晶体位错理论基础(第一卷)PPT模板

合集下载

第4章实际晶体结构中的位错ppt课件

第4章实际晶体结构中的位错ppt课件
分增加的能量称为堆垛层错能,用 表示。从能
量的观点来看,晶体中出现层错的几率与层错能 有关,层错能越高,则出现层错的几率越小。如 在层错能很低的奥氏体不锈钢中,常可看到大量 的层错,而在层错能高的铝中,就看不到层错。
4.4.2 不全位错(Partial Dislocation)
若堆垛层错不是发生在晶体的整个原子 面上而只是部分区域存在,那么,在层错与 完整晶体的交界处就存在柏氏矢量不等于点 阵矢量的不全位错。在面心立方晶体中有两 种重要的不全位错:肖克莱(Shockley)不 全位错和弗兰克(Frank)不全位错。
如果把单位晶胞(Unit Cell)中通过坐标原点O的(111)面 上的原子,也作如上投影,那么可以看到,该面上原 子中心投影位置与C层原子中心投影位置是相同的。 由于晶体点阵的对称性和周期性,面心立方晶体(111) 密排面上的原子在该面上的投影位置是按A、B、C三 个原子面的原子投影位置进行周期变化的。可以记为: ABCABCA…,这就是面心立方晶体密排面的正常堆 垛顺序。如果用记号△表示原子面以AB、BC、CA… 顺序堆垛,▽表示相反的顺序,如BA、AC、CB…, 那么面心立方晶体密排面的正常堆垛又可以表示为: △△△△△,如图4.1(d)所示。
位错反应能否进行,取决于下列两个条件:
A 几何条件
根据柏氏矢量的守恒性,反应后诸位错的柏氏矢量之
和应等于反应前诸位错的柏氏矢量之和,即
B 能量条件
bi bk
(4-1)
从能量角度要求,位错反应必须是一个伴随着能量降
低的过程。由于位错的能量正比于其柏氏矢量的平方,所
以,反应后各位错的能量之和应小于反应前各位错的能量
根据其柏氏矢量与位错线的夹角关系,它既可以是纯 刃型的,也可以是纯螺型的,见图4.5。

实际晶体中的位错 PPT课件

实际晶体中的位错 PPT课件
D,D , D , A , A,A , B, B , B,C, C , C
● 对应的罗-希向量
根据矢量合成规则可以求出对应的罗-希向量:
A AB B 1 [1 10] 1 [1 1 2] 1 [1 1 1]
2
6
3
B BC C 1 [10 1] 1 [1 21] 1 [1 1 1]
该压杆位错是一个不动位错。其滑移面为(001), b=a/6[110]。由于(001)面不是FCC的滑移面, b=a/6[110]也不是FCC的滑移矢量,因此其不能运动, 而且会阻碍其他位错的运动,是形成FCC晶体加工硬 化和断裂的重要原因。
体心立方结构: b为a/2<111>
b 3a 2
纸面为滑移 面(111),左侧为未滑移区,右侧 为已滑移区,均属正常堆垛,在已滑移区和未滑移 区的交界处存在一个单位位错。当位错线在滑移面 扫过之后,滑移面上下的原子排列整齐如旧。单位 位错滑移时,不破坏滑移面上下原子排列的完整性, 因此单位位错又称为完整位错。
6
3
FCC中的位错反应,即位 错的合成与分解也可以用 Thompson四面体中的向量
1 [110] 1 DC
6
3
来表示。
洛末-柯垂耳(Lomer-Cottrell) 位错的形成
在面心立方晶体的(111)和(111)面上各有一个柏氏矢 量为b1=a/2[101]和b2=a/2[011]的全位错,且这两条位 错线平行于两滑移面的交线AD。


