半导体物理习题及答案复习课程

合集下载

《半导体物理学》试题与及答案

《半导体物理学》试题与及答案

练习1-课后习题7
第二章 半导体中杂质和缺陷能级
锑化铟的禁带宽度E g = 0.18 e V ,相对介电常数 εr = 17 ,电子的 有效质量mn∗ = 0.015 m0, m 0为电子的惯性质量,求 ⅰ)施主杂质的电离能, ⅱ)施主的弱束缚电子基态轨道半径。
解:
练习2
第二章 半导体中杂质和缺陷能级
所以样品的电导率为: q(n0 n p0 p )
代入数据得,电导率为2.62 ×1013S/cm 所以,电场强度 E J 1.996103 mA / cm

作业-课后习题2
第四章 半导体的导电性
试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1450cm2/V·S 和500cm2/V·S。当掺入百万分之一的As 后,设杂质全部电离,试计算其电 导率。比本征Si 的电导率增大了多少倍?(ni=1.5×1010cm-3; Si原子浓度为 =5.0×1022cm-3,假定掺杂后电子迁移率为900cm2/V·S)
m0为电子惯性质量,k1=1/2a; a=0.314nm。试求: (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化。
练习2-课后习题2
第一章 半导体中的电子状态
2.晶格常数为0.25nm的一维晶格,当外加102V/m和107V/m 的电 场时,试分别计算电子自能带底运动到能带顶所需的时间。
所以,300k时,
nT 300

(1.05 1019

5.7
1018 )
exp(
0.67 1.61019 21.381023 300)
1.961013cm3
77k时,

半导体物理重点学习习题及解答

半导体物理重点学习习题及解答

第一篇习题半导体中的电子状态1-1、什么叫本征激发?温度越高,本征激发的载流子越多,为何?试定性说明之。

1-2、试定性说明Ge、Si的禁带宽度拥有负温度系数的原由。

1-3、试指出空穴的主要特色。

1-4、简述 Ge、Si 和 GaAS的能带构造的主要特色。

1-5、某一维晶体的电子能带为E(k ) E0 1 0.1cos(ka) 0.3sin(ka)此中 E0 ,晶格常数х -11 。

求:=3eV a=5 10 m(1)能带宽度;(2)能带底和能带顶的有效质量。

第一篇题解刘诺半导体中的电子状态编1-1、解:在必定温度下,价带电子获取足够的能量(≥E g)被激发到导带成为导电电子的过程就是本征激发。

其结果是在半导体中出现成对的电子 -空穴对。

假如温度高升,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

1-2、解:电子的共有化运动致使孤立原子的能级形成能带,即允带和禁带。

温度高升,则电子的共有化运动加剧,致使允带进一步分裂、变宽;允带变宽,则致使允带与允带之间的禁带相对变窄。

反之,温度降低,将致使禁带变宽。

所以, Ge、Si 的禁带宽度拥有负温度系数。

1-3、解:空穴是未被电子占有的空量子态,被用来描绘半满带中的大批电子的集体运动状态,是准粒子。

主要特色以下:A、荷正电: +q;B、空穴浓度表示为p(电子浓度表示为n);C、 E P=-E nD、m P*=-m n* 。

1-4、解:(1) Ge、Si:a)Eg (Si:;Eg (Ge:;b)间接能隙构造c)禁带宽度 E g随温度增添而减小;(2) GaAs:a)E g( 300K)第二篇习题-半导体中的杂质和缺点能级刘诺编2-1、什么叫浅能级杂质?它们电离后有何特色?2-2、什么叫施主?什么叫施主电离?施主电离前后有何特色?试举例说明之,并用能带图表征出n 型半导体。

2-3、什么叫受主?什么叫受主电离?受主电离前后有何特色?试举例说明之,并用能带图表征出p 型半导体。

半导体物理试题及答案

半导体物理试题及答案

半导体物理试题及答案一、单项选择题(每题2分,共20分)1. 半导体材料的导电能力介于导体和绝缘体之间,这是由于()。

A. 半导体的原子结构B. 半导体的电子结构C. 半导体的能带结构D. 半导体的晶格结构答案:C2. 在半导体中,电子从价带跃迁到导带需要()。

A. 吸收能量B. 释放能量C. 吸收光子D. 释放光子答案:A3. PN结形成的基础是()。

A. 杂质掺杂B. 温度变化C. 压力变化D. 磁场变化答案:A4. 半导体器件中的载流子主要是指()。

A. 电子B. 空穴C. 电子和空穴D. 光子答案:C5. 半导体的掺杂浓度越高,其导电性能()。

A. 越好B. 越差C. 不变D. 先变好再变差答案:A二、填空题(每题2分,共20分)1. 半导体的导电性能可以通过改变其________来调节。

答案:掺杂浓度2. 半导体的能带结构中,价带和导带之间的能量差称为________。

答案:带隙3. 在半导体中,电子和空穴的复合现象称为________。

答案:复合4. 半导体器件中的二极管具有单向导电性,其导通方向是从________到________。

答案:阳极阴极5. 半导体的PN结在外加正向电压时,其内部电场会________。

答案:减弱三、简答题(每题10分,共30分)1. 简述半导体的掺杂原理。

答案:半导体的掺杂原理是指通过向半导体材料中掺入少量的杂质元素,改变其电子结构,从而调节其导电性能。

掺入的杂质元素可以是施主杂质(如磷、砷等),它们会向半导体中引入额外的电子,形成N型半导体;也可以是受主杂质(如硼、铝等),它们会在半导体中形成空穴,形成P型半导体。

