LSB图片信息隐藏隐藏实验精选文档

合集下载

基于LSB算法的图像信息隐藏与检测

基于LSB算法的图像信息隐藏与检测

基于LSB算法的图像信息隐藏与检测数字图像隐写分析基于LSB算法的图像信息隐藏与检测学院名称计算机科学与技术学院专业班级学⽣姓名学号指导教师2016.05.01基于LSB算法的图像信息隐藏与检测摘要:LSB替换隐写基本思想是⽤嵌⼊的秘密信息取代载体图像的最低⽐特位,原来的的7个⾼位平⾯与替代秘密信息的最低位平⾯组合成含隐藏信息的新图形。

⽂章⾸先简单叙述了BMP位图⽂件的⽂件格式,然后根据24位真彩⾊BMP位图格式与显⽰⽅式的特殊性,直接改变图像中像素的最后⼀位值来嵌⼊秘密⽂件,提出了⼀种对⽂字信息进⾏加密的有效⽅案。

关键词:LSB,信息隐藏,信息安全,BMP位图Image information hiding and detection based on LSBalgorithmAbstract: LSB replacement steganography basic idea is to use the embedded secret information to replace the image of the lowest bits, the original 7 high plane and the least significant bit plane of alternative secret information into new graphics containing hidden information.This paper simple describes the BMP file format of the bitmap file, and then according to the 24 true color BMP bitmap format and the particularity of display mode, directly change the values of pixels in the image of the last to embed secret files, puts forward a effective scheme of text information is encrypted.Key words: LSB, Information hiding,information security,bit map file⽬录第1章绪论 (5)1.1 LSB算法原理 (5)第2章 LSB隐写实现 (7)2.1 LSB隐藏过程 (7)2.2 LSB隐写实例效果 (8)第3章 LSB信息提取 (10)3.1 LSB信息提取过程 (10)3.2 LSB信息提取实例效果 (10)参考⽂献 (13)第1章绪论1.1 LSB算法原理LSB是L.F.Turner和R.G.van Schyndel等⼈提出的⼀种典型的空间域信息隐藏算法。

lsb信息隐藏

lsb信息隐藏

LSB算法的信息隐藏实验单位:三系一队姓名:马波学号:3222008030LSB信息隐藏实验一、实验目的1.掌握LSB算法原理2.熟悉信息隐藏与提取的流程3.锻炼算法的程序实现能力二、实验原理1.信息隐藏用秘密信息比特替换载体中的最不重要部分,可以达到对信息隐藏的目的。

在数字图像中,每个字节的最低位对图像信息的影响最小,因此将数字图像的最低位用信息比特替换可以实现信息隐藏。

由于载体图像的每个字节只隐藏一个秘密信息比特,所以只有当载体图像的大小是秘密信息大小的8倍以上时才能完整的将秘密信息隐藏。

提取信息位并隐藏的示意图:2.信息提取在隐藏了秘密信息的数字图像中,每个字节的最低位就是秘密信息比特位,只需将这些信息比特提取出来并组合,就可以恢复出原来的秘密信息。

提取信息示意图:三、实验内容A.将秘密信息隐藏在载体的最低位,检验算法的鲁棒性(1)读入秘密信息(此实验中秘密信息为二值图像)(2)把秘密信息的比特位放入载体的最低位(3)给隐藏了秘密信息的图像加入大小为1的噪声加入噪声大小为1时:加入噪声为2时:B.将秘密信息隐藏在载体的最高位,检验算法的鲁棒性(1)读入秘密信息(此实验中秘密信息为二值图像)(2)把秘密信息的比特位隐藏在载体的最高位(3)分别给隐藏了秘密信息的图像加入大小为1和2的噪声C.将秘密信息隐藏在载体的第三位,检验算法的鲁棒性(1)同A中的(1)(2)把秘密信息比特位隐藏在载体的第三位(3)分别给隐藏了秘密信息的图片加入大小为1、2和3的噪声五、实验总结1.当秘密信息隐藏在最低位时,对载体的改变小,载体质量较高。

但鲁棒性较差,有噪声干扰时很容易发生信息丢失从而无法恢复出秘密信息2.当秘密信息隐藏在最高位时,图像的鲁棒性增强,受到较大噪声干扰时仍能恢复出秘密信息,但对图像的改变较大,隐藏的位数越高图像的质量越低。

3.当隐藏的信息位介于最低位和最高位时,选择合适的位置,既可以提高信息隐藏的鲁棒性,又对图像的质量影响不大,所以,进行信息隐藏时可以考虑LSB的改进。

空域信息隐藏算法(完成基于LSB的图像信息隐藏)

空域信息隐藏算法(完成基于LSB的图像信息隐藏)

空域信息隐藏算法(完成基于LSB的图像信息隐藏)最近在上信息隐藏,做⼀个记录⼀,实验要求(1)了解信息隐藏算法的分类⽅式和分类依据(2)理解空域信息隐藏算法的基本思想(3)掌握最低有效位算法原理(4)完成基于LSB的图像信息隐藏⼆、实验内容载体图像为24位真彩⾊bmp图像Lena.bmp,嵌⼊的秘密图像为⿊⽩的bmp图像LSB.bmp,要求采⽤空域信息隐藏算法,将LSB.bmp嵌⼊到Lena.bmp的最低有效位中,同屏显⽰原载体图像、需要嵌⼊的秘密图像、嵌⼊了秘密图像的伪装载体、提取的秘密图像。

以下为实验材料:lena.bmp 和 LSB.bmp隐体:三、实验步骤和设计思想1,使⽤pyhton库,skimage来完成相关的⼟图像处理2,通过skimage库打开隐体,发现只有两个值【255,和 0】所以,其实隐藏时,只要⽤⼀位就可以隐藏隐体,将255使⽤1代替,0不变,将其藏在载体的最后⼀位即可。

3,因为隐体为RGB三通道图像,为了隐藏的更好,使⽤随机数将0和1,随机选定⼀个图层进⾏隐藏,当然为了能够还原原图像,使⽤⼀个seed作为key,这样产⽣的随机数就可以顺序提取。

