求的钢筋配筋方案。

配筋计算包括梁柱的弯矩配筋、剪力配筋、受力箍筋等。

6.结果分析和优化配筋计算完成后,可以分析计算结果,对配筋方案进行评估和优化。

根据设计要求和实际情况,可以对钢筋的直径、数量、位置等进行调整和优化,以提高结构的性能和经济性。

7.输出配筋结果最后,PKPM可以输出配筋计算结果,生成图纸或报告。

这些结果包括钢筋的布置图、加强钢筋数量和尺寸、构件截面图等。

这些结果将作为施工的基础和参考,确保结构设计的合理性和施工的可行性。

总结:PKPM可以根据SATWE计算结果进行配筋设计。

通过输入SATWE计算结果和设计要求参数,PKPM进行配筋计算,并分析和优化配筋方案。

PKPM-SATWE输出结果的合理性判断与调整

PKPM-SATWE输出结果的合理性判断与调整

7 输出结果的合理性判断与调整目前用于高层建筑结构分析的软件种类繁多,不同软件往往会导致不同的计算结果。

因此设计人员应对程序的适用范围、技术条件等全面了解。

在计算机辅助设计时,由于程序与结构某处实际情况不符,或人工输入有误,或软件本身有缺陷均会导致错误的计算结果,因而要求设计人必须对这些结果从力学概念和工程经验等方面加以认真分析对比、慎重校核,确认其合理性和可靠性,方可用于工程设计。

分析判断的内容一般包括:(1)结构整体性能方面,如结构自振周期和振型形态、结构整体位移和位移形态、楼层剪力、刚度等是否超限,合理。

(2)局部超限,主要是构件配筋超筋和截面尺寸超应力控制等情况。

对受力复杂的构件(如异型、转换、越层、悬挑和有特殊荷载的构件),其内力和应力分布是否与力学概念、工程经验一致等。

结构整体性能的超限处理,一般需要调整结构布置,局部超限的处理则需要通过调整构件材料和截面尺寸来实现。

4.7.1 周期周期输出结果文件(WZQ.OUT)中给出了振型号及其对应的自振周期、振动方向角、平动系数和扭转系数。

对周期的合理性分析主要从以下三方面来考虑:(A)基本自振周期的大小按正常的设计,一般高层建筑结构的基本自振周期大概在下列范围内:框架结构:T1=(0.08~0.10)n;框架-剪力墙和框架-核心筒结构:T1=(0.06~0.08)n;筒中筒和剪力墙结构:T1=(0.05~0.06)n,式中n为结构层数。

(B)第一周期是平动振动周期根据《高规》的规定,高层建筑结构必须考虑扭转的影响。

一个周期是平动振动周期还是扭转振动周期,可以通过扭转系数来判定。

若扭转系数等于1,则说明该周期为纯扭转振动周期;若平动系数等于1,则说明该周期为纯平动振动周期,其振动方向角为α(与x方向的夹角)。

α=0°时,则为x方向的平动;α=90°时,则为y方向的平动;0°<α<90°时,为沿方向角α 的空间振动。

经典SATWE结果分析

经典SATWE结果分析
4)高规的条规定,底部大空间剪力墙结构,转换层上部结 构与下部结构的侧向刚度,应符合高规附录E的规定: E.0.1) 底部大空间为一层的部分框支剪力墙结构,可近似采 用转换层上、下层结构等效刚度比γ表示转换层上、下层结
构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应
大于2。
E.0.2) 底部大空间层数大于一层时,其转换层上部框架-剪力墙结构的与底部大空 间层相同或相近高度的部分的等效侧向刚度与转换层下部的框架-剪力墙结构的等 效侧向刚度比γe宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。
可能对结构具有更大的破坏作用,但采用振型分解法时尚无法对此做出较准确
的计算。因此出于安全考虑,规范规定了各楼层水平地震剪力的最小值。该值
如果不满足要求,则说明该结构有可能出现比较明显的薄弱部位。
济南旗云科技发展有限公司
张少宾
0531-8595 3455 PKPM专业服务机构
周期、地震力与振型输出文件 (侧刚分析方法)
振型号 1 2 3 4 5 6
周期 转角 0.4665 128.67 0.4351 19.25 0.4262 104.29 0.1631 119.98 0.1608 27.03 0.1494 54.48
平动系数 (X+Y) 扭转系数 0.25 ( 0.10+0.15 ) 0.75 0.95 ( 0.85+0.11 ) 0.05 0.89 ( 0.05+0.84 ) 0.11 0.83 ( 0.21+0.62 ) 0.17 0.98 ( 0.78+0.20 ) 0.02 0.00 ( 0.00+0.00 ) 1.00
2) 通常周期最长的扭转振型对应的就是第一扭转周期Tt,周期 最长的平动振型对应的就是第一平动周期T1

