反激式开关电源的设计方法
反激式开关电源设计详解
反激式开关电源设计详解一、工作原理1.开关管控制:反激式开关电源中,开关管起到了关键的作用。
当输入电压施加在开关管上时,开关管处于导通状态,此时电流流经变压器和输出电路,能量存储在变压器核心中。
当输入电压施加在开关管上时,开关管处于截止状态,此时能量释放,通过一对二极管和电容器形成输出脉冲电流。
2.变压器作用:反激式开关电源中的变压器主要用于将输入电压转换为所需的输出电压。
在导通状态下,输入电压施加在变压器的一侧,能量存储在变压器的磁场中。
在截止状态下,变压器的磁场崩溃,能量释放到输出电路中。
3.输出电路过滤:输出电流通过一对二极管和电容器形成脉冲电流。
为了使输出电流更加稳定,需要通过电容器对输出电流进行滤波,降低脉冲幅度,使输出电压更加平稳。
二、基本结构1.输入滤波电路:由于输入电源通常含有较多的噪声和干扰,为了保障开关电源的正常工作,需要在输入端添加一个滤波电路,通过滤波电容和电感将输入电压的尖峰和噪声滤除。
2.开关控制电路:开关控制电路用于对开关管进行控制,使其在合适的时机打开和关闭。
常见的控制方式有定时控制和反馈控制两种。
3.开关管:开关管在反激式开关电源中起到了关键的作用。
常见的开关管有MOS管、IGBT管等,其特性包括导通损耗、截止损耗和开关速度等。
4.变压器:变压器用于将输入电压变换为所需的输出电压。
同时,变压器还能起到隔离输入电源和输出负载的作用,保护负载。
5.输出整流滤波电路:输出整流滤波电路用于对输出电流进行整流和滤波,使输出电压更加稳定。
三、常见设计方法1.脉冲宽度调制(PWM)控制:PWM是一种常用的反激式开关电源控制方法,通过控制开关管的导通时间来调节输出电压和电流。
PWM控制能够实现较高的效率和较低的输出波纹,但需要一定的控制电路。
2.变压器匹配设计:在设计反激式开关电源时,需要合理选择变压器的匝数比,以实现所需的输入输出电压转换。
同时,还需要考虑变压器的大小和功耗。
反激式开关电源(flyback)环路设计基础
反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。
它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。
本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。
一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。
其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。
1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。
在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。
通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。
二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。
2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。
反激式开关电源变压器设计步骤(重要)
反激式开关电源变压器设计反激式变压器是反激式开关电源的核心,它决定了反激式变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。
这样可以让其发热量尽量小,对器件的磨损也尽量小。
同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源性能会有很大的下降,如损耗会加大,最大输出功率会下降.设计变压器,就是要先选定一个工作点,在这个点就是最低的交流输入电压,对应于最大的输出功率。
第一步,选定原边感应电压V OR 。
这个值是有自己来设定的,这个值就决定了电源的占空比.可能朋友们不理解什么是原边感应电压。
我们分析一个工作原理图。
当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性上升:I 升=Vs*Ton/L 。
这三项分别是原边输入电压,开关开通时间和原边电感量。
在开关管关断的时候,原边电感放电,电感电流会下降,此时有下降了的电流:I 降=V OR *T OFF /L 。
这三项分别是原边感应电压(即放电电压)、开关管管段时间和电感量。
经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以有:Vs *T ON /L=V OR *T OFF /L 。
即上升了的等于下降了的。
上式中用D 来代替T ON ,用(1-D )来代替T OFF .移项可得:D=V OR /(V OR +Vs)。
这就是最大占空比了.比如说我设计的这个变压器,我选定电感电压V OR =20V ,则Vs 为24V ,D=20/(20+24)=0。
455。
第二步,确定原边电流波形的参数原边电流波形有三个参数,平均电流,有效值电流,峰值电流,首先要知道原边电流的波形,原边电流的波形如下。
这是一个梯形波横向表示时间,总想表示电流大小,这个波形有三个值,一个是平均值I 平均,二是有效值I ,三是峰值Ip 。
首先要确定平均值I 平均:I 平均=Po/(η*Vs )。
反激式开关电源电路设计
反激式开关电源电路设计一、反激式开关电源的基本原理1.输入滤波电路:用于对输入电压进行滤波,消除噪声和干扰。
2.整流电路:将输入交流电压转换为直流电压。
3.开关变压器:通过变压器实现电压的升降。
4.开关管:通过快速开关控制电源的输出。
5.输出滤波电路:对输出电压进行滤波,减小纹波。
二、反激式开关电源的设计步骤1.确定需求:首先需要确定设计要求,包括输出电压和电流、负载稳定性要求、效率要求等。
2.选择开关管和变压器:根据需求选择合适的开关管和变压器,考虑其最大工作电流和功率损耗。