4,隐藏和提取时,使⽤位运算可轻松的实现数字的⾼低位的存取。

5,将变换后的图⽚进⾏保存,再使⽤相同的key和隐藏信息后的载体,进⾏提取。

6,为了⽅便使⽤,将隐藏的⽅法和过程使⽤,⾯向对象的思想,封装为类。

四,### 代码from skimage import ioimport numpyclass IMG_LSB:def __init__(self, key):self.key = keydef show(self, img):"""显⽰图⽚:param img: 显⽰的图⽚矩阵:return: none"""io.imshow(img)io.show()def create_cover(self, img_cover_name, img_info_name, save_img_name):"""使⽤LSB算法对图像进⾏隐藏,隐藏到使⽤key作为种⼦⽣成的随机数指定的RGB通道中:param img_cover_name: 载体图⽚名:param img_info_name: 隐体图⽚名:param save_img_name: LSB⽣成后的图⽚保存位置以及名字:return: LSB⽣成后的图⽚矩阵"""img_info = io.imread(img_info_name)img_cover = io.imread(img_cover_name)self.show(img_info)self.show(img_cover)self.ls_info = img_info.shape[0] # 得到隐体图⽚的长和宽self.ls_cover = img_cover.shape[0] # 得到载体的长和宽if self.ls_info > self.ls_cover:print("载体太⼩")# 开始隐藏numpy.random.seed(self.key)for i in range(0, self.ls_info):for j in range(0, self.ls_info):if img_info[i][j] == 255 : # 如果隐体为255则藏在R层最低为置为1img_cover[i, j, numpy.random.randint(0, 3)] |= 1 # 随机选定⼀个通道进⾏隐藏else:img_cover[i, j, numpy.random.randint(0, 3)] &= 254 # 如果隐体为0则藏在R层最低为置为0self.show(img_cover)io.imsave(save_img_name, img_cover)return img_coverdef extract_img(self, blmb_name, save_img_name):"""对隐体进⾏提取并显⽰:param blmb_name: LSB⽣成的含有隐体的载体名:param save_img_name: 提取后的隐体存储的位置:return: 提取后的隐体的矩阵"""blmb = io.imread(blmb_name)matrix = [[255 for i in range(self.ls_info)] for i in range(self.ls_info)] # ⽣成与隐体相同⼤⼩的矩阵,并赋值为255re_info_img = numpy.array(matrix, dtype=numpy.uint8) # 将⽣成的矩阵转化为可存储图像的8位格式self.show(re_info_img)# 开始提取numpy.random.seed(self.key)for i in range(0, self.ls_info):for j in range(0, self.ls_info):randint_value = numpy.random.randint(0, 3) # 使⽤seed控制随机数的⽣成保证与之前隐藏时,⽣成的随机数⼀致 blmb[i, j, randint_value] &= 1 # 取出最后⼀位if blmb[i, j, randint_value] == 0:re_info_img[i][j] &= 0 # 如果最后⼀位为0则隐体原处为0,为1则为255else:re_info_img[i][j] |= 255io.imsave("img/re_img.bmp", re_info_img)self.show(re_info_img)return re_info_img# 测试if __name__ == '__main__':img = IMG_LSB(123) # key为123img.create_cover("img/Lena.bmp", "img/LSB.bmp", "img/blmb2.bmp")img.extract_img("img/blmb2.bmp", "img/re_img.bmp")。

LSB图像信息隐藏实验

LSB图像信息隐藏实验

学号:姓名:专业年级班级:实验室:组别:实验日期:课程名称保密技术实验实验课时实验项目名称和序号1.LSB图像信息隐藏实验同组者姓名实验目的1. 掌握对图像的基本操作。

2. 能够用 LSB 算法对图像进行信息隐藏3. 能够用 LSB 提取算法提取隐藏进图像的信息4. 能够反映 jpeg 压缩率与误码率之间的关系实验环境Windows+matlab实验内容和原理1.用 MATLAB 函数实现 LSB 信息隐藏和提取2.分析了 LSB 算法的抗攻击能力3.能随机选择嵌入位(考虑安全性因素)实验步骤方法关键代码实验算法 1:LSB 嵌入1.读取一副 256*256 大小的图片,判断是否为 RGB 图像。

若为 RGB 图像,则读取图像的一层信息(如 R 层)。

通过读取图像的尺寸大小来判断是否为RGB图像。

RGB图像是三维多彩图,size有3个参数,最小参数是3,只要判断读取到的图像大小大于2,就确定读入的是RBG图像2.以二进制形式读取要嵌入到图片里的消息。

并读取消息的长度(嵌入消息的长度不能超过图像位数)。

3.产生与消息长度一致的一串随机数(不能相同)。

自定义一个randinterval函数来实现伪随机数的生成产生的伪随机数是代表消息要隐藏的像素位置(行和列的信息)随机数代码:function [row,col]=randinterval(matrix,count,key)%randinterval.m%参数说明%matrix是载体矩阵,即要隐藏信息的图层%cout为要嵌入信息的像素数量%key为自定义秘钥,随机种子[m,n] = size(matrix);interval1 = floor(m * n/(count+eps)) + 1;interval2 = interval1 - 2;if interval2 == 0error('载体太小不能把秘密信息隐藏进去');endrand('seed',key);a = rand(1, count);row = zeros([1 count]);col = zeros([1 count]);r = 1;c = 1;row(1,1) = r;col(1,1) = c;for i =2:countif a(i) >= 0.5c = c + interval1;elsec = c + interval2;endif c > nr = r + 1;if r > merror('载体太小不能把秘密信息隐藏进去');endc = mod(c, n);if c == 0c = 1;endendrow(1, i) = r;col(1, i) = c;end4.按照产生的随机数的序列依次将图片层的最后一位改为消息的信息。

信息隐藏实验报告一图像的位平面,LSB和MSB

信息隐藏实验报告一图像的位平面,LSB和MSB

信息隐藏实验报告一实验名称:图像的位平面,LSB 和MSB一、实验目的图像的位平面,LSB 和MSBLSB(Least Significant Bits):最不重要位(或最低有效位) MSB(Most Significant Bits):最重要位。