SATWE软件在结构计算中的运用分析

SATWE软件在结构计算中的运用分析

1前 言 计算软 件是现在 设计人 员经常使 用到 的工具, 它帮助 设计人 员从繁琐 的计 算过程 中解 脱 出来 。但是 设计 人 员必须 知道 程序 只 能起 到设 计工 具 的作用 , 并不 能代替 设计 , 以就 需要 我们 的 结构设 计人 员充 分 的理解 程序 的适 用 范 所 围、条 件和 校 对结 果 的合 理性 、可靠 性 。在设 计程 序 中 有很 多 设计 参数 需 要设计 人 自己确定 , 首先就 是要让 设计 人员真 正 的掌握 工程 的设计 过程, 能够 尽可 能的 控制 设 计过 程 。其 次就 是要 把 一些 关 键 的责 任 交 由设计 人 员来 担 任 , 《 层建筑 混 凝土 结构 技术 规程 》 的 5 1 1 如 高 . . 6条要 求 “ 结构 分析 软 对 件 的计 算结果 , 进行 分析 结果判 断, 应 确认 其合 理 、有 效后方 可作 为工程 设 计 的依据 ” K M是我 们 设计人 员 现在 广 泛应 用 的计算 软 件 。其 中的 S T E 。P P AW 是应现 代 多、高 层建筑 发 展要 求而 研制 的 空间 结合 结构 有 限于元 分析 软件 。 现在 我就 谈谈 自己在使 用 中对 S T E的一 些 体会 。 AW 2sA WE的特 点 T 1 模型 化误 差 小 、分 析精 度 高 2 计 算速 度 快 。3 强 大 的后 处理 功 ) ) ) 能 。 3S WE AT 进行 结构 计 算的 要 点 3 1接 P G D M A 生成 S T E 据 AW 数 结构计 算 中, P C D 中建立 结构模 型 的数据 后, S T E 在 MA 在 A W 中还需要 对这 些 数据 进行分 析和 补充, 设计 时需考 虑 以下几 点 : 1 施加 荷载 方式 的选择 。 由于恒载 的特殊性 , A W 软件 将 施加 荷载 的 ) ST E 方 式 分 为 3 种 : 不 计 算恒 活 荷 载 … ‘ 次 性 加 载 ”和 “ 拟 施 工 加 载 ” “ 一 模 。 其中 “模 拟施 工 加 载 l ”方式 较好 地模 拟 了在 钢 筋混 凝 土结 构施 工 过程 中, 层加 载, 逐 逐层 找 平 的过程 :模 拟 施工 加 载 2”是将 竖 向杆件 的刚度 放 “ 大1 0倍后 再做施 工模 拟 1 其计 算仅 对基础 起 作用 。这样 做将使 得 柱和墙 上 , 分得 的轴 力 比较 均匀 , 近手 算结果 , 接 传给基 础 的荷载 更为合 理 。所 以高 层建 筑 一般 选择 “ 模拟 施 工加 载 1 , ” 高层 框 剪基 础 宜 按 “ 拟施 工 加载 2” 模 ,多 层 建 筑 一 般 选 择 “一 次 性 加 载 ” 。 2 振 型 的数量 。振 型数 的多 少与结 构层 数及 结构 形式 有关 , ) 应保证 振 型 参 与质量 系数 不小 于总质 量 的 9 。对 于规 则 结构, 0 振型数 一般 取 3 , ~5 当 考虑 耦联 时取 9 1 : ~ 5 对于 B 高度 的高层 建筑 结构和 复 杂高层 建筑 结构 的振 级 型数 不应 少于 1 对 于多塔 结构 , 型数 不应 小 于 9×塔数 。但 应该 特别 强 5: 振 调, 振型 数不 是取 得越 多越 好 , 不能超 过 结构 固 有振 型 的总数 。 它 3 建 筑设 计时应 考虑 抗震 的要 求, ) 不应采 用严 重不 规则 的设 计方 案 。体 型复 杂 、平立 面不规 则 的结构, 在适 当部位 设置 防震缝 , 可 或调整 平 面形状 和 尺寸 , 强构造 措施 。不规则 的建 筑在 计算 时采用 的是 空间结 构计 算模 型, 加 并 需进 行 薄弱层 验 算 。这在 S T E信息 输入 时 都要 引起 注 意 。 A W 4 在 调整信 息 中, ) 有几 个数 据 的取值 是需要 注 意的 。考虑 到钢 筋混凝 土 框架梁 在竖 向荷载 作用下 的塑性 内力 重分布 , 以适 当减 小支座 负弯 矩, 可 相应 增 大跨 中正 弯矩 , 使梁 上下 配筋 均匀 些 。装配整 体 式框 架梁取 0 7 8 现 . ~0 , 浇 框架 梁取 0 8~O.9 . 。另 一个 跟梁 弯矩 有 关系 的信 息 是 “ 设 计弯 矩 增 梁 大 系数 ’取值 为 10 . , 一般 都取 10 是 因为 已考 虑 了活荷 载 的不 利布 . ~1 2但 ., 置 。“ 中梁 刚 度增 大系 数 ”的取 值 要根 据梁 高 和楼 板 的 厚度 比较 来确 定 , 现 浇 楼板 取值 1 3 . ~2 0 一般 取 2 ., .0 。 3 2 设计 参数 的合 理选取 . 1 抗震 等 级 的确 定 、 钢筋混 凝土 房屋应 根据 烈度 、结构类 型和 房屋高 度 的不同分 别< 规> . 抗 6 1 2条或 < . 高规 > . 4 8条确 定本 工程 的抗 震等 级 。但需要 注 意 以下 几 点 : (1)上 述 抗 震 等 级 是 “丙 ” 类 建 筑 ,如 果 是 “甲 ” 乙 ” 丁 ” 、“ 、“ 类 建筑 则 需按 规 范要 求 对抗 震 等级 进 行调 整 。 () 2 接近 或等 于分 界高度 时, 应结 合房屋 不规 则程度 及场 地 、 基条件 慎 地 重确定抗震等级。 (的抗 震墙 等 级直 接按 < 规> 抗 6.1 .2条或< 高规 > .8条 规定 抗震 等级 提 高一 级采 用,已为特级 4 时可不调 整。 () 4 短肢 剪力 墙结 构 的抗震 等 级也 应按 < 规> .1 抗 6 .2条或< 高规 > 4. 8 查的抗 震等 级提 高一 级采 用但注 意对 多层 短肢 剪力 墙结 构可 不提 高 。 条

