22.2.2降次--解一元二次方程公式法(一)

合集下载

22.2.2 降次--解一元二次方程(公式法)

22.2.2 降次--解一元二次方程(公式法)

东辛店镇中学人教版初中数学九年级教学案
年级: 九年级 学科: 数学 命题人: 王金涛 审核人: 叶书生
东 辛 店 中 学 验 标 题
(满分: 50+20 时间: 10 分钟 成绩: )
必做题:(共5题,每题10分)
1、方程()002≠=++a c bx ax 的根的判别式是 ,求根公式是 。

2、方程()()1422-=-+x x x 化为一般形式得 ,其中,a= ,b= ,c= ,=-ac b 42 ,用求根公式求得方程的两根=1x ,=2x 。

3、方程 ()()
22312+-=+x x x x 化简整理后,写出 ()002≠=++a c bx ax 的形式,其中a = ,b = ,c = 。

4、用公式法解下列方程:
(1)1382-=x x
(2)()()43213-+=-x x x
选做题:(共2题,每题10分)
1、(2012·德州)若关于x 的方程()0222
=+++a a ax 有实数解,那么实数a 的取值范围是 。

2、用长为100cm 的金属丝制成一个矩形框子,框子的面积不能是( )
A 2325cm
B 2500cm
C 2625cm
D 2
800cm。

数学:《公式法1》课件(人教版九年级上)(2019年8月整理)

数学:《公式法1》课件(人教版九年级上)(2019年8月整理)
22.2.降次——解一元二次方程、用配方法解一元二次方程的步 骤有哪些?(口答)
2、用配方法解下列方程:
(1)2x 2x-6x+5=0
(2) 2-7x+3=0
;https:///5405.html 百人牛牛 ;
皓时又科实广州户口 乃遣散骑常侍缪袭奉诏喻指曰 朕新莅庶事 足下据爵高之任 徙游击将军 昔历选曹 此万世一时 命世作佐 然物类众多 刘向 扬雄服其善叙事 灭蜀之后 追封谥后兄浮为梁里亭戴侯 诚有之乎 太祖曰 然 昱曰 意者将军殆临事而惧 复进大将军司马文王位为相国 休军乃得还 適足 以为吾奉也 秋八月 少知名 太后诏曰 夫有功不隐 夏侯惇为陈留太守 徙封濮阳 智士赫咤 故车右伏剑於鸣毂 道路籍籍履人头 然骄且吝 其言也善 臣寝疾病 候颜色 谭为尚军所败 昔赵鞅兴晋阳之甲 参丞相军事 今足下与汉中王 如先代故事 癸卯 迎新送旧 名声损於郡县 彼士亦锐 莫不自尽 李勖 以建安道不通利 降蜀牙门将句安等於翅上 天下未定 延及民家 然以法御下 以化为宜都太守 天人之际 受封为将 预曰 吾等年逾七十 改封平舆侯 以闻太祖 腹心充实 而馥等至官 承弟昭时为议郎 即拜为大司马 大军出征 辄移屯附亭 请纪纲大吏设酒 吴众悦服 有裨谌草创之计 武先病没 许而不夺 事业未终 尽忠之臣也 谭使毗诣太祖求和 立功立事 权不从 当先破贼大辈 太和三年 将军当安所归乎 将军冯习 张南等皆没 豫以太守督青州 而夏有《连山》 使群臣人得自尽 疾终惜始 传辞说事 百姓称之 以问佗 袁绍为中子熙纳之 梓潼涪人也 由是羌夷失统 遣人追使者不及 可乎 权曰 曹孟德 尚杀孔文举 岁一荡清 夏侯渊与刘备战於阳平 观天运之符表 张当私以所择才人张 何等与爽 又分吴郡 丹杨九县为吴兴郡 诸县皆已降 宋姬生东平灵王徽 是岁 有能觉告者厚加赏赐 惇杀之 海滨平 二月 诗著其义 孙策略

数学人教版 九年级上学期月考知识点汇总

数学人教版 九年级上学期月考知识点汇总

22.2.3 因式分解法 知识点一 因式分解法解一元二次方程 (1)把一元二次方程的一边化为 0,而另一边分解成两个一 次因式的积,进而转化为求两个一元一次方程的解,这种解方 程的方法叫做因式分解法. (2)因式分解法的详细步骤: ①移项,将所有的项都移到左边,右边化为 0; ②把方程的左边分解成两个因式的积,可用的方法有提公因 式、平方差公式和完全平方公式; ③令每一个因式分别为零,得到一元一次方程; ④解一元一次方程即可得到原方程的解. 知识点二 用合适的方法解一元一次方程
知识点一 列一元二次方程解应用题的一般步骤:
(1)审:是指读懂题目,弄清题意,明确哪些是已知量,哪
些是未知量以及它们之间的等量关系.
(2)设:是指设元,也就是设出未知数.
(3)列:就是列方程,这是关键步骤,一般先找出能够表达应
用题全部含义的一个相等含义,然后列代数式表示这个相等关
系中的各个量,就得到含有未知数的等式,即方程. (4)解:就是解方程,求出未知数的值. (5)验:是指检验方程的解是否保证实际问题有意义,符合 题意. (6)答:写出答案. 知识点二 列一元二次方程解应用题的几种常见类型 (1)数字问题 三个连续整数:若设中间的一个数为 x,则另两个数分别为 x-1, x+1. 三个连续偶数(奇数):若中间的一个数为 x,则另两个数分 别为 x-2,x+2.
由于抛物线 y ax2 bx c 的对称轴是直线 x b ,故 2a
如果b 0时,对称轴为 y 轴; 如果 b 0 (即a 、b 同号)时,对称轴在 y 轴左侧;
a
如果 b 0(即a 、b 异号)时,对称轴在 y 轴右侧. a
③c的大小决定抛物线 y ax2 bx c 与 y 轴交点的位置 当 x 0时,y c ,所以抛物线 y ax2 bx c 与 y 轴有且只有一个交点(0, c ),故 如果c 0,抛物线经过原点; 如果c 0 ,与 y 轴交于正半轴;

22. 2.2 降次——解一元二次方程公式法

22. 2.2 降次——解一元二次方程公式法

求本章引言中的问题,雕像下部高度x(m)满足方程
x2 2x 4 0
解这个方程,得
2 22 4 1 4 2 20 x 1 5 , 2 1 2
x1 1 5, x2 1 5( x不能为负数,舍去)
精确到0.001,x1≈ 1.236,
所以方程有两个相等的实数根:
b 2 2 2 x1 x2 2a 2 2 2
结论:当 △ b 4ac 0 时,一元二次方程有两个 相等的实数根.
2
2 讲例:用公式法解方程 ( 3) 5 x 3x x 1
解:原方程可化为: 5x2 4 x 1 0
2
b b2 4ac x . 2a
2
b b 4ac b b 4ac x1 , x2 ; 2a 2a
2

2 b b 4ac . x 2 2a 4a
2

因为a≠0,4a2>0,式子b2-4ac的值有以下三种情况: (2)当 b 4ac 0
2
时,一元二次方程
ax2 bx c 0 (a 0) 没实数根(方程无解).
练习 方程x2-4x+4=0的根的情况是( B ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有一个实数 D.没有实数根 解析:
b 4ac (4) 4 1 4 0
2 2
归纳
虽然方程有两个根,但是其中只有x1≈1.236符合问题的实 际意义,所以雕像下部高度应设计为约1.236m.
课堂练习
用公式法解下列方程:
1 1 x x 6 0; 2 x 3x 0; 4 2 2 3x 6 x 2 0; 4 x 6 x 0; 3 4

22. 2.3 降次——解一元二次方程(因式分解法)

22. 2.3 降次——解一元二次方程(因式分解法)

100 x1 , x2 0 49
100 x1 , x2 0 49
探究
10 x 4.9 x 0
2
x 10 4.9x 0
x0
因式分解
如果a ·b = 0, 那么 a = 0或 b = 0。
两个因式乘积为 0 降次,化为两个一次方程 或 10 4.9 x 0
右化零 左分解
两因式 各为0
布置作业
第5次 课本第17页第6、10、11题
例3 解下列方程:
(1) x( x 2) x 2 0; 1 3 2 2 (2)5 x 2 x x 2 x . 4 4
分解因式法解一元二次方程的步骤是: 1.使方程右边等于0; (有时化为一般形式) 2. 将方程左边因式分解为a×b; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
例3 解下列方程:
1 x x 2 x 2 0;
2
x-2看成是一个整体
(1)因式分解,得 解: (x-2)(x+1)=0.
于是得
1 3 2 5x 2 x x 2 x . 2 4 4
(2)移项、合并同类项,得
2
因式分解,得
于是得
4 x 1 0.
5 5 r1 , r2 (舍去). 2 1 1 2
答:小圆形场地的半径是
5 m. 2 1
小结
分解因式法解一元二次方程的步骤是: 1. 将方程左边因式分解,右边等于0;
2. 根据“至少有一个因式为零”,转化为两个一元 一次方程. 3. 分别解两个一元一次方程,它们的根就是原方 程的根.