二、实验内容⑴用“按位与”运算清image 的第2、3、4、5、6、7位,结果分别保存在图像矩阵data02、 data03、 data04、 data05、 data06、 data07中,并显示所得结果;⑵用“按位与”运算取image 的第2、3、4、5、6、7位,结果分别保存在图像矩阵data12、 data13、 data14、 data15、 data16、 data17中,并显示所得结果;⑶用“按位与”运算清image 的第1-2、1-3、1-4、1-5、1-6、1-7位,结果分别保存在图像矩阵data02、 data03、 data04、 data05、 data06、 data07中,并显示所得结果; ⑷用“按位与”运算取image 的第3-8、4-8、5-8、6-8、7-8位,结果分别保存在图像矩阵data13、 data14、 data15、 data16、 data17中,并显示所得结果;⑸将彩色图像dsc.jpg 读入图像矩阵image ,重做上面的⑴-⑷项要求;⑹取彩色图像矩阵image 的某个分量(R 、G 、B 均可),重做上面的⑴-⑷项要求;三、实验环境matlab7.0四、基本原理(算法思想)时域是对应于变换域而言的,即不对信号做任何频率变换而得到的信号域就是时域。

对于图像载体,其信号空间也就是像素的取值空间。

我们选择了RGB 颜色空间下的像素作为分析对象。

在RGB 颜色空间中,每一个像素都有三个分量,即红(Red)、绿(Green)、蓝(Blue)分量。

五、实验结果与结论(主要的程序代码、运行结果)⑴用“按位与”运算清image 的第2、3、4、5、6、7位,结果分别保存在图像矩阵data02、 data03、 data04、 data05、 data06、 data07中,并显示所得结果;教师签名2007.11实验时间成绩评 定信息隐藏 课程名称同组人姓 名 05软件工程班 级 计算机科学与技术系别⑵用“按位与”运算取image的第2、3、4、5、6、7位,结果分别保存在图像矩阵data12、data13、 data14、 data15、 data16、 data17中,并显示所得结果;⑶用“按位与”运算清image的第1-2、1-3、1-4、1-5、1-6、1-7位,结果分别保存在图像矩阵data02、 data03、 data04、 data05、 data06、 data07中,并显示所得结果;⑷用“按位与”运算取image的第3-8、4-8、5-8、6-8、7-8位,结果分别保存在图像矩阵data13、 data14、 data15、 data16、 data17中,并显示所得结果;⑸将彩色图像dsc.jpg读入图像矩阵image,重做上面的⑴-⑷项要求;代码略清image的第2、3、4、5、6、7位取image的第2、3、4、5、6、7位清image的第1-2、1-3、1-4、1-5、1-6、1-7位⑹取彩色图像矩阵image的某个分量(R、G、B均可),重做上面的⑴-⑷项要求;代码image=imread('dsc.jpg');%将彩色图像读入图像矩阵image A=image(:,:,1);下略清image的第2、3、4、5、6、7位取image的第2、3、4、5、6、7位清image的第1-2、1-3、1-4、1-5、1-6、1-7位六、实验总结通过这次实验使我对图像的位平面有了一定的认识。

LSB图像信息隐藏实验

LSB图像信息隐藏实验

LSB图像信息隐藏实验【实验环境】ISES客户端注:请将信息隐藏测试载体放在指定目录下:C:\ISES【实验步骤】一、信息嵌入(一)选择载体图片注:载体图片有BMP、JPG、GIF、PNG四种格式,这里只以JPG格式图片为例。

(1)选择载体图片,进入该实验,点击“选择载体图片”按钮选择合适的要嵌入信息的载体图片,如图4.1.1-1所示。

图4.1.1-1选择载体图片(2)点击“二进制展示”按钮可以二进制形式查看图片,如图4.1.1-2所示。

图4.1.1-2以二进制查看图片(3)点击“计算”按钮,可查看图片信息,如图4.1.1-3所示。

图4.1.1-3查看图片信息(二)选择要隐藏文件(1)点击“选择要隐藏的文件”按钮选择要嵌入的信息文件,并点击“计算”按钮查看信息内容。

如图4.1.1-4所示。

需注意的是要嵌入的信息数据大小应小于载体容量,且最好为文本文件,以便对比观察原始信息与提取的信息。

图4.1.1-4选择要隐藏文件(2)点击“二进制转换”按钮,查看隐藏信息的二进制流,如图4.1.1-5所示。

图4.1.1-5以二进制流形式查看隐藏信息(三)嵌入信息(1)点击“嵌入”按钮,将隐藏信息嵌入到载体图片中,并另存为成新的带有隐藏信息的图片,如图4.1.1-6所示。

图4.1.1-6嵌入信息成功(2)点击“确定”按钮,弹出图片对比窗口,如图4.1.1-7所示。

图4.1.1-7图片对比窗口(3)可通过选项卡选择图片对比及细节对比,以对比原始载体图片和嵌入信息后的载体是否存在视觉上的可觉察的变化,并观察载体文件嵌入前后的细节变化。

(四)观察嵌入信息过程(1)点击“读取信息”及“读取水印”按钮,读取载体的一个字节信息及水印的一位信息,如图4.1.1-8所示。

图4.1.1-8读取信息(2)点击“嵌入1”按钮,执行嵌入操作,如图4.1.1-9所示。

图4.1.1-9嵌入信息(3)点击“嵌入”按钮,循环执行上述过程将全部信息嵌入到载体图片中,并保存、对比结果。

信息隐藏LSB算法实验报告

信息隐藏LSB算法实验报告

本科生课程考试答题本考生姓名__________考生学号_______专业班级________指导老师__________考试科目_________考试日期__年__月__日目录一、实验任务和要求 (2)1.1实验任务 (2)1.2实验要求 (2)二、实验算法LSB原理 (2)三、实验环境和采用的工具 (3)四、具体实现步骤 (3)4.1 LSB算法水印嵌入 (3)4.2 LSB算法水印提取 (4)4.3 LSB算法实验测试 (5)五、源码分析 (5)5.1 LSB算法水印嵌入 (5)5.2 LSB算法水提取 (9)5.3 计算PSNR值 (12)六、实验测试 (13)6.1 LSB水印的嵌入 (13)6.2 水印的提取 (14)6.3 对水印进行鲁棒性测试 (14)6.4 对水印进行有效性测试 (14)6.5 对水印计算PSNR值 (14)6.6 对水印容量进行分析 (15)七、结论 (15)一、实验任务和要求1.1实验任务•信息载体:每个人自己的一张外景照片;•水印信息:每个人将学号、姓名按上下两列写在白纸上,然后手机拍摄,转化为黑白图片,作为水印信息;•信息隐藏方法:LSB算法(空域或频域)。