2. 描述PN结的工作原理。

答案:PN结是由P型半导体和N型半导体结合而成的结构。

在PN结中,P型半导体的空穴会向N型半导体扩散,而N型半导体的电子会向P型半导体扩散。

由于扩散作用,会在PN结的交界面形成一个内建电场,该电场会阻止更多的载流子通过PN结。

《半导体物理》习题答案第八章

《半导体物理》习题答案第八章

第8章 半导体表面与MIS 结构2.对于电阻率为8cm Ω⋅的n 型硅,求当表面势0.24s V V =-时耗尽层的宽度。

解:当8cm ρ=Ω⋅时:由图4-15查得1435.810D N cm -=⨯∵22D d s rs qN x V εε=-,∴1022()rs s d D V x qN εε=-代入数据:11141352219145211.68.85100.24 4.9210()()7.3101.610 5.8109.2710d x cm -----⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯3.对由电阻率为5cm Ω⋅的n 型硅和厚度为100nm 的二氧化硅膜组成的MOS 电容,计算其室温(27℃)下的平带电容0/FB C C 。

解:当5cm ρ=Ω⋅时,由图4-15查得143910D N cm -=⨯;室温下0.026eV kT =,0 3.84r ε=(SiO 2的相对介电系数) 代入数据,得:1141/20002197722110.693.84(11.68.85100.026)11()11.6 1.61010010310FBr rs rs A C C kT q N d εεεε---===⨯⨯⨯+⋅+⨯⨯⨯⨯⨯此结果与图8-11中浓度为1⨯1015/cm 3的曲线在d 0=100nm 的值非常接近。

4. 导出理想MIS 结构的开启电压随温度变化的表示式。

解:按定义,开启电压U T 定义为半导体表面临界强反型时加在MOS 结构上的电压,而MOS结构上的电压由绝缘层上的压降U o 和半导体表面空间电荷区中的压降U S (表面势)两部分构成,即oST S Q U U C =-+ 式中,Q S 表示在半导体表面的单位面积空间电荷区中强反型时的电荷总数,C o 单位面积绝缘层的电容,U S 为表面在强反型时的压降。

U S 和Q S 都是温度的函数。

以p 型半导体为例,强反型时空间电荷区中的电荷虽由电离受主和反型电子两部分组成,且电子密度与受主杂质浓度N A 相当,但反型层极薄,反型电子总数远低于电离受主总数,因而在Q S 中只考虑电离受主。

半导体物理复习试题及答案复习资料

半导体物理复习试题及答案复习资料

半导体物理复习试题及答案复习资料一、引言半导体物理是现代电子学中至关重要的一门学科,其涉及电子行为、半导体器件工作原理等内容。

为了帮助大家更好地复习半导体物理,本文整理了一些常见的复习试题及答案,以供大家参考和学习。

二、基础知识题1. 请简述半导体材料相对于导体和绝缘体的特点。

答案:半导体材料具有介于导体和绝缘体之间的导电特性。

与导体相比,半导体的电导率较低,并且在无外界作用下几乎不带电荷。

与绝缘体相比,半导体的电导率较高,但不会随温度显著增加。

2. 什么是本征半导体?请举例说明。

答案:本征半导体是指不掺杂任何杂质的半导体材料。

例如,纯净的硅(Si)和锗(Ge)就是本征半导体。

3. 简述P型半导体和N型半导体的形成原理。

答案:P型半导体形成的原理是在纯净的半导体材料中掺入少量三价元素,如硼(B),使其成为施主原子。

施主原子进入晶格后,会失去一个电子,并在晶格中留下一个空位。

这样就使得电子在晶格中存在的空位,形成了称为“空穴”的正电荷载流子,因此形成了P型半导体。

N型半导体形成的原理是在纯净的半导体材料中掺入少量五价元素,如磷(P)或砷(As),使其成为受主原子。

受主原子进入晶格后,会多出一个电子,并在晶格中留下一个可移动的带负电荷的离子。

这样就使得半导体中存在了大量的自由电子,形成了N型半导体。

4. 简述PN结的形成原理及特性。

答案:PN结是由P型半导体和N型半导体的结合所形成。

P型半导体和N型半导体在接触处发生扩散,形成电子从N区流向P区的过程。

PN结具有单向导电性,即在正向偏置时,电流可以顺利通过;而在反向偏置时,电流几乎无法通过。

三、摩尔斯电子学题1. 使用摩尔斯电子学符号,画出“半导体”的符号。

答案:半导体的摩尔斯电子学符号为“--..-.-.-...-.”2. 根据摩尔斯电子学符号“--.-.--.-.-.-.--.--”,翻译为英文是什么?答案:根据翻译表,该符号翻译为“TRANSISTOR”。