SATWE软件计算结果分析与调整过程

SATWE软件计算结果分析与调整过程

SATWE软件计算结果分析与调整规范条文:高规的4.3.5新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

Ratio-(X)、Ratio-(Y)---- X、Y 向最大位移与平均位移的比值(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

Ratio-Dx,Ratio-Dy : 最大层间位移与平均层间位移的比值其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。

(mm)Ave-(X)、Ave-(Y)----X、Y平均位移。

(mm)Max-Dx ,Max-Dy : X,Y方向的最大层间位移Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。

Ratio-Dx,Ratio-Dy : 最大层间位移与平均层间位移的比值即要求:Ratio-(X)= Max-(X)/ Ave-(X) 最好<1.2 不能超过1.5Ratio-Dx= Max-Dx/ Ave-Dx 最好<1.2 不能超过1.5Y方向相同电算结果的判别与调整要点:1.若位移比(层间位移比)超过1.2,则需要在总信息参数设置中考虑双向地震作用;2.验算位移比需要考虑偶然偏心作用,验算层间位移角则不需要考虑偶然偏心;3.验算位移比应选择强制刚性楼板假定,但当凸凹不规则或楼板局部不连续时,应采用符合楼板平面内实际刚度变化的计算模型,当平面不对称时尚应计及扭转影响4.最大层间位移、位移比是在刚性楼板假设下的控制参数。

