【校级联考】吉林省四平市伊通县2017-2018学年八年级上期期末考试数学试题

合集下载

每日一学:吉林省四平市伊通县2018-2019学年八年级上学期数学期末考试试卷_压轴题解答

每日一学:吉林省四平市伊通县2018-2019学年八年级上学期数学期末考试试卷_压轴题解答

每日一学:吉林省四平市伊通县2018-2019学年八年级上学期数学期末考试试卷_压轴题解答
答案吉林省四平市伊通县2018-2019学年八年级上学期数学期末考试试卷_压轴题
~~ 第1题
~~(2019四平.八上期末)
(1) 问题发现
如图1,
△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE .
填空:①求∠AEB 的度数;②求线段AD ,BE 之间的数量关系为.
(2) 拓展探究
如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一直线上,CM 为△DCE
中D E 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.
考点: 全等三角形的判定与性质;~~ 第2题 ~~
(2019四平.八上期末) 分解因式:x y+2xy +y . ________
~~ 第3题 ~~
(2019四平.八上期末) (2019八上·巴州期末) 小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.
设小军骑车的速度为x 千米/
小时,则所列方程正确的为
( ) A . + =
B . ﹣ =
C . +10=
D . ﹣10=
吉林省四平市伊通县2018-2019学年八年级上学期数学期末考试试卷_压轴题解答
~~ 第1题 ~~
答案:
223
解析:
~~ 第2题 ~~
答案:
解析:
~~ 第3题 ~~
答案:B
解析:。

2017~2018学年第一学期期末学业水平检测八年级数学试卷题

2017~2018学年第一学期期末学业水平检测八年级数学试卷题

班级_____________________ 姓名____________________ 考场号____________ 考号___________----------------------------------------------------密--------------------------------封--------------------------------线------------------------------------------------ 2017~2018学年第一学期期末学业水平检测八年级数学试卷题一、选择题(每小题2分,共20分) 1.下列计算正确的是( ).A.3a-a=2B.a 2•a 3=a 6C.(a 2b)3=a 6 b 3D.(a+b)2=a 2+b 22.若a-b=3,则a 2-2ab+b 2-6的值是 ( ).A. 12B.6C.3D.0 3.若分式 有意义,则( ).A.x ≠2B.x ≠21- C. x<21- D.x>21-4.下列等式从左到右变形一定正确的是( ).A.11++=a b ab B.ab a ab =2C.22a b ab =D.ab a b -=-- 5.以下列各线段长为边,能组成三角形的是 ( ). A.1cm,2cm,3cm B.2cm,5cm,8cm C. 4cm,5cm,11cmD.3cm,4cm ,5cm6.一个多边形的内角和是外角和的2倍,这个多边形是 ( ).A.四边形B.五边形C.六边形D 八边形7.如图,,ACE ABD ∆≅∆∠AEC=1100,则∠DAE 的度数为( ).A.30B.400C.500D.6008.如图,下列条件中,不能证明ACD ABD ∆≅∆的是 ( ).9.点M (1,2)关于 y 轴对称的点的坐标为 ( ).A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1) 10.如图,DE 是∆ABC 的边AC 的垂直平分线,若BC=18cm,AB=10cm, 则∆ABD 的 周长为 122+-x x 7题图 8题图 10题图班级_____________________ 姓名____________________ 考场号____________ 考号___________----------------------------------------------------密--------------------------------封--------------------------------线-----------------------------------------------( ). A.16cm B.28cm C.26cm D.18cm二、填空题(每小题2分,共20分)11.计算()=-•⎪⎭⎫ ⎝⎛-20172017221 .12.计算3x 2•2xy 2 的结果是.13.化简:=-•+2242aa a a . 14.计算:()=•---22332n m n m .15.在∆ABC 中∠A=500,∠C=∠B,则∠B= . 16.如图,PM=PN,∠BOC=250,则∠AOB= .17.如图,是一个风筝的图案,它是轴对称图形,量得∠B=300,则∠E 的度数为 .18.如图,∆ABC 中∠A=460,∠C=740,BD 平分∠ABC,交AC 于点D,那么∠BDC 的度数是 .19.如图,在∆ABC 中,AC=BC,∆ABC 外角∠ACE=1160,则∠B= .20.如图,线段AC 、BD 相交于点O,且AO=OC,请添加一个条件使CDO ABO ∆≅∆,应添加的条件 为 .(添加一个条件即可) 三、解答题(共30分) 21.(本题满分6分)如图,在平面直角坐标系中,∆ABC 的三个顶点都在格点上,请你画出∆ABC 关于y 轴对称的∆A 1B 1C 1,并写出点A 1、B 1、C 1的坐标.22.(本题满分6分)分解因式:12x 2y-3y 3.23.(本题满分6分)计算:().32243232xy y x y x •--16题图17题图 18题图 19题图 20题图班级_____________________ 姓名____________________ 考场号____________ 考号___________----------------------------------------------------密--------------------------------封--------------------------------线-----------------------------------------------24.(本题满分6分)计算:(2x-y )2-4(y-x)(-x-y).25.(本题满分6分) 先化简,再求值:,42222-÷⎪⎭⎫ ⎝⎛++-x xx x x x 其中x=-1.四、解答题(共30分) 26.(本题满分7分)如图,已知:BD 是∆ABC 的角平分线,∠A=500,∠BDC=700,DE ‖BC,交AB 于点E ,求∠∆BDE 各内角的度数.27.(本题满分7分)如图,已知:∆ABC 是等边三角形,BD 是AC 边上的高,延长BC 到E,使CE=CD,求证:BD=DE.班级_____________________ 姓名____________________ 考场号____________ 考号___________----------------------------------------------------密--------------------------------封--------------------------------线-----------------------------------------------28.(本题满分8分)28.如图,已知△ABC 和△BDE 都是等边三角形,求证:AE =CD .29.(本题满分8分)如图,已知:在∆ABC 中,AB=AC,点D 、E 在BC 上,且BD=CE.求证:(1)∆ABD ≌∆ACE;(2)∠ADE=∠AED.。

2017-2018学年度上学期期末考试八年级数学试卷(含答案)

2017-2018学年度上学期期末考试八年级数学试卷(含答案)

FDBCAE 八年级数学试题上学期期末考试一、选择题(每小题3分,共30分) 1.下列图形中轴对称图形是( )A B C D2,.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB ≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和 10cm ,则此三角形的周长是( )A.15cmB. 20cmC. 25cmD.20cm 或25cm6.如图,已知∠CAB =∠DAB ,则添加下列一个条件不能使△ABC ≌△ABD 的是( ) A.AC =AD B.BC =BD C.∠C =∠D D.∠ABC =∠ABD7.如图,已知在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A.10B.7C.5D.4 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。

2017-2018第一学期八年级数学期末考试答案

2017-2018第一学期八年级数学期末考试答案

2017-2018学年度第一学期阶段检测八年级数学答案一.选择题(本题共8小题,每小题3分,共24分)1、A2、C3、C4、D5、A6、B7、D8、B二.填空题(本题共8小题,每小题3分,共24分) 9、0 10、x 11、四 12、6 13、2 14、19a 2 15、2 16、5三、解答题(本题共4小题,其中17、 18、19题各10分, 20题9分,共39分) 17.解:(1))25)(35(++; 652535+++=………………………………3分 5511+=……………………………………………5分(2)2)2-52( 2104-20+=……………………………………3分 104-22= ………………………………………5分18. 解:(1)xy xy y x 5101522÷-)(y x 23-= ……………………………………………5分(2))32)(32(+--+y x y x2)32(--=y x 2 ……………………………………3分 9124-+-=y y x 22 ……………………………5分19、证明:∵BE =FC ,∴BE +EF =CF +EF , ……………………………………2分 即BF =CE ; ……………………………………………4分 又∵AB =DC ,∠B =∠C ,………………………………6分 ∴△ABF ≌△DCE (SAS ),……………………………8分 ∴∠A =∠D .……………………………………………10分第19题图20.解:228241681622+-∙+-÷++-a a a a a a a 224-)4(2)4()4)(4(2+-∙+∙+-+=a a a a a a a …………………………………4分 2)2(-+-=a a 2…………………………………………………………………6分当3=a 时, …………………………………………………………………7分2)2(-原式+-=a a 2……………………………………………………………8分23)2-3(2-+=52-= ……………………………………………………………………………9分 四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.解:设采用新工艺前每小时加工x 个零件………………………………1分 依题意可列方程为10%)501(15001500=+-xx ……………………………6分 解得x =50 ………………………………………………………………………7分检验:当x =50时,(1+50%)x ≠0,所以x =50是原方程的解。