1.2实验要求实验可采用matlab6.5以上版本(C++、Java等),程序分为嵌入与检测两部分,最好有友好的操作方式;程序代码需要注释,编码简洁可靠明了,易检查。

实验测试要求有:•需对信息处理进行鲁棒性测试;•对水印嵌入的有效性进行测试;•计算嵌入前后的PSNR值;•对水印容量进行分析。

二、实验算法LSB原理LSB是L.F.Turner和R.G.van Schyndel等人提出的一种典型的空间域信息隐藏算法。

LSB 最低有效位法(Least Significant Bit;LSB)是运用人类视觉系统无法觉察细微变化之掩蔽效果,将秘密信息隐藏在图像像素的最低位,具有计算速度快且容易秘密信息隐藏在图像像素的最低位,具有计算速度快且容易实现有点。

信息隐藏实验报告

信息隐藏实验报告

信息隐藏实验报告实验题目【一】实现空域图像水印方法中的LSB算法:原始图像选取大小为512*512的elain图像或者goldhill图像,选择一个LSB水印算法以及适当的水印序列;利用选定的水印嵌入算法将水印信息嵌入到原始图像中。

在嵌入水印之后的图像中提取水印,是否可以判定图像中含有水印,同时计算含水印图像的峰值信噪比。

将含有水印的图像缩小为256*256之后,再放大为512*512,这时再提取水印,是否可以判定图像中含有水印。

实验结果缩略图:lsb.fig实验程序% LSB 算法:clear;A=imread('elain.bmp');B=A;message='www`s homework';m=length(message);n=size(A);k=1;for i=1:n(1)for j=1:n(2)if k<=m %如果消息输入完成则为0h=bitget(double(message(k)),8:-1:1);elseh=[0,0,0,0,0,0,0,0];endc=bitget(A(i,j),8:-1:1);if mod(j,8) == 0p=8;elsep=mod(j,8);endv=0;for q=1:7v=xor(v,c(q));endv=xor(v, h(p) );B(i,j)=bitset(A(i,j),1,v);if mod(j,8) == 0k=k+1;endendend% 提取信息out=char;tmp=0 ;t=1;for i=1:n(1)for j=1:n(2)c=bitget(B(i,j),8:-1:1);v=0;for q=1:8v=xor(v,c(q));endif mod(j,8)==0p=1;elsep=9-mod(j,8);endtmp=bitset(tmp,p,v);if mod(j,8)==0out(t)=char(tmp);t=t+1;tmp=0;endendend%显示图像figure;subplot(1,2,1);image(A);axis('square');title('原始图像');subplot(1,2,2);imshow(B);axis('square');title('加入水印后图像');out实验题目【二】实现基于扩频的图像水印算法:原始图像选取大小为512*512的elain图像或者goldhill图像,水印图像选取为以XXX印或者XX之印(XXX为自己的名字)为图案的、适当大小的二值黑白图像,再选取一个基于扩频的图像水印算法;利用选定的水印嵌入算法将水印信息嵌入到原始图像中。

LSB图像信息隐藏

LSB图像信息隐藏

LSB图像信息隐藏1.实验⽬的(1)了解信息隐藏中最常⽤的LSB算法特点,掌握LSB算法原理,设计并实现⼀种基于图像的LSB隐藏算法(2)了解如何通过峰值信噪⽐来对图像质量进⾏客观评价,并计算峰值信噪⽐2.实验内容(1)LSB隐藏算法(2)计算峰值信噪⽐3.实验原理 任何多媒体信息,在数字化时,都会产⽣物理随机噪声,⽽⼈的感观系统对这些随机噪声不敏感。