6 6
2

1 3
n
m
符合能量条件:
b'2j bi2
j 1
i 1
所以,此位错反应可以自发地进行。

晶体缺陷——位错运动ppt课件

晶体缺陷——位错运动ppt课件
移到另一个与它相交的滑移面上继续滑移 • 双交滑移:发生交滑移后的位错如果再转回到和原滑移面
平行的面上继续滑移
精选ppt
16
(3)混合型位错的滑移 图3.15
混合型位错的滑移过程
精选ppt
17
2.位错的攀移 P96
• 刃型位错多余半原子面向上或下运动。 • 通过物质的迁移,即原子或空位的扩散来实现。 • 形式:正攀移、负攀移
精选ppt
19
3. 位错的交割 • 含义:位错在运动过程中,可能和其它位错交割 • 意义:交割会影响位错进一步的运动,从而会影响
材料的强度等性能
精选ppt
20
a.割阶与扭折 • 位错局部滑移、刃型位错攀移、两条位错线交割后,经常
产生一段曲折线段 • 如果曲折线段位于位错的滑移面上——扭折
P97图3.19
指数表示: b=a/n [u v w] 例: b=a[2 3 6] b=a/2 [1 1 1]
精选ppt
9

精选ppt
10
3.2.3 位错的运动 P94 i. 位错可以在晶体中运动 ii. 材料的塑性变形就是通过位错运动实现的
精选ppt
11
iii. 材料的强度与位错运动紧密相关 iv. 意义:可以通过控制位错运动提高材料强度
精选ppt
21
• 如果此线段垂直于滑移面——割阶
精选ppt
22
实例1:两个柏氏矢量相互垂直的刃型位错交割
精选ppt
23
实例2:两个柏氏矢量相互平行的刃型位错交割
精选ppt
24
实例3:两个柏氏矢量相互平行的刃型位错和螺型位错交割
精选ppt
25
实例4:两个柏氏矢量相互垂直的两螺型位错交割

最新文档-位错复习-new-PPT精品文档

最新文档-位错复习-new-PPT精品文档

z
A
D
b
B
C
0
y
x
位错周围的弹性应力场
1. 螺位错弹性应力场
xyz0
x y0xz G 2 (x2 b yy2) yz G 2 (x2 b xy2)
2. 刃位错弹性应力场
x
2(G 1b)
y(3x2y2) (x2y2)2
y
Gb
2(1)
Glb 2 ln( R ) Gb 2l 4 (1 ) r
2. 螺位错的弹性应变能
We

Glb2
4
ln(R) r
3. 混合位错的弹性应变能
l
bcos
G (bsin )2l G (bco )2 sl R
W mi x[ 4(1)
4
]ln() r
bsin
b3
思考与讨论
1. 位错线只能从晶体表面入出,或终止于晶界、相 界、其它位错,或形成封闭环。
2. 一个位错环,能否各部分都是螺位错,能否各部 分都是刃位错,为什么?
3. 单晶体中的位错环运动到表面,晶体外形发生什 么变化。
刃位错的滑移运动
刃位错的攀移运动
① ② ③
位错沿着
vl
运动平面
y(x2y2) (x2y2)2
z(xy)
xy2(G 1b )(xx (2 x2 yy 2)22 ) zxzy0
1. 刃位错的弹性应变能We.
Rb
W (l d x) d b
e
xy
ro 0

lG b 1 d x d b
2 (1 ) x
b
► 线张力
linte ensiTod nW eG2b

晶体缺陷理论-位错的基本性质86页PPT

晶体缺陷理论-位错的基本性质86页PPT


28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华谢谢!86晶源自缺陷理论-位错的基本性质•
6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