2017---2018学年度八年级数学上册期末考试

2017---2018学年度八年级数学上册期末考试

ODCAB 初姓 名 考号顺密 封 线 内 不 能 答 题2017---2018学年度八年级上册期末考试数 学 试 卷(满分:150分;考试时间:120分钟)一、选择题:(每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填写在下面方框里)1.下列各式中,运算正确的是( ) A .B .C .D .2.点关于y 轴对称的点的坐标为( ) A .B .C .D .3.若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->-C .32x y +>+D .33x y > 4.一个多边形的内角和是720︒,则这个多边形的边数为()A .4B .5C .6D .75.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形B .矩形C .正三角形D .平行四边形6. 如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的边长BC 的长是( )A .2B .4C .D . (6题图) 7.如果点P (m ,1+2m )在第二象限,那么m 的取值范围是 ( )(图1)A .210<<m B .021<<-m C .0<m D .21>m8.如图,下列条件不能使四边形ABCD 一定是平行四边形的是( )A .//AB CD AB =CD B .//AD BC //AB CD C .//AD BC B D ∠=∠ D.//AD BC AB =CD9.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处10.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G ,下列结论:①EC=2DG ; ②GDH GHD ∠=∠; ③CDG DHGE S S = 四边形; ④图中只有8个等腰三角形。

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.十;18.-1或7;19.16,.三、(本大题有7小题,共68分)20.解:(1)如图所示:△A1B1C1为所求作的三角形;……………………….……4分(2)如图,……………………………………………………………………..…..……7分点P的坐标为:(0,1).………………………………………………………...………8分21.解:原式=……………………………………………………….2分=……………………………………………………………………………4分=,………………………………………………………………………………………6分当a=-1时,…………………………………………………………………….…………8分原式=.……………………………………………..……………………………9分22.(1)解:△BAE≌△CAD,证明如下:……………………………………………1分∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.……………………………..……………2分∠BAE=∠DAC=90°+∠CAE,………………………………………………………...…4分在△BAE和△DAC中∴△BAE≌△CAD(SAS).………………………………………………………………6分(2)证明:∵△ABC,△DAE是等腰直角三角形,∴∠B=45°,∠BCA=45°,……………………………………………………………..…7分∵△BAE≌△CAD.∴∠DCA=∠B=45°.………………………………………………………………………8分∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.…………………………………………………………………………………9分23.解:(1)原式=(x2-y2)-(x+y)…………………………………………………2分=(x+y)(x-y)-(x+y)…………………………….……………………………….…3分=(x+y)(x-y-1);……………………………………………….………………………4分(2)原式=9m2-(4x2-4xy+y2)……………………………………………………….6分=(3m)2-(2x-y)2…………………………………………………………………….8分=(3m+2x-y)(3m-2x+y). ……………………………………………………….……9分24.(1)证明:∵AB=AD,∴∠ADB=∠ABD…………………………………………………….………..……………1分又∵BD平分∠ABC,即∠ABD=∠DBC,∴∠ADB =∠DBC,…………………………………………………………..……………2分∴AD∥BC;…………………………………………………………………………………3分(2)解:作DF⊥BC交BC的延长线于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6cm;即点D到BC的距离为6cm. ……………………………………………………..……5分(3)①解:∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,…………………………………………………………..….…6分∵AD∥BC,∴∠ACB=∠DAC=70°,……………………………………………………………….…7分∴∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.……………………………8分②证明:∵∠ABC=70°,∠ACB=70°,∴∠ABC=∠ACB,∴AB=AC,…………………………………………………………………………………9分又∵AB=AD,∴AC=AD.………………………………………………………………………………..10分25.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意得,……………..……………………………………………………..…………1分-=8,…………………………………………..………………….……4分解得:x=96,……………..………………5分经检验,x=96是原分式方程的解,且符合题意,……………..………………………6分则2.5x=240,答:高铁列车的平均时速为240千米/小时;………………………………..…………7分(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),……………………………………..…………..…9分从9:20到13:40,共计4小时,………………………………...…………………10分因为4小时>4.25小时,所以王先生能在开会之前到达.………………………………………………..………11分26.解:(1)t;(5-t);………………………..………………….…………..………2分(2)∵△ABC是等边三角形,∴∠B=60°.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5-t=2t,解得,t=,………………………………………………………………………………4分②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5-t),解得,t=,………………………………………………………………...…………6分∴当t的值为或时,△PBQ为直角三角形;…………………………..………7分(3)∠CMQ不变,∠CMQ=60°理由如下:………………………………….……8分∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由题意可知:AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),…………………………………………………..………10分∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化,总为60°.………………………..……………………………12分。

2017—2018学年度第一学期八年级数学期末测试试题及答案

2017—2018学年度第一学期八年级数学期末测试试题及答案

2017—2018学年度第一学期期末测试试题八年级数学(考试时间:120分钟 满分150分)请注意:1.本试卷分选择题和非选择题两部分.2.所有试题的答案写在答题纸上,写在试卷上无效.3.作图必须用2B 铅笔,且加粗加黑.第一部分 选择题(共18分)一、选择题(本大题共有6题,每题3分,共18分.在每小题所给的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填在答题..纸.相应的...表格中...) 1.下面四个关于银行的标志中,不是..轴对称图形的是(▲)A B C D2. 若分式2926x x -+的值为0,则x 的取值为(▲)A .3B .3-C .±3 D .不存在 3.不改变分式的值,使式子221323x y x y++分子中的系数不含有分数,下列四个选项中正确的是(▲)A . 2223x y x y++ B . 22323x y x y ++ C . 22369x y x y ++ D . 22363x y x y ++4. 若2933x x x -=+⋅-,则x 的取值范围是(▲)A .x ≥3B .x ≤-3C .-3≤x ≤3D .不存在5.如图,数轴上的点A 表示的数是-1,点B 表示的数是1,CB ⊥AB 于点B ,且BC =2,以点A 为 圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为(▲)A .2.8B .22C .22-1D .221+6.一次函数(0)y kx b k =+≠的图像如图所示,则一元一次不等式0kx b -+>的的解集为(▲) A .x >-2 B .x <-2 C . 2x > D . 2x <(第5题图) (第6题图) (第14题图)第二部分 非选择题(共132分)二、填空题(本大题共有10题,每题3分,共30分.请将正确答案填写在答题卡相应的位置上.........) 7. 4的平方根为 ▲ .8. 若点(34)P -,和点()Q a b ,关于x 轴对称,则2a b += ▲ . 9. 2+18= ▲ .10.截止到2017年11月份,泰兴市人口总数达到1 212 200人,则1 212 200人精确到10 000人 应表示为 ▲ .11.泰兴某企业有m 吨煤,计划用n 天,为积极响应市政府“节能减排”的号召,现打算多用5天, 则现在比原计划每天少用煤 ▲ 吨.12.请写出一个经过点(-1,2)且y 随x 的增大而减小的一次函数表达式 ▲ . 13. 若2(23)32a a -=-,则a 的取值范围是 ▲ .14. 如图,一圆柱形容器(厚度忽略不计),已知底面半径为6cm ,高为16cm .现将一根长度为25cm 的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是 ▲ cm . 15. 若关于x 的分式方程321x mx -=-的解是正数,则m 的取值范围为 ▲ . 16. △ABC 是等腰三角形,腰上的高为8cm ,面积为40cm 2,则该三角形的周长是 ▲ cm .三、解答题(本大题共有小题,共102分.请在答题纸指定区域作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分12分)x y y =kx +b O-2DCB A O -11(1)计算:(3223)(3223)+- ; (2)解方程:34533262x x x x -+=++.18.(本题满分8分)化简并求值:223242a a a a a a---÷++,其中32a =-.19.(本题满分8分)如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足.试说明:DE =DF .20. (本题满分8分)如图,△ABC .(1)用直尺和圆规作∠A 的平分线所在的直线1l 和边BC 的垂直平分线2l (要求:不写作法,保留画图痕迹);(2)设(1)中的直线1l 和直线2l 交于点P ,过点P 作PE ⊥AB ,垂足为点E ,过点P 作PF ⊥AC 交AC 的延长线于点F .请探究BE 和CF 的数量关系,并说明理由.21. (本题满分10分)BCAAF BE DC随着交通的飞速发展,中国的铁路运输能力得到大幅度提升.已知泰州距离南京大约180千米,乘坐动车可以比乘坐长途大巴节省40分钟.若动车平均速度比长途大巴提升了50% ,请分别求出动车和长途大巴的平均速度.22. (本题满分10分)已知实数a b c 、、满足27|52|(1)0a b c -+-+-=. (1)求a b c 、、的值;(2)判断以a b c 、、为边能否构成三角形?若能构成三角形,判别此三角形的形状,并求出三角 形的面积;若不能,请说明理由.23. (本题满分10分)如图,△ABC 中,AC =BC ,∠C =90°,点D 是AB 的中点.(1)如图1,若点E 、F 分别是AC 、BC 上的点,且AE =CF ,请判别△DEF 的形状,并说明理由; (2)若点E 、F 分别是CA 、BC 延长线上的点,且AE =CF ,则(1)中的结论是否仍然成立?请 说明理由.图1 备用图24. (本题满分10分)FCDA BECDBA如图1,甲、乙两个容器内都装了一定数量的水,现将甲容器中的水匀速倒入乙容器中. 图2中,线段AB 、线段CD 分别表示容器中的水的深度h (厘米)与倒入时间t (分钟)的函数图像. (1)请说出点C 的纵坐标的实际意义;(2)经过多长时间,甲、乙两个容器中的水的深度相等? (3)如果甲容器的底面积为10cm 2,求乙容器的底面积. 图1 图225. (本题满分12分)在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式. 比如:2224233231(3)2311(31)-=-+=-⨯⨯+=-.善于动脑的小明继续探究:当a b m n 、、、为正整数时,若22(2)a b m n +=+,则有222(2)+22a b m n mn +=+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若23(3)a b m n +=+,请用含有m n 、的式子分别表示a b 、,得:a = ▲ ,b = ▲ ;(2)填空:1343-=( ▲ - ▲ 23);(3)若265(5)a m n +=+,且a m n 、、为正整数,求a 的值.26. (本题满分14分)th (分钟)(厘米)D43212015105OABC 乙甲如图,在平面直角坐标系xOy 中,点A 的坐标为(5,0),点B 的坐标为(3,2),直线111l y k x =:经过原点和点B ,直线222l y k x b =+:经过点A 和点B . (1)求直线1l ,2l 的函数关系式;(2)根据函数图像回答:不等式120y y ⋅<的解集为 ▲ ;(3)若点P 是x 轴上的一动点,经过点P 作直线m ∥y 轴,交直线1l 于点C ,交直线2l 于点D ,分别经过点C ,D 向y 轴作垂线,垂足分别为点E , F ,得长方形CDFE .①若设点P 的横坐标为m ,则点C 的坐标为(m , ▲ ),点D 的坐标为(m , ▲ );(用含字母m 的式子表示)②若长方形CDFE 的周长为26,求m 的值. 备用图1 备用图2xyl 2l 1AB Ox yl 2l 1AB Oxy l 2l 1mFEC DABO P。