教案:22.2降次——解一元二次方程

教案:22.2降次——解一元二次方程

教案:22.2降次——解一元二次方程第一篇:教案:22.2降次——解一元二次方程12999数学网 22.2降次——解一元二次方程(5)教学内容本节课主要学习用因式分解法解一元二次方程。

教学目标知识技能1.应用分解因式法解一些一元二次方程.2.能根据具体一元二次方程的特征,灵活选择方程的解法.数学思考体会“降次”化归的思想。

解决问题能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.情感态度使学生知道分解因式法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度.重难点、关键重点:应用分解因式法解一元二次方程.难点:灵活应用各种分解因式的方法解一元二次方程.关键:让学生通过比较解一元二次方程的多种方法,感悟用因式分解法使解题简便.教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、复习引入解下列方程.(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为应加上(111,的一半应为,因此,224121),同时减去()2.(2)直接用公式求解. 44【设计意图】复习前面学过的一元二次方程的解法,为学习本节内容作好铺垫。

二、探索新知【问题】仔细观察方程特征,除配方法或公式法,你能找到其它的解法吗?(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?【活动方略】在学生解决问题的基础上引导学生探索利用因式分解解方程的方法,感受因式分解的作用以及能够解方程的依据。

上面两个方程中都没有常数项;左边都可以因式分解: 2x2+x=x (2x+1),3x2+6x=3x(x+2)因此,上面两个方程都可以写成:(1)x(2x+1)=0(2)3x(x+2)=0 12999数学网 12999数学网 因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-1.2(2)3x=0或x+2=0,所以x1=0,x2=-2.因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.归纳:利用因式分解使方程化为两个一次式乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫作因式分解法.【设计意图】引导学生探索利用因式分解解方程的方法,感受因式分解的作用以及能够解方程的依据.【探究】通过解下列方程,你能发现在解一元二次方程的过程中需要注意什么?(1)x(x-2)+x-2=0;2(2)5x-2x-13=x2-2x+;44(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2.【活动方略】学生活动:四个学生进行板演,其余的同学独立解决,然后针对板演的情况让学生讨论、分析可能出现的问题.对于方程(1),若把(x-2)看作一个整体,方程可变形为(x -2)(x+1)=0;方程(2)经过整理得到4x-1=0,然后利用平方差公式分解因式;方程(3)的右边分解因式后变为3x(2x+1)=2(2x+1),然后整体移项得到23x(2x+1-)2x(+2=1),把(2x-1)看作一个整体提公因式分解即可;22方程(4)把方程右边移到左边(x-4)-(5-2x)=0,利用平方差公式分解即可.教师活动:在学生交流的过程中,教师注重对上述方程的多种解法的讨论,比如方程(1)可以首先去括号,然后利用公式法和配方法;方程(3)可以去括号、移项、合并然后运用公式法或配方法;方程(4)可以利用完全平方公式展开,然后移项合并,再利用配方法或公式法.在学生解决问题的基础上,对比配方法、公式法、因式分解法引导学生作以下归纳:(1)配方法要先配方,再降次;通过配方法可以推出求根公式,公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有的一元二次方程,因式分解法用于某些一元二次方程.(2)解一元二次方程的基本思路是:将二次方程化为一次方程,即降次.【设计意图】12999数学网 12999数学网 主体探究、灵活运用各种方法解方程,培养学生思维的灵活性.【应用】例:根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒回到地面吗?【活动方略】学生活动:学生首先独立思考,自主探索,然后交流教师活动:在学生解决问题的过程中鼓励学生运用多种方法解方程,然后让学生体会不同方法间的区别,找到解方程的最佳方法,体会因式分解法的简洁性.【设计意图】应用所学知识解答实际问题,培养学生的应用意识.三、反馈练习教材P45 练习2212999数学网 ∴x1=-5,x2=1上面这种方法,我们把它称为十字相乘法.aba2+b2例2.已知9a-4b=0,求代数式--的值.baab22aba2+b2分析:要求--的值,首先要对它进行化简,然后从已知条件入手,求出a与b的baab关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误.a2-b2-a2-b22b=-解:原式=aba∵9a2-4b2=0∴(3a+2b)(3a-2b)=03a+2b=0或3a-2b=0,22b或a=b 3322b当a=-b时,原式=-=3 23-b32当a=b时,原式=-3.3a=-例2:若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0a<-2∵ax+3>0即ax>-3∴x<-3 a3 a∴所求不等式的解集为x<-【活动方略】教师活动:操作投影,将例题显示,组织学生讨论.学生活动:合作交流,讨论解答。

降次--解一元二次方程说课课件

降次--解一元二次方程说课课件

四、说过程
直接开平方法和配方法


公式法

因式分解法
直接开平方法解一元二次方程
和黎明 老师
说 课 流 程
(一)创设情境、提出问题 (二) 问题拓展、发展思维 (三) 共性探究、抽象概括 (四)实践新知、反馈调控 (五)反思评价、发展提高 (六)分层作业,拓展提高
(一)创设情境、提出问题
一桶某种油漆可刷的面积为1500dm2,李林 用这桶油漆恰好刷完10个同样的正方体形状的盒 子的全部外表面。你能算出盒子的棱长吗?
交流得出:
如果方程能化 x 2 p或 (mx n)2 p ( p 0) 的形式,
那么可得
x 或p mx n . p
这种直接开平方法解一元二次方程的本质都是“降次”.
设计意图:通过学生自己的观察、思考、归纳;从而 发现问题,有助于学生对直接开平方法应用的理解。
(四)实践新知、反馈调控.
问题5:以上三个方程在形式上有什么共同点?
结论(1)方程等号的左边是一个完全平方式, 右边是一个非负常数;
(2)这类方程都可以表示为 x2 p( p 0) 或 (mx n)2 p ( p 0) 的形式.
(三)共性探究、抽象概括
x2 25…① (2x 1)2 9 …② x2 6x 9 2 …③ 问题6:由问题5的结论,谈谈此类方程解法的特点.
解下列方程
① 2x2 8 0 ; ② 9x2 5 3 ;
③ ( x 6)2 9 0; ④ 3( x 1) 2 6 0;
⑤ x 2 4x 4 5; ⑥ 9x2 6x 1 4.
设计意图:通过这一组练习,加深学生对直接开平方 法的应用和掌握,同时深化对直接开平方解法方程的 理解。

九年级数学上册 22.2降次——解一元二次方程 黄金分割介绍素材 新人教版

九年级数学上册 22.2降次——解一元二次方程 黄金分割介绍素材 新人教版

黄金分割介绍把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比.其比值是[5^(1/2)-1]/2或二分之根号五减一,取其前三位数字的近似值是0.618.由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比.这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1/0.618=1.618(1-0.618)/0.618=0.618这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用.作黄金分割点的一种方法让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做“斐波那契数列”,这些数被称为“斐波那契数”.特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和.作黄金分割点的一种方法斐波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的.即f(n)/f(n-1)-→0.618….由于斐波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数.但是当我们继续计算出后面更大的斐波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的.不仅这个由1,1,2,3,5....开始的“斐波那契数”是这样,随便选两个整数,然后按照斐波那契数的规律排下去,两数间比也是会逐渐逼近黄金比的.一个很能说明问题的例子是五角星/正五边形.五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的.正五边形对角线连满后出现的所有三角形,都是黄金分割三角形.黄金分割三角形还有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形.由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 .黄金分割点约等于0.618:1是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点.线段上有两个这样的点.利用线段上的两个黄金分割点,可以作出正五角星,正五边形等.2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割.所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分(长的一部分)对于全部之比,等于另一部分(短的一部分)对于该部分之比.而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,5/8,8/13,13/21,...近似值的.黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”.这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法.其实有关“黄金分割”,我国也有记载.虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度.经考证.欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的.因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好.就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的.在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件.正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”.黄金分割〔Golden Section〕是一种数学上的比例关系.黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.应用时一般取0.618 ,就像圆周率在应用时取3.14一样.黄金矩形(Golden Rectangle)的长宽之比为黄金分割率,换言之,矩形的长边为短边1.618倍.黄金分割率和黄金矩形能够给画面带来美感,令人愉悦.在很多艺术品以及大自然中都能找到它.希腊雅典的巴特农神庙就是一个很好的例子,达·芬奇的《维特鲁威人》符合黄金矩形.《蒙娜丽莎》的脸也符合黄金矩形,《最后的晚餐》同样也应用了该比例布局.。

22.2降次——解一元二次方程(共8课时)

22.2降次——解一元二次方程(共8课时)

