主要锻造方法的工艺特点

合集下载

锻造成型工艺介绍

锻造成型工艺介绍
T回=(0.25—0.3)T熔 使原子回复到正常排列,消除了晶格扭曲,使加工硬 化得到部分消除。
* 再结晶:
当加热温度T再: T再=0.4T熔 原子获得更多热能,开始的某些碎晶或杂质为核心 构成新晶粒,因为是通过形核和晶核长大方式进行 的,故称再结晶。
再结晶后清除了全部加工硬化。
再结晶后晶格类型不变,只改变晶粒外形。
上升, 而塑性、韧 性下降。 * 原因:滑移面附近的 晶粒碎晶块, 晶格扭曲畸变, 增大滑移阻力, 使滑移难以 进行。
● 3、金属的回复与再结晶 * 回复:
冷作硬化是一种不稳定的现象,具有自发恢复到稳定 状态的倾向。室温下不易实现。当提高温度时,原子 获得热能,热运动加剧,当加热温度T回(用K氏温标)
●加工硬化的利用、消除
*利用:冷加工后使材料强度↑硬度↑。如冷拉
钢,不能热处理强化的金属材料。
*消除:再结晶退火(P29)650—750℃
● 热变形对金属组织和性能的影响 冷变形和热变形 * 冷变形
在再结晶温度以下的变形; 冷变形后金属强度、硬度较高,低粗糙度值。但 变形程度不宜过大,否则易裂。 * 热变形 再结晶温度以上变形。 变形具有强化作用,再结晶具有强化消除作用。在热变 形时无加工硬化痕迹。 金属压力加工大多属热变形,具有再结晶组织。
模膛 飞边槽
锤头
上模
分模面,parting plane 下模
模垫
⑵ 制坯模膛 * i) 拔长模膛 增加某一部分长度。 ii)滚压模膛 减小某部分横截面积,以增大另一部分横截面积,坯料长度基本
不变。 切断金属。
此外还有成型模镗,镦粗台, 击扁面等制坯模镗。
在设计和制造零件时,应使最大正应力的方向于纤维 方向重合,最大切应力的方向于纤维方向垂直。尽量 使纤维组织不被切断。

锻造工艺及产品介绍

锻造工艺及产品介绍

锻造成形的优势
1、 金属锻压件可以完成普通冲压件做不到的壁厚不一致产品,它可 以避免激光焊接、冲压铆合螺柱等工序的发生
锻造成形的优势
2、相对于金属压铸产品的锻造件表面质量好,且我们通常会选择塑性比较好的 铝合金材料来做锻压产品, 它可以进行表面的抛光、喷砂、拉丝、阳极等表面处 理工艺
锻造成形的优势
连续式超声波清洗机
单体式超声波清洗机
锻造件结构设计原则
锻造件形状设计主要考虑的因素:
1.工艺性:重点要考虑金属流动性,特征直角处采用圆角过渡,减少成型 工序和中间的退火次数,将锻造压力减到最小为标准; 2.材料利用率及减少切削成本:减少切削加工部位及余量,降低原料损耗; 3.品质:品质和精度容易控制和保证; 4.模具结构:模具结构根据产品特征排列成平衡方式,避免金属流动性造 成模具损坏和特征偏心。
3、增加产品的金属质感,还可以对电子辐射起到屏蔽作用,这些都是 塑料件无法具有的特点。
目前新开发的手机外壳的趋势就是往金属方向发展
锻造工艺介绍
下料
清洗
退火
沾油
成型
切边/ 冲孔
检验
包装
锻造工
成型一(热锻)
冲孔
清洗
分切
成型二
退火
锻造工艺介绍
下料:
C2680 -H铜棒 下料后
清洗后
锻造工艺介绍
退火:
退火产品
锻造工艺介绍
成形二:
500T-油压机
成型模
锻造工艺介绍
分切:
冲床
冲孔模
分切前
分切后
锻造工艺介绍
结论:
热压锻造工艺之所以能够在锻件精化上发挥作用,主要原因有: (1)锻造过程接近材料的真实塑性变形,锻造过程不考虑温降影响,将复杂问题简单化, 即将材料变形本构模型简单化,有利于锻件变形过程流动规律和组织性能演变的控制; (2)热压锻造可以减少变形死区的产生,从而减少机械加工余量,起到精化锻件的作用; (如图1) (3)热压锻造大幅度减小了机床吨位,提高模具寿命以较少的变形工步成形具有复杂形状 的锻件(如图2)

锻造工艺设计学复习知识点

锻造工艺设计学复习知识点

1.体积成形〔锻造、热锻〕:利用外力,通过工具或模具使金属毛坯产生塑性变形,发生金属材料的转移和分配,从而获得具有一定形状、尺寸和内在质量的毛坯或零件的一种加工方法。