半导体物理参考习题和解答

半导体物理参考习题和解答

复习思考题与自测题第一章1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。

答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。

当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。

组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。

2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。

答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。

4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。

5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。

半导体物理习题答案完整版

半导体物理习题答案完整版

半导体物理习题答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。

即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。

解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。

例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。

试求:(2)能带底部和顶部电子的有效质量。

解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。

当时,代入(2)得:对应E(k)的极大值。

根据上述结果,求得和即可求得能带宽度。

故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。

2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。

3 试指出空穴的主要特征。

4 简述Ge、Si和GaAs的能带结构的主要特征。

5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。

求:(2)能带底和能带顶的有效质量。

6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。

半导体物理 课后习题答案

半导体物理 课后习题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。

解322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C 22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C n n c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)(2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

半导体器件物理复习题答案

半导体器件物理复习题答案

半导体器件物理复习题答案一、选择题1. 半导体材料中,导电性介于导体和绝缘体之间的是:A. 导体B. 绝缘体C. 半导体D. 超导体答案:C2. PN结形成后,其空间电荷区的电场方向是:A. 由N区指向P区B. 由P区指向N区C. 垂直于PN结界面D. 与PN结界面平行答案:B3. 在室温下,硅的本征载流子浓度大约是:A. \(10^{10}\) cm\(^{-3}\)B. \(10^{12}\) cm\(^{-3}\)C. \(10^{14}\) cm\(^{-3}\)D. \(10^{16}\) cm\(^{-3}\)答案:D二、简答题1. 解释什么是PN结,并简述其工作原理。

答案:PN结是由P型半导体和N型半导体接触形成的结构。

P型半导体中空穴是多数载流子,N型半导体中电子是多数载流子。

当P型和N型半导体接触时,由于扩散作用,空穴和电子会向对方区域扩散,形成空间电荷区。

在空间电荷区,由于电荷的分离,产生一个内建电场,这个电场的方向是从N区指向P区。

这个内建电场会阻止进一步的扩散,最终达到动态平衡,形成PN结。

2. 描述半导体中的扩散和漂移两种载流子运动方式。

答案:扩散是指由于浓度梯度引起的载流子从高浓度区域向低浓度区域的运动。

漂移则是指在外加电场作用下,载流子受到电场力的作用而产生的定向运动。

扩散和漂移共同决定了半导体中的电流流动。

三、计算题1. 假设一个PN结的内建电势差为0.7V,求其空间电荷区的宽度。

答案:设PN结的空间电荷区宽度为W,内建电势差为Vbi,则有:\[ V_{bi} = \frac{qN_{A}N_{D}}{2\varepsilon}W \] 其中,q是电子电荷量,\( N_{A} \)和\( N_{D} \)分别是P型和N型半导体中的掺杂浓度,\( \varepsilon \)是半导体的介电常数。