结构设计pkpm软件SATWE计算结果分析

结构设计pkpm软件SATWE计算结果分析

结构设计pkpm软件SATWE计算结果分析SATWE软件计算结果分析一、位移比、层间位移比控制规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架 1/550框架-剪力墙,框架-核心筒 1/800筒中筒,剪力墙 1/1000框支层 1/1000名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。

(mm)Ave-(X)、Ave-(Y)----X、Y平均位移。

(mm)Max-Dx ,Max-Dy : X,Y方向的最大层间位移Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。

SATWE剪力墙配筋结果查看总结

SATWE剪力墙配筋结果查看总结

剪力墙配筋SATWE查看总结在参考了网上各位前辈网友的方法后,总结了SATWE中剪力墙配筋的查看方法。

SATWE完成“结构内力、配筋计算”后,点击进入SATWE“分析结果图形和文本显示”。

现以一幢10层框剪结构为例,说明SATWE中剪力墙配筋的三种方法,其中,结构抗震等级二级。

第一种方法:点击“图形文件输出”第2项“混凝土构件配筋及钢构件验算见图”,如图1所示。

图 1图2点开后,以一段L形剪力墙为例,如图2所示,现称该墙为L1墙。

此种方法SATWE将每段剪力墙看做单独的直线墙柱,直线墙段的上方(左方)纯数字表示直线段单侧端部暗柱的计算配筋量,比如,12和11,分别表示左侧竖向直线墙段单侧的暗柱计算配筋量,单位cm2,而直线墙段下方的以H开头的数字则表示墙身水平分布筋间距内的水平分布筋配筋值。

比如,此处墙身水平分布筋间距200mm,则此处的H1.3表示该墙身间距200mm内水平分布筋的面积为1.3 cm2,即为130mm2。

图3图3是此段墙的轴压比,可知,其轴压比>0.3,按照规范要求配置约束边缘构件。

所以,其阴影部分配筋面积为:12*2+11=35 cm2=3500 mm2此处12*2的意思是:竖向的墙段总长为900mm(从轴线交点算起),此处900mm全长设为约束边缘构件,而12 cm2只是暗柱一段的配筋量,所以此竖向墙段的配筋总量为12*2,加上下面横向墙段的坐侧暗柱配筋量11 cm2,共计35 cm2。

本约束边缘构件水平墙段lc=0.15*4500=675mm,ls=300mm,竖向墙段lt=800(全长)规范要求,二级抗震的约束边缘构件的阴影部分配筋率不小于 1.0%,且不小于6A16,下面验算:配筋率验算:配筋率验算:?=3500/(200*(1000+300))=1.35%>1.0%,且:6A16面积为1206mm2,所以,选配3500mm2合理。

注意:此种方法文本输出文件为WPJ*.OUT,详见PKPM SATWE V2.1版用户手册P119,P126。

SATWE软件计算结果分析

SATWE软件计算结果分析
ห้องสมุดไป่ตู้
有效质量系数90% 有效质量系数90%
《高规》5.1.13-2条规定,抗震计算时,宜考虑平扭 高规》5.1.13藕联计算结构的扭转效应,振型数不宜小于15,对多塔结 藕联计算结构的扭转效应,振型数不宜小于15,对多塔结 构的振型数不应小于塔楼的9 构的振型数不应小于塔楼的9倍,且计算振型数应使振型 参与质量不小于总质量的90% 参与质量不小于总质量的90% 振型的数量,取值太小不能正确反映模型应当考虑的 振型数量,使计算结果失真;取值太大,浪费时间;同时 最大值不能超过结构的总自由度数(对采用刚性板假定的 单塔结构,其振型不得超过结构层数的3 单塔结构,其振型不得超过结构层数的3倍 )。
风荷载, 风荷载,双向地震 作用( 作用(不考虑偶然 偏心) 偏心)
=== 工况 4 === Y 双向地震作用下的楼层最大位移 Floor Tower Jmax Max-(Y) Ave-(Y) Ratio-(Y) MaxAveRatioh JmaxD Max-Dy MaxAve-Dy Ratio-Dy Max-Dy/h DyR/Dy AveRatioMax7 1 1029 10.10 9.90 1.02 3600. 1030 0.85 0.82 1.03 1/4248. 42.9% 0.83 6 1 1008 9.48 9.30 1.02 3600. 1008 1.22 1.18 1.03 1/2957. 15.8% 1.19 5 1 897 8.43 8.28 1.02 3600. 897 1.40 1.37 1.02 1/2571. 28.8% 1.21 4 1 717 7.14 7.01 1.02 3600. 717 1.80 1.77 1.02 1/2004. 17.9% 1.31 3 1 542 5.40 5.30 1.02 3600. 547 2.12 2.09 1.02 1/1699. 2.3% 1.21 2 1 367 3.30 3.23 1.02 3600. 367 2.17 2.14 1.02 1/1656. 48.3% 1.02 1 1 197 1.13 1.10 1.03 3600. 197 1.13 1.10 1.03 1/3194. 99.0% 0.46 Y方向最大值层间位移角: 方向最大值层间位移角: 1/1656.