2.自由锻:只用简单的通用性工具,或在锻压设备的上、下砧间直接使坯料成形而获得所需锻件的方法。

特点: 1、工具简单,通用性强,操作灵活性大,适合单件和小批锻件,特别是特大型锻件的生产。

2、工具与毛坯局部接触,所需设备功率比生产同尺寸锻件的模锻设备小得多,适应与锻造大型锻件。

3、锻件精度低,加工余量大,生产效率低,劳动强度大3.模锻:利用模具使坯料变形而获得锻件的锻造方法。

通过冲击力或压力使毛坯在一定形状和尺寸的锻模模腔内产生塑性模锻特点: (1)锻件形状较复杂,尺寸精度高; (2)切削余量小,材料利用率高,模锻件本钱较低; (3)与自由锻相比,操作简单,生产率高;(4) 设备投资大,锻模本钱高,生产准备周期长,且模锻件受到模锻设备吨位的限制,适于小型锻件的成批和大量生产。

变形获得锻件4.锻造工艺流程:备料---加热---模锻---切边、冲孔—热处理—酸洗、清理---校正5.锻造用料:碳素钢和合金钢、铝、镁、铜、钛等及其合金。

材料的原始状态:棒料、铸锭、金属粉末和液态金属。

6.一般加热方法:可分为燃料〔火焰〕加热和电加热两大类。

7.钢在加热时的常见缺陷:氧化、脱碳、过热、过烧、裂纹8.自由锻主要工序:镦粗、拔长、冲孔、扩孔9.使坯料高度减小,横截面增大的成形工序称为镦粗。

镦粗分类:完全镦粗、端部镦粗、中间镦粗10.镦粗的变形分析:难变形区、大变形区、小变形区11.镦粗工序主要质量问题:①锭料镦粗后上、下端常保存铸态组织②侧外表易产生纵向或呈45度方向的裂纹③高坯料镦粗时常由于失稳而弯曲。

防止措施: 1、使用润滑剂和预热工具 2、采用凹形毛坯 3、采用软金属垫 4、采用叠镦和套环内镦粗 5、采用反复镦粗拔长的锻造工艺12.使坯料横截面积减小而长度增加的成形工序叫拔长13.在坯料上锻制出透孔或不透孔的工序叫冲孔14.冲孔的质量分析:走样、裂纹、孔冲偏15.减小空心坯料壁厚而增加其内、外径的锻造工序叫扩孔16.采用一定的工模具将坯料弯成所规定的外形的锻造工序称为弯曲17.扭转是将坯料的一局部相对于另一局部绕其轴线旋转一定角度的锻造工序18.按成形方法的不同,模锻工艺可分为开式模锻、闭式模锻、挤压和顶镦四类19.模具形状对金属变形流动的影响:⑴控制锻件的最终形状和尺寸⑵控制金属的流动方向⑶控制塑性变形区⑷提高金属的塑性⑸控制坯料失稳提高成形极限20.开式模锻变形过程:第Ⅰ阶段是由开场模压到金属与模具侧壁接触为止;第Ⅰ阶段完毕到金属充满模膛为止是第Ⅱ阶段;金属充满模膛后,多余金属由桥口流出,此为第Ⅲ阶段。

锻压生产特点及工艺简介

锻压生产特点及工艺简介

6、几种锻造结构图
第二节 金属的锻造性能
一、金属的塑性变形概述 金属塑性变形的实质,对于单晶体是由于金属原子某晶面两侧受切应力作用
产生相对滑移,或晶体的部分晶格相对于某晶面沿一定方向发生切变,即滑移理 论和孪生理论。
二、热锻、冷锻、温锻、等温锻
从金属学的观点划分锻压加工的界限为再结晶温度。 1.热锻 在金属再结晶温度以上进行的锻造工艺称为热锻。在变形过程中冷变形 强化和再结晶同时存在,属于动态再结晶。 2.冷锻 在室温下进行的锻造工艺称为冷锻。冷锻可以避免金属加热出现的缺陷, 获得较高的精度和表面质量,并能提高工件的强度和硬度。但冷锻变形抗力大, 需用较大吨位的设备,多次变形时需增加再结晶退火和其它辅助工序。目前冷锻 主要局限于低碳钢、有色金属及其合金的薄件及小件加工。 3.温锻 在高于室温和低于再结晶温度范围内进行的锻造工艺称为温锻。与热锻 相比,坯料氧化脱碳少,有利于提高工件的精度和表面质量;与冷锻相比,变形 抗力减小、塑性增加,一般不需要预先退火、表面处理和工序间退火。温锻适用 于变形抗力大、冷变形强化敏感的高碳钢、中高合金钢、轴承钢、不锈钢等。 4.等温锻 在锻造全过程中,温度保持恒定不变的锻造方法称为等温锻。
冲压:有时也称板材成形, 但略有区别。所谓板材成型是指用板材、薄壁管、 薄型材等作为原材料进行 塑性加工的成形方法统称为板材成形,此时,厚板厚 方向的变形一般不着重考虑
4、锻件与铸件相比的特点
金属经过锻造加工后能改善其组织结构和力学性能。铸造组织经过锻造方法 热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒 较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等 压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。