替换技术就是利⽤这个原理,通过使⽤秘密信息⽐特替换随机噪声,从⽽完成信息隐藏⽬标。

BMP灰度图像的位平⾯,每个像素值为8bit⼆进制值,表⽰该点亮度。

图像⾼位平⾯对图像感官质量起主要作⽤,去除图像最低⼏个位平⾯并不会造成画⾯质量的明显下降。

利⽤这个原理可⽤秘密信息(或称⽔印信息)替代载体图像地位平⾯以实现信息嵌⼊。

算法选⽤最低位平⾯来嵌⼊秘密信息。

最低位平⾯对图像的视觉效果影响最轻微,但很容易受噪声影响和攻击,解决办法可采⽤冗余嵌⼊的⽅式来增强稳健性。

即在⼀个区域(多个像素)中嵌⼊相同的信息,提取时根据该区域中的所有像素判断。

4.实验记录(1)隐藏算法算法分为三个部分实现:隐藏算法提取算法测试脚本1)隐藏算法源代码hide_lsb.m⽂件:function o=hide_lsb(block,data,I) %block:隐藏的最⼩分块⼤⼩ data:秘密信息 I:原始载体si=size(I);lend=length(data);% 将图像划分为M*N个⼩块N=floor(si(2)/block(2));M=min(floor(si(1)/block(1)),ceil(lend/N));o=I;for i=0:M-1% 计算每⼩块垂直⽅向起⽌位置rst=i*block(1)+1;red=(i+1)*block(1);for j=0:N-1% 计算每⼩块隐藏的秘密信息的序号idx=i*N+j+1;if idx>lendbreak;end;% 取每⼩块隐藏的秘密信息bit=data(idx);% 计算每⼩块⽔平⽅向起⽌位置cst=j*block(2)+1;ced=(j+1)*block(2);% 将每⼩块最低位平⾯替换为秘密信息o(rst:red,cst:ced)=bitset(o(rst:red,cst:ced),1,bit);endend;2)提取算法源代码dh_lsb.m⽂件:function out=dh_lsb(block,I) % block:隐藏的最⼩分块⼤⼩ I:携密载体si=size(I);% 将图像划分为M*N个⼩块N=floor(si(2)/block(2));M=floor(si(1)/block(1));out=[];% 计算⽐特1判决阈值:即每⼩块半数以上元素隐藏的是⽐特1时,判决该⼩块嵌⼊的信息为1thr=ceil((block(1)*block(2)+1)/2);idx=0;for i=0:M-1% 计算每⼩块垂直⽅向起⽌位置rst = i*block(1)+1;red=(i+1)*block(1);for j=0:N-1% 计算每⼩块图像隐藏的秘密信息序号idx=i*N+j+1;% 计算每⼩块⽔平⽅向起⽌位置cst=j*block(2)+1;ced=(j+1)*block(2);% 提取⼩块最低位平⾯,统计1⽐特个数,判决输出秘密信息tmp=sum(sum(bitget(I(rst:red,cst:ced),1)));if(tmp>=thr)out(idx)=1;elseout(idx)=0;end;end;end;3)测试脚本源代码test.m⽂件:fid=1;len=10;% 随机⽣成要隐藏的秘密信息d=randsrc(1,len,[0,1]);block=[3,3];[fn,pn]=uigetfile({'*.bmp','bmp file(*.bmp)';},'选择载体');s=imread(strcat(pn,fn));ss=size(s);if(length(ss)>=3)I=rgb2gray(s);elseI=s;end;si=size(I);sN=floor(si(1)/block(1))*floor(si(2)/block(2));tN=length(d);% 如果载体图像尺⼨不⾜以隐藏秘密信息,则在垂直⽅向上复制填充图像if sN<tNmultiple=ceil(tN/sN);tmp=[];for i=1:multipletmp=[tmp;I];end;I=tmp;end;% 调⽤隐藏算法,把携密载体写⾄硬盘stegoed=hide_lsb(block,d,I);imwrite(stegoed,'hide.bmp','bmp');[fn,pn]=uigetfile({'*.bmp','bmp file(*.bmp)';},'选择隐蔽载体');y=imread(strcat(pn,fn));sy=size(y);if(length(sy)>=3)I=rgb2gray(y);elseI=y;end;% 调⽤提取算法,获得秘密信息out=dh_lsb(block,I);% 计算误码率len=min(length(d),length(out));rate=sum(abs(out(1:len)-d(1:len)))/len;y=1-rate;fprintf(fid,'LSB:len:%d\t error rate:%f\t error num:%d\n',len,rate,len*rate);通过运⾏测试代码,对灰度图xxx3.bmp⽂件进⾏LSB算法的信息隐藏,并⽣成⽂件bide.bmp。

信息安全实验4 图像信息隐藏

信息安全实验4 图像信息隐藏

实验要求: 算法分两部分: ① 水印嵌入算法; ② 判断图像是否篡改的算法。
1. 将所有像素每连续8个分成一组,每组中的8个像素的高7位依 次提取出来组成一个56位的二进制数据;
2. 第1组和第2组像素组成的56位二进制数逐位异或操作得到一个 56位的校验和,然后利用这个校验再和第三组像素组成的56位 二进制数逐位异或操作再得到一个56位的校验和,一次这样操 作直到最后一组,然后得到最终的56位校验和。
图像像素值大小在计算机中用二进制存储,其最低位对图像感官 质量影响较小,更改后不会造成图像质量的明显下降,可以利用这个 原理用秘密信息比特流替换图像像素值得最低有效位来实现隐藏传递 秘密信息的目的。BMP灰度图像的位平面图如下图,每个像素占8比 特的存储空间:
像素值的高位,改变 后对视觉影响较大, 一般不用于隐藏信息
3. 在图像中随机选取56个像素点,将上述得到的最终校验和利用 LSB算法嵌入到这56个像素中后生成一个加了水印的图片。
4. 利用相同的算法计算3中加水印图像的校验和,然后提取出嵌 入的校验和,两者进行比对判断图像是否被篡改,结果应该是 没有篡改。
5. 用画图软件改变3中加水印的图像,再利用4中完成的程序验证 图像是否被篡改,结果应该是被篡改。
图像像素值大小在计算机中用二进制存储其最低位对图像感官质量影响较小更改后不会造成图像质量的明显下降可以利用这个原理用秘密信息比特流替换图像像素值得最低有效位来实现隐藏传递秘密信息的目的
实验4 –图像信息隐藏
指导老师:陈国永 18684983863,余应波 15116165316,殷娇娇 15111221107
像素值的低位,改变 后对视觉影响较小1100100,现假如要隐藏一个1,则像 素变成1100101。

LSB信息隐藏实验

LSB信息隐藏实验

实验一:LSB信息隐藏实验【实验目的】:一、掌握MATLAB基本操作二、实现LSB信息隐藏和提取【实验内容】:(请将你实验完成的项目涂“■”)实验完成形式:■ 用MATLAB函数实现LSB信息隐藏和提取□ 用MATLAB命令行方式实现LSB信息隐藏和提取□ 其它:(请注明)实验选择载体:□ 256×256灰度图像 □ 256×256RGB图像 ■ 任意大小的RGB图像实验效果和分析:■ 分析了LSB算法的抗攻击能力■ 能随机选择嵌入位(考虑安全性因素)■ 嵌入位均匀分布于载体■ 信息提取的检错/纠错■ LSB隐写分析□ 其它:(请注明)【实验工具及平台】:■ Windows+Matlab □ 其它:(请注明)【实验涉及到的相关算法】:1、与实验内容选择的项目对应;2、请使用流程图、伪代码、NS图或文字方式描述,不要..贴代码1.海明码选择得是(7,4)海明码,它可以纠正一位错误,编码和解码分别用两个函数实现,关于它的算法,这里就不赘述了。

2.为了能随机选择嵌入位,我选择了Md5函数来选择嵌入位。

选择嵌入位的时候有3个密钥参与,提高了安全性,而且使嵌入位均匀分布于载体。

3.Lsb的嵌入方法是先将要隐藏的信息以二进制的形式读入,再随机选择它们要嵌入的位置。

如果要隐藏的信息的某一位为1,则它要嵌入的载体图象相应位置的像素值mod2的值为1;如果要隐藏的信息的某一位为0,则它要嵌入的载体图象相应位置的像素值mod2的值为0。