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。

2018-2019学年吉林省四平市伊通县八年级(上)期末数学试卷解析版

2018-2019学年吉林省四平市伊通县八年级(上)期末数学试卷解析版

2018-2019学年吉林省四平市伊通县八年级(上)期末数学试卷一、选择题(本大题共6小题,共18.0分)1.有两根木棒长分别为10cm和18cm,要钉成一个三角形木架,则下列四根木棒应选取A. 8cmB. 12cmC. 30cmD. 40cm【答案】B【解析】解:,,第三根木棒,符合的只有B中的故选B.易得第三边的取值范围,看选项中哪个在范围内即可.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.2.下列三角形中,不是轴对称图形的是A. 有两个角相等的三角形B. 有两个角分别是和的三角形C. 有一个角是的直角三角形D. 有一个角是的直角三角形【答案】D【解析】解:根据轴对称图形的定义:A、有两个内角相等的三角形,是轴对称图形,不符合题意;B、有两个角分别是和的三角形,另一个内角也是,故是轴对称图形,不符合题意;C、有一个内角为的直角三角形,是轴对称图形,不符合题意D、有一个角是的直角三角形,找不到对称轴,则不是轴对称图形,符合题意.故选:D.根据轴对称图形的概念求解直角三角形中只有等腰直角三角形是轴对称图形.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.下列运算中,结果是的是A. B. C. D.【答案】D【解析】解:A、,故错误;B、,故错误;C、,故错误;D、,正确;故选:D.根据同底数幂的乘法、同底数幂的除法、幂的乘方、积的乘方,即可解答.本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方、积的乘方,解决本题的关键是熟记相关法则.4.如图,在中,,DE垂直平分AB,垂足为E,交AC于D,若的周长为35cm,则BC的长为A. 5cmB. 10cmC. 15cmD.【答案】C【解析】解:的周长已知又垂直平分AB线段垂直平分线的性质故BC已知.故选:C.利用线段垂直平分线的性质得,再利用已知条件三角形的周长计算.本题主要考查了线段垂直平分线的性质.5.已知,,则等于A. B. C. D.【答案】D【解析】解:.故选:D.先根据完全平方公式变形,然后把,代入计算即可.本题考查了完全平方公式:也考查了代数式的变形能力以及整体思想的运用.6.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同设小军骑车的速度为x千米小时,则所列方程正确的为A. B. C. D.【答案】B【解析】解:设小军骑车的速度为x千米小时,则小车速度是2x千米小时,由题意得,.故选:B.设小军骑车的速度为x千米小时,则小车速度是2x千米小时,根据“小军乘小车上学可以从家晚10分钟出发”列出方程解决问题.此题考查列分式方程解应用题,找出题中蕴含的等量关系是解决问题的关键.二、填空题(本大题共8小题,共32.0分)7.若n边形内角和为,则边数______.【答案】7【解析】解:根据题意得:,解得:.故答案为:7.由n边形的内角和为:,即可得方程,解此方程即可求得答案.此题考查了多边形内角和公式此题比较简单,注意方程思想的应用是解此题的关键.8.分解因式:______.【答案】【解析】解:.故答案为:.观察原式,找到公因式2,提出公因式后发现符合平方差公式,所以利用平方差公式继续分解可得.考查了对一个多项式因式分解的能力一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法平方差公式要求灵活运用各种方法进行因式分解.9.已知:是完全平方式,则______.【答案】【解析】解:是完全平方式,,.故答案为:利用完全平方公式的结构特征判断即可得到k的值.此题考查了完全平方式,熟练掌握完全平方公式的特征是解本题的关键.10.若分式的值为0,则______.【答案】2【解析】解:,,当时,,当时,.当时,分式的值是0.故答案为:2.分式的值是0的条件是,分子为0,分母不为0.分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.11.如图,在中,,AD平分,交BC于点D,若,,则______.【答案】15【解析】解:如图,过点D作于E,,AD平分,,,故答案为15.过点D作于E,根据角平分线上的点到角的两边距离相等可得,然后利用的面积列式计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.12.如图,分别以线段BC的两个端点为圆心,以大于长为半径画弧,两弧分别相交于D、E两点,直线DE交BC于点F,点A是直线DE上的一点,连接AB、AC,若,,则______cm.【答案】6【解析】解:由作图可知:AE垂直平分线段BC,,,,,,故答案为:6.首先证明,,在中求出BF即可解决问题.本题考查作图基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.13.如图,是等边三角形,D,E分别是AC,BC上的两点,且,AE,BD相交于点N,则的度数是______.【答案】【解析】解:是等边三角形,,,在和中,,≌ ,,,,故答案为.由等边三角形的性质得出,,由SAS即可证明≌ ,得到,利用外角,即可解决问题.本题考查了等边三角形的性质、全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.14.如图,在中,,,那么______.【答案】4【解析】解:过B作于D,,,,,,故答案为:4.过B作于D,根据含30度角的直角三角形性质求出BD,根据三角形面积公式求出即可.本题主要考查对含30度角的直角三角形,三角形的面积等知识点的理解和掌握,能求出高BD的长是解此题的关键.三、计算题(本大题共4小题,共27.0分)15.解分式方程:.【答案】解:方程的两边同乘,得,解得.检验:把代入.原方程的解为:.【解析】观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.本题考查了分式方程的解法解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.计算:【答案】解:原式.【解析】去括号合并即可得到结果.考查了单项式乘多项式,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.17.先化简,再求值:,其中a满足等式.【答案】解:原式,,,则,所以原式.【解析】先根据分式的混合运算顺序和运算法则化简原式,再由绝对值的性质得出a的值,代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质.18.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的倍如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成则该工程施工费用是多少?【答案】解:设这项工程的规定时间是x天,根据题意得:.解得:.经检验是原分式方程的解.答:这项工程的规定时间是30天.该工程由甲、乙队合做完成,所需时间为:天,则该工程施工费用是:元.答:该工程的费用为180000元.【解析】设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.先计算甲、乙合作需要的时间,然后计算费用即可.本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.四、解答题(本大题共6小题,共43.0分)19.分解因式:.【答案】解:.【解析】先提取公因式y,再根据完全平方公式进行二次分解即可求得答案完全平方公式:.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.20.已知:如图A、F、B、D四点在同一直线上,且,,.求证:.【答案】证明:,,即,在和中,,≌ ,.【解析】欲证明,根据SSS只要证明 ≌ 即可;本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.21.图、图都是的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为在每个网格中标注了5个格点,按下列要求画图:在图中,以格点为顶点画一个等腰三角形,使其内部已标注的格点只有3个;在图中,以格点为顶点画一个等腰三角形,使其内部已标注的格点只有2个,并且面积为3.【答案】解:如图所示:答案不唯一;如图所示:答案不唯一.【解析】直接利用网格结合等腰三角形的性质得出符合题意的答案;直接利用网格结合等腰三角形的性质得出符合题意的答案.此题主要考查了应用设计与作图,正确借助网格分析是解题关键.22.甲、乙两人共同计算一道整式乘法题:甲由于把第一个多项式中的“”看成了“”,得到的结果为;乙由于漏抄了第二个多项式中x的系数,得到的结果为.求正确的a、b的值.计算这道乘法题的正确结果.【答案】解:..,;.【解析】按乙错误的说法得出的系数的数值求出a,b的值;把a,b的值代入原式求出整式乘法的正确结果.此题考查了多项式乘多项式;解题的关键是根据多项式乘多项式的运算法则分别进行计算,是常考题型,解题时要细心.23.如图,“中国海监50”于上午11时30分在南海海域A处巡逻,观测到岛礁B在北偏东,该船以每小时10海里的速度向正东航行到C处,观测岛礁B在北偏东,继续向正东航行到D处时,再观测到岛礁B在北偏西,当海监船到达C 处时恰与岛礁B相距20海里,请你分别确定“中国海监50”从A处到达C处和D 处所用的时间.【答案】解:在A处观测海岛B在北偏东方向,,点观测海岛B在北偏东方向,,,点观测海岛B在北偏西方向,,,,为等边三角形,,海里,海里,船以每小时10海里的速度从A点航行到C处,又以同样的速度继续航行到D处,船从A点到达C点所用的时间为:小时,船从C点到达D点所用的时间为:小时,船从A点到达D点所用的时间为:小时.【解析】根据题意推出,推出,然后根据船航行的速度,即可推出从A点到C点用了多长时间,即可推出到达C点的具体时间,根据D 点观测海岛在北偏西方向,即可推出为等边三角形,即,即可推出C点到达D点船所用的时间,即可推出船到达D点的时间.本题主要考查等边三角形的判定与性质、外角的性质、余角的性质等知识点,关键在于通过求相关角的度数,推出相关边的关系,熟练运用航程、时间、速度的关系式,认真地进行计算.24.问题发现如图1,和均为等边三角形,点A,D,E在同一直线上,连接BE.填空:的度数为______;线段AD,BE之间的数量关系为______.拓展探究如图2,和均为等腰直角三角形,,点A,D,E在同一直线上,CM为中DE边上的高,连接BE,请判断的度数及线段CM,AE,BE之间的数量关系,并说明理由.【答案】【解析】解:,,,在和中,,≌ ,,,;,,理由:如图2,和均为等腰直角三角形,,,,.在和中,,≌ ,,.为等腰直角三角形,,点A、D、E在同一直线上,.,.,,.,,.易证,即可求证 ≌ ,根据全等三角形对应边相等可求得,根据全等三角形对应角相等即可求得的大小;易证 ≌ ,可得,进而可以求得,即可求得,即可解题.本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证 ≌ 是解题的关键.。