锻造的特点

锻造的特点

锻造的特点锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。

通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。

相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。

锻造的分类变形温度按变形温度,锻造又可分为热锻(锻造温度高于坯料金属的再结晶温度)、温锻(锻造温度低于金属的再结晶温度)和冷锻(常温)。

钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。

坯料的移动方式根据坯料的移动方式,锻造可分为自由锻、镦粗、挤压、模锻、闭式模锻、闭式镦锻。

1、自由锻。

利用冲击力或压力使金属在上下两个抵铁(砧块)间产生变形以获得所需锻件,主要有手工锻造和机械锻造两种。

2、模锻。

模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,又可分为冷镦、辊锻、径向锻造和挤压等等。

3、闭式模锻和闭式镦锻由于没有飞边,材料的利用率就高。

用一道工序或几道工序就可能完成复杂锻件的精加工。

由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。

但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。

锻模的运动方式根据锻模的运动方式,锻造又可分为摆辗、摆旋锻、辊锻、楔横轧、辗环和斜轧等方式。

摆辗、摆旋锻和辗环也可用精锻加工。

为了提高材料的利用率,辊锻和横轧可用作细长材料的前道工序加工。

与自由锻一样的旋转锻造也是局部成形的,它的优点是与锻件尺寸相比,锻造力较小情况下也可实现形成。

包括自由锻在内的这种锻造方式,加工时材料从模具面附近向自由表面扩展,因此,很难保证精度,所以,将锻模的运动方向和旋锻工序用计算机控制,就可用较低的锻造力获得形状复杂、精度高的产品,例如生产品种多、尺寸大的汽轮机叶片等锻件。

(完整版)主要锻造方法的工艺特点

(完整版)主要锻造方法的工艺特点
成批大量
辗扩
扩孔机
轧辊相对旋转,工作轧辊上刻出环的截面
变形连续,压下量小,具有表面变形特征,壁厚均匀,精度较高。热辗扩主要用于生产等截面的大、中型环形毛坯,辗扩直径范围40~5000mm,重量6t以上
成批大量
热精压
普通模锻设备
与热模锻工艺相比,通常要增加精压工序,要有制造精密锻模和无氧化、少氧化加热和冷却的手段,加热温度低,变形量小。适用于叶片等精密模锻
冷精压
精压机
滑块与曲轴借助于杠杆机构连接,滑块行程小,压力大
不加热,其余特点同上。适用于压制零件不加工的配合表面,零件强度极限及表面硬度均有提高
成批大量
冷挤压
机械压力机
采用摩擦压力机需设顶出装置,在模具上设导向、限程装置,采用曲柄压力机需增强刚度,加强顶出装置
适用于挤压深孔、薄壁、异形断面小型零件,生产率高,操作简便,材料利用率达70%以上,冷挤压用材料应有较好的塑性,较低的冷作硬化敏感性。冷挤压分正挤压、反挤压、复合挤压、镦挤结合几种方式。模具强度、硬度要求较高,锻件精度高
成批大量
螺旋压力机上模锻
摩擦螺旋压力机
行程不固定,工作速度为1.5~2m/s,有顶杆,一般设备刚性差,打击能量可调
每分钟行程次数低,金属冷却快,不宜拔长、滚压,对偏载敏感。一般用于中小件单膛模锻,配备制坯设备时,也能模锻形状较复杂的锻件,还可以用于镦锻、精锻、挤压、冲压、切边、弯曲、校正
成批
水压机上模锻
行程不固定,上下锤头为平的,空气锤振动大,水压机无振动
在自由锻设备上采用活动胎模。与自由锻相比,锻件形状较复杂,尺寸较精确,节省金属,生产率高,设备能力较大。与模锻相比,适用性广,胎模制造简便,但生产率较低,锻件表面质量、模具寿命较低