材料科学基础——位错课件PPT

材料科学基础——位错课件PPT

0.49
~8× 103
Ni
6.703.2来自~2 ×103Mo Ti
(柱20面2滑1移/3)/10
11.33 3.54
71.6 13.7
~2× 102 ~3× 102 5
晶体的实际强度和理论计算的强度相差几个数量级,人们就设想晶体 中一定存在某种缺陷,由于它的存在和它的运动引起晶体的晶体的永久变 形。设想的这种缺陷结构及特性必需和下述观察到的宏观变形现象相符。
• 1940年 Peierls提出后来在1947年由Nabarro修正的位错点阵模型, 它
突破了一般弹性力学范围,提出了位错宽度的概念,估算了位错开动的
202应1/3力/10,这一应力正是和实际晶体屈服应力的同一数 量级。
8
• 1947年 Cottrell阐明溶质原子和位错的交互作用并用以解释低碳纲 的屈服现象,第一次成功地利用位错理论解决金属机械性能的具体问题。 同年,Shockley描绘了面心立方形成扩展位错的过程。
近几十年,随着实验设备和计算机的发展,研究位错核心的 组态以
及在复杂结构中的位错方面取得很多很有成效的结果。
2021/3/10
9
晶体中位错概念的引入
假设在滑移面上 有部分面积已经滑移, 上下侧相对滑移了b 矢量,在已滑移区域 和没有滑移区域的交 界处C必然存在很大 畸变,它就是我们要 寻找的缺陷,称之为 位错。
• 1950年 Frank和Read共同提出了位错的增殖机制。
上面所列出的是早期位错理论的发展的重要过程,那时,对于 单个位 错的运动规律,位错的交互作用等理论基本已经解决。
• 1953年Nye和1954年Bilby以及以后的kröner提出的无限小位错连续分布 模型,为研究更复杂位错组态提供了方法。

8-晶体中的位错ppt课件

8-晶体中的位错ppt课件

示从XY矢量中点引向UV矢量中点并延伸
长度为这两点距离两倍的矢量。它相当
XY/UV=XU+YV
从这一定义可知:
XY+YV=XV;XY+UV=XU/YV
XY/UVUV/XY
XY/UV=YX/UV=XY/VU=YX/VU。
21
按上述的定义,还引出几类有用的符号。
⑤由②所列的符号中的任两个符号组成的新符号,例如D/C,它
可能的柏氏矢量 <100>
<1123>/3 2
独立滑移系
每一点的应变可用六个分量表示,但塑性形变保持体积不变,
即11+22+33=0,故只有五个应变分量是独立的。,若有五个独
立的滑移系开动的话,则靠这五个独立滑移系滑移量的调整可以 使任一点获得任意的应变量。
所谓独立的滑移系是指某一滑移系产生的滑移不能用所讨论 的其它滑移系的滑移组合来代替。晶体的滑移系中能互相搭配成 五个独立的滑移系的组合数的多少是衡量晶体塑性大小的一个因 素。
因为内禀层错的两侧的排列顺序一直到层错边界都是正确的 顺序,“内禀”因而得名;而现在的这种排列则不然,在层错中 心的一排原子面,不论从层错的两边哪一侧看,都不能归结为正 确的排列顺序。
16
若在面的堆垛中任意插入一层 (111) 面(例如在B和C层之间插入
一层A),于是堆垛顺序变成……ABCABCAB┇A┇CABCABC……,这
D/B
1 23 6
22
全位错
全位错的柏氏矢量是<110>/2 。这个刃位错的半原子面是(110)面,
在a[110]/2间隔内含有2层(110)面。在 (111)面上看,这2层半原子面表
现为弯曲的原子列。若全位错向左移动,则图中上层原子(深蓝

晶体缺陷位错的弹性性质PPT课件

晶体缺陷位错的弹性性质PPT课件

UT=U0+Uel
长程,
U0
1 10
U
T
可忽略。
(2)UT∝b2,晶体中稳定的位错具有最小的柏氏矢 量,从而具有最低的应变能,所以晶体的滑移 方向总是原子的密排方向。
b大的位错有可能分解成b小的位错,以降低系统的能量
(3) W螺/W刃=1-v,常用金属材料的v=1/3,故W螺 /W刃=2/3。所以螺位错比刃位错易形成。
xx
Gb
2 (1)
y(3x2 y 2 ) (x 2 y2 )2
第21页/共99页
σxx 应力场
y
xx
Gb
2 (1 )
y(3x2 y 2 ) (x2 y2)2
6 8 10 20
20 10 8 6
4
2
x
2 4
第22页/共99页
三、混合位错的应力场
b
θ
bs
be
be b sin bs b cos
zz
y
r 0 θ
P(r,θ,z) x
z
dr
dz
θr

z
t r
tZ t r t rz
rr
t z tzr
zz
r dr d dz 微体积
第8页/共99页
y • 平衡状态,
有切应力互等定律。
t yx t xy
y
yy
tyz tzy
tyx txy
zz tzx txz xx
x
否则六面体将发生转动。
第32页/共99页
作业
1.写出距位错中心为R1范围内的位错弹性应变能。如果弹性应变能为R1范围的一倍,则 所涉及的距位错中心距离R2为多大?
2. 计算产生1cm长的直刃型位错所需要的能量,并指出占一半能量的区域半径(设r0 =1nm,R=1cm,G=50GPa,b=0.25nm,ν=1/3)