通过这个公式可以计算出空间电荷区的宽度W。

四、论述题1. 论述半导体器件中的载流子注入效应及其对器件性能的影响。

半导体物理习题答案

半导体物理习题答案

半导体物理习题答案半导体物理是固体物理的一个重要分支,它研究的是半导体材料的物理性质及其在电子器件中的应用。

以下是一些常见的半导体物理习题及其答案。

习题一:半导体的能带结构问题:简述半导体的能带结构,并解释价带、导带和禁带的概念。

答案:半导体的能带结构由价带和导带组成,两者之间存在一个能量间隔,称为禁带。

价带是半导体中电子能量最低的能带,当电子处于价带时,它们是被束缚在原子周围的。

导带是电子能量最高的能带,电子在导带中可以自由移动。

禁带是价带顶部和导带底部之间的能量区间,在这个区间内不存在允许电子存在的能级。

半导体的导电性能介于导体和绝缘体之间,主要因为其禁带宽度较小,电子容易从价带激发到导带。

习题二:PN结的形成与特性问题:解释PN结的形成过程,并描述其正向和反向偏置特性。

答案:PN结是由P型半导体和N型半导体接触形成的结构。

P型半导体中存在空穴,而N型半导体中存在自由电子。

当P型和N型半导体接触时,由于扩散作用,P型中的空穴会向N型扩散,而N型中的电子会向P型扩散。

这种扩散导致在接触区域形成一个耗尽层,其中电子和空穴复合,留下固定电荷,形成内建电场。

正向偏置时,外加电压使内建电场减弱,允许更多的电子和空穴通过PN结,从而增加电流。

反向偏置时,外加电压增强了内建电场,阻碍了电子和空穴的流动,导致电流非常小。

习题三:霍尔效应问题:描述霍尔效应的基本原理,并解释霍尔电压的产生。

答案:霍尔效应是指在垂直于电流方向的磁场作用下,载流子受到洛伦兹力的作用,导致电荷在样品一侧积累,从而在垂直于电流和磁场方向上产生一个横向电压差,即霍尔电压。

霍尔效应的发现为研究材料的载流子类型和浓度提供了一种有效的方法。

霍尔电压的大小与电流、磁场强度以及材料的载流子浓度有关。

习题四:半导体的掺杂问题:解释半导体掺杂的目的和方法,并举例说明。

答案:半导体掺杂的目的是为了改变半导体的导电性能。

通过在纯净的半导体中掺入微量的杂质原子,可以增加或减少半导体中的载流子数量。

半导体物理试题库及答案

半导体物理试题库及答案

半导体物理试题库及答案一、单项选择题(每题2分,共20分)1. 在半导体中,电子从价带跃迁到导带所需能量的最小值称为:A. 禁带宽度B. 费米能级C. 载流子浓度D. 电子亲和能答案:A2. 下列哪种半导体材料的禁带宽度大于硅?A. 锗B. 砷化镓C. 硅D. 碳化硅答案:D3. PN结在正向偏置时,其导电性能主要取决于:A. 电子B. 空穴C. 杂质D. 复合答案:B4. 半导体器件中,二极管的导通电压通常为:A. 0.2VB. 0.7VC. 1.5VD. 3.3V答案:B5. 在半导体物理学中,霍尔效应可以用来测量:A. 载流子浓度B. 载流子迁移率C. 载流子类型D. 所有以上答案:D二、多项选择题(每题3分,共15分)1. 下列哪些因素会影响半导体的载流子浓度?(多选)A. 温度B. 光照C. 杂质浓度D. 材料类型答案:ABCD2. 半导体器件的能带结构包括:A. 价带B. 导带C. 禁带D. 费米能级答案:ABC3. 下列哪些是半导体材料的特性?(多选)A. 导电性介于导体和绝缘体之间B. 导电性随温度升高而增加C. 导电性随光照强度增加而增加D. 导电性随杂质浓度增加而增加答案:ABCD三、填空题(每空1分,共20分)1. 半导体材料的导电性可以通过掺杂来改变,其中掺入____类型的杂质可以增加载流子浓度。

答案:施主2. 在PN结中,当外加电压的方向与PN结内电场方向相反时,称为______偏置。

答案:反向3. 半导体材料的导电性随温度升高而______。

答案:增加4. 半导体器件的能带结构中,价带和导带之间的区域称为______。

答案:禁带5. 霍尔效应测量中,当载流子受到垂直于电流方向的磁场作用时,会在垂直于电流和磁场的方向上产生______。

答案:霍尔电压四、简答题(每题5分,共10分)1. 简述半导体材料的导电机制。

答案:半导体材料的导电机制主要涉及价带中的电子获得足够能量跃迁到导带,从而成为自由电子,同时在价带中留下空穴。

半导体物理复习试题及答案复习资料

半导体物理复习试题及答案复习资料

半导体物理复习试题及答案复习资料一、选择题1、下面关于晶体结构的描述,错误的是()A 晶体具有周期性的原子排列B 晶体中原子的排列具有长程有序性C 非晶体的原子排列没有周期性D 所有晶体都是各向同性的答案:D解释:晶体具有各向异性,而非各向同性。

2、半导体中的施主杂质能级()A 位于导带底附近B 位于价带顶附近C 位于禁带中央D 靠近价带顶答案:A解释:施主杂质能级靠近导带底,容易向导带提供电子。

3、本征半导体的载流子浓度随温度升高而()A 不变B 减小C 增大D 先增大后减小答案:C解释:温度升高,本征激发增强,载流子浓度增大。

4、下面关于 PN 结的描述,正确的是()A PN 结空间电荷区中的内建电场方向由 N 区指向 P 区B 正向偏置时,PN 结电流很大C 反向偏置时,PN 结电流很小且趋于饱和D 以上都对答案:D解释:PN 结空间电荷区中的内建电场方向由 N 区指向 P 区,正向偏置时多数载流子扩散电流大,反向偏置时少数载流子漂移电流小且趋于饱和。

5、金属和半导体接触时,如果形成阻挡层,那么半导体表面是()A 积累层C 反型层D 以上都可能答案:B解释:形成阻挡层时,半导体表面通常是耗尽层。

二、填空题1、常见的半导体材料有_____、_____和_____等。

答案:硅、锗、砷化镓2、半导体中的载流子包括_____和_____。

答案:电子、空穴3、施主杂质的电离能_____受主杂质的电离能。

(填“大于”或“小于”)答案:小于4、当半导体处于热平衡状态时,其费米能级_____。

(填“恒定不变”或“随温度变化”)答案:恒定不变5、异质结分为_____异质结和_____异质结。

答案:突变异质结、缓变异质结1、简述半导体中施主杂质和受主杂质的作用。

答:施主杂质在半导体中能够提供电子,使其成为主要的导电载流子,增加半导体的电导率。

受主杂质能够接受电子,产生空穴,使空穴成为主要的导电载流子,同样能提高半导体的电导率。

半导体物理课后习题答案(1-12章)

半导体物理课后习题答案(1-12章)

∆ ED =
7.06 10− 4 eV
r1,n = ε r (
° m0 1 ) � a 17 = 0.53 600.67 A 0 ∗ mn 0.015
8. 磷化鎵的禁带宽度 Eg = 2.26eV ,相对介电常数 ε r = 11.1 ,空穴的有效质量
m∗p = 0.86m0 , m0 为电子的惯性质量,求ⅰ)受主杂质的电离能,ⅱ)受主所若 束缚的空穴基态轨道半径。 [解]: ∆ E A = 已知, E0 = m m∗p E0 rp = n 2ε r ( ∗0 ) a0 2 , mp m0 ε r
第1章 半导体中的电子状态
1. 设晶格常数为 a 的一维晶格,导带极小值附近能量 Ec(k)和价带极大值附近 能量 Ev(k)分别为: Ec(k)=
h 2 k 2 h 2 (k − k1) 2 h2k 2 3h 2 k 2 + 和 Ev(k)= - ; 3m 0 6m 0 m0 m0
m0 为电子惯性质量,k1=1/2a;a=0.314nm。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ① 禁带宽度 Eg 根据 值: kmin=
[ 110] , [ 101] , [ 011] , 轾 臌1 10
轾 臌10 1 , 轾 臌0 1 1 ;
,
[1 10], 轾 10 1 , 轾 臌 臌01 1 , 轾 臌110 , 轾 臌101 , 轾 臌0 11 ; 则由解析几何定理得, B 与 k3 的夹角余弦 cos θ 为: cos θ = 式中, B = b1i + b2 j + b3k . 对不同方向的旋转椭球面取不同的一组 (k1 , k2 , k3 ) .