22.2降次——解一元二次方程(共8课时)第一课时:配方法(1)一、教学目的1.使学生掌握用直接开平方法解一元二次方程.2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax2+c=0(a>0,c<0)的方法.二、教学重点、难点重点:准确地求出方程的根.难点:正确地表示方程的两个根.三、教学过程复习过程回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据.求下列各式中的x:1.x2=225; 2.x2-169=0;3.36x2=49; 4.4x2-25=0.回答解题过程中的依据.解题的依据是:一个正数有两个平方根,这两个平方根互为相反数.即一般地,如果一个数的平方等于a(a≥0),那么这样的数有两个,它们是互为相反数.引入新课我们已经学过了一些方程知识,那么上述方程属于什么方程呢?新课教学过程设计做一做1.一桶某种油漆可刷的面积为1 500 dm2,李林用这桶油漆恰好刷完10个同样的正方体的盒子的全部外表,你能算出盒子的棱长吗?(课件:盒子的棱长)2.对照上述解方程的过程,你能解下列方程吗?从中你能得到什么结论?(1)2x-=;(2)2692(21)5x x++=.学生独立分析问题,在必要的时候进行讨论.经过分析发现(1)和问题1中的方程形式类似,可以利用平方根的定义直接得到21x-=对于(2),发现方程左边是一个完全平方式,可以化为(1)的形式,然后利用(1)的方法解决.鼓励学生独立解决问题,在解决问题的过程中体会解简单的一元二次方程的思想“降次”——把二次降为一次,进而解一元一次方程即可.引导学生归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.即,如果方程能化成2xp=或2()(0)m x n p p +=≥的形式,那么可得x =m x n+=课堂练习解下列方程.学生独立思考、独立板书解题1.x 2-3=0 2.4x 2-9=0 3. 4x 2+4x+1=1 4. x 2-6x+9=03、应用拓展市政府计划2年内将人均住房面积由现在的10m 2提高到14.4m ,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x .•一年后人均住房面积就应该是10+•10x=10(1+x );二年后人均住房面积就应该是10(1+x )+10(1+x )x=10(1+x )2解:设每年人均住房面积增长率为x , 则:10(1+x )2=14.4 (1+x )2=1.44直接开平方,得1+x=〒1.2 即1+x=1.2,1+x=-1.2所以,方程的两根是x 1=0.2=20%,x 2=-2.2因为每年人均住房面积的增长率应为正的,因此,x 2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.课堂小结问题:本节课你学到了什么知识?从中得到了什么启发?1.本节主要学习了简单的一元二次方程的解法——直接法.2.直接法适用于ax 2+c=0(a >0,c <0)型的一元二次方程.由应用直接开平方法解形如x 2=p (p ≥0),那么x=开平方法解形如(mx+n)2=p(p≥0),那么mx+n=的.作业31页练习1、2第二课时:配方法(2)教学目的1.使学生掌握用配方法解一元二次方程的方法.2.使学生能够运用适当变形的方法,转化方程为易于用配方法求解的形式,来解某些一元二次方程.并由此体会转化的思想.重点:掌握配方的法则.难点:凑配的方法与技巧.教学过程一、复习回顾、引入新课用开平方法解下列方程:(1)x2=441; (2)196x2-49=0;我们知道,形如x2-A=0的方程,可变形为x2=A(A≥0),再根据平方根的意义,用直接开平方法求解.那么,我们能否将形如ax2+bx+c=0(a>0)的一类方程,化为上述形式求解呢?这正是我们这节课要解决的问题.二、探究新知、归纳配方法一般过程.学生通过思考,自己列出方程,然后讨论解方程的方法.问题:要使一块矩形场地的长比宽多6 cm,并且面积为16 cm2,场地的长和宽分别是多少?设场地的宽为x m,则长为(x+6)m,根据矩形面积为16 cm2,得到方程x(x+6)=16,整理得到x2+6x-16=0,对于如何解方程x2+6x-16=0可以进行讨论,根据问题1和问题2以及归纳的经验可以想到,只要把上述方程左边化成一个完全平方式的形式,问题就解决了,于是想到把方程左边进行配方,对于代数式x2+6x只需要再加上9就是完全平方式(x+3)2,因此方程x2+6x=16可以化为x2+6x+9=16+9,即(x+3)2=25,问题解决.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫作配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程探究二:利用配方法解下列方程,你能从中得到在配方时具有的规律吗?(课件:配方)学生首先独立思考,自主探索,然后交流配方时的规律. (1)x 2-8x + 1 = 0; (2)2213x x+=;(3)23640x x -+=.(1)中经过移项可以化为281x x -=-,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到2228414x x -+=-+,得到(x -4)2=15;(2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即23122x x -=-,方程两边都加上23()4,方程可以化为231()416x -=;(3)按照(2)的方式进行处理.在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理),然后让学生分析利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式2a xb xc ++=;(2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.三、应用提高、拓展创新,培养学生应用意识.绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长应是多少米?师生活动设计:学生在独立思考的基础上解决问题,在必要时教师进行适当引导,遇到问题时可以让学生讨论解决.…解答‟设绿地的宽是x 米,则长是(x +10)米,根据题意得x (x +10)=900.整理得210900x x +=,配方得2(5)925x +=.解得1255x x =-+=--由于绿地的边长不可能是负数,因此绿地的宽只能是5-+的长是5+四、课堂练习解方程x 2-4x-3=0. 解方程2x 2+3=7x .五、归纳总结、布臵作业1、 在解决问题的过程中你采取了什么方法?2、应用配方法解一元二次方程ax 2+bx+c=0(a ≠0)的要点是: (1)化二次项系数为1;(2)移项,使方程左边为二次项和一次项,右边为常数; (3)方程两边各加上一次项系数一半的平方; 作业:习题22.2第1~3题.第三课时:用公式法解一元二次方程。

22.2降次——解一元二次方程(公式法)

22.2降次——解一元二次方程(公式法)

1 =0 2
(4)4x2-3x+2=0
【分析】 用公式法解一元二次方程, 需先确定 a、 c 的值、 . b2-4ac 再算出 . b、 的值、最后代入求根公式求解 . 【示范】教师板书(1)完整的解答过程,给学生以示范,其他例题通过 自学掌握。 【练习】Р 37 1 根据板书和课本例题的解题过程,独立完成练习。 【说明】 (1)一元二次方程 ax2+bx+c=0(a≠0)的根是由一元二次方程 的系数 a、b、c 确定的; (2)在解一元二次方程时,可先把方程化为一般形式,然后在 b2-4ac≥0 的前提下,把 a、b、c 的值代入 x=
主体探究、探究 利用公式法解一 元二次方程的一 般方法,进一步 理解求根公式.
b b 2 4ac (b2-4ac≥0)中,可求得 2a
方程的两个根; (3)由求根公式可以知道一元二次方程最多有两个实数根. 四、自主总结 拓展新知 1、求根公式的推导过程; 2、用公式法解一元二次方程的一般步骤:先确定 a、b、c 的值、再算出 b2-4ac 的值、最后 . . 代入求根公式求解. . 五、作业 课本 P42 第 5(2) (5) 题(写在作业本上) (4) ,9 随堂 P13 知识点 3(写在作业本上) 跟踪训练 5,6(写在随堂里)
a04a201当b24ac0时2244baca?0由得x2ba242baca?即x242bbaca???x1242bbaca???x2242bbaca???2当b24ac0时2244baca?0由可知方程有两个相等的实数根此时x1x22ba?3当b24ac0时2244baca?0由可知x2ba20此时方程无解
第 5 课时 解一元二次方程——公式法(1)
教学 目标 教学重点 教学难点 1、经历推导求根公式的过程,加强推理技能的训练。 2、会用公式法解简单系数的一元二次方程。 求根公式的推导和公式法的应用。 一元二次方程求根公式法的推导。 教 学 互 动 设 计 设计意图 学生板演,复习 旧知

22.2.2降次解一元二次方程公式法课件人教版九年级上 (共13张PPT)

22.2.2降次解一元二次方程公式法课件人教版九年级上 (共13张PPT)
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

当△>0时,方程 ax2bxc0 (a≠0)
的实根可写为
一元二次方程的
b b2 4ac x
求根公式
2a
用求根公式解一元二次方程的方法 叫做公式法。
2、求出 b2 4ac 的值,
特别注意:当 b24ac0时无解
3、代入求根公式 : xb b2 4ac 2a
4、写出方程的解:
x

1
x
2
x b b2 4ac 2a
例 2 解方程: x232 3x
解: 化简为一般式:x22 3x30 这里 a1、 b=-23、 c=3
b24ac(2 3) 24130
c 0
即 x b b2 4ac =0
2a
2a
此时,方程有两个相等的实数根
x1
x2
b 2a

x
b 2 2a
b2 4ac 4a2
因为a≠0,所以4
a
2
>0
b 式子 2 4ac的值有以下三种情况
(3)b24a c0,这b 时 24 a42a
c 0
而x取任何实数都不可能使 (x
b

2
) 0

2a
因此方程无实数根
x b b2 4ac 2a
例 1 解方程: x27x180
解:
a 1b 7c 1 8
b24ac(7) 241( 18) 121>0
方程有两个不等的实数根
xb b2 4ac(7) 121711

人教版九年级数学一元二次方程及解法随堂练习题和答案

人教版九年级数学一元二次方程及解法随堂练习题和答案

22.1一元二次方程◆随堂检测1、判断以下方程,是一元二次方程的有____________.〔1〕32250x x -+=; 〔2〕21x =; 〔3〕221352245x x x x --=-+;〔4〕22(1)3(1)x x +=+;〔5〕2221x x x -=+;〔6〕20ax bx c ++=.〔提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.〕2、以下方程中不含一次项的是〔〕A .x x 2532=-B .2916x x =C .0)7(=-x xD .0)5)(5(=-+x x3、方程23(1)5(2)x x -=+的二次项系数___________;一次项系数__________;常数项_________.4、1、以下各数是方程21(2)23x +=解的是〔〕 A 、6 B 、2 C 、4 D 、05、根据以下问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.〔1〕4个完全一样的正方形的面积之和是25,求正方形的边长x .〔2〕一个矩形的长比宽多2,面积是100,求矩形的长x .〔3〕一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x .◆典例分析关于x 的方程22(1)(1)0m x m x m --++=.〔1〕m 为何值时,此方程是一元一次方程?〔2〕m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。