《位错理论基础》课件

《位错理论基础》课件
即: Σb前=Σb后
2)能量条件:反应过程是能量降低的过程。 E∝b2 Σb2前≥Σb2后
扩展位错:一个位错分解成两个半位错和它们中间夹的层错带 构成的位错。
面心立方晶体的滑移
如: 1 a1 10 1 a1 2 1 1 a211
2
6
6
1 a1 10
2
1 a1 2 1
6
1 a211
6
1.5 位错的运动及晶体的塑性变形
派—纳力(Peirls- Nabarro),此阻力来源于周期 排列的晶体点阵。
式中,b为柏氏矢量的模,G:切变模量,v:泊松比 W为位错宽度,W=a/1-v,a为滑移面间距
1)通过位错滑动而使晶体滑移,τp 较小 , 设a≈b,v约为0.3, 则τp为(10-3~10-4)G,仅为理想晶体的1/100~1/1000。
1.6 位错在应力场中的受力
外力使晶体变形做的功=位错在F力作用下移动 ds距离所作的功。
1.7 位错间的相互作用
(1)写出位错间作用力的表达式(不要求计算) (2)分析位错的受力
同符号刃型位错:
/2 稳定平衡位置; /4不稳定平衡位置。
1.9 位错的交割
割阶与扭折
割阶的形成增加了位错线长度,要消耗一定的能量。 因此交割对位错运动是一种阻碍。增加变形困难, 产生应变硬化。
刃型位错的交割/割阶的类型
1.10 位错的增殖与塞积
位错的增殖机制
开动(F-R)位错源的临界切应力
位错的塞积
●当位错在滑移过程中遇到沉淀相、晶界等障碍 物时,可能被阻挡停止运动,并使由同一位错 源增殖的后续位错发生塞积。塞积使障碍处产 生了应力集中。
应变硬化的机制之一
位错塞积群中位错的分布与数量

位错理论.ppt

位错理论.ppt

1.5 位错与溶质的交互作用
• 溶剂原子、溶质原子体积不同,晶体中的
溶质原子会使周围晶体发生弹性畸变,产
生应力场。 • 位错与溶质原子的弹性相互作用-应力场
发生作用。
科氏气团
• 位错与溶质原子交互作用-溶质原子相位 错线聚集-溶质原子气团。
• 位错更加稳定。
1.6 位错的增殖与塞积
Heterogeneous Nucleation Frank-Reed Source F-R源的形核
• 位错中心处原子严重错排,周围原子偏离 中心位置-位错周围产生应力场,晶体的 内能也增加。
• 因晶体中存在位错而使晶体增加内能-位 错的应变能。
线张力
位错应变能与位错线长度成正比。为降 低能量,位错线具有尽量缩短其长度的倾向, 从而使位错产生线张力。 其作用是使位错变直—降低位错能量 • 相当于 物质弹性—称之为位错的弹性性质 • 类似于液体 为降低表面能产生的表面张力。
• F-R源的开动条件:
推动力(外力)> 位错运动点阵摩擦力和障 碍物阻力
当外力作用在两端不能自由运动的位错上 时,位错将发生弯曲。
Dislocation Loop: Frank ed
m
Left & right screw intersects at m => cancellation 螺位错相消
全位错与不全位错(1)实际晶体中的 位错类型
简单立方:b≡点阵矢量—只有全位错
实际晶体:b > = <点阵矢量 b=点阵矢量整数倍— 全位错 其中b=点阵矢量——单位位错 b≠点阵矢量整数倍——不全位错 其中b <点阵矢量——部分位错
位错反应
— 位错的合并与分解
• 几何条件:反应前后柏氏矢量和相等(方向、大 小);