3.转换频率的选择:根据应用的具体要求,选择合适的转换频率。
较高的频率可以减小变压器的尺寸,但也会增加开关管的功耗。
4.控制电路设计:设计开关管的控制电路,包括驱动电路和保护电路,确保开关管的正常工作和保护电路的可靠性。
5.输出滤波电路设计:设计输出滤波电路,用于滤除输出电压中的高频噪声和纹波,提高稳定性和负载能力。
6.开关电路设计:设计开关电路,确保开关管的快速开关和可靠性。
7.其他辅助电路设计:如过温保护电路、过流保护电路等。
8.电路板布局和布线:根据电路设计和要求进行电路板布局和布线,提高电路的可靠性和稳定性。
9.电路仿真和调试:使用仿真软件对设计的电路进行仿真分析,并进行实际的电路调试,确保电路的可靠性和稳定性。
三、反激式开关电源设计的注意事项1.高效率设计:选择合适的元件和电路设计,减小功率损耗,提高电源的整体效率。
2.稳定性设计:考虑负载稳定性的要求,选择合适的控制策略和滤波电路,提高电源的稳定性和负载能力。
3.保护设计:考虑过温、过流、短路等保护功能的设计,保护电源和负载器件的安全。
4.电磁兼容设计:反激式开关电源中产生的高频噪声易对其他电子设备产生干扰,需要采取适当的电磁屏蔽和滤波措施。
5.安全性设计:合理设置安全保护电路和安全措施,确保电源在故障情况下能够及时切断电源,保护用户的安全。
通过以上步骤和注意事项,可以设计出一台高效、稳定、安全的反激式开关电源,满足不同应用领域的需求。
反激式开关电源变压器设计说明
2.6 计算一次绕组最大匝数Npri
Lpri 452*10-6
Npri = =
= 61.4匝 取Npri=62匝
AL 120*10-9
2.7 计算二次主绕组匝数NS1〔NS1为DC+5V绕组
Npri<V01+VD><1-Dmax> 62*<5+0.7>*<1-0.5>
Ns1=
=
= 2.78匝
Vin<min>Dmax
技术部培训教材
反激式开关电源变压器设计(2)
表二 变压器窗口利用因数
变压器情况
窗口
反激式变压器 一个二次绕组 两个或多个二次绕组 相互隔离的二次绕组 满足UL或CSA标准 满足IEC标准 法拉第屏屏蔽
1.1 1.2
1.3 1.4 1.1 1.2 1.1
用下式按变压器情况将各窗口利用因数综合起来 Knet=Ka.Kb…
技术部培训教材
反激式开关电源变压器设计(2)
变压器绕制结构如下:
0.06/3层 0.06/3层 0.06/3层 0.06/3层
偏置绕组 ½一次绕组 二次绕组 ½一次绕组
3mm
3mm 技术部培训教材
反激式开关电源变压器设计(2)
2.11 计算变压器损耗
1铜损:Pcun = NnV* MLT*Rn>In2 MLT = 2E+2C=2*25.27+2*9.35=69.24mm
5+0.7
取13匝
技术部培训教材
反激式开关电源变压器设计(2)
2.9 检查相应输出端电压误差 Vsn
δVsn%=<< = *Ns’n-Vsn>/Vsn>*100% Nsn
反激式开关电源设计方法
反激式开关电源设计方法1.工作原理反激式开关电源是一种将线性变压器替换为变压器型电感器的开关电源。
它的工作原理是通过开关管周期性的打开和关闭,将直流电源的电能经过变压器转化为需要的输出电压。
当开关管打开时,电流从电源流入变压器进行储能;当开关管关闭时,储存在变压器中的电能会通过二次侧电容器得以释放,并输出到负载上。
2.主要组成部分(1)输入滤波电路:用来消除电源输入端的干扰信号,保证稳定的输入电压。
(2)整流电路:将交流输入电压转化为直流电压,常采用整流桥整流。
(3)激励电路:用来控制开关管的导通和关闭,以实现变压器的能量转移。
(4)变压器:用来完成电能的变换和隔离,将输入端的电能转换为所需的输出电能。
(5)输出电路:包括输出电容和输出滤波电路,用来滤除开关产生的高频脉冲,以得到稳定的输出电压。
3.设计要点在进行反激式开关电源设计时(1)确定输出电压和电流需求:根据实际应用需求,确定所需的输出电压和电流,并根据负载特性选择合适的功率等级。
(2)选择合适的开关管和变压器:根据负载需求和电路参数,选择合适的开关管和变压器,以保证输出电压和效率的要求。
(3)控制开关频率和占空比:根据负载要求和电路特性,选择合适的开关频率和占空比,以保证输出电压的稳定性和整体效果。
(4)进行热设计和保护措施:由于开关管会产生较高的温度,需要进行合理的热设计,同时添加保护电路,如过流保护、过温保护等,以保证电路的安全性和可靠性。
(5)进行EMC设计和测试:由于开关电源会产生较大的电磁干扰,需要进行EMC设计和测试,以满足相关的国际标准要求。
总结:反激式开关电源是一种常用的电源设计方案,其设计方法包括确定输出需求、选择合适的器件、控制开关频率和占空比、进行热设计和保护措施,以及进行EMC设计和测试。
通过合理的设计和选择,可以实现高效率、小型化的电源方案,满足各种电子设备的需求。
(完整版)反激式开关电源的设计方法
1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。
做为设计开发、品质检验、生产测试等的依据。
2.2 设计线路图、零件选用。
2.3 PCB Layout.外形尺寸、接口定义,散热方式等。
2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。
当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
反激式开关电源变压器的设计方法
反激式开关电源变压器的设计方法反激式开关电源变压器是一种常用于电子设备中的高效率、高频率开关电源变压器。
其设计方法包括了选择合适的变压器参数、计算变压器工作状态、考虑磁芯损耗和温升等方面。
下面将详细介绍反激式开关电源变压器的设计步骤。
首先,确定设计目标和性能要求。
根据所需的输入和输出电压和电流,确定变压器的额定功率和输出功率。
同时,考虑变压器的体积限制以及可用的材料,进行适当的权衡。
第二步是选择磁芯材料。
磁芯的选择对于反激式开关电源变压器来说非常重要,因为磁芯的性能直接影响着变压器的效率和工作频率。