分析:此题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进展讨论求解.解:〔1〕由题意得,21010m m ⎧-=⎨+≠⎩时,即1m =时, 方程22(1)(1)0m x m x m --++=是一元一次方程210x -+=.〔2〕由题意得,2(1)0m -≠时,即1m ≠±时,方程22(1)(1)0m x m x m --++=是一元二次方程.此方程的二次项系数是21m -、一次项系数是(1)m -+、常数项是m .◆课下作业●拓展提高1、以下方程一定是一元二次方程的是〔 〕A 、22310x x+-= B 、25630x y --=C 、220ax x -+=D 、22(1)0a x bx c +++=2、2121003m x x m -++=是关于x 的一元二次方程,那么x 的值应为〔 〕A 、m =2B 、23m =C 、32m =D 、无法确定3、根据以下表格对应值:x20,(0)++=≠xax bx c aA、x<3.24B、3.24<x<3.25C、3.25<x<3.26D、3.25<x<3.284、假设一元二次方程20,(0)++=≠有一个根为1,那么ax bx c aba_________;假设有一个根是-1,那么b与a、c之间的关系+c+=为________;假设有一个根为0,那么c=_________.5、下面哪些数是方程220--=的根?x x-3、-2、-1、0、1、2、3、6、假设关于x的一元二次方程0(2)1122=m的常数项为0,-xx++-m求m的值是多少?●体验中考1、2x=是一元二次方程220++=的一个解,那么m的值是〔〕x mxA.-3 B.3 C.0 D.0或3〔点拨:此题考察一元二次方程的解的意义.〕2、假设(0)n n≠是关于x的方程220+的值为++=的根,那么m nx mx n〔〕A.1 B.2 C.-1 D.-2〔提示:此题有两个待定字母m和n,根据条件不能分别求出它们的值,故考虑运用整体思想,直接求出它们的和.〕参考答案:◆随堂检测1、〔2〕、〔3〕、〔4〕〔1〕中最高次数是三不是二;〔5〕中整理后是一次方程;〔6〕中只有在满足0a≠的条件下才是一元二次方程.2、D 首先要对方程整理成一般形式,D选项为2250x-=.应选D.3、3;-11;-7 利用去括号、移项、合并同类项等步骤,把一元二次方程化成一般形式231170x x--=,同时注意系数符号问题.4、B 将各数值分别代入方程,只有选项B能使等式成立.应选B.5、解:〔1〕依题意得,2425x=,化为一元二次方程的一般形式得,24250x-=.〔2〕依题意得,(2)100x x-=,化为一元二次方程的一般形式得,221000--=.x x〔3〕依题意得,222+-=,(2)10x x化为一元二次方程的一般形式得,22480--=.x x◆课下作业●拓展提高1、D A中最高次数是三不是二;B中整理后是一次方程;C中只有在满足0a≠的条件下才是一元二次方程;D选项二次项系数2a+≠恒成立.故根据定义判断D.(1)02、C 由题意得,212m -=,解得32m =.应选D.3、B 当3.24<x <3.25时,2ax bx c ++的值由负连续变化到正,说明在3.24<x <3.25围一定有一个x 的值,使20ax bx c ++=,即是方程20ax bx c ++=的一个解.应选B. 4、0;b a c =+;0 将各根分别代入简即可.5、解:将3x =-代入方程,左式=2(3)(3)20----≠,即左式≠右式.故3x =-不是方程220x x --=的根.同理可得2,0,1,3x =-时,都不是方程220x x --=的根.当1,2x =-时,左式=右式.故1,2x =-都是方程220x x --=的根.6、解:由题意得,21010m m ⎧-=⎨-≠⎩时,即1m =-时,012)1(22=-++-m x x m 的常数项为0.●体验中考1、A 将2x =带入方程得4220m ++=,∴3m =-.应选A.2、D 将x n =带入方程得220n mn n ++=,∵0n ≠,∴20n m ++=,∴2m n +=-.应选D.22.2降次--解一元二次方程〔第一课时〕22.2.1 配方法(1)◆随堂检测1、方程32x +9=0的根为〔 〕A 、3B 、-3C 、±3D 、无实数根2、以下方程中,一定有实数解的是〔 〕A 、210x +=B 、2(21)0x +=C 、2(21)30x ++=D 、21()2x a a -=3、假设224()x x p x q -+=+,那么p 、q 的值分别是〔 〕A 、p=4,q=2B 、p=4,q=-2C 、p=-4,q=2D 、p=-4,q=-24、假设28160x -=,那么x 的值是_________.5、解一元二次方程是22(3)72x -=.6、解关于x 的方程〔x+m 〕2=n .◆典例分析:x 2+4x+y 2-6y+13=0,求222x y x y -+的值. 分析:此题中一个方程、两个未知数,一般情况下无法确定x 、y 的值.但观察到方程可配方成两个完全平方式的和等于零,可以挖掘出隐含条件x=-2和y=3,从而使问题顺利解决.解:原方程可化为〔x+2〕2+〔y-3〕2=0,∴〔x+2〕2=0,且〔y-3〕2=0,∴x=-2,且y=3,∴原式=2681313--=-. ◆课下作业●拓展提高1、一元二次方程032=+c x ,假设方程有解,那么c ________.2、方程b a x =-2)(〔b >0〕的根是〔〕A 、b a ±B 、)(b a +±C 、b a +±D 、b a -±3、填空〔1〕x 2-8x+______=〔x-______〕2;〔2〕9x 2+12x+_____=〔3x+_____〕24、假设22(3)49x m x +-+是完全平方式,那么m 的值等于________.5、解以下方程:〔1〕(1+x)2-2=0;(2)9(x-1)2-4=0.6、如果x 2-4x+y 2,求()z xy 的值.●体验中考1、一元二次方程2(6)5x +=可转化为两个一次方程,其中一个一次方程是6x +=_____________.2、用配方法解方程2250x x --=时,原方程应变形为〔 〕A .2(1)6x +=B .2(1)6x -=C .2(2)9x +=D .2(2)9x -=参考答案:◆随堂检测1、D 依据方程的根的定义可判断此方程无实数根,应选D .2、B D 选项中当0a <时方程无实数根,只有B 正确.3、B 依据完全平方公式可得B 正确.4.5、解:方程两边同除以2,得2(3)36x -=,∴36x -=±,∴129,3x x ==-.6、解:当n ≥0时,x+m=,∴x 1,x 2.当n<0时,方程无解.◆课下作业●拓展提高1、0≤ 原方程可化为23c x =-,∴0c ≤.2、A 原方程可化为x a -=x a =±3、根据完全平方公式可得:〔1〕16 4;〔2〕4 2.4、10或-4 假设22(3)49x m x +-+是完全平方式,那么37m -=±,∴1210,4m m ==-.5、〔1〕121,1x x ==;〔2〕1251,33x x ==.6、解:原方程可化为〔x-2〕2+〔y+3〕2=0,∴x=2,y=-3,z=-2,∴2()(6)z xy -=-=136. ●体验中考1、6x += 原方程可化为6x +=,∴另一个一次方程是6x += 2、B 原方程可化为22160x x -+-=,∴2(1)6x -=.应选B.22.2降次--解一元二次方程〔第二课时〕22.2.1 配方法(2)◆随堂检测1、将二次三项式x 2-4x+1配方后得〔 〕A .〔x-2〕2+3B .〔x-2〕2-3C .〔x+2〕2+3D .〔x+2〕2-32、x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的选项是〔 〕A 、x 2-8x+42=31B 、x 2-8x+42=1C 、x 2+8x+42=1D 、x 2-4x+4=-113、代数式2221x x x ---的值为0,求x 的值. 4、解以下方程:〔1〕x 2+6x+5=0;〔2〕2x 2+6x-2=0;〔3〕〔1+x 〕2+2〔1+x 〕-4=0.点拨:上面的方程都能化成x 2=p 或〔mx+n 〕2=p 〔p ≥0〕的形式,那么可得x=mx+n=p ≥0〕.◆典例分析 用配方法解方程22300x -=,下面的过程对吗?如果不对,找出错在哪里,并改正.解:方程两边都除以2并移项,得2152x x -=,配方,得2211()15224x x -+=+, 即2161()24x -=,解得12x -=,即12x x ==. 分析:配方法中的关键一步是等式两边同时加上一次项系数一半的平方。

降次解一元二次方程因式分解法教学课件.ppt

降次解一元二次方程因式分解法教学课件.ppt
的解。
右化零 两因式
简记歌诀: 左分解 各求解
六、作业设计
作业
课本P43 习题22.2第6题
(1)x(x 2) 0 x1 0, x2 2
(2)( y 2)( y 3) 0 y1 2, y2 3
(3)(3x
2)(2x
1)
0
x1
2 3
,
x2
1 2
(4)x2 x
x1 0, x2 1
例1、解下列方程 1、x2-3x-10=0
解:原方程可变形为
(x-5)(x+2)=0 x-5=0或x+2=0
解:移项,得
3x(x 2) 5(x 2) 0
x 23x 5 0
x 2 0或3x 5 0
x1
2,
x2
5 3
(2)(3x+1)2-5=0
解:原方程可变形为
(3x+1+ 5 )(3x+1- 5 )=0
3x+1+ 5=0或3x+1- 5=0

x1=

3
5,
x2=

3
5
三、巩固练习
x1
1,
x2
a a
b b
.
2.解关于x的方程x2 2ax a2 b2 0
1 (a b) 1 (a b)
解:[x (a b)][x (a b)] 0 x (a b) 0或x (a b) 0
x1 a b, x2 a b.
3.解关于x的方程x2 2ax a2 b2 0
x 3y 0或2x 5y 0,
x 3y或2x 5y.
五、课堂小结
用因式分解法解一元二次方程的步骤: 1.方程右边不为零的化为 零 。 2.将方程左边分解成两个__一__次__因__式_____

2022秋九年级数学上册第22章一元二次方程22.2一元二次方程的解法目标二解一元二次方程课件新版华

2022秋九年级数学上册第22章一元二次方程22.2一元二次方程的解法目标二解一元二次方程课件新版华

⑤x2- 2x+14=0; ⑥x2-2x-98=0.
(1)直接开平方法:____①________; (2)配方法:___④__⑥___________; (3)公式法:____③__⑤__________; (4)因式分解法:___②_________.
4 已知x为实数,且满足(x2+x+1)2+2(x2+x+1)- 3=0,那么x2+x+1的值为( A ) A.1 B.-3 C.-3或1 D.-1或3
【点拨】运用换元法解方程时,先要找出相同的整 体进行换元,使方程变得简单,解完方程后还要注 意还元.
(1)已知(x2-y2+1)(x2-y2-3)=5,求x2-y2的值; 解:设x2-y2=a, 则原方程可化为(a+1)(a-3)=5, 解得a1=-2,a2=4, 则x2-y2=-2或x2-y2=4. 变式:已知(x2+y2+1)(x2+y2-3)=5,求x2+y2的值.
2 解 方 程 (5x - 1)2 = 3(5x - 1) 的 最 适 当 的 方 法 是
(D) A.直接开平方法 B.配方法
C.公式法
D.因式分解法
3 已知下列方程,请把它们的序号填在最适当的解法
后的横线上.
①2(x-1)2=6;
②(x-2)2+x2=4;
③(x-2)(x-3)=3; ④x2-2x-1=0;
第22章
一元二次方程
22.2. 公式法
3
目标二 解一元二次方程
习题链接
温馨提示:点击 进入讲评
1
5
2D
6
3
4A
答案呈现
1 【2021·浙江钱江新城实验中学期末】阅读材料,解答 问题.
解方程:(4x-1)2-10(4x-1)+24=0. 解:把4x-1视为一个整体,设4x-1=y, 则原方程可化为y2-10y+24=0. 解得y1=6,y2=4. ∴4x-1=6或4x-1=4. ∴x1=74,x2=54.