八年级2017-2018学年第一学期数学期末测试题及答案

八年级2017-2018学年第一学期数学期末测试题及答案

AP 6 2,PC 8 2,所以AP PC 14 2........................8分 在备用图中,作点A关于BC的对称点A,连结AC,交BD于点P,. 此时AP PC值最小.........10分 过点A作AQ CD交CD的延长线于点Q,在Rt△AQC中, 根据勾股定理计算AC 14 2,即AP PC 14 2,所以 t 3时的值是使得AP PC的值最小的值....12分
A.25 海里 B.30 海里 C. 32 海里 D.34 海里

14.在平面直角坐标系中,把一个封闭图形的各个顶点的横坐标都
乘以 1,纵坐标不变,并把得到的顶点依次连接,那么得到
的封闭图形与原来图形相比位置上(

A.向左平移了 1 个单位 B.关于 y 轴对称
C.关于 x 轴对称
D.向下平移了 2 个单位 D
所以△ABD 为等腰三角形…………………..8 分 23、解(1)作图略……………4 分,描对一个点給一分.
(2)∵AB=3,AC=4,根据勾股定理得 BC=5,……6 分 ∴周长为 12……………………………7 分 △ABC 的面积为 6,……………8 分
24、证明:(1) ∵ EAC DAB,∴ BAC DAE,…………2 分
.
C
D
B
20. 现在有一个边长为 a 的正方形纸片 1 张、边长为 b 的正方形纸片 2 张,边长分别 为 a、b 的长方形纸片 3 张,把它们拼成一个长方形,请你利用此图中的面积关系,分
解因式: a 2 3ab 2b2 =
.
a a
b
b
b
a
b b
a
a
b
得分 评卷人

每日一学:吉林省四平市第14中学 2017-2018学年八年级上学期数学期末考试试卷_压轴题解答

每日一学:吉林省四平市第14中学 2017-2018学年八年级上学期数学期末考试试卷_压轴题解答
每日一学:吉林省四平市第14中学 2017-2018学年八年级上学期数学期末考试 试卷_压轴题解答
吉林省四平市第14中学 2017-2018学年八年级上学期数学期末考试试卷_压轴题
~~ 第1题 ~~
(2018四平.八上期末) 通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例.
原题:如图①,点 分别在正方形
的边
上,
,连接 ,则
,试说
明理由.
(1) 思路梳理
因为
,所以把
所以
,点
绕点 逆时针旋转90°至
共线.
,可使 与 重合.因为
根据,易证
,得
.请证明.
(2) 类比引申
如图②,四边形 都不是直角,则当
中,

与 满足等量关系时,
,点 分别在边
上,
仍然成立,请证明.