常见的磁芯材料包括铁氧体和软磁合金等,可以根据具体的应用需求和成本进行选择。
第三步是计算变压器的主要参数。
包括主磁链感应系数、匝数比、实际绕组电压和电流等。
根据设计目标和性能要求,以及选择的磁芯材料,可以通过一系列公式和计算来决定这些参数。
第四步是进行磁芯损耗和温升的估算。
反激式开关电源变压器在工作过程中会产生磁芯损耗和温升。
这些损耗会导致变压器的效率下降,甚至导致变压器无法正常工作。
因此,需要根据具体的磁芯材料和使用条件,进行损耗和温升的估算。
第五步是进行变压器的绕组设计。
根据变压器的参数和工作状态,设计变压器的绕组结构和匝数。
通过合理设计绕组,可以提高变压器的效率和性能。
第六步是进行变压器的线径选择和导线布局。
根据所需的电流和损耗,选择合适的线径,并进行合理的导线布局,以提高变压器的效率和散热性能。
最后一步是进行变压器的实际制造和测试。
根据设计图纸和规格要求进行变压器的实际制造,并通过测试来验证设计的正确性和性能。
总之,反激式开关电源变压器的设计是一个复杂的过程,需要考虑多个因素的综合影响。
通过合理选择磁芯材料、计算变压器参数、评估磁芯损耗和温升等步骤,可以设计出性能良好、效率高的变压器。
反激式开关电源的设计计算
反激式开关电源的设计计算首先,需要明确设计参数:1. 输入电压(Vin):反激式开关电源的输入电压一般为交流电网的标称电压,如220V或110V。
2. 输出电压(Vout):反激式开关电源的输出电压需要满足目标设备的需求,例如5V、12V等。
3. 输出功率(Pout):反激式开关电源的输出功率是根据目标设备的功率需求确定的,一般以瓦(W)为单位。
4. 开关频率(fsw):反激式开关电源的开关频率一般在10kHz到100kHz之间,根据具体需求和性能要求确定。
设计步骤如下:1.计算电流和电压波形:根据输出功率和输出电压,可以计算出输出电流:Iout = Pout / Vout。
同时,可以根据输入和输出的电压波形关系,使用变压器的变比关系计算输入电流波形。
2.选择开关元件:根据开关频率和输出功率,可以选择合适的功率场效应管(MOSFET)作为开关元件。
选择时需要考虑开关速度、导通和截止损耗等因素。
3.选择变压器:根据输入和输出电压的变比,可以选择合适的变压器。
变压器的选择需要考虑输入输出功率、开关频率、能量传输效率等因素。
4.计算电感和电容:通过计算电流波形和电压波形的变化率,可以确定所需的输入和输出电感。
同时,通过计算输出电压的纹波和电流的纹波,可以选择合适的输出电容。
5.设计控制电路:根据输入和输出电压、开关频率以及开关元件的特性,设计合适的控制电路。
常见的控制方案有可变频率、可变占空比等,需要根据具体需求确定。
6.完善保护电路:7.电路仿真和优化:通过电路仿真软件可以对设计的开关电源进行仿真,并对效果进行优化,如进一步降低纹波、提高效率等。
以上是基于反激式开关电源的设计计算的基本步骤,实际设计中还需要考虑其他因素,如电源的稳定性、EMI(电磁干扰)等。
设计计算的具体细节和参数计算可以根据具体的需求和设备要求进行调整和优化。
反激式开关电源电路设计
反激式开关电源电路设计首先,反激式开关电源的基本原理是利用开关管来开闭电源电流,从而实现电流的快速切换。
这样可以有效地提高电源的转换效率。
设计反激式开关电源的步骤如下:1.确定输出电压和电流要求:首先需要确定电源的输出电压和电流要求,这对于选取合适的电源电路和元器件非常重要。
2.确定输入电压范围:根据使用环境和应用需求,确定电源的输入电压范围。
通常情况下,反激式开关电源的输入电压范围为100V至240V。
3.选择开关管和变压器:选择合适的开关管和变压器是设计过程中的关键步骤。
开关管需要具有高效率和可靠性,变压器需要满足电源的输入输出要求。
4.设计开关电路:设计开关电路是反激式开关电源设计的核心部分。
开关电路的设计需要根据输入输出电压和电流的要求,选择合适的电感和电容元件,以及适当的反馈电路。
5.设计保护电路:设计反激式开关电源的过程中,需要考虑各种保护电路,以确保电源的安全和稳定性。
常见的保护电路包括过温保护、过压保护、过流保护等。
6.PCB布局和元件选型:进行PCB布局和元件选型是设计的最后一步。
在PCB布局中,需要考虑电源电路的稳定性和EMC(电磁兼容)的问题。
在元件选型过程中,需要考虑电压和电流的要求,以及元件的可靠性和成本。
设计完成后,需要对反激式开关电源进行测试和验证。
测试过程可以包括输入输出电压波形、效率和稳定性等方面的测试。
总之,反激式开关电源的设计需要考虑多个因素,包括输出电压和电流要求、输入电压范围、开关管和变压器的选择、开关电路和保护电路的设计、PCB布局和元件选型等。
只有综合考虑这些因素,并进行有效的测试和验证,才能设计出稳定、高效的反激式开关电源。
反激式开关电源设计详解
反激式开关电源设计详解反激式开关电源是一种常见的电力变换器,被广泛应用于电子设备和电力系统中。
它能够将输入电压转换为稳定的输出电压,并具有体积小、效率高、轻负载性能好等优点。
本文将详细介绍反激式开关电源的工作原理、基本结构和设计方法。
1.工作原理:整体工作原理如下:1.输入电压通过整流电路转换为直流电压;2.直流电压经过滤波电路去除纹波;3.控制电路根据反馈信号对开关元件进行驱动;4.开关元件的工作周期性地将直流电压斩波形成交流电压;5.交流电压经过变压器降压并通过输出滤波电路去除纹波,得到稳定的输出电压。
2.基本结构:开关元件:通常采用MOSFET或IGBT作为开关元件。
它们能够在很短的开关时间内实现高效的能量转换。
变压器:变压器用于将输入电压降到合适的电压级别。
绕线的匝数比决定了输入输出电压的比例。
滤波电路:滤波电路用于去除输出电压中的纹波和噪声。
一般采用电容器进行滤波。
控制电路:控制电路通过对开关元件的工作周期进行调节,控制输出电压的稳定性。
常见的控制方法有固定频率控制和可变频率控制。
保护电路:保护电路用于对反激式开关电源进行过载、过压和短路等故障保护,确保电源的安全可靠。
3.设计方法:选取开关元件时,应考虑其导通压降、开关速度和损耗等因素。
通常选择导通压降较小、开关速度较快且具有较低损耗的器件。