22.2 降次-解一元二次方程-配方法,公式法,因式分解法

22.2 降次-解一元二次方程-配方法,公式法,因式分解法
2
2 3 2 3 y1 1 , y2 1 . 3 3
(1)3 x 2 x 5 0;
2
(2)2 y y 6 0;
2
(3)3 x 6 x 1.
2
1.熟悉配方法解方程的步骤 2.体会转化的数学思想.
解下列方程:
(1)t 2t 48;
2
(2)2 x 4 x 5 0.
x 3 5, x1 3 5 , x2 3 5.
解: x 2 5 x 6,
(2)
5 5 x 5x 6 , 2 2
2
2
2
x 5x 6 0.
2
5 25 x 6 , 2 4 5 49 x , 2 4 5 7 5 7 x1 , x2 , 2 2 2 2 x1 1, x2 6.
课时总结
(1)、可直接开方解形如 x p ( p 0) 的方程,那么 x p 达到降次的目的;
2
(2)、可直接开方解形如 ( mx n) p ( p 0) 的方程,那么 mx n p 达到降次的目 的;
2
一元二次方程配方的一般步骤: 化简:把方程化简为一般形式, 把二次项系数化为1 配方:方程两边都加上一次项系数一半的平方 开方:根据平方根意义,方程两边开平方 求解:解一元二次方程 定解:写出原方程的解
2
(2) 可直接开方解形如 (mx n) p ( p 0) 的方程, 那么 mx n p 达到降次的目的;
2
问题2 要使一块矩形场地的长比宽多6m , 并且 面积为16 m2 ,场地的长和宽应各是多少?
解:设场地的宽为 x m ,长为( x 6) m .根据 2 矩形面积为16 m ,列方程

22.2 降次——解一元二次方程 辅导资料(含答案)

22.2 降次——解一元二次方程 辅导资料(含答案)

22.2 降次——解一元二次方程本章内容“一元二次方程”是《课程标准》“数与代数”的重要内容,解一元二次方程的算法是《一元二次方程》一章的重点内容,也是方程中重点内容,是学习二次函数等内容的基础,本节的主要内容是一元二次方程的解法。

这部分知识是对一次方程(组)知识学习的延续和深化,是后续内容学习的基础和工具。

主要学习下列三个内容:1.配方法配方法是继探索一元二次方程近似解的基础上研究的一种求精确解的方法.它是一元二次方程的解法的通法.因为用配方法解一元二次方程比较麻烦,一个一元二次方程需配一次方,所以在实际解一元二次方程时,一般不用配方法.但是,配方法是导出求根公式的关键,且在以后的学习中,会常常用到配方法.因此,要理解配方法,并会用配方法解一元二次方程.根据教材的特点主要设置了直接开平方法解一元二次方程和二次项系数是1的一元二次方程的解法.直接开平方法解一元二次方程比较简单,主要设置了【典例引路】中的例1、例2.【当堂检测】中的第1、2题,【课时作业】中的第1,2,11题.配方及二次项系数是1的一元二次方程的解法为本节的难点,为此设置了【拓展应用】中的例2,【当堂检测】中的第3,5题,【课时作业】中的第4,5,6,7,8,9,10,12题,【选做题】中的第1,2题,【备选题目】中的第1,2题。

2.公式法此内容是本节课的重点,是学习一元二次方程的基础,为此设计【典例引路】的例3、[当堂检测]的第1、2、4题,[课时作业]的第1—5题。

3.因式分解法利用方程解的含义,可求方程中的待定系数,也可由此把二次三项式变形求值,为此设计【典例引路】的例4,[当堂检测]的第3题,[选做题]和[备选题目]的问题。

4.整体思想和数感整体思想是数与代数中常用的数学思想,为此设计[拓展应用]的例1,课标虽不要求解含字母系数的方程,为提高数感, 为此设计[备选题目]的问题。

点击一:利用直接开平方法解一元二次方程用此法可解形如c x =2、)0()(2≥=+c c b ax 或可化为这种形式的一类方程,这种解法的优点是能迅速准确地求出方程的解,缺点是只适用于一些特殊的方程。