锻造工艺的工艺特点

锻造工艺的工艺特点

锻造工艺的工艺特点
锻造工艺是通过对金属材料进行加热、锤击、压制等操作,使其在一定条件下产生塑性变形从而形成所需形态的工艺。

以下是锻造工艺的特点:
1. 塑性较好:锻造工艺是通过对金属材料进行加热,使其变得更加柔软、易塑性变形,因此适合于制造一些比较复杂的形状。

2. 结构均匀:由于锻造工艺的加工过程比较均匀,因此所制作的零部件或产品具有结构均匀的特点。

3. 制造范围广:锻造工艺适用于制造各种尺寸、各种材质的零部件和产品。

4. 生产效率低:与其他加工工艺相比,锻造工艺的生产效率相对比较低。

5. 制品精度较高:锻造工艺制造的零部件或产品具有较高的精度,通常可以达到毫米级或亚毫米级的精度。

6. 设备成本高:锻造工艺通常需要投入较高的设备成本,包括锤击机、压力机、冲床等设备。

7. 制造周期长:由于锻造工艺需要对材料加热、制造过程复杂,在工艺特点上相对于其他加工工艺,制造周期比较长。

综上所述,锻造工艺是一种适用范围广、加工制度和结构均匀的工艺,但由于生产效率低、设备成本高等原因,使得锻造工艺在实际应用中需要仔细考虑。

锻造的工艺特点

锻造的工艺特点

锻造的工艺特点
锻造是一种常见的金属加工工艺,它通过施加高压力和高温度,使金属原料发生塑性变形和晶粒细化,从而达到加工成形的目的。

锻造工艺的特点有以下几点:
一、高强度和高密度
锻造工艺可以使金属材料在高温高压下发生塑性变形,使其晶粒细化并排列有序,从而使金属材料的密度和强度得到提高。

相比于其他加工工艺,如铸造和焊接,锻造能够获得更高的强度和密度,因此在高负荷和高强度要求的产品制造中得到广泛应用。

二、良好的成形性能
锻造工艺可以使金属材料在高温下发生塑性变形,从而得到各种形状和尺寸的产品。

相比于其他加工工艺,如切削和冲压,锻造具有更好的成形性能,可以制造出更为复杂的产品,如飞机发动机叶片、汽车曲轴等。

三、优异的机械性能
锻造工艺可以使金属材料的晶粒细化和排列有序,从而提高其机械性能,如强度、硬度、韧性和耐磨性等。

同时,锻造还可以改善金属材料的组织和性能分布,从而使其具有更好的抗疲劳和抗蠕变性能。

四、节约原材料和成本
锻造工艺可以减少金属材料的浪费和能耗,从而节约原材料和成本。

相比于其他加工工艺,如铸造和焊接,锻造能够获得更高的利用率和较低的成本。

锻造工艺具有高强度和高密度、良好的成形性能、优异的机械性能和节约原材料和成本等特点。

在现代工业生产中,锻造工艺被广泛应用于各种重要的机械零部件、航空航天器件、汽车零部件等领域。

随着科技的发展和工艺的改进,锻造工艺也在不断地创新和发展,将为各行各业带来更多的机遇和挑战。

锻造——锻造方法与工艺

锻造——锻造方法与工艺

锻造——锻造方法与工艺锻造是通过对金属材料进行加热和塑性变形的一种加工方法,通过锻造可以改变金属材料的形状和性能。

锻造方法和工艺是指在具体的锻造过程中,采取的各种技术措施和操作方法。

下面将详细介绍锻造的方法和工艺。

锻造方法主要分为手工锻造、机械锻造和液压锻造。

1.手工锻造:手工锻造是最早发展的锻造方法,也是最基本的锻造方法。

手工锻造主要是通过人工操作来完成金属材料的加工。

操作方法包括用锤子敲打、弯曲、拉伸和压缩等。

手工锻造的优点是操作简单、灵活性好,适用于小批量的生产,缺点是劳动强度大、生产效率低。

2.机械锻造:机械锻造是在锻造过程中使用机械设备来完成金属材料的加工。

机械锻造主要包括压力机锻造、冲击锻造和旋转锻造等。

压力机锻造是利用压力机的运动和压力来完成金属材料的塑性变形。

冲击锻造是利用冲击力瞬间使金属材料发生塑性变形。

旋转锻造是将金属材料固定在旋转工作台上,通过旋转工作台和切削刀具的相对运动,使金属材料发生塑性变形。

机械锻造的优点是生产效率高、加工精度高,适用于大批量的生产,缺点是设备投资大、工艺复杂。

3.液压锻造:液压锻造是利用液压力来完成金属材料的塑性变形。

液压锻造主要包括液压锤锻造和液压机锻造。

液压锤锻造是通过液压锤的冲击力来完成金属材料的塑性变形。

液压机锻造是通过液压机的压力来完成金属材料的塑性变形。

液压锻造的优点是操作简单、加工精度高,适用于对形状复杂的金属零件进行加工,缺点是生产效率低。

在锻造过程中,通常还需要采用以下几项工艺措施来提高锻造质量和合格率。

1.加热工艺:金属材料在进行锻造前需要通过加热来改变其组织结构和提高其塑性。

加热工艺包括预热和锻造温度的控制。

预热是在金属材料进行锻造前对其进行加热,预热可以减少金属材料的冷作硬化程度和塑性降低程度,使其更易于塑性变形。

锻造温度的控制是根据金属材料的熔点和塑性变形温度范围来确定,过低的温度会影响塑性变形,过高的温度会导致烧结和变形不均匀。

锻造工艺培训资料

锻造工艺培训资料

文件名称第 1 版核准审批审核编制发布日期实施日期目录一、锻造的概念 (3)1、自由锻 (3)2、模锻 (3)3、胎模锻造 (4)二、锻造的工艺性 (4)1 、自由锻造的工艺性 (4)2、模锻件结构工艺性 (4)三、锻造的加热温度控制 (5)1、加热的目的 (5)2、加热容易产生的缺陷 (5)3、中频感应加热炉 (6)四、锻件质量检验及控制 (7)1、锻件缺陷的分类 (7)2、锻件缺陷产生原因 (7)3、锻件质量控制的主要内容和方法 (9)一、锻造的概念在外力的作用下,使坯料产生局部或者全部变形,以获得一定几何尺寸、形状和内部组织的锻件加工方法称为锻造。