选取变压器时,应根据输入输出电压和功率需求确定变压器的参数,如匝数比、磁芯材料和绕组结构等。
控制电路的设计需要结合具体应用进行调整,以实现输出电压的稳定性和负载适应性。
稳压和滤波电路的设计通常基于反馈控制的原理,通过对输入电压和输出电压进行差分放大和反馈控制,实现稳定的输出电压和滤波效果。
4.总结:反激式开关电源是一种广泛应用的电力变换器,具有体积小、效率高、轻负载性能好等优点。
设计反激式开关电源需要考虑开关元件、变压器、控制电路和滤波电路等多个方面的因素。
通过合理选型和设计,可以实现稳定可靠的输出电压。
反激式开关电源设计
反激式开关电源设计反激式开关电源(Flyback Switching Power Supply)是一种常见的开关电源拓扑结构,广泛应用于各种电子设备中。
它具有体积小、效率高、成本低以及输出功率可调等优点,是现代电子产品中常见的电源设计方案之一反激式开关电源的基本工作原理如下:输入电压通过输入滤波电容进行滤波处理后,经过输入电阻和整流二极管进入变压器的一侧,经过一定的变换比转化为高压脉冲,在一段时间内使得磁场存储能量。
然后,纳秒级的开关管被打开,导通磁漏感能量在负载中释放,给负载提供电能。
在变压器中,输出输出电压通过输出二极管、滤波电容等元件经过滤波处理后,提供给负载。
同时,负载电流的反馈信息通过反馈电路控制控制器,实现对输出电压的稳定调节。
1.输入电压范围:反激式开关电源应能适应不同输入电压,以保证电源的稳定输出。
2.输出电压范围:根据具体应用需求确定输出电压范围,可通过反馈电路和调节元件进行调节。
3.输出功率:根据负载的需求确定输出功率大小,确保负载能够正常工作。
4.效率:反激式开关电源的效率较高,设计时应尽量选择低损耗的元件和合适的电路结构,以提高整个系统的效率。
5.稳定性:设计时需要考虑输出电压的稳定性,可通过反馈控制和滤波电路等手段实现。
6.保护功能:考虑到电源在使用过程中可能遇到的过载、过压过流等问题,设计中应加入相应的保护电路,以保护电源和负载安全。
在具体的反激式开关电源设计过程中,需要按照以下步骤进行:1.根据负载的需求确定输入和输出电压,并计算所需的输出功率。
2.选取适合的开关管和变压器,根据输入和输出电压比计算变压器的变换比。
3.根据变换比确定合适的工作频率和占空比。
该步骤可通过电路仿真软件进行验证。
4.设计反馈控制回路,以控制输出电压的稳定性。
可选择基于电压模式或者电流模式进行控制。
5.根据设计参数选择合适的滤波电容和输出二极管等元件,以保证输出电压质量。
6.添加必要的保护电路,如过载保护、过压保护等,以保护电源和负载安全。
3.3V-6A反激式开关电源的设计方法一
可取n=22, or n=23=19.8/(2*0.75*0.45*106)=0.277AAp=Aw*Ae=[1.45*Po*104/(η*Fs*Bw*Kj*Ko*Kc)]1.14=[1.45*19.8*104/(0.75*65*103*0.22*395*0.2*1)]1.14 =0.291cm 4Ap=Aw*Ae=Pt*106/(2*Fs*Bw*J*Ko*Kc)= =0.269cm 4电流密度J=2~4A/mm 2,窗口填充系数Km=0.2~0.4,Bw 单位为G ,对铁氧体Kc=1.0反激式开关电源的设计方法一工作电压:90~265VAC VinDCmia=90*1.4-20=106Vdc,VinDCmax=264*1.4=370Vdc,由:VinDCmin*Dmax=Vf*(1-Dmax),则有:Vf= VinDCmin*Dmax/(1-Dmax)=106 *0.45/(1-0.45)=86.7V 匝数比: n=Np/Ns=Vf/Vs=Vf/(V O +V D)=86.7/(3.3+0.6)=22.23(2)初级电感量Lp:输出电压电流:Vo=+3.3Vdc, Io= 6A效率: η= 75%(满载)输出功率: Po=Vo*Io=3.3*6=19.8W,视在功率: Pt=Pin+Po=Po/η+Po=19.8/0.75+19.8=46.2W 最大占空比Dmax: Dmax=0.4546.2*106 / 2*65*103*2200*3*0.2*1取Lp=1300uHLp= Dmax*VinDCmin/(Fs*Ipave )=0.45*106/(65*103*0.554)=1325uH Ip ave =Ip2-Ip1=3* Ip1-Ip1=2*Ip1=2*0.277=0.554A取Ip2=3* Ip1得: Ip1= Pout /(2*η* Dmax*VinDCmin )工作频率: Fs=65KHz=370+86.7+150工作方式:反激式1﹑当工作在电流连续方式(CCM)时设计过程:选择EI25,Ap=0.3165cm 4,Ae=0.41cm 2,Aw=0.7719cm 2.选择EI28,Ap=0.6005cm 4,Ae=0.86cm 2,Aw=0.6983cm 2.所以峰值电流Ip2:Ip2=3* Ip1=3*0.277=0.831AVds=VinDCmax+Vf+150,= 606.7V(1)计算初级电流峰值Ip2:1/2*(Ip1+Ip2)*Dmax*VinDCmin=Pout/η(3)选磁芯:由Aw*Ae 法求出所要铁芯:已知条件:=57T取46T(5)求次级匝数Np:输出为:Vo=+3.3V:Ns=Np/N=46/23=2T取 2T(6)求辅助匝数Np:反馈:Vc=12.5+1=13.5V:Vc/Nc=Vs/NsNc=Vc*Ns/Vs=13.5*2/(3.3+0.6)=6.9T取7TLg1=0.4*3.14*Np2*Ae*10-8/Lp=0.4*3.14*46*46*0.86*10-8/1300*10-6=0.0176cm(7)返推算占空比D:Vs/VinDCmin=(Ns/Np)*Ton/Toff=(Ns/Np)*Dmax/(1-Dmax) Dmax=(Vs*Np)/(Vs*Np+VinDCmin*Ns)=[(3.3+0.6)*46]/ [(3.3+0.6)*46+106*2]=179.4/(179.4+212)=0.458Dmin=(Vs*Np)/(Vs*Np+VinDCmax*Ns)=[(3.3+0.6)*46]/ [(3.3+0.6)*46+370*2]=179.4/(179.4+740)=0.1952﹑当工作在电流断续方式(DCM)时,Ip1=0(1)计算初级电流峰值Ip2:1/2*(Ip1+Ip2)*Dmax*VinDCmin=Pout/η1/2*Ip2*Dmax*VinDCmin=Pout/ηIp2=2* Pout/ η*Dmax*VinDCminIp2=2*19.8/0.75*0.45*106=1.107AIpave = Ip2=1.107A(2)初级电感量Lp:Lp= Dmax*VinDCmin/(fs*Ipave)=0.45*106/(65*103*1.107)=662.9uH取Lp=660uH(3)选磁芯:由Aw*Ae法求出所要铁芯:Ap=Aw*Ae=[1.6*Po*104/(η*Fs*Bw*Kj*Ko*Kc)]1.14=[1.6*19.8*104/(0.75*65*103*0.22*395*0.2*1)]1.14=0.3258cm4选择EI28,Ap=0.6005cm4,Ae=0.86cm2,Aw=0.6983cm2.=38.6T取39T(4)求次级匝数Np:输出为:Vo=+3.3V:Ns=Np/N=39/23=1.7T取 2T(5)求辅助匝数Np:反馈:Vc=+13.5v:Vc/Nc=Vs/NsNc=Vc*Ns/Vs=13.5*2/3.9=6.9T取7TLg1=0.4*3.14*Np2*Ae*10-8/Lp=0.4*3.14*39*39*10-8/660*10-6=0.029cm(7)返推算占空比D:Vs/VinDCmin=(Ns/Np)*Ton/Toff=(Ns/Np)*Dmax/(1-Dmax) Dmax=(Vs*Np)/(Vs*Np+VinDCmin*Ns)=[(3.3+0.6)*39]/ [(3.3+0.6)*39+106*2]=152.1/(152.1+212)=0.42Dmin=(Vs*Np)/(Vs*Np+VinDCmax*Ns)=[(3.3+0.6)*41]/ [(3.3+0.6)*41+370*2]=152.1/(152.1+740)=0.17。
反激式开关电源设计
Star
D
D
D
IC1 C5
1
S
2
Vcc
3
Fb
Ipk
D6 N2
L2
D7
R14
4
C7
R5
R6
R9
R11
IC2 R10
C13
3
1 IC3
2
R13
R12
第二章、变压器设计
单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、 传递能量等工作。下面对工作于连续模式和断续模式的单端反激变换器的变压 器设计进行总结。
反激式(回扫式)开关电源设计
第一章、 电路结构 第二章、 变压器设计 第三章、 关键元件选择 第四章、 传导和辐射噪音的抑制
第一章、电路结构
1、 单管反激电路基本结构
DC IN
C1 R1
D1 T2
D1
N1
N2
R2
Q1
Drive
CS
R3
GND
DC OUT C2
GND
பைடு நூலகம்
2、 双管反激电路基本结构
DC IN T1 R1 N2
(Vo+Vf)×(T-Ton)
Np=
Vi×Ton
Vi×Ton Lp= (1-K)×I
为了避免磁芯饱和,我们应该在磁回路中加入一个适当的气隙,气隙一般大于 0.1mm,功率大,则气隙要大, 由以上可得磁芯参数:
Lg×Lp×10 8 Ae= 0.4π×Np 2
根据求得的 Ae 值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯, 这样磁芯的窗口有效使用系数较高,同时可以减小漏感。 有了磁芯需再较正原边的匝数。根据下式:
反激式开关电源变压器设计说明
反激式开关电源变压器设计说明反激式开关电源变压器是一种常见的电源变压器,能够将输入电压通过开关转换和变换输出为所需的电压。
它具有多种应用领域,如电子设备、通信设备、医疗设备等。
本文将详细介绍反激式开关电源变压器的设计原理、设计步骤以及注意事项。
一、设计原理开关管是控制开关电路导通和断开的关键元件。
当开关导通时,输入电压通过变压器传递到输出端,当开关断开时,输出端与输入端相隔离。
变压器用于变换电压。
它通常由两个或多个线圈绕制而成,主要包括输入线圈和输出线圈。
输入线圈与开关管相连接,负责将输入电压传递到输出线圈。
输出线圈则负责变换电压。
滤波电路用于对输出信号进行滤波,减小波动和噪音。
二、设计步骤1.确定输入电压和输出电压:首先需要明确所需的输入电压和输出电压。
这将决定变压器的变比。
2.选择合适的变压器:根据所需的变比,选择合适的变压器。
变压器的选取应基于电流容量和功率需求等因素。
3.计算变压器的线圈数:根据变压器的变比和输入输出电压,计算输入线圈和输出线圈的匝数。
同时,考虑变压器的耦合系数和数量线圈相对位置等因素。
4.确定开关管和开关频率:根据输入电压、输出电压和功率需求,确定合适的开关管。
同时,选择合适的开关频率,以避免电磁干扰。
5.设计滤波电路:根据输出电压的要求,设计合适的滤波电路。
滤波电路可以使用电容、电感和抗干扰电路等组成。
6.确定电源保护电路:为了保证电源的稳定性和可靠性,设计合适的保护电路,如过流保护、过压保护、短路保护等。
7.进行仿真分析:使用电路仿真工具,对设计的电源变压器进行仿真分析,检查电源变压器的性能和特性。
8.制作和测试:按照设计的电路图,制作电源变压器,并进行测试。
测试包括输出电压稳定性、效率和波动等。
三、注意事项1.选择适当的变压器:变压器应能满足所需的电流容量和功率需求。
同时,应注意变压器的质量和耐用性。
2.稳定性和可靠性:电源变压器应具有良好的输出电压稳定性和可靠性。
反激式开关电源的设计
反激式开关电源的设计1.反激式开关电源的基本原理与拓扑结构2.反激式开关电源的设计步骤(1)选择合适的开关器件:根据设计需求确定开关器件的额定电流和电压。
应选择满足设计需求的高效开关器件,以确保电源的稳定性和可靠性。
(2)设计变压器:变压器是反激式开关电源中非常重要的组成部分,其设计影响着整个电源的性能。