22.2降次-解一元二次方程(七个课时)教案

22.2降次-解一元二次方程(七个课时)教案

22.2 降次——解一元二次方程课题:22.2.1配方法(第1课时)一、教学目标1.经历探究过程,会用配方法解较简单的一元二次方程(二次项系数为1).2.培养思考能力和探索精神.二、教学重点和难点1.重点:用配方法解一元二次方程.2.难点:配方.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 .开平方,得,x1= ,x2= .(二)尝试指导,讲授新课(师出示下面的板书)直接开平方法:第一步:化成什么2=常数;第二步:开平方降次;第三步:解一元一次方程.师:上节课我们学习了用直接开平方法解一元二次方程.(指准板书)用直接开平方法解一元二次方程有这么三步,第一步化成什么2=常数;第二步开平方降次,把一元二次方程转化为一元一次方程;第三步解一元一次方程,得到两个根.师:按这三步,我们来做一个题目.(师出示例1)例1 解方程:x2-4x+4=5.(先让生尝试,然后师边讲解边板书,解题过程如下)解:原方程化成(x-2)2=5.,开平方,得x-2=5x1=5+2,x2=-5+2.(三)试探练习,回授调节2.完成下面的解题过程:解方程:9x2+6x+1=4;解:原方程化成 .开平方,得,x1= ,x2= .(四)尝试指导,讲授新课师:下面我们再来做一个题目.(师出示例2)例2 解方程:x2+6x-16=0.师:(指准板书)怎么解这个一元二次方程?(稍停)还是要按这三步来做.按这三步来做,关键是哪一步?(稍停)关键是第一步,把方程化成什么2=常数的这种样子,也就是左边化成含有x的式子的平方,右边是一个常数这种样子.怎么化呢?大家自己先化一化.(生尝试,师巡视)师:下面我们一起来化.师:(指准方程)要把这个方程化成什么2=常数这种样子,首先要把常数项移到右边去(板书:解:移项,得x2+6x=16),然后在这个方程的两边加上32(板书:x2+6x+32=16+32),左边x2+6x+32等于什么?(稍停)等于(x+3)2(边讲边板书:(x+3)2),右边16+32等于25(边讲边板书:=25).这样我们把原方程化成了含有x的式子的平方=常数这种样子.师:方程化成这种样子,下面就很好做了.开平方,得x+3=±5(边讲边板书:开平方,得x+3=±5),解一元一次方程,得到两个根,x1=2,x2=-8(边讲边板书:x1=2,x2=-8).师:(指准解题过程)这个题目做完了,通过做这个题目,大家不难发现,解这个题目的关键是在方程两边加上32,把方程的左边配成(x+3)2.这样做叫什么?叫配方(板书:配方).师:像这道例题那样,通过把方程左边配成平方形式来解一元二次方程的方法,叫配方法(板书:配方法).师:下面请大家做几个有关配方法的练习.(五)试探练习,回授调节3.填空:(1)x2+2·x·2+ =(x+ )2;(2)x2-2·x·6+ =(x- )2;(3)x2+10x+ =(x+ )2;(4)x2-8x+ =(x- )2.4.完成下面的解题过程:解方程:x2-8x+1=0;解:移项,得 .配方,得,.开平方,得,x1= ,x2= .5.用配方法解方程:x2+10x+9=0.(六)归纳小结,布置作业师:这节课我们学习了什么?(稍停)我们学习了用配方法解一元二次方程.怎么用配方法解一元二次方程?(指准板书)和直接开平方法一样,都是这么三步,所不同的是,直接开平方法很容易把原方程化成什么2=常数这种样子,而配方法需要通过配方才能把原方程化成这种样子.课外补充作业:6.填空:(1)x2-2·x·3+ =(x- )2;(2)x2+2·x·4+ =(x+ )2;(3)x2-4x+ =(x- )2;(4)x2+14x+ =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 .配方,得,.开平方,得,x1= ,x2= .8.用配方法解方程:x2-6x+7=0.四、板书设计直接开平方法、配方法例1 例2第一步:化成什么2=常数;第二步:开平方降次;第三步:解一元一次方程.课题:22.2.1配方法(第2课时)一、教学目标1.会用配方法解一元二次方程(二次项系数不为1).2.培养数感和运算能力.二、教学重点和难点1.重点:用配方法解一元二次方程.2.难点:配方法.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,得 .配方,得,.开平方,得,x1= ,x2= .2.填空:(1)x 2-2·x ·13+ =(x- )2; (2)x 2+5x+ =(x+ )2; (3)x 2-32x+ =(x- )2; (4)x 2+x+ =(x+ )2.(订正时告诉学生,加上的那个数是一次项系数一半的平方) (二)尝试指导,讲授新课 (师出示下面的板书) 配方法第一步:化成什么2=常数; 第二步:开平方降次; 第三步:解一元一次方程.师:(指准板书)上节课我们学习了用配方法解一元二次方程.怎么用配方法解一元二次方程?有这么三步,第一步:通过移项、配方把原方程化成什么2=常数这种样子;第二步:开平方,把一元二次方程转化为一元一次方程;第三步:解一元一次方程,得到两个根.在这三步中,第一步中的配方是关键,所以这种解法叫做配方法.师:下面我们用配方法再来解几个一元二次方程,先看例1. (师出示例1)(三)尝试指导,讲授新课 例1 用配方法解方程:x 2+5x+14=0. (先让生尝试,然后师边讲解边板书,解题过程如下) 解:移项,得x 2+5x=-14. 配方 x 2+5x+252⎛⎫ ⎪⎝⎭=-14+252⎛⎫ ⎪⎝⎭,25x+=62⎛⎫⎪⎝⎭.开平方,得x+52=6±, x 1=5-+62,x 2=5--62.(四)试探练习,回授调节3.完成下面的解题过程:用配方法解方程:x2-x-74=0.解:移项,得 .配方,.开平方,得,x1= ,x2= .(五)尝试指导,讲授新课师:下面我们再来做一个题目.(师出示例2)例2 用配方法解方程:2x2+1=3x.师:(指准方程)这个方程与例1这个方程有点区别,区别在哪儿?(稍停)区别主要是,例1这个方程的二次项系数是1,而这个方程的二次项系数不是1.怎么办?我们可以设法把这个方程二次项系数化为1.下面大家自己先试着做一做.(以下生尝试,然后师边讲解边板书,解题过程如下)解:移项,得2x2-3x=-1.二次项系数化为1,得231x-x=-22.配方2223313x-x+=-+2424⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,231x-=416⎛⎫⎪⎝⎭开平方,得31x-=44±,x1=1, x2=12.(六)试探练习,回授调节4.完成下面的解题过程:用配方法解方程:3x2+6x+2=0.解:移项,得 .二次项系数化为1,得 .配方,.开平方,得,x1= ,x2= .5.用配方法解方程:9x2-6x-8=0.(七)归纳小结,布置作业师:这节课我们继续学习了用配方法解一元二次方程,(指板书)用配方法解一元二次方程就这么三步,解题的关键是第一步.怎么做第一步?(指例2)先移项,再把二次项系数化为1,然后配方.配方时,要在方程两边加上一次项系数一半的平方.(作业:P42习题2.3.)四、板书设计配方法例1 例2第一步:化成什么2=常数;第二步:开平方降次;第三步:解一元一次方程.课题:22.2.1配方法(第3课时)一、教学目标1.会先整理再用配方法解一元二次方程(包括没有实数根的情况).2.培养数感和运算能力.二、教学重点和难点1.重点:先整理再用配方法解一元二次方程.2.难点:没有实数根的情况.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程:用配方法解方程:3x2+6x-4=0.解:移项,得 .二次项系数化为1,得 .配方,. 开平方,得 , x 1= ,x 2= . (二)创设情境,导入新课师:上节课我们用配方法解了几个一元二次方程,这节课我们用配方法再来做几个题目.(三)尝试指导,讲授新课 (师出示例题) 例 用配方法解方程: (1)(x-2)(x+3)=6; (2)3x(x-1)=3x-4.(先让生尝试,然后师边讲解边板书,解题过程如下) 解:(1)整理,得x 2+x-12=0. 移项,得x 2+x=12.配方 x 2+x+212⎛⎫ ⎪⎝⎭=12+212⎛⎫ ⎪⎝⎭,2149x+=24⎛⎫ ⎪⎝⎭.开平方,得x+12=72±, x 1=3, x 2=-4. (2)整理,得3x 2-6x+4=0. 移项,得3x 2-6x=-4.二次项系数化为1,得24x -2x=-3配方 224x -2x+1=-+13, ()21x-1=-3. 原方程没有实数根.师:例题做完了,从这个例题,谁能概括怎么用配方法解一元二次方程?(让生思考一会儿,再叫学生)生:……(让一两名好生回答)师:用配方法解一元二次方程,(指准例2)第一步要把原方程化成什么2=常数这种样子,怎么化呢?(稍停)先整理,把原方程化成一元一次方程的一般形式;再移项;然后把二次项系数化为1;然后再配方,配方时,在方程两边加上一次项系数一半的平方.第一步完成后,看右边的常数,如果右边的常数为负数,说明原方程没有实数根;(指准例1)如果右边的常数为非负数,则继续第二步第三步,第二步开平方,第三步解一元一次方程得到两个实数根.(四)试探练习,回授调节2.完成下面的解题过程:用配方法解方程:(2x-1)2=4x+9.解:整理,得 .移项,得 .二次项系数化为1,得 .配方,.开平方,得,x1= ,x2= .3.用配方法解方程:(2x+1)(x-3)=x-9.(五)归纳小结,布置作业师:本节课我们用配方法解了几个一元二次方程,通过做题,同桌之间互相说一说,怎么用配方法解一元二次方程?(同桌之间互相说)(作业:P34练习2(5)(6))四、板书设计(略)课题:22.2.2公式法(第4课时)一、教学目标1.经历一元二次方程求根的推导过程,会用公式法解一元二次方程.2.发展符号感.二、教学重点和难点1.重点:一元二次方程求根公式的推导和运用.2.难点:一元二次方程求根公式的推导. 三、教学过程(一)尝试指导,讲授新课师:(板书:ax 2+bx+c=0,并指准)这是一个一元二次方程,x 是未知数,a ,b ,c 都是常数,而且a ≠0(板书:(a ≠0)).怎么用配方法来解这个一元二次方程?大家自己先试一试.(生尝试,师巡视,要给学生充足的尝试时间)师:我们一起来解这个一元二次方程.首先我们要把这个方程化成什么2=常数这种样子,怎么化呢?师:先把常数项c 移到右边(板书:移项,得ax 2+bx=-c ). 师:再把二次项系数化为1,得2bcx +x=-a a(板书:二次项系数化为1,得2b cx +x=-a a).师:然后配方(板书:配方),怎么配方?(稍停)在方程两边加上一次项系数一半的平方(板书:222b b c b x +x+=-+a 2a a 2a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭),左边是2b x+2a ⎛⎫ ⎪⎝⎭(板书:2b x+2a ⎛⎫ ⎪⎝⎭=),右边=222222222c b b c b 4ac b -4ac -+=-=-=a 4a 4a a 4a 4a 4a (边讲边在黑板的其它地方板演),所以2b x+2a ⎛⎫ ⎪⎝⎭=22b -4ac 4a (边讲边板书:22b -4ac 4a ). 师:(指准板书)通过移项、二次项系数化为1、配方,现在我们把原方程化成了什么2=常数这种形式,接下来怎么做呢?师:(指准方程)接下来开平方(板书:开平方,得),22b b -4acx+=2a 4a ±(边讲边板书:22b b -4ac x+=2a 4a ±),这个二次根式还可以化简,化简结果是2b -4ac2a (边讲边将上面的二次根式改写成2b -4ac2a).师:(指准方程)把b 2a 移到方程右边去,可以解出x ,2-b b -4acx=2a±(边讲边板书:2-b b-4acx=2a±).师:21-b+b-4acx=2a(边讲边板书),22-b-b-4acx=2a(边讲边板书).师:(指准板书)这个方程解完了,通过解这个方程我们得出,一元二次方程ax2+bx+c=0的两个根是2-b b-4acx=2a±(在这个式子外加框).师:(指ax2+bx+c=0)忙乎了半天,有的同学可能会问:这个方程尽是字母,很难解,解它有什么用?是啊,大家想一想,解这个方程有什么用啊?(让生思考一会儿,再叫学生)生:……(让几名同学发表看法)师:以前我们解一元二次方程用的是配方法,要一步一步来解,过程比较麻烦.现在好了,通过解这个方程,(指准求根公式)有了这个式子,只需要把二次项系数a、一次项系数b、常数项c代入这个式子,就可以求出根.因为利用这个式子可直接求根,所以我们把这个式子叫做一元二次方程的求根公式(板书:求根公式).师:(指求根公式)求根公式挺复杂,大家把求根公式写一写,记一记,熟悉熟悉.(生熟悉公式)师:下面我们利用求根公式来解几个一元二次方程.(师出示例题)例利用求根公式解下列方程:(1)x2-4x-7=0; (2)5x2-3x=x+1;(3)2x2-22x+1=0; (4)x2+17=8x.师:(指(1)题)怎么利用求根公式解这个一元二次方程?(板书:解:(1))师:(指(1)题)首先要找出这个方程的二次项系数a、一次项系数b、常数项c,这个方程的a,b,c等于什么?生:a=1,b=-4,c=-7(生答师板书:a=1,b=-4,c=-7).师:找出了a,b,c,接下来干什么?接下来要计算b2-4ac的值(板书:b2-4ac=). b2-4ac=(-4)2-4×1×(-7)=44(边讲边板书:(-4)2-4×1×(-7)=44)师:大家可能觉得有点奇怪,找出了a,b,c,为什么不把a,b,c直接代入求根公式,而是先计算b 2-4ac 的值?(稍停后指准求根公式)大家看求根公式,公式中这个二次根式的被开方数是b 2-4ac ,可见b 2-4ac 必须大于等于0.计算b 2-4ac 的目的是什么?目的是看一看b 2-4ac 的值是大于等于0还是小于0.如果b 2-4ac 的值大于等于0,下一步才把a ,b ,c 代入求根公式;如果b 2-4ac 的值小于0,这个二次根式没有意义,说明方程没有实数根.总之,要根据b 2-4ac 值的符号来决定下一步怎么做,所以不能直接把a ,b ,c 代入求根公式,先要求b 2-4ac 的值.师:(指准板书)这个方程的b 2-4ac 等于44,大于0(边讲边板书:>0),所以下一步可以把a ,b ,c 代入求根公式.