锻造普通分为自由锻和模锻两大类。

1、自由锻:利用冲击力或者压力使金属在上锤、下砧之间朔性变形,从而得到所需要锻件的锻造方法。

自由锻造的特点:工艺灵便、成本低、具有较强的适应性,但精度差、余量大、材料消耗多,生产效率低。

主要设备:蒸汽-空气锤、液压机自由锻造的基本工序:拔长、镦粗、冲孔、切边、弯曲、扭转、错移。

2、模锻:使坯料在模膛内受压变形的方法,在变形过程中,由于模膛对金属坯料流动的限制,金属坯料充满模膛,获得与模膛形状相同的锻件。

模锻的特点:生产效率高、锻件精度高、余量小、操作简单。

模锻的主要设备1) 锤上模锻:蒸汽-空气锤、高速锤。

2) 压力机上模锻:磨擦压力机、曲柄压力机、平锻机、模锻水压机。

锻模结构锤上模锻的锻模是由带有燕尾的上模和下模两部份组成,下模固定在砧座上,上模固定在锤头上,上模和下模均有相应的模膛。

锻模的模膛分为模锻模膛和制坯模膛两大类。

1) 模锻模膛可分为预锻模膛和终锻模膛两种2) 制坯模膛有几种:拔长模膛、滚挤模膛、弯曲模膛、切断模膛,还有镦粗台等。

3、胎模锻造:胎膜锻造是在自由锻造设备上使用胎膜生产模锻件的方法。

普通利用自由锻将坯料初步成型,然后再用胎膜终锻成型。

设备简单,胎膜简单,不需要固定在设备上,适应中小批量生产。

锻造的特点与应用

锻造的特点与应用

锻造的特点与应用锻造是一种常见的金属加工方法,通过对金属材料进行热加工和机械加工,使其形状和性能发生改变,从而得到所需的工件。

锻造具有以下几个特点:高强度、高韧性、高精度、高效率、多种途径、广泛应用。

锻造可以提高金属材料的强度和韧性。

在锻造过程中,通过对金属材料施加压力,使其发生变形,从而使金属的晶粒细化,晶界得到清晰化,使金属的内部结构得到改善,从而提高金属的强度和韧性。

锻造可以提高金属零件的精度。

在锻造过程中,可以通过选用适当的模具和控制锻造工艺参数,使得金属材料在受力过程中得到均匀变形,从而得到形状更加准确的零件。

锻造是一种高效率的金属加工方法。

相比于其他加工方法,锻造具有高效率的优势。

在同样的时间内,可以通过锻造得到更多的产品,从而提高生产效率。

锻造具有多种途径。

根据锻造工艺的不同,可以分为自由锻造、模锻和轧锻等多种方式。

每种方式都有其适用的材料和工件形状范围,可以根据具体需求选择合适的锻造方式。

锻造具有广泛的应用领域。

锻造是一种传统的金属加工方法,被广泛应用于汽车、航空航天、军工、能源、机械制造等行业。

无论是大型的船舶、桥梁等重型工业设备,还是小型的螺栓、螺母等零部件,都可以通过锻造得到。

在汽车行业中,锻造常用于制造发动机曲轴、传动轴、悬挂系统等零部件。

这些零部件需要具有高强度和高精度,以确保整个汽车的安全性和可靠性。

在航空航天行业中,锻造被广泛应用于制造发动机叶片、航空发动机外壳等关键零部件。

这些零部件需要具有优良的耐高温和抗疲劳性能,以确保航空器的正常运行。

在军工行业中,锻造常用于制造坦克炮管、导弹外壳等重型军事装备。

这些装备需要具有高强度和高耐磨性能,以应对复杂的作战环境。

在能源行业中,锻造常用于制造核电设备、火力发电设备等重要设备。

这些设备需要具有高耐压和高耐腐蚀性能,以确保能源的稳定供应。

在机械制造行业中,锻造被广泛应用于制造各种机械零部件,如轴承、齿轮、链条等。

这些零部件需要具有高精度和高耐磨性能,以确保机械设备的正常运转。

锻造工艺的特点及应用场合

锻造工艺的特点及应用场合

锻造工艺的特点及应用场合锻造工艺是一种通过对金属进行变形加工的工艺,其特点是具有高强度、高韧性、高耐磨性的特点。

在锻造工艺中,金属材料在受到一定的压力和变形力的作用下,会发生塑性变形,从而形成所需的形状和尺寸。

锻造工艺广泛应用于航空航天、汽车、船舶、机械制造、军工等领域,是一种非常重要的金属加工工艺。

锻造工艺的特点主要包括以下几个方面:1. 高强度:通过锻造工艺加工的金属零件具有较高的强度,因为在锻造过程中,金属晶粒会发生再排列,从而提高了材料的密实性和强度。