Lsb的提取方法是先将确定隐藏信息嵌入的位置。

如果该位置的像素值mod2的值为1;则此处隐藏的信息的1,如果该位置的像素值mod2的值为0;则此处隐藏的信息的0。

下面是整个算法的流程图:提取流程图【实验分析】:1、 请尽量使用曲线图、表等反映你的实验数据及性能2、 对照实验数据从理论上解释原因3、 如无明显必要,请.不要..大量粘贴....实验效果图 1.Lsb 的抗攻击能力比较差,下图是JPEG 压缩率与隐藏信息误码率的关系曲线:由上图可以看出,当存在轻微的jpeg 压缩,lsb 的误码率就达到了50%,这就很不理想了。

信息隐藏基础实验

信息隐藏基础实验

实验一基于图像的LSB信息隐藏算法一、实验目的1、了解和熟悉数字图像的读入和显示等基本操作。

2、了解不同“位平面”对图像质量的影响。

3、掌握不同图像格式之间的转换方法。

4、熟悉和掌握基于图像的LSB信息隐藏算法。

5、掌握对LSB算法的不可感知性的客观评价。

6、掌握LSB提取算法。

二、实验内容1、结合EXZAMPLE.M,查看不同“位平面”对图像质量的影响。

(1)运行example.m程序,将“位平面”的第7、8位设置为‘0’,得到如下结果,如图所示:由图分析得:去掉第7、8为,此两位(低位)对图像质量没有明显影响,没有携带图像的有用信息。

(2)运行example.m程序,将“位平面”的第3、4位设置为‘0’,得到如下结果,如图所示:由上图分析:对比左右两幅图像,可以看出去掉第3、4位对图像质量有较为明显的影响,携带有图像的有用信息。

(2)运行example.m程序,将“位平面”的第1、2位设置为‘0’,得到如下结果,如图所示:由图分析:对比左右两幅图像,可以看出去掉第1、2位对图像质量产生非常大的影响,携带有图像的大量有用信息。

由此程序可以得出,不同“位平面”对图像的质量有不同程度的影响,第1、2位携带有有用信息,而第7、8位不含有图像的有用信息。

2、运行water.m程序,理解不同图像格式之间的转换方法。

运行water.m程序,得到如下结果,如图所示:分析:可以在图像不同格式(RGB、灰度、二值)之间进行转换。

3、阅读并"完善" imbed.m内容,掌握基于图像的LSB信息隐藏算法。

(1)填写完善imbed.m程序,填写部分如下所示:(2)运行已完善的imbed.m程序,得到如下结果,如下图所示:分析:将水印嵌入灰度图像的“位平面”第N=6位,得到上图右图所示,与原图视觉效果没有区别,嵌入成功。

4、编写matlab函数:sse(f,f0)、mse(f,f0)、psnr(f,f0),实现对上述算法不可感知性的客观评价。

实验3-信息隐藏实验

实验3-信息隐藏实验

软件学院实验报告实验名称:信息隐藏实验指导教师:姓名:学号:成绩:一、实验目的掌握时域隐藏算法LSB的基本原理,了解变换域隐藏算法DCT的基本原理。

二、实验内容1.运行LSB算法程序,将自己的保密信息隐藏在给定的原始载体中,保存伪装载体,然后从自己的伪装载体中提取隐藏信息,比较他们的区别。

运行lsbmain程序:图1-信息所要隐藏在的原始载体图像图2-要隐藏的信息图为隐藏了保密信息的伪装载体:图3-伪装后的图像比较:载体和伪装载体看不出什么差别。

图4-提取信息比较:取出后的信息也没有改变。

2.在以LSB为例验证时域替换隐藏技术的时候,除了使用实验给出的模版以外,可以自己替换lsbmain.m程序中的载体图像文件,以及需要隐藏的秘密信息文件。

图5-修改载体图像文件和秘密信息文件图6-修改后的载体图像图7-修改后的保密信息图8-运行后的伪装图像图9-提取到的保密信息3.用保密信息去替换原始载体的最低位平面或其他层位平面,即通过修改程序中函数LSB(c,m,1)中1的值,看看对隐藏的文件有什么影响,分析原因。

图10-将低位平面改到高位平面图11-伪装图像图12-提取出的信息影响:在图像的高位插入信息后,伪装图像发生了较大改变,并且提取出的信息也丢失了很多。

4.给自己的伪装载体加噪声(运行lsb_noise.m),提取出隐藏的信息,和无噪声时的做比较。

图13-噪声程序图14-加了噪声的伪装图像图15-从加噪声的伪装图像提取的信息比较:加了噪声的伪装图像和原来的伪装图像有区别,但不会影响图像大体的形状。

另外,提取的信息基本丢失。

三、LSB程序的流程以及什么是数字隐藏技术?流程:1.将原始载体图像转换到二进制表示;2.用二进制秘密信息中的每一位比特信息替换与之相对应的载体数据的最低有效位;3.将得到的含秘密信息的二进制数据转换为十进制像素值,得到含秘密信息的图像;4.提取时过程相反。

数字隐藏技术:以数字媒体(如数字图像和声音等)作为载体,在不使载体本身发生显著变化的前提下,将需要保密传递的信息隐藏到载体中,从而达到隐藏传递目的的技术。

LSB算法实现BMP图像中的信息隐藏及提取

LSB算法实现BMP图像中的信息隐藏及提取

实验4 LSB算法实现位图图像中的信息隐藏及提取马亮,njnu一、实验目的通过对LSB算法的编程实现,深入理解该算法的设计思想及其应用。

二、实验类型程序设计。

三、实验原理LSB是L.F.Turner和R.G.van Schyndel等人提出的一种典型的空间域信息隐藏算法。

考虑人视觉上的厄不可见性缺陷,信息一般嵌入到图像最不重要的像素位上,如最低几位。

利用LSB算法可以在8色、16色、256色以及24位真彩色图像中隐藏信息。

对于256色图像,在不考虑压缩的情况下,每个字节存放一个像素点,那么一个像素点至少可以隐藏1位信息,一张640*480像素的256色图像至少可隐藏640*480=307200位(38400字节)的信息。