.若
(3) 联想拓展
吉林省四平市第14中学 2017-2018学年八年级上学期数学期末考试试卷_压轴题解答
~~ 第1题 ~~
答案:
解析:
~~ 第2题 ~~
答案: 解析:
~~ 第3题 ~,在
中,
的等量关系,并写出证明过程.
,点 均在边 上,且
.猜想
应满足
考点: 全等三角形的判定与性质;勾股定理;正方形的性质;旋转的性质;
答案
~~ 第2题 ~~
(2018四平.八上期末) 如图,
,已知
N上,当点B在边ON上运动时,点A随之在边OM上运动,
为________.
中,
,
的顶点A,B分别在边OM,O
的形状保持不变,在运动过程中,点C到点O的最大距离

2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)

2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)

2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。

2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。

3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。

4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。

不按以上要求作答的答案无效。

5.考试结束只上交答题卡。

第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。

1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。

2018-2019学年吉林省四平市伊通县八年级(上)期末数学试卷(解析版)

2018-2019学年吉林省四平市伊通县八年级(上)期末数学试卷(解析版)

2018-2019学年吉林省四平市伊通县八年级(上)期末数学试卷一、单项选择题(每小题3分,共18分)1.有两根木棒长分别为10cm和18cm,要钉成一个三角形木架,则下列四根木棒应选取()A.8cm B.12cm C.30cm D.40cm2.下列三角形中,不是轴对称图形的是()A.有两个角相等的三角形B.有两个角分别是120°和30°的三角形C.有一个角是45°的直角三角形D.有一个角是60°的直角三角形3.下列运算中,结果是a6的是()A.a2•a3B.a12÷a2C.(a3)3D.(﹣a)64.如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为()A.5cm B.10cm C.15cm D.17.5cm5.已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n6.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.﹣=C.+10=D.﹣10=二、填空题(每小题4分,共32分)7.若n边形内角和为900°,则边数n=.8.分解因式:2x2﹣8y2=.9.已知:x2+16x﹣k是完全平方式,则k=.10.若分式的值为0,则x=.11.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,若AB=10,CD=3,则S=.△ABD12.如图,分别以线段BC的两个端点为圆心,以大于BC长为半径画弧,两弧分别相交于D、E 两点,直线DE交BC于点F,点A是直线DE上的一点,连接AB、AC,若AB=12cm,∠C=60°,则CF=cm.13.如图,△ABC是等边三角形,D,E分别是AC,BC上的两点,且AD=CE,AE,BD相交于点N,则∠DNE的度数是.14.如图,在△ABC中,AB=AC=4,∠A=30°,那么S=.△ABC三、解答题(每小题5分,共计20分)15.解分式方程:﹣=1.16.分解因式:x2y+2xy2+y3.17.计算:x2(x﹣1)﹣x(x2+x﹣1)18.已知:如图A、F、B、D四点在同一直线上,且AC=DE,CB=EF,AF=DB.求证:∠A=∠D.四、解答题(每小题7分,共计14分)19.先化简,再求值:÷(+a+2),其中a满足等式|a+1|=0.20.图①、图②都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在每个网格中标注了5个格点,按下列要求画图:(1)在图①中,以格点为顶点画一个等腰三角形,使其内部已标注的格点只有3个;(2)在图②中,以格点为顶点画一个等腰三角形,使其内部已标注的格点只有2个,并且面积为3.五、解答题(每小题8分,共16分)21.甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为6x2+11x﹣10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2﹣9x+10.(1)求正确的a、b的值.(2)计算这道乘法题的正确结果.22.如图,“中国海监50”于上午11时30分在南海海域A处巡逻,观测到岛礁B在北偏东60°,该船以每小时10海里的速度向正东航行到C处,观测岛礁B在北偏东30°,继续向正东航行到D处时,再观测到岛礁B在北偏西30°,当海监船到达C处时恰与岛礁B相距20海里,请你分别确定“中国海监50”从A处到达C处和D处所用的时间.六、解答题(每小题10分,共20分)23.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?24.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.2018-2019学年吉林省四平市伊通县八年级(上)期末数学试卷参考答案与试题解析一、单项选择题(每小题3分,共18分)1.有两根木棒长分别为10cm和18cm,要钉成一个三角形木架,则下列四根木棒应选取()A.8cm B.12cm C.30cm D.40cm【分析】易得第三边的取值范围,看选项中哪个在范围内即可.【解答】解:∵18﹣10=8,10+18=28,∴8<第三根木棒<28,符合的只有B中的12cm.故选B.【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.2.下列三角形中,不是轴对称图形的是()A.有两个角相等的三角形B.有两个角分别是120°和30°的三角形C.有一个角是45°的直角三角形D.有一个角是60°的直角三角形【分析】根据轴对称图形的概念求解.直角三角形中只有等腰直角三角形是轴对称图形.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的定义:A、有两个内角相等的三角形,是轴对称图形,不符合题意;B、有两个角分别是120°和30°的三角形,另一个内角也是30°,故是轴对称图形,不符合题意;C、有一个内角为45°的直角三角形,是轴对称图形,不符合题意D、有一个角是60°的直角三角形,找不到对称轴,则不是轴对称图形,符合题意.故选:D.【点评】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.下列运算中,结果是a6的是()A.a2•a3B.a12÷a2C.(a3)3D.(﹣a)6【分析】根据同底数幂的乘法、同底数幂的除法、幂的乘方、积的乘方,即可解答.【解答】解:A、a2•a3=a5,故错误;B、a12÷a2=a10,故错误;C、(a3)3=a9,故错误;D、(﹣a)6=a6,正确;故选:D.【点评】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方、积的乘方,解决本题的关键是熟记相关法则.4.如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为()A.5cm B.10cm C.15cm D.17.5cm【分析】利用线段垂直平分线的性质得AD=BD,再利用已知条件三角形的周长计算.【解答】解:∵△DBC的周长=BC+BD+CD=35cm(已知)又∵DE垂直平分AB∴AD=BD(线段垂直平分线的性质)故BC+AD+CD=35cm∵AC=AD+DC=20(已知)∴BC=35﹣20=15cm.故选:C.【点评】本题主要考查了线段垂直平分线的性质.5.已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n【分析】先根据完全平方公式变形(a﹣b)2=(a+b)2﹣4ab,然后把a+b=m,ab=n代入计算即可.【解答】解:(a﹣b)2=(a+b)2﹣4ab=m2﹣4n.故选:D.【点评】本题考查了完全平方公式:(x±y)2=x2±2xy+y2.也考查了代数式的变形能力以及整体思想的运用.6.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.﹣=C.+10=D.﹣10=【分析】设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,根据“小军乘小车上学可以从家晚10分钟出发”列出方程解决问题.【解答】解:设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,由题意得,﹣=.故选:B.【点评】此题考查列分式方程解应用题,找出题中蕴含的等量关系是解决问题的关键.二、填空题(每小题4分,共32分)7.若n边形内角和为900°,则边数n=7.【分析】由n边形的内角和为:180°(n﹣2),即可得方程180(n﹣2)=900,解此方程即可求得答案.【解答】解:根据题意得:180(n﹣2)=900,解得:n=7.故答案为:7.【点评】此题考查了多边形内角和公式.此题比较简单,注意方程思想的应用是解此题的关键.8.分解因式:2x2﹣8y2=2(x+2y)(x﹣2y).【分析】观察原式2x2﹣8y2,找到公因式2,提出公因式后发现x2﹣4y2符合平方差公式,所以利用平方差公式继续分解可得.【解答】解:2x2﹣8y2=2(x2﹣4y2)=2(x+2y)(x﹣2y).故答案为:2(x+2y)(x﹣2y).【点评】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法(平方差公式).要求灵活运用各种方法进行因式分解.9.