2. 高韧性:由于锻造过程中金属材料会产生塑性变形,因此锻造零件具有较好的韧性,能够承受一定的冲击和振动。

3. 高耐磨性:锻造工艺可以提高金属表面的硬度,从而增加了材料的耐磨性,使锻造零件在磨损和摩擦方面表现出色。

4. 精度高:锻造工艺可以制造复杂形状的零件,并且可以得到较高的尺寸精度,因此广泛用于制造高精度的工程零件。

在航空航天领域,锻造工艺常用于制造飞机发动机零件、飞机结构件、火箭发动机零件等。

例如,飞机的发动机叶片就是采用锻造工艺制造的,因为锻造工艺可以制造出强度高、耐高温、耐腐蚀的叶片,满足航空航天领域对零件高强度、高耐高温性能的要求。

在汽车制造领域,锻造工艺常用于制造汽车发动机零件、变速箱零件、悬挂系统零件等。

例如,汽车的转向轴、传动轴等重要零件都是采用锻造工艺制造的,因为锻造工艺可以使这些零件具有较高的强度和耐磨性,保证汽车在使用过程中的安全性和可靠性。

在船舶制造领域,锻造工艺常用于制造船用发动机零件、轴承零件、锚链等。

例如,船用发动机的曲轴、活塞、连杆等关键零件都是采用锻造工艺制造的,因为锻造工艺可以提高这些零件的强度和耐腐蚀性能,适应海洋恶劣环境下的使用需求。

在机械制造领域,锻造工艺常用于制造重型机械零件、农机零件、工程机械零件等。

例如,锻造工艺可以制造出具有高强度和耐磨性的轴承零件、齿轮零件、螺栓螺母等,保证机械设备在使用过程中的稳定性和可靠性。

常用锻造方法及特点

常用锻造方法及特点

常用锻造方法及特点金属毛坯锻前加热的目的是提高金属塑性、降低变形抗力、使之易于流动成形并获得良好的锻后组织,锻前加热对提高锻造生产率,保证锻件质量以及节约能耗等都有直接的影响。

一、锻前加热的目的是什么,二、自由锻工序有哪些,制订自由锻工艺规程的主要内容和步骤是什么, 自由锻工序分为基本工序、辅助工序和修整工序。

基本工序有镦粗、拔长、冲孔、弯曲、切割、错移和扭转;辅助工序有压钳口、倒棱和压痕等;修整工序有校正、滚圆、平整等。

制订自由锻工艺规程的主要内容和步骤如下:(1)绘制锻件图:锻件图是在零件图的基础上,考虑切削加工余量、锻件公差、工艺余块等所绘制的图样。

(2)选择锻造工序:确定锻造工序的依据是锻件的形状、尺寸、技术要求和生产数量等。

(3)确定坯料质量和尺寸:坯料有铸锭和型材两种,前者用于大、中型锻件,后者用于中、小型锻件。

(4)选择锻造设备:应根据坯料的种类、质量以及锻造基本工序、设备的锻造能力等因素,并结合工厂现有设备条件综合确定锻造设备。

三、何为模型锻造,常用的模型锻造设备有哪些,与自由段相比,模型锻造有何特点, 模型锻造是金属在外力作用下产生塑性变形并充满模膛而获得锻件的方法。

常用模锻设备有模锻锤、热模锻压力机、平锻机和摩擦压力机等。

与自由锻相比,模锻件尺寸精度高,机械加工余量小,锻件的纤维组织分布更为合理,可进一步提高零件的使用寿命。

模锻生产率高,操作简单,容易实现机械化和自动化。

但设备投资大,锻模成本高,生产准备周期长,且模锻件的质量受到模锻设备吨位的限制,因而适用于中、小型锻件(一般,150 kg)的成批和大量生产。

四、绘制模锻件图时应考虑的主要问题有哪些,绘制模锻件图时应考虑的主要问题如下:1)选择分模面:一般按以下原则确定:?应保证锻件从模膛中顺利取出,故分模面一般应选取在锻件最大尺寸的截面上;?应使分模面处上、下模膛外形一致,以便能及时发现错模;?应使模膛浅而宽,以利于金属充满模膛;?应保证锻件上所加余块最少。