半导体物理学习题答案(有目录)

半导体物理学习题答案(有目录)

半导体物理学习题答案(有目录)半导体物理习题解答目录1-1.(P32)设晶格常数为a的一维晶格,导带极小值附近能量E c(k)和价带极大值附近能量E v(k)分别为: (2)1-2.(P33)晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

(3)3-7.(P81)①在室温下,锗的有效状态密度Nc=1.05×1019cm-3,Nv=5.7×1018cm-3,试求锗的载流子有效质量mn*和mp*。

(3)3-8.(P82)利用题7所给的Nc和Nv数值及Eg=0.67eV,求温度为300k和500k时,含施主浓度ND=5×1015cm-3,受主浓度NA=2×109cm-3的锗中电子及空穴浓度为多少? (4)3-11.(P82)若锗中杂质电离能△ED=0.01eV,施主杂质浓度分别为ND=1014cm-3及1017cm-3,计算(1)99%电离,(2)90%电离,(3)50%电离时温度各为多少? (5)3-14.(P82)计算含有施主杂质浓度ND=9×1015cm-3及受主杂质浓度为1.1×1016cm-3的硅在300k 时的电子和空穴浓度以及费米能级的位置。

(6)3-18.(P82)掺磷的n型硅,已知磷的电离能为0.04eV,求室温下杂质一般电离时费米能级的位置和磷的浓度。

(7)3-19.(P82)求室温下掺锑的n型硅,使EF=(EC+ED)/2时的锑的浓度。

已知锑的电离能为0.039eV。

(7)3-20.(P82)制造晶体管一般是在高杂质浓度的n型衬底上外延一层n型的外延层,再在外延层中扩散硼、磷而成。

①设n型硅单晶衬底是掺锑的,锑的电离能为0.039eV,300k时的EF位于导带底下面0.026eV处,计算锑的浓度和导带中电子浓度。

(8)4-1.(P113)300K时,Ge的本征电阻率为47Ω.cm,如电子和空穴迁移率分别为3900cm2/V.S和1900cm2/V.S,试求本征Ge的载流子浓度。

半导体物理综合练习题(3)参考答案1

半导体物理综合练习题(3)参考答案1

1、晶格常数Å的一维晶格,当外加102V/m和107V/m电场时,试分别计算电子自能带底运动到能带顶所需时间。

〔1Å=10nm=10-10m〕2、指出下列图中各表示的是什么半导体?3、如下图,解释一下n0~T关系曲线。

4、假设费米能E F=5eV,利用费米分布函数计算在什么温度下电子占据能级的概率为1%。

并计算在该温度下电子分布概率所对应的能量区间。

5、两块n型硅材料,在某一温度T时,第一块与第二块的电子密度之比为n1/n2=e〔e是自然对数的底〕〔1〕如果第一块材料的费米能级在导带底之下3k0T,试求出第二块材料中费米能级的位置;〔2〕求出两块材料中空穴密度之比p1/p2。

6、硼的密度分别为N A1和N A2(N A1>N A2)的两个硅样品,在室温条件下:〔1〕哪个样品的少子密度低?〔2〕哪个样品的E F离价带顶近?〔3〕如果再掺入少量的磷(磷的密度N`D< N A2),它们的E F如何变化?7、现有三块半导体硅材料,在室温下(300K)它们的空穴浓度分别为p01=2.25×1016cm-3、p02=1.5×1010cm-3、p03=2.25×104cm-3。

〔1〕分别计算这三块材料的电子浓度n01、n02、 n03;〔2〕判别这三块材料的导电类型;〔3〕分别计算这三块材料的费米能级的位置。

8、室温下,本征锗的电阻率为47Ω·cm,试求本征载流子浓度。

假设掺入锑杂质,使每106个锗原子中有一个杂质原子,计算室温下电子浓度和空穴浓度。

设杂质全部电离。

锗原子的浓度为4.4×1022/cm3,试求该掺杂锗材料的电阻率。

设µn=3600cm2/(V·s),µp=1700cm2/(V·s)且认为不随掺杂而变化。

n i=2.5×1013cm-3。

9、在半导体锗材料中掺入施主杂质浓度N D=1014cm-3,受主杂质浓度N A=7×1013cm-3,设室温本下本征锗材料的电阻率为ρi=60Ω·cm,假设电子和空穴的迁移率分别为µn=3800cm2/(V·s),µp=1800cm2/(V·s),假设流过样品的电流密度为2,求所施加的电场强度。

半导体物理课后习题(保密)