SATWE 计算结果 算配筋

SATWE 计算结果 算配筋

砼梁和劲性梁其中:As1、As2、As3为梁上部(负弯矩)左支座、跨中、右支座的配筋面积(cm2);Asm1、Asm2、Asm3表示梁下部(负弯矩)左支座、跨中、右支座的配筋面积(cm2);Asv表示梁在Sb范围内的箍筋面积(cm2),取抗剪箍筋Asv与剪扭箍筋Astv的大值;Ast表示梁受扭所需要的纵筋面积(cm2);Ast1表示梁受扭所需要周边箍筋的单根钢筋的面积(cm2)。

G,TV分别为箍筋和剪扭配筋标志。

梁配筋计算说明:对于配筋率大于1%的截面,程序自动按双排筋计算;此时,保护层取60mm;当按双排筋计算还超限时,程序自动考虑压筋作用,按双筋方式配筋;各截面的箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配箍率要求控制。

若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使用,如果非加密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算;若输入的箍筋间距为非加密区间距,则非加密区的箍筋计算结果可直接参考使用,如果加密区与非加密区的箍筋间距不同,则应按加密区箍筋间距对计算结果进行换算。

钢梁其中:R1表示钢梁正应力与强度设计值的比值F1/f;R2表示钢梁整体稳定应力与强度设计值的比值F2/f;R3表示钢梁剪应力与强度设计值的比值F3/fv。

其中F1,F2,F3 的具体含义:F1 = M/(Gb Wnb)F2 = M/(Fb Wb)F3(跨中)= V S/(I tw),F3(支座)= V/Awn矩形混凝土柱或劲性混凝土柱在左上角标注:(Uc)、在柱中心标柱:Asv、在下边标注:Asx、在右边标注:Asy、引出线标注:As_corner其中:As_corner为柱一根角筋的面积,采用双偏压计算时,角筋面积不应小于此值,采用单偏压计算时,角筋面积可不受此值控制(cm2)。

Asx,Asy分别为该柱B边和H边的单边配筋,包括角筋(cm2)。

Asv表示柱在Sc范围内的箍筋,它是取柱斜截面抗剪箍筋和节点抗剪箍筋的大值(cm2)。

结构设计pkpm软件SATWE计算结果分析报告

结构设计pkpm软件SATWE计算结果分析报告

学习笔记PMCAD中--进入建筑模型与荷载输入:板荷:点《楼面恒载》会有对话框出来,选上自动计算现浇楼板自重,然后在恒载和活载项输入数值即可,一般恒载要看楼面的做法,比如有抹灰,找平,瓷砖,吊顶什么的,在民用建筑中可以输2.0,活载就是查荷载规范。

梁间荷载:PKPM中梁的自重是自己导入的,所以梁间荷载是指梁上有隔墙或者幕墙或者女儿墙之内在建模时不建的构建,把他们折算成均布荷载就行。

比如,一根梁上有隔墙,墙厚200mm,层高3000mm,梁高500mm,如果隔墙自重为11KN/m3,那么恒载为11*(3000-500)*200+墙上抹灰的自重什么的即可。

结构设计pkpm软件SATWE计算结果分析SATWE软件计算结果分析一、位移比、层间位移比控制规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架1/550框架-剪力墙,框架-核心筒1/800筒中筒,剪力墙1/1000框支层1/1000 名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