变压器的设计应根据输入电压、输出电压及负载电流等确定变比。
(3)设计输入滤波器:输入滤波器主要用于去除输入电源的高频噪声和电磁干扰。
应根据设计要求选择合适的滤波器元件。
(4)选择输出滤波器:输出滤波器用于去除输出电压中的高频噪声和波动。
应选择满足设计要求的输出滤波器元件。
(5)选择控制器和反馈电路:反激式开关电源需要一个控制器来控制开关器件的开关频率和占空比。
应根据具体设计需求选择合适的控制器和反馈电路。
(6)设计保护电路:反激式开关电源应设计有相应的保护电路,以防止过流、过压和过温等情况的发生,保证电源的安全可靠运行。
(7)进行电路仿真和调试:应使用电子设计自动化工具进行电路仿真和调试,以验证电源设计的正确性和稳定性。
3.注意事项和常见问题(1)电源设计应考虑效率和性能的平衡,既要保持高效率,又要满足设计要求。
(2)电源设计时要合理布局电路板,降低电磁干扰和噪声。
(3)电源设计应注意选择合适的元件,在成本和性能之间进行权衡。
(4)在进行电路仿真和调试时,应注意保护器件和测试仪器的安全,避免电源短路和电流过大导致元器件损坏。
(5)设计完成后,应进行严格的测试和质量控制,确保电源的稳定性和可靠性。
总结:反激式开关电源是一种常见的开关电源拓扑结构,在设计中需要考虑元件选择、变压器设计、滤波器设计、控制器和反馈电路选择等多个因素。
合理的设计和调试能够确保电源的稳定性和可靠性,满足设备的电源需求。
反激式开关电源的设计方法
反激式开关电源的设计方法反激式开关电源是一种常用于电子设备中的高效率电源。
它通过将输入电源的直流电压转换为高频脉冲信号,再进行变压、整流和滤波等处理,最终得到所需要的输出电压。
本文将介绍反激式开关电源的设计方法,包括主要元件的选择、电路的设计和调试等内容。
一、元件的选择1.变压器:反激式开关电源的核心元件之一、在选择变压器时,需要根据设计好的输入和输出电压来确定变比。
同时,还需要考虑变压器的工作频率、功率损耗、功率因数等参数。
一般情况下,选择具有较高工作频率和较低损耗的变压器效果会更好。
2.开关管:开关管主要用于开关电源中的开关操作。
在选择开关管时,需要考虑电流和电压的要求,以及其承受功率和导通损耗等参数。
常见的开关管有MOSFET和IGBT等。
3.控制芯片:控制芯片用于控制开关管的导通和关闭时间,以及输入输出电压的稳定性等。
选择合适的控制芯片需要考虑芯片的工作频率、控制方式、保护功能等参数。
4.输出电容和滤波电感:输出电容和滤波电感用于平滑输出电压和滤除高频噪声。
在选择时,需要考虑电容和电感的电压和电流容量,以及使用寿命等因素。
二、电路的设计1.输入滤波电路:输入滤波电路主要用于去除输入电源中的高频噪声和波动。
常见的输入滤波电路包括滤波电容和滤波电感的串联组合,以及降压电感和降压二极管的并联组合。
2.开关电路:开关电路是反激式开关电源的核心部分,它通过开关管的导通和关闭操作,将输入电源的直流电压转换为高频脉冲信号。
开关电路一般由开关管、变压器、滤波电容和滤波电感等元件组成。
3.输出调整电路:输出调整电路用于稳定输出电压,并提供过载、过流和短路等保护功能。
常见的输出调整电路包括反馈电路、比较电路和控制芯片等。
4.反馈电路:反馈电路用于检测输出电压,并通过控制芯片对开关管的导通和关闭时间进行调节,从而稳定输出电压。
反馈电路一般由分压电阻、运放和电压比较器等组成。
三、电路的调试1.输出电压调节:利用调整反馈电路中的分压电阻,可以实现对输出电压的调节。
反激式开关电源设计方法
反激式开关电源设计方法1.输入变压器设计:反激式开关电源的输入变压器主要用于实现能量的储存和传递。
其设计方法一般包括确定变压器的变比、计算绕线参数和计算磁芯截面积。
变比的选择要根据输入和输出电压的关系来确定,一般采用副边大于主边的变比。
绕线参数的计算要根据输入电压、输出功率和开关频率来确定。
磁芯截面积的计算要根据输入电压、输出功率和变频器频率来确定。
2.控制电路设计:反激式开关电源的控制电路主要用于实现开关管的开关和关断控制。
其设计方法一般包括选择适合的开关管和控制芯片、设计反馈电路和设计保护电路。
选择合适的开关管和控制芯片要考虑输入和输出电压、输出功率和开关频率等因素。
设计反馈电路主要是为了实现恒定的输出电压,一般采用反馈误差放大器和锁相环等。
设计保护电路主要是为了提高电源的可靠性和稳定性,一般包括过流保护、过压保护和过温保护等。
3.输出滤波电路设计:反激式开关电源的输出滤波电路主要用于滤除开关管开关过程中产生的高频脉冲噪声,保证输出电压的稳定性和纹波度。
其设计方法一般采用LC滤波器或电容滤波器。
LC滤波器具有较好的滤波效果,但体积较大,适用于功率较大的电源。
电容滤波器体积小,但滤波效果相对较差,适用于功率较小的电源。
4.保护电路设计:反激式开关电源的保护电路主要用于保护电源,防止出现过流、过压、过温等故障。
其设计方法一般包括选择合适的保护元件和设计合理的保护电路。
选择合适的保护元件要考虑其额定参数和动态特性,以满足电源的保护要求。
设计合理的保护电路要考虑多种故障情况,实现对电源的全方位保护。
以上是反激式开关电源设计的基本方法和步骤,设计师在实际设计过程中还需考虑电源的稳定性、可靠性、效率等因素,并根据具体的应用需求进行优化设计。
同时,还要注意电源设计中的安全性和可调度性,确保电源工作的稳定性和可靠性。
反激式开关电源设计详细流程
反激式开关电源设计详细流程1.确定需求:首先要明确设计电源的输入电压和输出电流的需求,以及设计的环境条件,如工作温度范围和工作效率等。
2.选择主要元器件:根据需求确定选择适配器的主要元器件,包括变压器、MOSFET、二极管、电感器、电容器等。
3.设计变压器:变压器是反激式开关电源中的一个重要元器件,主要功能是提供电源输出的隔离和变压功能。
根据需求设计变压器的变比和功率,确定铁芯材料和绕线参数,如线径和绕线圈数等。
4.选择MOSFET:MOSFET是电源开关的关键元器件,它需要具备低导通和开关损耗、高效率和可靠性等特点。
根据需求选择合适的MOSFET,通过计算和模拟分析确定导通和关断时的最大功率损耗。