半导体物理课后习题(保密)

解: 须先求出本征载流子浓度ni,即
代入数据得,ni=1.86 ×1013cm-3 根据电中性条件有 p0+ND+=n0+NA-
ni
q( n p )
i

1 i ( n p )
联立 载流子浓度公式
n0p0=ni2
可求解得 n0=3.89 ×1013cm-3, p0=8.89 ×1012cm-3 所以样品的电导率为:
解: 由图3-7查得T=500k时,Si的本征载流子浓度ni=3.5×1014cm-3 联立方程
p0=ni2/n0
解得, ND=3.5×1014cm-3时,n0≈4.3×1014cm-3, p0=2.8×1014cm-3 —— n0,p0差别不显著,杂质导电特性不很明显 ND=1012cm-3时,n0≈ni=3.5×1014cm-3, p0=3.5×1014cm-3,即n0=p0. —— 进入本征 半导体材料在某一温度下所处的区域与杂质浓度相关 或 杂质浓度不同,材料进入同一区域所需要的温度不一样。
m0为电子惯性质量,k1=1/2a; a=0.314nm。试求: (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化。
练习2-课后习题2
第一章 半导体中的电子状态
2.晶格常数为0.25nm的一维晶格,当外加102V/m和107V/m 的电 场时,试分别计算电子自能带底运动到能带顶所需的时间。
作业-课后习题14
第三章 半导体中载流子的统计分布
计算含有施主杂质浓度ND=9×1015cm-3与受主杂质浓度为1.1×1016cm-3 的硅在室温时的电子和空穴浓度以及费米能级的位置。

《半导体物理》习题答案第二章

《半导体物理》习题答案第二章
②利用氢原子基态电子的轨道半径
13.6 0.012eV 17
r0
0 h2 52.9 1012 m m0 q 2
可将浅施主杂质弱束缚电子的基态轨道半径表示为
rn

0 r h2 m 17 r o r 52.9 1012 =6 10-8m=60nm * 2 * 0 mn q mn 0.015
补充 1、在硅晶体的深能级图中添加铒 (Er)、钐 (Sm)、钕(Nd)及缺陷深中心(双空位、E 中心、A
第2章
中心)的能级。 (略) 补充 2、参照上列 GaN 中常见杂质及缺陷的电离能参数表(或参考书表 2-4)回答下列问题: 1)表中哪些杂质属于双性杂质? 2)表中还有哪些杂质可能跟这些杂质一样起双重作用,未发现其双重作用的可能原因是什 么? 3)Mg 在 GaN 中起施主作用的电离能为什么比 Si、C 施主的电离能大,且有两个不同值? 4)Ga 取 N 位属何种缺陷,有可能产生几条何种能级,其他能级观察不到的可能原因是什 么? 5)还能不能对此表提出其他问题?试提出并解答之。 答:1)按表中所列,Si、C、Mg 皆既为施主亦为受主,因而是双性杂质。 2)既然 II 族元素 Mg 在 N 位时能以不同电离能 0.26eV 和 0.6eV 先后释放其两个价电子,那么 表中与 Mg 同属 II 族元素的 Be、Zn、Cd、Hg 似也有可能具有类似能力,I 族元素 Li 更有可能在 N 位上释放其唯一的外层电子而起施主作用。现未发现这些杂质的施主能级,原因可能是这些元素释 放一个电子的电离能过大,相应的能级已进入价带之中。 3)Mg 在 GaN 中起施主作用时占据的是 N 位,因其外层电子数 2 比被其置换的 N 原子少很多, 因此它有可能释放其价电子,但这些电子已为其与最近邻 Ga 原子所共有,所受之约束比 Si、C 原子 取代 Ga 原子后多余的一个电子所受之约束大得多,因此其电离能较大。当其释放了第一个电子之后 就成为带正电的 Mg 离子,其第二个价电子不仅受共价环境的约束,还受 Mg 离子的约束,其电离能 更大,因此 Mg 代 N 位产生两条深施主能级。 4)Ga 取 N 位属反位缺陷,因比其替代的 N 原子少两个电子,所以有可能产生两条受主能级, 目前只观察到一条范围在价带顶以上 0.59eV1.09eV 的受主能级, 另一能级观察不到的原因可能是其 二重电离(接受第二个共价电子)的电离能太大,相应的能级已进入导带之中。 (不过,表中所列数 据变化范围太大,不合情理,怀疑符号有误,待查。 ) 5)其他问题例如: 为什么 C 比 Si 的电离能高?答:因为 C 比 Si 的电负性强。 Li 代 Ga 位应该有几条受主能级?答:Li 比 Ga 少两个价电子,应该有两条受主能级。 ……….