SATWE计算结果的分析与调整

SATWE计算结果的分析与调整

SATWE计算结果的分析与调整引言:高层建筑结构空间有限元分析软件(SATWE)是中国建筑科学研究院PKPMCAD工程部专门为高层结构分析与设计而开发的基于壳元理论的三维组合结构有限元分析软件。

根据SATWE电算结果文件,可以方便快捷的对《建筑抗震设计规范GB50011-2001(2008版)》(以下简称为抗规);《高层建筑混凝土结构技术规程JGJ3-2002》(以下简称为高规)中规定一些重要参数的限值,如位移、周期、轴压比、层刚度比、剪重比、刚重比、层间受剪承载力比等的限值进行判读、分析、调整与控制。

本文对电算结果中最重要的三个文本输出文件和一个图形输出文件,逐条进行分析。

一、结构设计信息WMASS.OUT本文本信息需要分析与调整的主要包括刚度比、刚重比和层间受剪承载力之比。

1.1刚度比的控制1.1.1规范条文及其控制意义见《高规》4.4.2、5.1.14条及《抗规》3.4.2条。

控制刚度比主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层。

1.1.2电算结果判读分析剪切刚度主要用于底部大空间为一层的转换结构(例如一层框支)及地下室嵌固条件的判定,判断地下室嵌固时,依据《高规》5.3.7,地下室其上一层的计算信息中Ratx,Raty 结果不应大于0.5。

剪弯刚度主要用于底部大空间为多层的转换结构(例如二层以上框支);通常工程都采用地震剪力与地震层间位移比。

在各层刚心、偏心率、相邻层侧移刚度比等计算信息中Ratx1,Raty1结果大于等于1。

即满足规范要求。

1.1.3不满足时的调整方法应适当加强本层墙柱、梁的刚度,适当削弱上部相关楼层墙柱、梁的刚度。

如实在不便调整,SATWE会自动将不满足要求楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。

1.2刚重比的控制1.2.1规范条文及其控制意义见《高规》5.4.1及5.4.4条。

控制刚重比主要为了控制结构的稳定性,避免结构在风载或地震力的作用下整体失稳、滑移、倾覆。

SATWE计算结果分析查看及规范依据

SATWE计算结果分析查看及规范依据
SATWE《分析结果图形和文本分析》指标控制规范依据(主要针对高层建筑)
序号 1 指标 平均重度 规范要求 目前国内钢筋混凝土结构高层建筑由恒载和活载引起的单位面积重力, 2 2 框架与框架-剪力墙结构约为 12kN/m ~14kN/m , 2 2 剪力墙和筒体结构约为 13kN/m ~16kN/m , 2 2 其中活荷载部分约为 2kN/m ~3kN/m ,只占全部重力的 15%~20%,活载不利分布的影响较小。 楼层与其相邻上层的侧向刚度比 γ1,可按式(3.5.2—1)计算 2 刚度比 框架结构 本层与相邻上层的比值不宜小于 0.7; 与相邻上部三层刚度平均值的比值不宜小于 0.8。 JGJ3-2010《高规》P15 第 3.5.2 条 控制结构竖向规则性。 中部及 底部偏上 规范出处 JGJ3-2010《高规》P251 第 5.1.8 条 条文说明 软件位置 各层的质量: 上部偏下 平均重度: 中部偏上
7
位移比
上部
3.结构位移 (WDISP.OUT)
B 级高度、混合结构及复杂结构 不宜大于该楼层平均值的 1.2 倍,不应大 1.4 倍 框架-剪力墙、框架-核心筒、板柱-剪力墙结构 筒中筒、剪力墙结构 除框架结构外的转换层 9 轴压比 查表
8
位移角
9.水平力作用 3.结构位移 下结构各层平 (WDISP.OUT) 均侧移简图 上部 3.梁弹性挠度、柱轴压比、 墙边缘构件简图
1.结构设计信息 (WMASS.OUT)
JGJ3-2010《高规》P46 第 5.4.1 条 JGJ3-2010《高规》P49 第 5.4.4 条 JGJ3-2010《高规》P15 第 3.5.3 条 JGJ3-2010《高规》P12 第 3.4.5 条
底部偏上
底部
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原文地址:SATWE软件计算结果分析(一)作者:秦东一、位移比、层间位移比控制规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。