5.设计电感器和电容器:电感器和电容器用于滤波和稳压,通过计算和模拟模拟设计电流和电压波形,选择合适的电感值和电容值,以保证输出电流和电压的稳定。
6.设计控制电路:根据反激式开关电源的工作原理,设计适当的控制电路,用于控制开关管的导通和关断。
控制电路包括脉宽调制(PWM)控制和电流/电压反馈控制,以确保输出电流和电压的稳定和可靠。
7.选择和设计保护电路:反激式开关电源需要一些保护电路,如过压保护、过流保护、短路保护等。
根据设计需求选择合适的保护元器件和电路,以防止电源和被供电设备的损坏。
8.PCB设计:根据电路设计和布局要求进行PCB设计,包括元器件的布局、走线、线宽、间距等。
同时要考虑电磁兼容性(EMC)和热管理的问题。
9.原理图和PCB布线优化:通过仿真软件对电路进行仿真和优化,优化电路的参数和特性,如输出电压波形、效率和稳定性等。
10.系统测试与调试:完成PCB的制作和组装后,进行系统测试与调试,测试电源的输出性能、稳定性和保护功能等,并进行必要的调整和优化。
11.电源性能评估:对设计的电源进行性能评估,包括效率、功率因数、纹波和噪声等,以确保其符合设计要求和行业标准。
12.生产和质量控制:根据设计要求进行电源的批量生产,并进行质量控制,包括检测和测试,以确保产品的质量和可靠性。
多路输出反激式开关电源的设计与实现
多路输出反激式开关电源的设计与实现多路输出反激式开关电源的设计与实现一、引言开关电源是一种高效率、高可靠性、体积小、重量轻的电源设备,被广泛应用于电子产品中。
多路输出反激式开关电源是一种基于反激式开关电源拓扑结构,能够同时提供多个稳定电压输出的电源系统。
本文将针对这种电源系统进行设计与实现。
二、多路输出反激式开关电源原理多路输出反激式开关电源的基本原理是利用开关管进行高频开关,通过变压器传递能量,并通过整流和滤波电路获得稳定的输出电压。
其核心是控制开关管的导通时间,以实现不同输出电压的调节。
三、电路设计与元器件选择1. 输入电路设计:为了保护开关管和输入电源,应采用滤波电感和输入电容进行滤波处理,同时添加过流保护电路。
2. 变压器设计:根据输出电压和电流要求确定变压器的参数,选择合适的线性密度和电感,以获得理想的传输效果。
3. 输出电路设计:对于多路输出反激式开关电源,每个输出通道都要设计独立的整流和滤波电路,以确保稳定的输出电压。
4. 控制电路设计:采用反馈控制电路,通过对反馈信号的处理调节开关管的导通时间,实现多路输出电压的精确控制。
四、PCB板设计PCB板是电路实现的载体,其设计主要包括布局设计、走线设计和连接设计。
在多路输出反激式开关电源中,需要考虑分区布局,分别放置输入输出电路和控制电路,以最大限度地减小干扰。
同时,在走线设计中,应注意分离高频信号和低频信号,减少耦合。
五、电路调试与输出稳定性测试在完成电路设计与制作后,需要进行电路调试,并测试输出稳定性。
调试时可以通过示波器观察各个节点的波形,以确定是否存在异常。
并通过负载变化测试,验证输出电压是否能够保持稳定。
六、改进与优化在实际应用中,根据具体需求可以对多路输出反激式开关电源进行改进和优化。
常见的改进方法包括添加过压、欠压保护功能,提高电源的效率,降低输出纹波等。
七、结论多路输出反激式开关电源作为一种高效、可靠、稳定的电源系统,具有广泛应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。
做为设计开发、品质检验、生产测试等的依据。
2.2 设计线路图、零件选用。
2.3 PCB Layout.外形尺寸、接口定义,散热方式等。
2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。
当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
2.4.4 决定占空比:由以下公式可决定占空比 ,反激电源的占空比一般小于0.5(最低输入电压下),占空比若超过0.5易导致振荡的发生。
占空比确定后根据下面公式确定匝比。
xDVin D x V Vo Np Ns D (min))1()(-+= ➢ N S = 二次侧圈数➢ N P = 一次侧圈数➢ V o = 输出电压➢ V D = 二极管顺向电压➢ Vin(min) = 滤波电容上的谷点电压➢ D =占空比2.4.5 决定Ip 值:如果在连续模式,先定义好交流分量和直流的比值,根据输入平均电流计算出Ip ,由Ip 确定出电感量。
(min)*Pout Iav Vin η= 2*max 1IavD Ip K =+➢ Ip = 一次侧峰值电流➢ Iav = 一次侧平均电流➢ Pout = 输出瓦数➢ =η效率➢ K=直流分量和Ip 的比值2.4.6 确定Lp ,知道Ip ,根据K 值,计算出交流分量ΔI 。
确定开关频率f ,计算出Ton 。
计算出Lp*Vin Ton Lp I=∆ ➢ Lp = 一次侧感量➢ Ton = 导通时间➢ ΔI = 交流分量2.4.7 确定匝数Np ,Ns根据下面的公式Gauss x NpxAe LpxIp B 100(max )=可以推导出: *max*Lp Ip Np B Ae=,在根据xD Vin D x V Vo Np Ns D (min))1()(-+=,计算出次级匝数Ns 2.4.8 决定辅助电源的圈数:根据Ns 和V o 和辅助电源的电压Vcc 计算出辅助电源的匝数: *Vcc Ns Nvcc Vo= 2.4.9 以CRS10-05变压器计算:✧ 输入66—160Vdc ,输出瓦数10.6W(5.3V/2A)✧ K=0.3,Dmax=0.42✧ 设定η=0.8,f= 200KHz ,T=5us ,● 变压器尺寸:✧ 因电源尺寸限制,选用的磁芯的FEY12.8,Ae 值:11.4mm 2。
● 计算Ip10.60.201(min)*66*0.8Pout Iav A Vin η=== 确定直流分量和Ip 的比值:K ,依据经验定为0.3。