已知:x2+16x﹣k是完全平方式,则k=﹣64.【分析】利用完全平方公式的结构特征判断即可得到k的值.【解答】解:∵x2+16x﹣k是完全平方式,∴﹣k=64,∴k=﹣64.故答案为:﹣64【点评】此题考查了完全平方式,熟练掌握完全平方公式的特征是解本题的关键.10.若分式的值为0,则x=2.【分析】分式的值是0的条件是,分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,x+2≠0,当x=﹣2时,x+2=0.∴当x=2时,分式的值是0.故答案为:2.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.11.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,若AB=10,CD=3,则S=15.△ABD【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=3,∴S=AB•DE=×10×3=15,△ABD故答案为15.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.12.如图,分别以线段BC的两个端点为圆心,以大于BC长为半径画弧,两弧分别相交于D、E 两点,直线DE交BC于点F,点A是直线DE上的一点,连接AB、AC,若AB=12cm,∠C=60°,则CF=6cm.【分析】首先证明AB=AC,BF=CF,在Rt△ABF中求出BF即可解决问题.【解答】解:由作图可知:AE垂直平分线段BC,∴AB=AC,BF=CF,∴∠B=∠C=60°,∵AB=12cm,∠AFB=90°,∴BF=AB=6(cm)故答案为:6.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.13.如图,△ABC是等边三角形,D,E分别是AC,BC上的两点,且AD=CE,AE,BD相交于点N,则∠DNE的度数是120°.【分析】由等边三角形的性质得出AB=CA,∠BAD=∠ACE=60°,由SAS即可证明△ABD≌△CAE,得到∠ABD=∠CAE,利用外角∠BNE=∠BAN+∠ABD,即可解决问题.【解答】解:∵△ABC是等边三角形,∴AB=CA,∠BAD=∠ACE=60°,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴∠ABD=∠CAE,∵∠BNE=∠BAN+∠ABD,∴∠BNE=∠BAN+∠CAE=∠BAC=60°,∴∠DNE=180°﹣60°=120°故答案为120°.【点评】本题考查了等边三角形的性质、全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.14.如图,在△ABC中,AB=AC=4,∠A=30°,那么S=4.△ABC【分析】过B作BD⊥AC于D,根据含30度角的直角三角形性质求出BD,根据三角形面积公式求出即可.【解答】解:过B作BD⊥AC于D,∵BD⊥AC,∴∠ADB=90°,∵∠A=30°,∴BD=AB=×4=2,∴S=AC×BD=×4×2=4,△ABC故答案为:4.【点评】本题主要考查对含30度角的直角三角形,三角形的面积等知识点的理解和掌握,能求出高BD的长是解此题的关键.三、解答题(每小题5分,共计20分)15.解分式方程:﹣=1.【分析】观察可得最简公分母是(2x﹣3)(2x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(2x﹣3)(2x+3),得2x(2x+3)﹣(2x﹣3)=(2x﹣3)(2x+3),解得x=﹣3.检验:把x=﹣3代入(2x﹣3)(2x+3)=27≠0.∴原方程的解为:x=﹣3.【点评】本题考查了分式方程的解法.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.16.分解因式:x2y+2xy2+y3.【分析】先提取公因式y,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:x2y+2xy2+y3=y(x2+2xy+y2)=y(x+y)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.17.计算:x2(x﹣1)﹣x(x2+x﹣1)【分析】去括号合并即可得到结果.【解答】解:原式=x3﹣x2﹣x3﹣x2+x=﹣2x2+x.【点评】考查了单项式乘多项式,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.18.已知:如图A、F、B、D四点在同一直线上,且AC=DE,CB=EF,AF=DB.求证:∠A=∠D.【分析】欲证明∠A=∠D,根据SSS只要证明△ABC≌△DFE即可;【解答】证明:∵AF=BD,∴AF+FB=FB+BD,即AB=FD,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS),∴∠A=∠D.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.四、解答题(每小题7分,共计14分)19.先化简,再求值:÷(+a+2),其中a满足等式|a+1|=0.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由绝对值的性质得出a的值,代入计算可得.【解答】解:原式=÷(﹣)=÷=•=,∵|a+1|=0,∴a+1=0,则a=﹣1,所以原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质.20.图①、图②都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在每个网格中标注了5个格点,按下列要求画图:(1)在图①中,以格点为顶点画一个等腰三角形,使其内部已标注的格点只有3个;(2)在图②中,以格点为顶点画一个等腰三角形,使其内部已标注的格点只有2个,并且面积为3.【分析】(1)直接利用网格结合等腰三角形的性质得出符合题意的答案;(2)直接利用网格结合等腰三角形的性质得出符合题意的答案.【解答】解:(1)如图①所示:答案不唯一;(2)如图②所示:答案不唯一.【点评】此题主要考查了应用设计与作图,正确借助网格分析是解题关键.五、解答题(每小题8分,共16分)21.甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为6x2+11x﹣10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2﹣9x+10.(1)求正确的a、b的值.(2)计算这道乘法题的正确结果.【分析】(1)按乙错误的说法得出的系数的数值求出a,b的值;(2)把a,b的值代入原式求出整式乘法的正确结果.【解答】解:(1)(2x﹣a)(3x+b)=6x2+2bx﹣3ax﹣ab=6x2+(2b﹣3a)x﹣ab=6x2+11x﹣10.(2x+a)(x+b)=2x2+2bx+ax+ab=2x2+(2b+a)x+ab=2x2﹣9x+10.∴,∴;(2)(2x﹣5)(3x﹣2)=6x2﹣4x﹣15x+10=6x2﹣19x+10.【点评】此题考查了多项式乘多项式;解题的关键是根据多项式乘多项式的运算法则分别进行计算,是常考题型,解题时要细心.22.如图,“中国海监50”于上午11时30分在南海海域A处巡逻,观测到岛礁B在北偏东60°,该船以每小时10海里的速度向正东航行到C处,观测岛礁B在北偏东30°,继续向正东航行到D处时,再观测到岛礁B在北偏西30°,当海监船到达C处时恰与岛礁B相距20海里,请你分别确定“中国海监50”从A处到达C处和D处所用的时间.【分析】根据题意推出∠BAC=∠CBA=30°,推出AC=BC=20,然后根据船航行的速度,即可推出从A点到C点用了多长时间,即可推出到达C点的具体时间,根据D点观测海岛在北偏西30°方向,即可推出△BCD为等边三角形,即BC=CD=BD=20,即可推出C点到达D点船所用的时间,即可推出船到达D点的时间.【解答】解:∵在A处观测海岛B在北偏东60°方向,∴∠BAC=30°,∵C点观测海岛B在北偏东30°方向,∴∠BCD=60°,∴∠BAC=∠CBA=30°,∴AC=BC∵D点观测海岛B在北偏西30°方向,∴∠BDC=60°,∴∠BCD=60°,∴∠CBD=60°,∴△BCD为等边三角形,∴BC=BD,∵BC=20海里,∴BC=AC=CD=20(海里),∵船以每小时10海里的速度从A点航行到C处,又以同样的速度继续航行到D处,∴船从A点到达C点所用的时间为:20÷10=2(小时),船从C点到达D点所用的时间为:20÷10=2(小时),船从A点到达D点所用的时间为:4(小时).【点评】本题主要考查等边三角形的判定与性质、外角的性质、余角的性质等知识点,关键在于通过求相关角的度数,推出相关边的关系,熟练运用航程、时间、速度的关系式,认真地进行计算.六、解答题(每小题10分,共20分)23.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.【点评】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.24.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.【分析】(1)易证∠ACD=∠BCE,即可求证△ACD≌△BCE,根据全等三角形对应边相等可求得AD=BE,根据全等三角形对应角相等即可求得∠AEB的大小;(2)易证△ACD≌△BCE,可得∠ADC=∠BEC,进而可以求得∠AEB=90°,即可求得DM=ME =CM,即可解题.【解答】解:(1)∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠CEB=∠ADC=180°﹣∠CDE=120°,∴∠AEB=∠CEB﹣∠CED=60°;(2)∠AEB=90°,AE=BE+2CM,理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°,∵点A、D、E在同一直线上,∴∠ADC=135°.∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD≌△BCE是解题的关键.。