锻造的应用范围及特点

锻造的应用范围及特点

锻造的应用范围及特点锻造是一种金属加工方法,通过对金属材料施加压力和变形来改变其形状和结构。

它是一种传统的工艺技术,具有广泛的应用范围和特点。

锻造的应用范围非常广泛,涵盖了多个行业和领域。

首先,锻造在汽车制造行业中发挥着重要作用。

例如,发动机的曲轴、连杆和活塞杆等关键零部件都需要通过锻造加工来保证其高强度和耐磨性能。

此外,汽车车架、转向机构和悬挂系统等重要构件也常常通过锻造来制造。

其次,航空航天行业也是锻造的重要应用领域。

航空发动机中的涡轮叶片、涡轮盘等部件需要经过复杂的锻造加工工艺来确保其精度和强度。

再者,锻造也广泛应用于工程机械、冶金设备、石油化工、军工等行业。

锻造具有以下几个特点。

首先,锻造可以提高金属材料的强度和塑性。

通过锻造能够将金属材料中的粗大晶粒重新细化,消除缺陷和夹杂物,从而提高其综合力学性能。

其次,锻造是一种具有高效率的加工方法。

与其他金属加工方法相比,锻造不需要大量的熔炼和加热过程,可以节约能源和材料。

同时,由于锻造的高温加工能够改善金属的塑性,使得加工成形变得更容易。

再者,锻造具有较高的适应性和灵活性。

通过调整锻造工艺参数和工装设计,可以适应不同形状、尺寸和材料的产品加工。

此外,锻造还可以进行多工序的复合加工,实现一次成形,减少了加工步骤和工时。

最后,锻造可以提高产品的使用寿命和可靠性。

通过锻造可以改变金属材料中的晶体结构和组织状态,从而提高产品的耐磨性、抗腐蚀性和耐高温性能。

然而,锻造也存在一些局限性和挑战。

首先,锻造对设备要求较高。

由于锻造需要施加大量的压力和变形力,因此需要有专门的锻造设备,如锤击式锻造机、液压锻造机和轨道式锻造机等。

其次,锻造加工的精度有一定限制。

由于锻造是一种高温和高压的加工方法,可能导致金属材料的尺寸和几何形状的变化,因此锻造产品的尺寸精度有一定限制。

再者,锻造需要有经验丰富的操作工人和工艺师傅。

由于锻造涉及到多个工艺参数的控制和调整,需要有经验和技术的人员来保证产品质量。

锻造生产的特点及其应用.ppt

锻造生产的特点及其应用.ppt
σb 强度极限 σs屈服应力 Ψ截面收缩率 δ延伸率 αk冲击韧度
内部质量:
压实、焊合孔隙 性缺陷
锻透:打碎铸造 组织、弥散分布异 相质点,形成合理 的纤维组织:平行 于正应力,垂直于 剪应力
3.应用
农具 日用品 兵器 轮船 其他
二、锻造生产的特点及其应用
1.分类
自由锻(胎模锻)工艺灵活、
工具简单、锻件精度差、生产效率 低、操作水平要求高;适于单件小 批量生产。
模锻:工艺定型、生产效率高、工
具复杂、锻件精度高,专用设备多。适 于批量生产
特种锻造:专用设备、生产效
率高,只能生产某一类型产品; 适于大批量生产
2.锻件机械性能机械性能显著 Nhomakorabea高