对于真彩色图像,同样可以按照如上的方法计算可以隐藏的信息量。

四、实验环境(1)系统环境:CPU:Inter® Core™2(2)开发环境:IDE:Microsoft Visual Studio 2005Language:Microsoft C#五、实验内容在上述系统环境和开发环境中编程实现LSB算法,包括信息的隐藏和提取。

六、程序说明(1)程序运行界面如下图所示:图1 信息隐藏界面图2 信息提取界面(2)程序功能说明➢自动计算最大隐藏信息量并给出提示➢可以在24位位图中隐藏大小不超过最大隐藏信息量的任意类型文件➢自动备份原始图片➢自动检测伪装图片中是否包含隐藏信息➢正确提取出LSB中的隐藏信息并还原出文件七、实现过程(1)LSBEncrypt类该类用于实现LSB的信息嵌入算法,类中各字段及方法说明如下:字段private string _originalPicPath 原始图片路径private string _hidingInfoPath 隐藏信息路径private FileStream _picStream 原始图片的文件流private FileStream _infoStream 隐藏信息的文件流方法➢private void HideInfoLength();输入:无输出:无功能:将图像的第55至第66字节的LSB替换为隐藏信息文件的长度➢private void HideInfoContent();输入:无输出:无功能:将隐藏信息以每3个字节写入原始图像从第67字节开始的每12字节块的LSB中➢private byte[] ConvertToBinaryArray(long x);输入:long x 要转换的长整型数,这个数的大小不会超过2的24次方输出:byte[] 二进制表示的字节数组功能:将长整型数转换为24位二进制表示的字节数组➢private byte[] ConvertToBinaryArray(byte[] array);输入:byte[] array 长度为3的字节数组输出:byte[] 二进制表示的字节数组功能:将隐藏信息以每3个字节写入原始图像从第67字节开始的每12字节块的LSB中➢public void ExecuteEncrypt();输入:无输出:无功能:执行信息隐藏操作(2)LSBDecrypt类该类用于实现LSB的信息提取算法,类中各字段及方法说明如下:字段private string _camouflagePicPath 伪装图片的路径private string _infoSavePath 还原出的隐藏信息的保存路径private FileStream _camouflageStream 伪装图片的文件流private FileStream _infoSaveStream 还原出的隐藏信息的文件流方法➢private int GetInfoLength();输入:无输出:int 隐藏信息长度功能:从伪装图片的第55至第66字节中提取出隐藏信息的长度➢private byte[] ExtractHidingBits(byte[] arr);输入:byte[] arr 长度为12的字节数组,含有隐藏信息输出:byte[] 从12字节块中提取出的3字节隐藏信息功能:利用位操作提取伪装文件流中每12字节的LSB位➢public bool ExecuteDecrypt();输入:无输出:bool 执行成功返回true,失败返回false功能:执行信息提取操作八、实验小结及思考(1)程序测试✧信息隐藏载体位图图像:图3 载体图像要隐藏的信息:图4 待隐藏的信息执行信息隐藏算法:图 5 隐藏信息成功信息隐藏选择伪装图片和还原出的隐藏信息的保存路径:图 6 信息提取还原出的文本文件test.txt:图7 还原出的文件(2)实验思考在信息隐藏的研究中,主要研究信息隐藏算法与隐蔽通信。

LSB信息隐藏实验报告

LSB信息隐藏实验报告

Centr al South University信息隐藏实验报告学院: 信息科学与工程学院班级:信息安全1201学号:0909121724姓名:吕秋言时间: 2018年6 月实验一:基于图像的LSB信息隐藏一、实验目的该实验为验证性实验。

目的是通过实验使学生掌握经典信息隐藏算法,在Matlab环境下,编写基于图像的LSB信息隐藏算法程序。

用Matlab函数实现LSB信息隐藏及提取,并进行分析。

b5E2RGbCAP二、实验要求1、实验前要做好充分准备,包括:复习实验所涉及的知识点,掌握Matlab编程语言和调试环境。

2、实验时注意记录实验过程中产生的数据、出现的问题及解决问题的方法。

3、理论联系实际,认真分析实验结果,回答思考题。

4、实验后完成实验报告,并附相关截图。

三、实验环境计算机<安装Visual C++ 6.0和Matlab 6.5以上版本)四、实验原理隐秘算法核心是将我们选取的像素点的最不重要位依次替换成秘密信息,以达到信息隐秘的目的。

嵌入过程包括选择一个图像载体像素点的子集{j1,…,jl(m>},然后在子集上执行替换操作像素cji←→mi,即把cji的LSB与秘密信息mi进行交换(mi可以是1或0>。

一个替换系统也可以修改载体图像像素点的多个比特,例如,在一个载体元素的两个最低比特位隐藏两比特、三比特信息,可以使得信息嵌入量大大增加但同时将破坏载体图像的质量。

在提取过程中,找出被选择载体图像的像素序列,将LSB(最不重要位>排列起来重构秘密信息,算法描述如下:p1EanqFDPw嵌入过程:for(i=1。

i<=像素序列个数。

i++>si←cifor(i=1。

i<=秘密消息长度。

i++>//将选取的像素点的最不重要位依次替换成秘密信息sji←cji←→mi提取过程:for(i=1。

i<=秘密消息长度。

i++>{ i←→ji//序选取mi←LSB(cji>}五、实验内容与步骤基本演示环境:matlabLSB,Least Significant Bits,最低有效位,将图像加密处理。

信息隐藏实验(LSB隐写,随机LSB隐写,RS隐写分析)..

信息隐藏实验(LSB隐写,随机LSB隐写,RS隐写分析)..