2*2*0.201max 0.420.736110.3Iav D Ip A K ===++ ● 计算Lp由Ip 和K 值,计算出ΔI=Ip*(1-K )=0.736*(1-0.3)=0.515A*66*5*0.422690.515Vin Ton Lp uH I ===∆ ● 计算初级匝数:*269*0.73657.9max*0.3*11.4Lp Ip Np B Ae === 取整:58匝。
根据xD Vin D x V Vo Np Ns D (min))1()(-+=计算出Ns :6.79,取整7匝,为保证占空比变化不大,可以适当更改初级匝数,一般初级匝数要比计算值多一些,避免Bmax 超标。
● 决定辅助电源的圈数:假设辅助电源Vcc=12V*12*7155.30.3Vcc Ns Nvcc Vo ===+2.5 零件选用:(原理图参考网上的资料,内容稍全面一些)2.5.1 FS1(保险):由变压器计算得到Iin 值,以此Iin 值(0.42A)可知使用2A/250V 的保险,设计时亦须考虑Pin(max)时的Iin 是否会超过保险丝的额定值。
2.5.2 TR1(热敏电阻):电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin 电流很大,虽然时间很短暂,但亦可能对Power 产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin 在Spec 之内(115V/30A ,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power 上)。
2.5.3 VDR1(压敏电阻):当雷极发生时,可能会损坏零件,进而影响Power 的正常动作,所以必须在靠AC 输入端 (Fuse 之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。
2.5.4 CY1,CY2(Y-Cap):Y-Cap 一般可分为Y1及Y2电容,若AC Input 有FG(3 Pin)一般使用Y2- Cap , AC Input 若为2Pin(只有L ,N)一般使用Y1-Cap ,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路因为有FG 所以使用Y2-Cap ,Y-Cap 会影响EMI 特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin 公司标准为750uA max)。
2.5.5 CX1(X-Cap)、RX1:X-Cap 为防制EMI 零件,EMI 可分为传导及辐射两部分,一般为 (EN55022) Class A 、 Class B 两种 ,传导测试频率在150K~30MHz ,证,辐射测试频率在30MH~1GHz 。
2.5.6 LF1(共模电感):EMI 防制零件,主要影响传导的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的共模电感而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。
2.5.7BD1(整流二极管):将AC电源以全波整流的方式转换为DC,由变压器所计算出的Iin值,可知只要使用1A/600V的整流二极管,因为是全波整流所以耐压只要600V即可。
2.5.8C1(滤波电容):由C1的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)是否正确,若AC Input 范围在90V~132V (Vc1 电压最高约190V),可使用耐压200V的电容;若AC Input 范围在90V~264V(或180V~264V),因Vc1电压最高约380V,所以必须使用耐压400V的电容。
2.5.9D2(辅助电源二极管):2.5.10R10(辅助电源电阻):主要用于调整PWM IC的VCC电压,以目前使用的3843而言,设计时VCC必须大于8.4V(Min. Load时),但为考虑输出短路的情况,VCC电压不可设计的太高,以免当输出短路时不保护(或输入瓦数过大)。
2.5.11C7(滤波电容):辅助电源的滤波电容,提供PWM IC较稳定的直流电压,一般使用100uf/25V电容。
2.5.12Z1(Zener 二极管):当回授失效时的保护电路,回授失效时输出电压冲高,辅助电源电压相对提高,此时若没有保护电路,可能会造成零件损坏,若在3843 VCC与3843 Pin3脚之间加一个Zener Diode,当回授失效时Zener Diode会崩溃,使得Pin3脚提前到达1V,以此可限制输出电压,达到保护零件的目的.Z1值的大小取决于辅助电源的高低,Z1的决定亦须考虑是否超过Q1的V GS耐压值,原则上使用公司的现有料(一般使用1/2W即可).2.5.13R2(启动电阻):提供3843第一次启动的路径,第一次启动时透过R2对C7充电,以提供3843 VCC所需的电压,R2阻值较大时,turn on的时间较长,但短路时Pin瓦数较小,R2阻值较小时,turn on的时间较短,短路时Pin瓦数较大,一般使用220KΩ/2W M.O。
.2.5.14R4 (Line Compensation):高、低压补偿用,使3843 Pin3脚在90V/47Hz及264V/63Hz接近一致(一般使用750KΩ~1.5MΩ 1/4W之间)。
2.5.15R3,C6,D1 (Snubber):此三个零件组成Snubber,调整Snubber的目的:1.当Q1 off瞬间会有Spike产生,调整Snubber可以确保Spike不会超过Q1的耐压值,2.调整Snubber可改善EMI.一般而言,D1使用1N4007(1A/1000V)EMI特性会较好.R3使用2W M.O.电阻,C6的耐压值以两端实际压差为准(一般使用耐压500V的陶质电容)。
2.5.16Q1(N-MOS):目前常使用的为3A/600V及6A/600V两种,6A/600V的R DS(ON)较3A/600V小,所以温升会较低,若I DS电流未超过3A,应该先以3A/600V为考虑,并以温升记录来验证,因为6A/600V的价格高于3A/600V许多,Q1的使用亦需考虑V DS是否超过额定值。