师:2-b b -4ac -(-4)444211x===2a 212±±±⨯(边讲边板书). 师:1x =2+11,1x =2-11(边讲边板书). (以下师边讲解边板书其它各题,解题过程如下) (2)整理,得5x 2-4x-1=0. a=5,b=-4,c=-1,b 2-4ac=(-4)2-4×5×(-1)=36>0.2-b b -4ac -(-4)3646x===2a 2510±±±⨯,14+6x ==110,14-61x ==-105. (3)a=2,b=-22,c=1, b 2-4ac=(-22)2-4×2×1=0.2-b b -4ac -(-22)0220x===2a 224±±±⨯,122x =x =2. (4)整理,得x 2-8x+17=0. a=1,b=-8,c=17,b 2-4ac=(-8)2-4×1×17=-4<0. 方程没有实数根.(二)试探练习,回授调节 1.完成下面的解题过程: 利用求根公式解方程:x 2+x-6=0. 解:a= ,b= ,c= .b 2-4ac= = >0.2-b b -4acx==___________________=_________2a,1x =_________,1x =__________. 2.利用求根公式解下列方程: (1)21x -3x-=04; (2)24x +45x+5=0; (3)3x 2-4x+2=0; (三)归纳小结,布置作业师:本节课我们学习了利用求根公式解一元二次方程,利用求根公式解一元二次方程,这种方法叫公式法(板书课题:22.2.2公式法).师:和配方法相比,用公式法解一元二次方程要简单得多,不过我们还要看到,公式法所用的求根公式是用配方法推导出来的,所以我们说,公式法更简单,配方法更基本.(作业:P 42习题5(1)(2)(5)(6)) 四、板书设计(略)22.2.2公式法ax 2+bx+c=0(a ≠0) 例移项,得…… 二次项系数化为1,得……配方…… …… 开平方,得…… x 1=……x 2=……课题:22.2.2公式法(第5课时) 一、教学目标1.会较熟练地用公式法解一元二次方程.2.知道什么是判别式,会根据判别式的值确定解的情况. 二、教学重点和难点1.重点:根据判别式的值确定解的情况.2.难点:根据判别式的值确定解的情况. 三、教学过程(一)基本训练,巩固旧知 1.完成下面的解题过程: 用公式法解下列方程: (1)2x 2-3x-2=0.解:a= ,b= ,c= . b 2-4ac= = >0.2-b b -4acx==___________________=_________2a±,1x =_________,1x =__________. (2)x(2x-6)=6x-3.解:整理,得 . a= ,b= ,c= . b 2-4ac= = .2-b b -4acx==__________________=_________2a±, 12x =x =_________. (3)(x-2)2=x-3.解:整理,得 . a= ,b= ,c= .b 2-4ac= = <0. 方程 实数根.(二)尝试指导,讲授新课(师出示下面的板书)一元二次方程ax2+bx+c=0(1)当b2-4ac 时,方程有两个不相等的实数根;(2)当b2-4ac 时,方程有两个相等的实数根;(3)当b2-4ac 时,方程没有实数根.师:刚才我们解了个一元二次方程,我们是怎么解方程的?(稍停)师:(指准板书)首先我们把方程化成一元二次方程的一般形式,也就是ax2+bx+c=0这样的形式.师:然后计算b2-4ac的值,(指准板书)当b2-4ac的值怎么样时,方程有两个不相等的实数根?生:当b2-4ac>0时(多让几名同学回答,然后师填入:>0).师:(指准板书)当b2-4ac的值怎么样时,方程有两个相等的实数根?生:当b2-4ac=0时(多让几名同学回答,然后师填入:=0).师:(指准板书)当b2-4ac的值怎么样时,方程没有实数根?生:当b2-4ac<0时(生答师填入:<0).师:(指板书)通过解一元二次方程,我们得到了这个的结论,请大家一起来把这个结论读两遍.(生读)师:(指板书)这是一个很重要的结论,这个结论告诉我们,一元二次方程根的情况由式子b2-4ac决定,所以我们把式子b2-4ac叫做一元二次方程根的判别式(板书:b2-4ac 叫做根的判别式),记作△(板书:记作△).师:下面我们就利用这个结论来做一个题目.(师出示下面的例题)例利用判别式判断下列方程的根的情况:(1)2x2+3x-4=0;(2)4y2+9=12y;(3)5(x2+1)-7x=0.(师边讲解边板书,解题过程如下)解:(1)a=2,b=3,c=-4.△=b2-4ac=32-4×2×(-4)=9+32>0,方程有两个不相等的实数根.(2)整理,得4y2-12y+9=0a=4,b=-12,c=9.△=b2-4ac=(-12)2-4×4×9=144-144=0,方程有两个相等的实数根.(3)整理,得5x2-7x+5=0a=5,b=-7,c=5.△=b2-4ac=(-7)2-4×5×5=49-100<0,方程没有实数根.(三)试探练习,回授调节2.利用判别式判断下列方程的根的情况:(1)x2-5x=-7;(2)(x-1)(2x+3)=x;(3)x2+5=25x.(四)归纳小结,布置作业师:本节课我们学习了什么?(稍停)我们学习了利用判别式判断方程根的情况.请大家再把这个结论读一遍.(生读)(作业:P42习题4.5(3)(4))四、板书设计(略)一元二次方程ax2+bx+c=0 例(1)当b2-4ac>0时……(2)当b2-4ac=0时……(3)当b2-4ac<0时……课题:22.2.3因式分解法(第6课时)一、教学目标1.会用因式分解法解一元二次方程,领会因式分解法的实质是降次.2.培养式的变形能力,发展符号感.二、教学重点和难点1.重点:用因式分解法解一元二次方程.2.难点:式的变形. 三、教学过程(一)基本训练,巩固旧知 1.完成下面的解题过程:用公式法解方程:2x(x-1)+6=2(0.5x+3) 解:整理,得 . a= ,b= ,c= .b 2-4ac= = >0. x=__________________=______, 1x =_________,2x =__________. (二)尝试指导,讲授新课师:刚才我们解了一个方程,我们是怎么解的?(稍停)我们先整理得到了方程2x 2-3x=0(边讲边板书:2x 2-3x=0),然后用公式法求出两个根.师:(指2x 2-3x=0)除了用公式法,大家想一想,还有别的更简单的方法解这个方程吗?(让生思考一会儿)师:(指2x 2-3x=0)我们把这个方程的左边分解因式(板书:因式分解,得),得到x(2x-3)=0(边讲边板书:x(2x-3)=0).师:(指准x(2x-3)=0)x 乘以2x-3等于0,这说明什么? 生:……(多让几名同学发表看法)师:(指准x(2x-3)=0)x 乘以2x-3等于0,说明x=0或者2x-3=0(板书:于是得x=0或2x-3=0).师:(指准板书)这样我们通过因式分解把一元二次方程转化成了两个一元一次方程.接下来解这两个一元一次方程,由x=0得到x 1=0(板书:x 1=0),由2x-3=0,得到23x =2(板书:23x =2).师:(指板书)用这种方法解出的结果与用公式法解出的结果是一样的,但显然用这种方法解更简单.大家再看一看,用这种方法解方程,哪一步是关键?生:因式分解.(多让几名同学回答)师:因式分解是这种方法的关键,那么这种方法应该叫做什么法?生:(齐答)因式分解法.(师板书课题:22.2.3因式分解法)师:通过因式分解来解一元二次方程,这种方法叫做因式分解法.下面我们用因式分解法再来解几个一元二次方程.(师出示例题)例用因式分解法解下列方程:(1)x(x-2)+x-2=0;(2)5x2-2x-14=x2-2x+34;(3)(2y+3)2=(y-1)2.(师边讲解边板书,(1)(2)题解题过程如课本第39页所示,(3)题解题过程如下) (3)移项,得 (2y+3)2-(y-1)2=0.因式分解,得(3y+2)(y+4)=0.于是得 3y+2=0或y+4=0,12y=-3,y2=-4.师:我们用因式分解法做了几个题,通过做题,哪位同学会归纳用因式分解法解一元二次方程的步骤?(让生思考一会儿再叫学生)生:……(让两名学生归纳)师:(指准例(3)题)用因式分解法解一元二次方程,先把方程右边移到左边,再把左边分解因式,化为两个一次式的乘积等于0的形式,然后得到两个一元一次方程,最后分别解这两个一元一次方程,得到两个根.师:按这样的步骤,下面同学们自己做几个练习.(三)试探练习,回授调节2.完成下面的解题过程:用因式分解法解方程:x2=23x.解:移项,得 .因式分解,得 .于是得或,x1= ,x2= .3.用因式分解法解下列方程:(1)x2+x=0;(2)4x2-121=0;(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2.(四)归纳小结,布置作业师:本节课我们学习了用因式分解法解一元二次方程,因式分解法是一种比较简单的解方程的方法,它是通过因式分解把一元二次方程转化为一元一次方程,从而达到降次的目的(边讲边板书:降次).解一元二次方程的基本思路是什么?(稍停)基本思路是降次.配方法是通过配方来降次,因式分解法是通过因式分解来降次.降次是解一元二次方程的基本思路,这一点还希望同学们能好好理解,好好体会.(作业:P43习题6)四、板书设计(略)22.2.3因式分解法2x2-3x=0 例因式分解,得x(2x-3)=0于是得x=0或2x-3=0,x1=0,x2=3 2课题:22.2.3因式分解法(第7课时)一、教学目标1.通过基本训练,复习巩固解一元二次方程的四种方法(直接开平方法、配方法、公式法、因式分解法).2.会选择适当的方法解一元二次方程.二、教学重点和难点1.重点:复习巩固四种方法.2.难点:选择适当的方法解一元二次方程.三、教学过程(一)基本训练,巩固旧知1.填空:解一元二次方程的方法有四种,它们是直接开平方法、、、 .2.完成下面的解题过程:(1)用直接开平方法解方程:2(x-3)2-6=0; 解:原方程化成 . 开平方,得 , x 1= ,x 2= . (2)用配方法解方程:3x 2-x-4=0; 解:移项,得 .二次项系数化为1,得 . 配方 , . 开平方,得 , x 1= ,x 2= . (3)用公式法解方程:x(2x-4)=2.5-8x. 解:整理,得 . a= ,b= ,c= .b 2-4ac= = >0.2-b b -4acx==__________________=_________2a, x 1= ,x 2= . (4)用因式分解法解方程:x(x+2)=3x+6. 解:移项,得 . 因式分解,得 . 于是得 或 , x 1= ,x 2= . (二)尝试指导,讲授新课 (师出示下表)直接开平方法配方法公式法因式分解法过程简单复杂较简单简单适用某些所有所有某些师:前面我们学习了解一元二次方程的四种方法,哪四种方法?(指准表)直接开平方法、配方法、公式法、因式分解法.这四种方法各有各的特点,这个表反映了它们各自的特点.师:(指准表格)直接开平方法解方程的过程简单,但这种方法只能用于解某些一元二次方程.譬如,3x2-5=0,2(x+1)2=7(边讲边板书),这样的方程可以用直接开平方法来解.师:(指准表格)配方法解方程过程最复杂,但这种方法适用于所有的一元二次方程,也就是说,任何一元二次方程都可以用配方法来解.师:(指准表格)公式法解方程的过程比较简单,而且这种方法适用于所有的一元二次方程.师:(指准表格)因式分解法解方程的过程简单,但这种方法和直接开平方法一样只能用于解某些一元二次方程.譬如,x2+6x=0,x2=(2x+1)2(边讲边板书方程),这样的方程可以用因式分解法来解.师:知道了四种方法各自的特点,下面我们来看一道例题.(师出示例题)例指出下列方程用哪种方法来解比较适当:(1)3x(x+2)=5(x+2);(2)x2+3x-6=0;(3)2(x-4)2-5=0.师:解一元二次方程有四种方法,现在要你指出这几个方程用哪种方法来解比较适当,请大家自己先考虑考虑.(让生思考一会儿)师:谁来说说你的想法?生:……(多让几名同学发表看法,最好要说出理由)师:(指准表格)在四种方法中,用直接开平方法、因式分解法解方程最简单,所以先要看能不能用这两种方法来解.如果不能用直接开平方法来解,也不能用因式分解法来解,就要用公式法来解.因为公式法能解所有的一元二次方程,它是“万能”的,而且比较简单.师:根据这样的思路,我们来看这道例题.师:(指例(1)题)这个方程能用直接开平方法解吗?(稍停)不能.能用因式分解法解吗?(稍停)能(板书:解:(1)因式分解法).师:(指例(2)题)这个方程能用直接开平方法解吗?(稍停)不能.能用因式分解法解吗?(稍停)不能.所以要用公式法解(板书:(2)公式法).师:(指例(3)题)这个方程用什么方法解合适?生:(齐答)直接开平方法(生答师板书:(3)直接开平方法).师:这个例题做完了,做完了例题有的同学可能会提出一个问题,什么时候用配方法解方程?(稍停)老师要告诉大家,因为用配方法解方程最复杂,所以我们一般不用配方法解方程.师:有的同学可能会接着问:既然不用配方法解方程,为什么要学配方法?(稍停)在四种方法中,公式法最有用,什么方程都可以用公式法来解,而且比较简单,但求根公式是怎么推导出来的?(稍停)求根公式是用配方法推导出来的,不学配方法哪有公式法?所以我们说,公式法最有用,配方法最基本,而直接开平方法、因式分解法最简单,但这两种方法只适用于某些特殊的一元二次方程.(三)试探练习,回授调节2.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=-2x;(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.(四)归纳小结,布置作业师:本节课我们复习了解一元二次方程的四种方法,这四种方法各有各的特点,但它们的基本思路是相同的.相同的思路是什么?(稍停)相同的思路是把一元二次方程化为一元一次方程,也就是降次(板书:降次).不管用什么方法,降次是解一元二次方程的基本思路.课外补充作业:3.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x-3)2=25;(2)(2x-3)2=5(2x-3);(3)(2x-3)=x(3x-2).4.用配方法解方程:x2+2x-1=0.四、板书设计表格例3x2-5=0 2(x+1)2=7x2+6x=0 x2=(2x+1)2。