半导体物理学试题及答案

半导体物理学试题及答案

半导体物理学试题及答案(总6页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--半导体物理学试题及答案半导体物理学试题及答案(一) 一、选择题1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。

A、本征B、受主C、空穴D、施主E、电子2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。

A、电子和空穴B、空穴C、电子3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。

A、正B、负C、零D、准粒子E、粒子4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。

A、受主B、深C、浅D、复合中心E、陷阱5、 MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。

A、相同B、不同C、无关6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。

A、变大,变小 ;B、变小,变大;C、变小,变小;D、变大,变大。

7、砷有效的陷阱中心位置(B )A、靠近禁带中央B、靠近费米能级8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。

A、大于1/2B、小于1/2C、等于1/2D、等于1E、等于09、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。

A、多子积累B、多子耗尽C、少子反型D、平带状态10、金属和半导体接触分为:( B )。

A、整流的肖特基接触和整流的欧姆接触B、整流的肖特基接触和非整流的欧姆接触C、非整流的肖特基接触和整流的欧姆接触D、非整流的肖特基接触和非整流的欧姆接触11、一块半导体材料,光照在材料中会产生非平衡载流子,若光照忽然停止t?后,其中非平衡载流子将衰减为原来的( A )。

半导体物理学第7版习题及答案

半导体物理学第7版习题及答案

第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。

计算空穴的复合率。

2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为。

(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。

3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10cm 。

今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?4. 一块半导体材料的寿命=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,s cm pU s cm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。

解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度n=p=1014cm -3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体物理习题及答案复习思考题与自测题第一章1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。

答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。

当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。

组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。

2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。

答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。

4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。

5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。

6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。

在外电F作用下,电子的波失K不断改变,dkf hdt,其变化率与外力成正比,因为电子的速度与k有关,既然k状态不断变化,则电子的速度必然不断变化。

7.以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系,为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度?答:沿不同的晶向,能量带隙不一样。

因为电子要摆脱束缚就能从价带跃迁到导带,这个时候的能量就是最小能量,也就是禁带宽度。

2.为什么半导体满带中的少量空状态可以用具有正电荷和一定质量的空穴来描述? 答:空穴是一个假想带正电的粒子,在外加电场中,空穴在价带中的跃迁类比当水池中气泡从水池底部上升时,气泡上升相当于同体积的水随气泡的上升而下降。

把气泡比作空穴,下降的水比作电子,因为在出现空穴的价带中,能量较低的电子经激发可以填充空穴,而填充了空穴的电子又留下了一个空穴。

因此,空穴在电场中运动,实质是价带中多电子系统在电场中运动的另一种描述。

因为人们发现,描述气泡上升比描述因气泡上升而水下降更为方便。

所以在半导体的价带中,人们的注意力集中于空穴而不是电子。

3.有两块硅单晶,其中一块的重量是另一块重量的二倍.这两块晶体价带中的能级数是否相等,彼此有何联系?答:相等,没任何关系4.为什么极值附近的等能面是球面的半导体,当改变磁场方向时只能观察到一个共振吸收峰。

答:各向同性。

5.金刚石晶体结构和闪锌矿晶体结构的晶向对物理性质的影响。

6.典型半导体的带隙。

一般把禁带宽度等于或者大于2.3ev的半导体材料归类为宽禁带半导体,主要包括金刚石,SiC,GaN,金刚石等。

26族禁带较宽,46族的比较小,如碲化铅,硒化铅(0.3ev),35族的砷化镓(1.4ev)。

第二章1.说明杂质能级以及电离能的物理意义。

为什么受主、施主能级分别位于价带之上或导带之下,而且电离能的数值较小?答:被杂质束缚的电子或空穴的能量状态称为杂质能级,电子脱离杂质的原子的束缚成为导电电子的过程成为杂质电离,使这个多余的价电子挣脱束缚成为导电电子所需要的能量成为杂质电离能。

杂质能级离价带或导带都很近,所以电离能数值小。

2.纯锗,硅中掺入III或Ⅴ族元素后,为什么使半导体电学性能有很大的改变?杂质半导体(p型或n型)应用很广,但为什么我们很强调对半导体材料的提纯?答:因为掺入III或Ⅴ族后,杂质产生了电离,使得到导带中得电子或价带中得空穴增多,增强了半导体的导电能力。

极微量的杂质和缺陷,能够对半导体材料的物理性质和化学性质产生决定性的影响,,当然,也严重影响着半导体器件的质量。

3.把不同种类的施主杂质掺入同一种半导体材料中,杂质的电离能和轨道半径是否不同? 把同一种杂质掺入到不同的半导体材料中(例如锗和硅),杂质的电离能和轨道半径又是否都相同?答:不相同4.何谓深能级杂质,它们电离以后有什么特点?答:杂质电离能大,施主能级远离导带底,受主能级远离价带顶。

特点:能够产生多次电离,每一次电离相应的有一个能级。

5.为什么金元素在锗或硅中电离后可以引入多个施主或受主能级?答:因为金是深能级杂质,能够产生多次电离,每一次电离相应的有一个能级,因此,金在硅锗的禁带往往能引入若干个能级。

6.说明掺杂对半导体导电性能的影响。

答:在纯净的半导体中掺入杂质后,可以控制半导体的导电特性。

掺杂半导体又分为n型半导体和p型半导体。

例如,在常温情况下,本征Si中的电子浓度和空穴浓度均为1.5╳1010cm-3。

当在Si中掺入1.0╳1016cm-3后,半导体中的电子浓度将变为1.0╳1016cm-3,而空穴浓度将近似为2.25╳104cm-3。

半导体中的多数载流子是电子,而少数载流子是空穴。

7.说明半导体中浅能级杂质和深能级杂质的作用有何不同?答:深能级杂质在半导体中起复合中心或陷阱的作用。

浅能级杂质在半导体中起施主或受主的作用8.什么叫杂质补偿,什么叫高度补偿的半导体,杂质补偿有何实际应用。

答:当半导体中既有施主又有受主时,施主和受主将先相互抵消,剩余的杂志最后电离,这就是杂质补偿,若施主电子刚好填充受主能级,虽然杂质很多,但不能向导带和价带提供电子和空穴,这种现象称为杂质的高度补偿。