(mm)Ave-(X)、Ave-(Y)----X、Y平均位移。

(mm)Max-Dx ,Max-Dy : X,Y方向的最大层间位移Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。

Ratio-Dx,Ratio-Dy : 最大层间位移与平均层间位移的比值即要求:Ratio-(X)= Max-(X)/ Ave-(X) 最好<1.2 不能超过1.5Ratio-Dx= Max-Dx/ Ave-Dx 最好<1.2 不能超过1.5Y方向相同电算结果的判别与调整要点:1.若位移比(层间位移比)超过1.2,则需要在总信息参数设置中考虑双向地震作用;2.验算位移比需要考虑偶然偏心作用,验算层间位移角则不需要考虑偶然偏心;3.验算位移比应选择强制刚性楼板假定,但当凸凹不规则或楼板局部不连续时,应采用符合楼板平面内实际刚度变化的计算模型,当平面不对称时尚应计及扭转影响4.最大层间位移、位移比是在刚性楼板假设下的控制参数。

构件设计与位移信息不是在同一条件下的结果(即构件设计可以采用弹性楼板计算,而位移计算必须在刚性楼板假设下获得),故可先采用刚性楼板算出位移,而后采用弹性楼板进行构件分析。

5.因为高层建筑在水平力作用下,几乎都会产生扭转,故楼层最大位移一般都发生在结构单元的边角部位。

二、周期比控制规范条文:新高规的4.3.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1 之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。

(抗归中没有明确提出该概念,所以多层时该控制指标可以适当放松,但一般不大于1.0。

)名词释义:周期比:即结构扭转为主的第一自振周期(也称第一扭振周期)Tt与平动为主的第一自振周期(也称第一侧振周期)T1的比值。

周期比主要控制结构扭转效应,减小扭转对结构产生的不利影响,使结构的抗扭刚度不能太弱。

因为当两者接近时,由于振动藕连的影响,结构的扭转效应将明显增大。

对于通常的规则单塔楼结构,如下验算周期比:1)根据各振型的平动系数大于0.5,还是扭转系数大于0.5,区分出各振型是扭转振型还是平动振型2)通常周期最长的扭转振型对应的就是第一扭转周期Tt,周期最长的平动振型对应的就是第一平动周期T13)对照“结构整体空间振动简图”,考察第一扭转/平动周期是否引起整体振动,如果仅是局部振动,不是第一扭转/平动周期。

再考察下一个次长周期。

4)考察第一平动周期的基底剪力比是否为最大5)计算Tt/T1,看是否超过0.9 (0.85)多塔结构周期比:对于多塔楼结构,不能直接按上面的方法验算,而应该将多塔结构切分成多个单塔,按多个单塔结构分别计算。

周期、地震力与振型输出文件(WZQ.OUT)考虑扭转耦联时的振动周期(秒)、X,Y 方向的平动系数、扭转系数振型号周期转角平动系数 (X+Y) 扭转系数1 0.6306 110.18 0.99 ( 0.12+0.88 ) 0.012 0.6144 21.19 0.95 ( 0.82+0.12 ) 0.053 0.4248 2.39 0.06 ( 0.06+0.00 ) 0.944 0.1876 174.52 0.96 ( 0.95+0.01 ) 0.045 0.1718 85.00 1.00 ( 0.01+0.99 ) 0.006 0.1355 5.03 0.05 ( 0.05+0.00 ) 0.957 0.0994 177.15 0.97 ( 0.97+0.00 ) 0.038 0.0849 87.63 1.00 ( 0.00+1.00 ) 0.009 0.0752 12.73 0.03 ( 0.03+0.00 ) 0.97X 方向的有效质量系数: 97.72%Y 方向的有效质量系数: 96.71%即要求:0.4248/0.6306=0.67 <0.997.72% 96.71% >90% 说明无需再增加振型计算电算结果的判别与调整要点:1. 对于刚度均匀的结构,在考虑扭转耦连计算时,一般来说前两个或几个振型为其主振型,但对于刚度不均匀的复杂结构,上述规律不一定存在。