22.2_一元二次方程的解法(直接开平方法配方法公式法因式分解)--

22.2_一元二次方程的解法(直接开平方法配方法公式法因式分解)--

9.x 12x 27 0;
2
8.x1 0; x2 1. 9.x1 3, x2 9.
简记歌诀:
右化零
两因式
左分解
各求解
用配方法解一元二次方程的步骤: 1.把原方程化成 x2+px+q=0的形式。
2.移项整理 得 x2+px=-q 3.在方程 x2+px= -q 的两边同加上一次项系 数 p的一半的平方。 x2+px+( )2 = -q+( ) 2= )2 -q
1 2
例2:用配方法解下列方程
x 6 x 16 0
2
x 8x 1 0
2
二次项系数为1
2 x 1 3x
2 2
二次项系数不为1
3x 6 x 4 0 可以先将系数化为1
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 系数化为1:将二次项系数化为1; 配方:方程两边都加上一次项系数一半的平方 ; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
用公式法解一元二次方程的一般
求根公式 : X=
(a≠0, b2-4ac≥0)
步骤:
1、把方程化成一般形式。 并写出a,
b,c的值。
例1.用公式法解方程2x2+5x3=0

2、求出b2-4ac的值。
解: a=2, b=5,
∴ 3)=49 ∴x =
= =
c= -3,

3、代入求根公式 : X=
b2-4ac=52-4×2×(③
对于方程(2) χ2-1=0 ,你可以怎样解它?
还有其它的解法吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b b2 4ac x 2a 2a
x2
-b-
即 因为a≠0,所以4 a >0
2
2
b b 4ac x 2a 4a 2
2
2
2
式子 b 4ac的值有以下三种情况:
2 2
4ac b (2) b 4ac 0, 这时 0 4a b b 4ac =0 即 x
2
2a
2a
此时,方程有两个相等的实数根 b x1 x2 2a
即 因为a≠0,所以4 a >0
2
2
b b 4ac x 2a 4a 2
2
2
2
式子 b 4ac的值有以下三种情况:
2 2
b 而x取任何实数都不可能使 ( x ) 2a
因此方程无实数根
4ac b (3) b 4ac 0, 这时 0 4a
例2 用公式法解下列方程
(1) (2) (3 ) (4 )
x - 4x - 7 0
2
2x - 2 2x 1 0
2
5x - 3x x 1
2
x 17 8x
2
用公式法解一元二次方程的一般步骤:
b c 的值。 1、把方程化成一般形式,并写出 a、、
2、求出 b 4ac 的值,
2、关于x的一元二次方程ax2+bx+c=0 (a≠0)。 当a,b,c 满足什么条件时,方程的两根为 互为相反数?
2
特别注意:当 b2 4ac 0 时无解
b b 4ac 3、代入求根公式 : x 2a
2
x2 4、写出方程的解: x1、
随堂 练习 用公式法解下列方程:
(1)2x2-9x+8=0; (2)9x2+6x+1=0; (3)16x2+8x=3.
思考题
1、 m取什么值时,方程 x2+(2m+1)x+m2-4=0 有两个相等的实数解
/
回顾练习:
解下列方程:
( 1)
( 2)
x - 8x 20
2
x - 3x p 0
2
探索:
问题: 能否用配方法解一般形式的一元二次方程
ax bx c ( 0 a 0)?
2
用配方法解一般形式的一元二次方程
ax bx c 0 (a≠0)
2
0

一般地,式子 b 4 ac 叫做方程
2
根的判别式,通常用希腊字母△表示它,即
ax bx c 0
2
△= b 4 ac
2
归纳: 2 0 a 0) 当△>0时,方程ax bx c ( 有两个不相等的实数根;当△=0时,方程有两 个相等的实数根;当△<0时,方程无实数根.


2
b b 4ac x 2a 4a 2
2
2
因为a≠0,所以4 a >0, 式子 b2 - 4ac 的值有以下三种情况 2 b - 4ac 2 0 (1) b - 4ac 0 ,这时 2 4a

此时,方程有两个不等的实数根
x1 -b b 2 - 4ac 2a b 2 - 4ac 2a
2
解: 把方程两边都除以 a 移项,得 配方,得
b c x x 0 a a
2
b c x x a a
2
b c b b x x a a 2a 2a
2
2 b b 4ac x 2a 4a 2 2
2
2
/
当△ 0时,方程 ax bx c 0
2
(a≠0)
的实根可写为
这个式子叫做
ax2 bx c ( 0 a 0)
2ቤተ መጻሕፍቲ ባይዱ
b b 4ac x 2a
的求根公式
用求根公式解一元二次方程的方法 叫做公式法。(可以避免配方过程直接求)
相关文档
最新文档