利用杂质补偿效应,可以根据需要改变半导体中某个区域的导电类型,制造各种器件。

9.什么是半导体的共掺杂答:掺入两种或两种元素以上10.用氢原子模型计算杂质电离能第三章1.半导体处于怎样的状态才能叫处于热平衡状态,其物理意义如何?载流子激发和载流子复合之间建立起动态平衡时称为热平衡状态,这时电子和空穴的浓度都保持一个稳定的数值,处在这中状态下的导电电子和空穴称为热平衡载流子。

2.什么是能量状态密度能带中能量E附近每单位能量间隔内的量子态数。

3.什么叫统计分布函数,费米分布和玻耳兹曼分布的函数形式有何区别?在怎样的条件下前者可以过渡到后者,为什么半导体中载流子分布可以用玻耳兹曼分布描述?统计分布函数描述的事热平衡状态下电子在允许的量子态如何分布的一个统计分布函数。

当E-EF>>kT时,前者可以过度到后者。

4.说明费米能级的物理意义,根据费米能级位置如何计算半导体中电子和空穴浓度,如何理解费米能级是掺杂类型和掺杂程度的标志。

费米能级的意义:当系统处于热平衡状态,也不对外界做功的情况下,系统增加一个电子所引起的系统自由能的变化,等于系统的化学能。

n型掺杂越高,电子浓度越高,EF就越高。

5.在半导体计算中,经常应用这个条件把电子从费米能级统计过渡到玻耳兹曼统计,试说明这种过渡的物理意义。

E-EF>>kT时,量子态为电子占据的概率很小,适合于波尔兹曼分布函数,泡利原理失去作用,两者统计结果变得一样了。

6.写出半导体的电中性方程,此方程在半导体中有何重要意义?电子浓度等于空穴浓度。

意义:平衡状态下半导体体内是电中性的。

7.半导体本征载流子浓度的表达式及其费米能级载流子浓度:ni=n0p0=(NcNv)1/2exp(-Eg/2kT)费米能级:Ei=Ef=(Ec+Ev)/2+(3kT/4)*ln(mp/mn)8.若n型硅中掺入受主杂质,费米能级升高还是降低?若温度升高当本征激发起作用时,费米能级在什么位置,为什么?费米能级降低了。

费米能级在本征费米能级以上。

9.如何理解分布函数与状态密度的乘积再对能量积分即可求得电子浓度?根据公式和常识,必然是这样。

10.为什么硅半导体器件比锗器件的工作温度高?硅的禁带宽度比锗大,且在相同温度下,锗的本征激发强于硅,很容易就达到较高的本征载流子浓度,使器件失去性能。

11.当温度一定时,杂质半导体的费米能级主要由什么因素决定?试把强n,弱n型半导体与强p,弱p半导体的费米能级与本征半导体的费米能级比较。

决定因素:掺杂浓度,掺杂能级,导带的电子有效态密度等。

费米能级比较:强n>弱n>本征>弱p>强p12.如果向半导体中重掺施主杂质,就你所知会出现一些什么效应?费米能级深入到导带或者价带中13.半导体的简并化判据Ec-Ef<=0第四章1.试从经典物理和量子理论分别说明载流子受到散射的物理意义。

经典:电子在运动中和晶格或者杂质离子发生碰撞导致载流子速度的大小和方向发生了改变。

量子理论:电子波仔半导体传播时遭到了散射。

2.半导体的主要散射机制。

电离杂质散射;晶格振动散射,包括声子波和光学波散射;其他因素散射:等能谷散射,中性杂质散射,位错散射,合金散射,等。

3.比较并区别下述物理概念:电导迁移率,漂移迁移率和霍耳迁移率。

电导迁移率:漂移迁移率:载流子在电场作用下运动速度的快慢的量度,运动得越快,迁移率越大;运动得慢,迁移率小霍尔迁移率:Hall系数RH与电导率σ的乘积,即│RH│σ,具有迁移率的量纲,Hall迁移率μH实际上不一定等于载流子的电导迁移率μ, 因为载流子的速度分布会影响到电导迁移率4.什么是声子? 它对半导体材料的电导起什么作用?声子是晶格振动的简正模能量量子,声子可以产生和消灭,有相互作用的声子数不守恒,声子动量的守恒律也不同于一般的粒子,并且声子不能脱离固体存在。

电子在半导体中传输时若发生晶格振动散射,则会发出或者吸收声子,使电子动量发生改变,从而影响到电导率。

5.平均自由程,平均自由时间,散射几率平均自由程:电子在受到两次散射之间所走过的平均距离;平均自由时间:电子在受到两次散射之间运动的平均时间;散射几率:用来描述散射的强弱,代表单位时间内一个载流子受到散射的次数。

6.几种散射机制同时存在,总的散射几率总散射概率等于多种散射概率之和。

相关文档
最新文档