简述锻造的特点

简述锻造的特点

简述锻造的特点锻造是一种通过加热和锤击金属材料来改变其形状和性能的金属加工工艺。

它是金属加工的重要方法之一,广泛应用于制造业中。

锻造的特点主要包括以下几个方面。

锻造是一种通过机械力对金属材料进行加工的方法。

在锻造过程中,金属材料被放置在锻造设备中,通过施加压力和冲击力来改变其形状和性能。

这种机械力的作用使得金属材料能够在短时间内发生塑性变形,从而实现制造所需的形状和尺寸。

锻造是一种高温加工工艺。

在锻造过程中,金属材料被加热至一定温度,以降低其屈服强度和提高其塑性,从而使其更容易发生变形。

通常情况下,锻造温度会根据金属材料的种类和所需的变形程度进行调节。

高温锻造还可以通过改善金属的晶体结构,提高其力学性能和耐磨性能。

锻造是一种精确控制金属变形的工艺。

通过调整锤击力度、锻造速度和锻造次数等参数,可以精确控制金属的变形程度和变形方向。

这种精确控制能力使得锻造能够生产出形状复杂、尺寸精确的零件和工件,满足不同领域的需求。

锻造是一种高效率的金属加工方法。

由于锻造是通过机械力对金属材料进行加工,相比其他金属加工方法,如铸造和切割,它具有更高的加工效率。

锻造还可以通过一次成形的方式,避免了多道工序的加工,提高了生产效率和降低了生产成本。

锻造还具有经济性和环保性。

由于锻造是一种高效率的加工方法,能够减少加工工序和减少材料浪费,从而降低了生产成本。

同时,由于锻造过程中没有液体金属的使用,也减少了对环境的污染,符合可持续发展的要求。

总的来说,锻造是一种通过机械力对金属材料进行加工的高温加工工艺。

它具有精确控制金属变形、高效率、经济性和环保性等特点。

在制造业中,锻造被广泛应用于汽车制造、航空航天、机械制造和能源领域等,对提高产品质量和生产效率起着重要作用。

简述锻造加工的特点

简述锻造加工的特点

简述锻造加工的特点
锻造加工是一种通过施加压力使金属材料变形的加工方法,具有以下特点:
1. 改善材料性能:锻造加工可以改善金属材料的组织结构和力学性能。

在锻造过程中,金属材料受到塑形变形,晶粒细化,使得材料的强度、韧性和耐久性得到提高。

2. 获得复杂形状:锻造加工能够制造出各种复杂形状的零件,包括空心、异形、带孔等形状。

通过使用模具和工具,可以实现精确的形状控制和尺寸精度。

3. 提高材料利用率:锻造加工可以减少材料的浪费和损失。

由于锻造是通过塑形变形来加工材料,因此可以最大限度地利用原材料,减少废料的产生。

4. 生产效率高:相比其他加工方法,锻造加工的生产效率较高。

锻造过程可以一次性完成多个工序,如成型、冲孔、修整等,从而减少加工时间和成本。

5. 适用范围广泛:锻造加工适用于各种金属材料,包括钢、铝、铜、钛等。

它可以用于制造机械零件、汽车零部件、航空航天部件、工具和武器等领域。

6. 可定制性强:锻造加工可以根据客户的需求和设计要求进行定制化生产。

通过控制锻造过程中的参数和工艺,可以实现不同性能和规格的产品制造。

需要注意的是,锻造加工也存在一些限制和挑战,如设备投资较大、对模具和工具要求高、加工难度较大的复杂零件等。

因此,在选择锻造加工时需要综合考虑其优缺点,并根据具体需求和情况进行决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成批大量
螺旋压力机上模锻
摩擦螺旋压力机
行程不固定,工作速度为1.5~2m/s,有顶杆,一般设备刚性差,打击能量可调
每分钟行程次数低,金属冷却快,不宜拔长、滚压,对偏载敏感。一般用于中小件单膛模锻,配备制坯设备时,也能模锻形状较复杂的锻件,还可以用于镦锻、精锻、挤压、冲压、压机
滑块与曲轴借助于杠杆机构连接,滑块行程小,压力大
不加热,其余特点同上。适用于压制零件不加工的配合表面,零件强度极限及表面硬度均有提高
成批大量
冷挤压
机械压力机
采用摩擦压力机需设顶出装置,在模具上设导向、限程装置,采用曲柄压力机需增强刚度,加强顶出装置
适用于挤压深孔、薄壁、异形断面小型零件,生产率高,操作简便,材料利用率达70%以上,冷挤压用材料应有较好的塑性,较低的冷作硬化敏感性。冷挤压分正挤压、反挤压、复合挤压、镦挤结合几种方式。模具强度、硬度要求较高,锻件精度高
水压机
行程不固定,工作速度为0.1~0.3m/s,无振动,有顶杆
模锻时一次压成,不宜多膛模锻,复杂零件在其他设备上制坯。适合锻造镁铝合金大锻件,深孔锻件,不太适合锻造小尺寸锻件
成批大量
辊锻
辊锻机
模膛置于两扇轧辊上,辊锻时轧辊相对旋转
金属在模膛中变形均匀,。适宜拔长,主要用于模锻前制坯或形状不复杂锻件的直接成形,模锻扁长锻件。冷辊锻用于终成形或精整工序
锻造方法
设备类型
工艺特点
生产规模
名称
构造特点
自由锻造
空气锤
行程不固定,上下锤头为平的,空气锤振动大,水压机无振动
原材料为锭料或轧材,人工掌握完成各道工序,形状复杂的零件要多次加热,宜用于锻造形状简单的零件以及大的环形、盘形零件,适用于锭料开坯、模锻前制坯、新产品试制
单件小批
蒸汽空气锤
水压机
胎模锻
空气锤
金属在每一模膛中一次成形,不宜拔长、滚压,但可用于挤压,锻件精度较高,模锻斜度小,一般要求联合模锻及无氧化加热或严格清理氧化皮。适用于短轴类锻件,配备制坯设备时也能模锻长轴类锻件
成批大量
平锻
平锻机
行程固定,工作速度≈0.3m/s,具有互相垂直的两组分模面,无顶出装置,设备刚性好,导向准确
金属在每一模膛中一次成形,除积聚镦粗外,还可切边、穿孔,余量及模锻斜度较小,易于机械化,自动化。需采用较高精度的棒料,加热要求严格。适合锻造各种合金锻件,带大头的长杆形锻件,环形、筒形锻件,多采用闭式锻模
成批大量
辗扩
扩孔机
轧辊相对旋转,工作轧辊上刻出环的截面
变形连续,压下量小,具有表面变形特征,壁厚均匀,精度较高。热辗扩主要用于生产等截面的大、中型环形毛坯,辗扩直径范围40~5000mm,重量6t以上
成批大量
热精压
普通模锻设备
与热模锻工艺相比,通常要增加精压工序,要有制造精密锻模和无氧化、少氧化加热和冷却的手段,加热温度低,变形量小。适用于叶片等精密模锻
大批大量
热挤压
液压挤压机、机械挤压机
采用摩擦压力机需设顶出装置,在模具上设导向、限程装置,采用曲柄压力机需增强刚度,加强顶出装置
适用于各种等截面型材,不锈钢、轴承钢零件以及非铁合金的坯料,变形力很大,突凹模强度、硬度要求高,表面应光洁
大批大量
可以多次打击成形,打击轻重可以控制,适用多膛模锻,便于进行拔长、滚压,适用于各类锻件,多采用带飞边开式锻模
大批
无砧座锤
下锤头活动,无砧座,模锻时无振动
上下模上下对击,操作不方便,不宜于拔长、滚压,适用于形状较简单的大型锻件单膛模锻
热模锻压机上模锻
热模压力机
行程固定,工作速度为0.5~0.8m/s,行程次数35~90次/min,设备刚度好,导向准确,有顶杆
行程不固定,上下锤头为平的,空气锤振动大,水压机无振动
在自由锻设备上采用活动胎模。与自由锻相比,锻件形状较复杂,尺寸较精确,节省金属,生产率高,设备能力较大。与模锻相比,适用性广,胎模制造简便,但生产率较低,锻件表面质量、模具寿命较低
成批
蒸汽空气锤
水压机
锤上模锻
有砧座锤
行程不固定,工作速度6~8m/s,振动大,有砧座,无顶杆,行程次数60~100次/min
相关文档
最新文档