2017-2018八年级上期末数学试卷及答案

2017-2018八年级上期末数学试卷及答案

2017-2018八上期末数学试卷及答案一、你一定能选对(本大题共10小题,每小题3分,共30分)。

下列各题均有四个各选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂黑.1.下列四个汽车标志图中,不是轴对称图形的是( )2.使分式1xx -有意义的x 的取值范围是( ) A.x ≠1 B.x ≠0 C.x ≠-1 D.x ≠0且x ≠1. 3.下列运算正确的是( )A. 2x+3y=5xyB.x 8÷x 2=x 4C.(x 2y)3=x 6y 3D.2x 3·x 2=2x 64.如图,已知AB=CD,添加一个条件后,仍然不能判定△ABC ≌△ADC 的是( ) A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°5.下列因式分解正确的是( )A. 6x+9y+3=3(2x+3y)B. x 2+2x+1=(x+1)2C.x 2-2xy-y 2=(x-y)2D.x 2+4=(x+2)2 6.点A 关于y 轴对称点是( ) A. (3,-4) B.(-3,4) C.(3,4) D.(-4,3) 7.下列各式从左到右的变形正确的是( ) A.2b a b +=12a + B. b a =22b a ++ C.a bc -+=-a b c+ D.22a a +-=224(2)a a --8.如图,由4个小正方形组成的田字格中,△ABC 的顶点都是小正方形的顶点,在田字格上画与△ABC 成轴对称的三角形,且顶点都是小正方形的顶点,则这样的DCBA三角形的个数有(不包含△ABC 本身)( ) A. 4个 B.3个 C.2个 D.1个 9.已知P=717m-1, Q=m 2-1017m(m 为任意实数),则P 与Q 的大小关系为( ) A.P>Q B.P=Q C.P<Q D.不能确定10.如图△ABC 与△CDE 都是等边三角形,且∠EBD=65°,则∠AEB 的度数是( ) A. 115° B.120° C.125° D.130°二.填空题(每题3分,共18分) 11.若分式8x x的值为0,则x=_____. 12.计算: 6a 2b ÷2a=_____.13.如图,在△ABC 中,AB=AC,点D 在AC 上,且BD=AD, ∠A=36°,则∠DBC=______.14.信息技术的存储设备常用B 、KB 、MB 、GB 等作为存储设备的单位,例如,我们常说的某计算机的硬盘容量是320GB,某移动硬盘的容量是80GB,某个文件夹的大小是156KB 等,其中1GB=210MB,1MB=210KB,1KB=210B(字节),对于一个容量为8GB 的内存盘,其容量为____B(字节).15.已知(x+p)(x+q)=x 2+mx+3,p 、q 为整数,则m=___.16.如图,点A(2,,0), ∠AON=60°,点M 为平面直角坐标系内一点,B C且MO=MA,则MN的最小值为_______.三.解下列各题(本大题共8小题,共72分)17.(8分)计算: (1) (3x+1)(x+2) (2) 123p++1 23p-18.(8分)因式分解: (1)4x2-9 (2) -3x2+6xy-3y219(8分)先化简,再求值: (m+2-52m-)×243mm--,其中m=4.20(8分)如图,“丰收1号”小麦试验田是一块边长为a米的正方形试验田上修建两条宽为1米的甬道后剩余的部分,“丰收2号”小麦试验田是边长为a米的正方形去掉一个边长为1米的蓄水池后余下的部分,两块试验田的小麦都收获了500千克.(1) “丰收1号”试验田的面积为_____平方米;“丰收2号”试验田的面积为_____平方米;(2)“丰收1号”小麦试验田的单位面积产量是“丰收1号”小麦试验田的单位面积产量的多少倍?21(8分)如图,△ABC 中, ∠BAC=∠ADB,BE 平分∠ABC 交AD 于点E,交AC 于点F,过点E 作EG//BC 交AC 于点G.(1)求证: AE=AF; (2)若AG=4,AC=7,求FG 的长.22(10分)从2007年4月18日开始,我国铁路第六次提速,某次列车平均提速v km/h.(1) 若提速前列车的平均速度为x km/h,行驶1200km 的路程,提速后比提速前少用多长时间?(2)若v=50,行驶1200km 的路程,提速后所用时间是提速前的45,求提速前列车的平均速度?(3)用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50km,则提速前的平均速度为______km/h.23(10分)已知:在△ABC 中, ∠B=60°,D 、E 分别为AB 、BC 上的点,且AE 、CD 交于点F.(1)如图1,若AE 、CD 为△ABC 的角平分线. ①求证: ∠AFC=120°;②若AD=6,CE=4,求AC 的长?图1(2)如图2,若∠FAC=∠FCA=30°,求证:AD=CE.24(12分)如图1,直线AB 分别与x 轴、y 轴交于A 、B 两点,OC 平分∠AOB 交AB 于点C,点D 为线段AB 上一点,过点D 作DE//OC 交y 轴于点E,已知AO=m,BO=n,且m 、n 满足n 2-12+36+|n-2m|=0. (1)求A 、B 两点的坐标?(2)若点D 为AB 中点,求OE 的长?(3)如图2,若点P(x,-2x+6)为直线AB 在x 轴下方的一点,点E 是y 轴的正半轴上一动点,以E 为直角顶点作等腰直角△PEF,使点F 在第一象限,且F 点的横、纵坐标始终相等,求点P 的坐标.图2Axx2017~2018学年度上学期期末试题八年级数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.) 11、812、3ab 13、36°14、23315、4或-4 16、32三、解答题:(本大题共8个小题.共72分.解答应写出文字说明、证明过程或演算步骤.)17、解:(1)原式=2362x x x +++…………(2分) =2372x x ++…………(4分) (2)112323p p ++- 解:原式=()()()()2-32323232323p p p p p p +++-+-…………(6分) =()()2-3232323p p p p +++-…………(7分)=2449pp -…………(8分) 18、解:(1)原式=()2223x -…………(2分) =(2x +3)(2x -3) …………(4分)(2)原式=22-3(2)x xy y -+…………(6分)=2-3()x y -…………(8分)19、解:原式=()()3422522--⋅---+m m m m m …………(2分)=()322292--⋅--m m m m =()()()322233--⋅--+m m m m m …………(4分)=2(m +3) …………(6分)当m =2时,原式=2×(2+3)=10…………(8分)20、解:(1) “丰收1号”试验田的面积为_(a -1)2_平方米;“丰收2号”试验田的面积为 (a 2-1)平方米.…………(4分) (2)()225005001-1a a ÷-…………(5分) =()()()211500500-1a a a +-⋅=()()()211500500-1a a a +-⋅=11a a +-…………(7分) ∴“丰收1号”小麦的单位面积产量是“丰收2号”小麦的单位面积产量的11a a +-倍……(8分)21、(1)∵BF 平分∠ABC∴∠ABF =∠CBF∵∠AFB =180°-∠ABF -∠BAF ∠BED =180°-∠CBF -∠ADB 又∵∠BAC =∠ADB∴∠AFB =∠BED …………(2分) ∵∠AEF =∠BED ∴∠AFB =∠AEF ∴AE =AF …………(4分)(2)如图,在BC 上截取BH =AB ,连接FH在△ABF 和△HBF 中∵⎪⎩⎪⎨⎧=∠=∠=BF BF HBF ABF BH AB ∴△ABF ≌△HBF (SAS )∴AF =FH ,∠AFB =∠HFB …………(5分) ∵∠AFB =∠AEF ∴∠HFB =∠AEF ∴AE ∥FH ∴∠GAE =∠CFH ∵EG ∥BC ∴∠AGE =∠C ∵AE =AF∴AE =FH …………(6分)H GFED CBA在△AEG 和△FHC 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠FH AE C AGE CFH GAE∴△AEG ≌△FHC (AAS ) ∴AG =FC =4…………(7分)∴FG =AG + FC -AC =1. …………(8分) 注:本题两问其它解法参照评分 22、解:(1)由题意得:12001200-x x v +…………(2分)…………(3分)∴提速后比提速前少用 小时. …………(4分) (2)依题意有:120041200505x x=⨯+…………(6分) 解得:x =200…………(7分)经检验x =200是原方程的解,且符合题意…………(8分) ∴提速前列车的平均速度为:200千米/时 (3) 提速前列车的平均速度为:50sv千米/时. …………(10分)1200()1200()()120012001200()x v xx x v x x v x v x x x v +=-+++-=+1200()v x x v =+1200()v x x v +23、(1)①∵AE 、CD 分别为△ABC 的角平分线 ∴∠FAC =BAC ∠21,∠FCA =BCA ∠21…………(1分) ∵∠B =60°∴∠BAC +∠BCA =120°…………(2分)∴∠AFC =180-∠FAC -∠FCA =180-)21BCA BAC ∠+∠(=120°…………(3分)②在AC 上截取AG =AD =6,连接FG ∵AE 、CD 分别为△ABC 的角平分线 ∴∠FAC =∠FAD ,∠FCA =∠FCE ∵∠AFC =120°∴∠AFD =∠CFE =60°…………(4分)在△ADF 和△AGF 中∵⎪⎩⎪⎨⎧=∠=∠=AF AF GAF DAF AG AD ∴△ADF ≌△AGF (SAS )∴∠AFD =∠AFG =60°…………(5分) ∴∠GFC =∠CFE =60° 在△CGF 和△CEF 中∵GFC EFC CF CF GCF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CGF ≌△CEF (ASA ) ∴CG =CE =4∴AC =10…………(6分)GFDE BCA(2)在AE 上截取FH =FD ,连接CH ∵∠FAC =∠FCA =30° ∴FA =FC …………(7分)在△ADF 和△CHF 中∵⎪⎩⎪⎨⎧=∠=∠=HF DF CFH AFD CF AF ∴△ADF ≌△CHF (SAS )∴AD =CH ,∠DAF =∠HCF …………(8分) ∵∠CEH =∠B +∠DAF =60°+∠DAF ∠CHE =∠HAC +∠HCA =60°+∠HCF ∴∠CEH =∠CHE …………(9分) ∴CH =CE∴AD =CE …………(10分) 注:本题两问其它解法参照评分24、(1)∵2123620n n n m -++-= ∴()0262=-+-m n n …………(1分)∵()260n -≥,-20n m ≥ ∴()260n -=,-20n m =∴ m =3,n =6…………(2分)∴点A 为(3,0),点B 为(0,6)…………(3分)(2)延长DE 交x 轴于点F ,延长FD 到点G ,使得DG =DF ,连接BG 设OE =xHFDE BCA∵OC 平分∠AOB ∴∠BOC =∠AOC =45° ∵DE ∥OC∴∠EFO =∠FEO =∠BEG =∠BOC =∠AOC =45°…………(4分) ∴OE =OF =x在△ADF 和△BDG 中∵ ⎪⎩⎪⎨⎧=∠=∠=DG DF BDG ADF BD AD∴△ADF ≌△BDG (SAS )∴BG =AF =3+x ,∠G =∠AFE =45°…………(5分) ∴∠G =∠BEG =45° ∴BG =BE =6-x∴6-x =3+x …………(6分) 解得:x =1.5∴OE =1.5…………(7分)(3)分别过点F 、P 作FM ⊥y 轴于点M ,PN ⊥y 轴于点N 设点E 为(0,m )∵点P 的坐标为(x ,-2x +6) 则PN =x ,EN =m +2x-6…………(8分)∵∠PEF =90°∴∠PEN+∠FEM=90°∵FM⊥y轴∴∠MFE+∠FEM=90°∴∠PEN=∠MFE在△EFM和△PEN中∵MFE PENFME PNE EF EP∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EFM≌△PEN(AAS)∴ME=NP=x,FM=EN=m+2x-6…………(9分) ∴点F为(m+2x-6,m+x)…………(10分) ∵F点的横坐标与纵坐标相等∴m+2x-6=m+x…………(11分)解得:x=6∴点P为(6,-6)…………(12分)注:本题其它解法参照评分。