晶体塑性变形的位错机制PPT课件

晶体塑性变形的位错机制PPT课件
柯氏气团的形成减少了晶格畸变,降低了溶质原子与位错的弹性交互作用能,使位错处于较稳定的状态,从而减少了可动位错的数目,这就是钉扎作用。若要使位错线运动,脱离开气团的钉扎,就需要更大的外力,从而增加了固溶体合金抵抗塑性变形的能力。
3.2 多相合金塑性变形与位错机制
多相合金的组织主要分为两类:一两相的晶粒尺寸相近,两相的塑性也相近;二是有塑性较好的固溶体基体及其上分布的硬脆第二相组成,这类合金除具有固溶体强化效果外,还有因第二相的存在而引起的第二相强化。 位错对多相合金塑性的影响主要体现在合金中的硬脆相在塑性相中呈颗粒状分布的合金中。 一般来说,颗粒状的硬脆相对塑性的危害比针状和片状要小。
下图是由于位错塞积而在晶界处产生的竹节效应
Ni3Al+0.1%B合金拉伸时滑移带终止于晶界
三、合金的塑性变形
根据合金的组织可以将合金分为两类,一是具有以基体金属为基的单相固溶体组织,称为单相固溶体;二是加入的合金元素量超过了它在基体金属中的饱和溶解度,在显微组织中除了以基体组织为基的固溶体外,还出现了第二相(各组元形成的化合物或以合金元素为基形成的另一固溶体)构成了多相合金。
当位向最有利的晶粒发生塑性变形时 ,这就意味着在它的滑移面上的位错源开动,位错不断地在滑移面上向前运动,但周围晶粒的位向不同,滑移系也不同,运动着的位错不能越过晶界,滑移系就不可能发展到另一个晶粒中。位错就会在晶界处形成平面塞积群,这样就会造成很大的应力集中。 在外加应力及已滑移晶粒内位错平面塞积群所造成的应力集中作用下就会有越来越多的晶粒发生塑性变形。 例如下图是双晶粒的拉伸变形,由于在晶界附近的滑移受阻,变形量较小,而晶粒内部的塑性变形较大,整个晶体的变形是不均匀的。所以呈现出竹节状。
1.2 位错的增殖
随着塑性变形过程的进行,晶体中的位错数目会越来越多,因为晶体中存在着在晶体塑性变形过程中不断增殖位错的位错源。 常见的一种位错增殖机制是弗兰克—瑞德拉位错源机制。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
05
§2.5平行直 线位错间的 相互作用能
03
§2.3作用在 位错上的力
06
一般性参考 文献
05
第三章各向同性介质中的位错环
第三章各向同性介 质中的位错环
§3.1位错位移场的Burgers公式 §3.2位错应力场的Peach-Koehler 公式 §3.3弹性能量;Blin公式 §3.4作用在位错线元上的力 一般性参考文献
14
附录A弹性力学的几个问题
附录A弹性力学的几个问题
A
§A.1记号 和定义
B
§A.2弹性 力学的基
本公式
C
§A.3平衡 方程的基
本解
D
§A.4Bet ti定理及
其推论
E
§A.5平面 问题
F
§A.6轴对 称弹性问

附录A弹性力学的 几个问题
参考文献
LOGO
感谢聆听
§8.6原子间势问题
第八章晶体点阵中 的位错
一般性参考文献
11
第九章密积结构:面心立方
第九章密积 结构:面心
立方
01 § 9 .1 密积结构晶体中 02 § 9 .2 面心立方结构中
的堆垛次序和层错
的不全位错
03 § 9 . 3 扩展位错和位错 04 § 9 . 4 F r an k 环与层错

四面体
05 § 9 .5 位错割阶的构型 06 § 9 .6 层 错的交 截
第九章密积结构: 面心立方
§9.7扩展节点的若干构型 §9.8交滑移的几何 §9.9原子计算:铜中的位错 一般性参考文献
12
第十章六角密积、体心立方和共价 结构
第十章六角密积、体心立方和共价结构
§10.1六角结构中的层错
06
§1.6位错线 上的割阶和
扭折
第一章位错的基本 性质
§1.7位错源:位错的增殖 §1.8位错间界和位错群 一般性参考文献
04
第二章各向同性介质中的直线位错