总之在高层结构设计中,使得扭转振型不应靠前,以减小震害。

SATWE程序中给出了各振型对基底剪力贡献比例的计算功能,通过参数Ratio(振型的基底剪力占总基底剪力的百分比)可以判断出那个振型是X方向或Y方向的主振型,并可查看以及每个振型对基底剪力的贡献大小。

2. 振型分解反应谱法分析计算周期,地震力时,还应注意两个问题,即计算模型的选择与振型数的确定。

一般来说,当全楼作刚性楼板假定后,计算时宜选择“侧刚模型”进行计算。

而当结构定义有弹性楼板时则应选择“总刚模型”进行计算较为合理。

至于振型数的确定,应按上述[高规]5.1.13条执行,振型数是否足够,应以计算振型数使振型参与质量不小于总质量的90%作为唯一的条件进行判别。

([耦联]取3的倍数,且≤3倍层数,[非耦联]取≤层数,直到参与计算振型的[有效质量系数]≥90%)3. 如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。

即周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性。

考虑周期比限制以后,以前看来规整的结构平面,从新规范的角度来看,可能成为“平面不规则结构”。

一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。

周期比不满足要求,说明结构的扭转刚度相对于侧移刚度较小,总的调整原则是要加强外圈结构刚度、增设抗震墙、增加外围连梁的高度、削弱内筒的刚度。

4. 扭转周期控制及调整难度较大,要查出问题关键所在,采取相应措施,才能有效解决问题。

a)扭转周期大小与刚心和形心的偏心距大小无关,只与楼层抗扭刚度有关;b)剪力墙全部按照同一主轴两向正交布置时,较易满足;周边墙与核心筒墙成斜交布置时要注意检查是否满足;c)当不满足周期限制时,若层位移角控制潜力较大,宜减小结构竖向构件刚度,增大平动周期;d)当不满足周期限制时,且层位移角控制潜力不大,应检查是否存在扭转刚度特别小的层,若存在应加强该层的抗扭刚度;e)当不满足扭转周期限制,且层位移角控制潜力不大,各层抗扭刚度无突变,说明核心筒平面尺度与结构总高度之比偏小,应加大核心筒平面尺寸或加大核心筒外墙厚,增大核心筒的抗扭刚度。

f)当计算中发现扭转为第一振型,应设法在建筑物周围布置剪力墙,不应采取只通过加大中部剪力墙的刚度措施来调整结构的抗扭刚度。

三、层刚度比控制规范条文:1.抗震规范附录E2.1规定,筒体结构转换层上下层的侧向刚度比不宜大于2;2.高规的4.4.2条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80%;3.高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍;4.高规的10.2.3条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录E的规定:E.0.1) 底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2。

E.0.2) 底部大空间层数大于一层时,其转换层上部框架-剪力墙结构的与底部大空间层相同或相近高度的部分的等效侧向刚度与转换层下部的框架-剪力墙结构的等效侧向刚度比γe宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。

名词释义:刚度比指结构竖向不同楼层的侧向刚度的比值(也称层刚度比),该值主要为了控制高层结构的竖向规则性,以免竖向刚度突变,形成薄弱层。

对于地下室结构顶板能否作为嵌固端,转换层上、下结构刚度能否满足要求,及薄弱层的判断,均以层刚度比作为依据。

[抗规]与[高规]提供有三种方法计算层刚度,即剪切刚度(Ki=GiAi/hi)、剪弯刚度(Ki=Vi/Δi)、地震剪力与地震层间位移的比值(Ki=Qi/Δui)。

通常选择第三种算法。

刚度的正确理解应为产生一个单位位移所需要的力建筑结构的总信息(WMASS.OUT)=============================================================== 各层刚心、偏心率、相邻层侧移刚度比等计算信息……Ratx1,Raty1 : X,Y 方向本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均侧移刚度80%的比值中之较小者……==============================================================即要求:Ratx1、Raty1 >1电算结果的判别与调整要点:1. 规范对结构层刚度比和位移比的控制一样,也要求在刚性楼板假定条件下计算。

对于有弹性板或板厚为零的工程,应计算两次,在刚性楼板假定条件下计算层刚度比并找出薄弱层,然后在真实条件下完成其它结构计算。

相关文档
最新文档