信息隐藏实验二LSB隐写分析姓名:周伟康学号:班级:一:实验要求1、针对自己实现的隐写算法(嵌入、提取),计算隐蔽载体的PSNR值,通过PSNR值来评估隐写对图像质量的影响,并与主观感受做对比。

2、实现一种隐写分析方法,对隐蔽载体进行检测(卡方、RS……)二:实验步骤1、编写随机选点函数,完善顺序和随机两种LSB信息嵌入和提取。

%随机间隔选点函数%[row, col] = randinterval(test, 60, 1983);function [row, col] = randinterval(matrix, count, key)[m, n] = size(matrix);interval1 = floor(m * n / count) + 1;interval2 = interval1 - 2;if interval2 == 0error('载体太小,不能将秘密消息隐藏其内!');endrand('seed', key);a = rand(1, count);%initializerow = zeros([1 count]);col = zeros([1 count]);r = 1; c = 1;row(1,1) = r;col(1,1) = c;for i = 2 : countif a(i) >= 0.5c = c + interval1;elsec = c + interval2;endif c > nr = r + 1;if r > merror('载体太小,不能将秘密消息隐藏其内!');endc = mod(c, n);if c==0c = 1;endendrow(1, i) = r;col(1, i) = c;end选取8*8的矩阵测试2、对比原始图像和隐藏信息后图像,计算隐蔽载体的均方差(MSE)进而计算峰值信噪比(PSNR),评估隐写对图像质量的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

L S B图片信息隐藏隐藏实验精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-上海电力学院高级程序设计(C)课程设计报告Array题院系:计算机科学与技术学院专业年级:信息安全2012级学生姓名:涂桂花学号:指导教师:魏为民2015年4月14日目录上 海 电 力学 院实 验 报 告课程名称 实验项目 姓名 学号 班级 专业 同组人姓名 指导教师 魏为民 实验日期 一、实验目的1.用MATLAB 函数实现LSB 信息隐藏和提取。

2.了解信息隐藏的作用和实现方法原理。

3.学会分析了解隐藏算法。

二、实验内容和步骤如操作环境、系统配置、操作步骤、程序源代码等。

1.操作环境操作系统 Windows 7 旗舰版 64位 SP1 ( DirectX 11 )2.系统配置处理器AMD E1-2100 APU with Radeon HD Graphics 双核3.操作步骤1) 打开MATLAB 软件,新建文件夹名为“ LSB ”。

2) 在“Command Window ”窗口里输入“guide ”,回车。

a. 如下图所示建立图形界面。

将5个push button 控件的“String ”属性设置为下图相应显示的名字,Tag 属性设置为pbt+String 名的格式。

将4个axec控件的Tag 属性设置为如下图所显示的名字。

信息安全 LSB 信息隐藏实验涂桂花 2012252 信息安全无3)分别右键点击5个push button控件,View Callbacks->CallBacks.给每个控件添加Callback代码。

再添加代码之前要为该fig文件命名。

我在本次实验命名为。

各个控件的代码如下:% --- Executes on button press in pbtCover.function pbtCover_Callback(hObject, eventdata, handles)% hObject handle to pbtCover (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)global gCover;[gCover,sFile]=loadimg();if isempty(gCover)msgbox('Cover image is empty!','Warning','warn','modal');return;endaxes;imshow(gCover);[iH iW iL]=size(gCover);sMsg=[sFile,'[',num2str(iH),'*',num2str(iW),'*',num2str(iL),']'];set,'String',sMsg);% --- Executes on button press in pbtSecret.function pbtSecret_Callback(hObject, eventdata, handles)% hObject handle to pbtSecret (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)global gSecret;[gSecret ,sFile]=loadimg();if isempty(gSecret)msgbox('Secret image is empty!','Warning','warn','modal');return;endaxes;imshow(gSecret);[iH iW iL]=size(gSecret);sMsg=[sFile,'[',num2str(iH),'*',num2str(iW),'*',num2str(iL),']'];set,'String',sMsg);set,'String','Secret Image');% --- Executes on button press in pbtEmbed.function pbtEmbed_Callback(hObject, eventdata, handles)% hObject handle to pbtEmbed (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)global gCover gSecret gStego;if isempty(gCover)msgbox('Cover image is empty!' , 'Warning' , 'warn' , 'modal' );return;endif isempty(gSecret)msgbox('gSecret image is empty!' , 'Warning' , 'warn' , 'modal' ); return;end[Hc,Wc,Lc]=size(gCover);[Hs,Ws,Ls]=size(gSecret);if (Hc~=Hs) || (Wc~=Ws) || (Lc~=Ls)disp('Error: Not Match!' );return;endgStego = uint8(bitor(bitand(gCover,254),bitshift(gSecret,-7))); imwrite(gStego, '~' );axes;imshow(gStego,[]);% --- Executes on button press in pbtExtract.function pbtExtract_Callback(hObject, eventdata, handles)% hObject handle to pbtExtract (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global gStego;global gCover gSecret;if isempty(gCover)msgbox('Cover image is empty!' , 'Warning' , 'warn' , 'modal' ); return;endif isempty(gSecret)msgbox('gSecret image is empty!' , 'Warning' , 'warn' , 'modal' ); return;end[Hc,Wc,Lc]=size(gCover);[Hs,Ws,Ls]=size(gSecret);if (Hc~=Hs) || (Wc~=Ws) || (Lc~=Ls)disp('Error: Not Match!' );return;endgStego = uint8(bitor(bitand(gCover,254),bitshift(gSecret,-7))); imwrite(gStego, '~' );axes;imshow(gStego,[]);if isempty(gStego)msgbox('Stego image is empty!' , 'Warning' , 'warn' , 'modal' ); return;endimExtract = uint8(bitand(255,bitshift(gStego,7)));imwrite(imExtract, '~' );axes;imshow(imExtract);msgbox('Extracted Image: ~' , 'Finished' );% --- Executes on button press in pbtExit.function pbtExit_Callback(hObject, eventdata, handles)% hObject handle to pbtExit (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)q=questdlg('Are you sure to exit','figLSB','Yes','No','No');if strcmp(q,'No')return;enddelete ~*.*%delete ;delete (LSB3333);4)将测试图片或者图片文件夹放在LSB文件夹下。

最后点击保存。

4.程序源代码见附件。

三、实验结果1.测试图片①隐藏载体图:Leno图片信息②隐藏秘密图:Boy图片信息2.测试结果①隐藏后的图片信息:②从隐藏后的图中提取出来的秘密图片信息:3.截屏四.实验小结1. 遇到的问题总结合分析:(1)问题:点击退出按键后选择退出Yes,不能完全退出。

相关文档
最新文档