质第 中二 的章 直各 线向 位同 错性

01
§2.1螺型位 错
04
§2.4自由表 面:镜像力
问题
02
§2.2刃型位 错
13
第十一章其它结构中的位错

构第 中十 的一 位章 错其
它 结
01
§11.1有序 合金中的反
相畴
04
§11.4离子 晶体
02
§11.2反相 畴界与位错
05
§11.5离子 晶体中位错 的原子计算
03
§11.3层结 构
06
§11.6另外 两种位错模

第十一章其它结构 中的位错
一般性参考文献
1
和不全位错
§10.2六角结构中的位错

2
§10.3平衡扩展位错节
3
§10.4六角密积结构中位
错的原子计算
4
§10.5体心立方结构中的
5
层错
§10.6体心立方结构中的
扩展位错和位错环
6
第十章六角密积、体心立方和 共价结构
§10.7螺型位错的转变及交滑移 的几何 §10.8原子计算:铁中的位错 §10.9立方金刚石结构 §10.10闪锌矿和纤锌矿结构 一般性参考文献
06
第四章若干具体结果
第四章若干具体结果
01
§4.1无限小 位错环
04
§4.4位错的 生成元
02
§4.2有限位 错圆环
05
§4.5直位错 线段的应力

03
§4.3折线位 错的弹性场
06
§4.6两个直 线位错之间 的相互作用
第四章若干具体结果
单击此处添加标题
单击此处添加文本具体内容, 简明扼要的阐述您的观点。根 据需要可酌情增减文字,以便 观者准确的理解您传达的思想。
LOGO
202X
晶体位错理论基础(第一卷)
演讲人 202X-11-11
01
目录
目录
02
引论
引论
03
第一章位错的基本性质
第一章位错的基本性质
01
§1.1刃型位 错和螺型位

04
§1.4广义的 位错
02
§1.2位错的 普遍定义
05
§1.5位错的 运动
03
§1.3晶体缺 陷和
Burgers矢 量
一般性参考 文献
§4.10位错 的自力与线
张力
§4.11再论 表面问题
§4.7共轴位 错圆环间的
相互作用
§4.8非平行 直位错线段 的相互作用
§4.9分段位错
第五章各向异性 介质中的位错
§5.1Eshel by的方法
§5.6Brow
01
n 公 式 06
第七章位 错的连续 分布理论
§7.7离散位错的弹性能 §7.8例 一般性参考文献
10
第八章晶体点阵中的位错
第八章晶体点阵中的位错
§8.1FrenkelKontorova模型和孤立子
§8.3位错的能量及其它 问题
§8.5计算机模拟
§8.2部分离散模型: Peierls-Nabarro
§8.4离散模型:点阵静 力学
§5.2对称 性和解的 02 简 化
§5.5有限
05
直位错线
段的弹性

04
§5.4Willis 的方法
§5.3应用
03
于六角晶 系和立方
晶系
第五章各向异性介质中的位错
§5.7Stroh表述法和有关的关系 §5.8积分表示 §5.9直线位错及有关公式 §5.10Gavazza关于位错自力的 计算 一般性参考文献

§6.3自能和 有效质量
第六章运动位错的 性质
§6.7螺型位错 一般性参考文献
09
第七章位错的连续分布理论
第七章位错的连续分布理论
A
§7.1位错 的连续分

B
§7.2无限 介质中的
畸变场
C
§7.3结构 曲率
D
§7.4界面 条件
E
§7.5连续 分布位错 的位移场
F
§7.6静力 学中的应 力函数法
08
第六章运动位错的性质
第六章运动位错的性质
单击此处添加标题
单击此处添加文本具体内容, 简明扼要的阐述您的观点。根 据需要可酌情增减文字,以便 观者准确的理解您传达的思想。
§6.6位错动 力学的一般
理论
§6.4匀速运 动的散布位

§6.5非匀速 运动离散直
线位错
§6.1匀速运 动的螺型位

§6.2匀速运 动的刃型位
相关文档
最新文档