2017—2018学年第一学期期末测试八年级数学试题及答案

2017—2018学年第一学期期末测试八年级数学试题及答案

2017—2018学年第一学期期末学业水平测试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。

满分为120分。

考试用时100分钟。

考试结束后,只上交答题卡。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列根式中不是最简二次根式的是(A )13 (B )12 (C )42+a (D )2 2.无论a 取何值时,下列分式一定有意义的是(A )221aa + (B )21aa +(C )112+-a a(D )112+-a a 3.如图,ABC ABD ∠=∠,要使ABC ABD ∆≅∆,还需添加一个条件,那么在①AC AD =;②BC BD =;③C D ∠=∠;④CAB DAB ∠=∠这四个关系中可以选择的是(A )①②③ (B )①②④ (C )①③④ (D )②③④4.如图是用直尺和圆规作一个角等于已知角的示意图, 则说明∠A ′O ′B ′=∠AOB 的依据是 (A )SSS (B )SAS (C )ASA (D )AAS(第4题图)5.如图,36DBC ECB ∠=∠=︒,72BEC BDC ∠=∠=︒,则图中等腰三角形的个数是 (A ) 5 (B ) 6 (C ) 8(D ) 96.下列运算:(1)a a a 2=+;(2)1243a a a =⨯;(3)()22ab ab = ;(4)()632a a =-.其中错误的个数是(A ) 1 (B ) 2 (C ) 3 (D ) 4 7.若A b a b a +-=+22)()(,则A 等于(A )ab 2 (B )ab 2- (C )ab 4- (D )ab 48.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有 ①)1)(1(3-+=+x x x x x ②222)(2y x y xy x -=+- ③1)1(12+-=+-a a a a ④)4)(4(1622y x y x y x -+=- (A )1个(B )2个(C )3个(D )4个9.关于x 的分式方程101m x x -=+的解,下列说法正确的是 (A )不论m 取何值,该方程总有解(B )当1m ≠时该方程的解为1mx m=- (C )当1,0m m ≠≠且时该方程的解为1mx m=-(D )当2m =时该方程的解为2x = 10.如果把分式yx x 34y3-中的x 和y 的值都扩大为原来的3倍,那么分式的值(A )扩大为原来的3倍 (B )扩大6倍 (C )缩小为原来的12倍 (D )不变11.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C ′处,折痕为EF ,若AB=4,BC=8,则△BC ′F 的周长为(A )12 (B )16 (C )20 (D )2412.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2EC ,给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AB =3BF ,其中正确的结论共有(A )①②③ (B )①③④ (C )②③ (D )①②③④第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.在△ABC 中,∠C=90°,BC=16,∠BAC 的平分线交BC 于D ,且BD :DC=5:3, 则D 到AB 的距离为_____________.14.已知等腰三角形的一个内角为50°,则顶角角的大小为________________. 15.分解因式:322318122xy y x y x -+- =__________________________________. 16.若362+-mx x 是一个完全平方式,则m=____________________.17.当x 的值为 ,分式242x x -+的值为0.18.如果直角三角形的三边长为10、6、x ,则最短边上的高为______.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程. 19.(本小题满分8分) (1)计算:)35()35(45205152+--+-. (2)计算:2(3)(3)(2)a b a b a b ---+-20.(每小题5分,共10分)根据要求,解答下列问题: (1)计算:()()()()x x x x x-+--÷-123286234(2)化简:)111(3121322-+--+-⨯--x x x x x x . 21.(本小题满分10分)如图,已知点E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D 是垂足.连接CD , 且交OE 于点F .(1)求证:OE 是CD 的垂直平分线. (2)若∠AOB=60°,求证:OE=4EF .22.(本小题满分10分)如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段 BD 交AC 于点G ,线段AE 交CD 于点F.求证:(1)△ACE ≌△BCD ;(2)△GFC 是等边三角形.23.(本小题满分12分)如图,中,,若动点 P 从点C 开始,按的路径运动,且速度为每秒1cm ,设出发的时间为t 秒. (1)出发2秒后,求的周长. (2)问t 满足什么条件时,为直角三角形? (3)另有一点Q ,从点C 开始,按的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出(第21题图)发,当P 、Q 中有一点到达终点时,另一点也停止运动当t 为何值时,直线PQ 把的周长分成相等的两部分?24.(本小题满分10分)如图所示,港口A 位于灯塔C 的正南方向,港口B 位于灯塔C 的南偏东60°方向,且港口B 在港口A 的正东方向的135公里处.一艘货轮在上午8时从港口A 出发,匀速向港口B 航行.当航行到位于灯塔C 的南偏东30°方向的D 处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B ,顺利完成交货.求货轮原来的速度是多少?2017—2018学年第一学期期末学业水平测试八年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDACCDBCAAD二、填空题(本大题6个小题,每小题4分,共24分)13.6; 14.50°或80°; 15.232)(y x xy --;AC B第24题图D16.21±; 17.2 ; 18. 8或10 三、解答题(本大题6个小题,共60分) 19.(本小题满分10分)解:(1)原式=)35(453525-++- …………………………2分 =125453525-++- …………………………3分 =1256- ………………………………………………5分(2)2(3)(3)(2)a b a b a b ---+-= 2222944b a a ab b -+-+ ……………4分= 2134b ab - ……………5分20.(每小题5分,共10分)化简: 解:原式()()xx x x x23234322--+-+-=……………4分x x x x x23234322++--+-=23-=x . ……………5分(2)原式=()()()⎪⎭⎫ ⎝⎛++-+---⨯-+--1111311132x x x x x x x x ……2分 =111+++--x xx x ……………4分 =11+x . ……………5分21.(本小题满分10分)解:(1)∵OE 是∠AOB 的平分线,EC ⊥OB ,ED ⊥OA ,OE=OE ,∴Rt △ODE ≌Rt △OCE (AAS ), …………………………2分 ∴OD=OC ,∴△DOC 是等腰三角形, …………………………3分 ∵OE 是∠AOB 的平分线,∴OE 是CD 的垂直平分线. …………………………5分 (2)∵OE 是∠AOB 的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°, ………………6分∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,…………………………8分∴∠EDF=30°,∴DE=2EF,…………………………9分∴OE=4EF.…………………………10分22.(本小题满分10分)证明:(1)∵△ABC与△DCE都是等边三角形,∴AC=BC,CE =CD,∠ACB =∠DCE=60°, ------------------------3分∴∠ACB+∠ACD =∠DCE+∠ACD,即∠ACE =∠BCD,∴△ACE≌△BCD(SAS). ----------------------------5分(2)∵△ABC与△DCE都是等边三角形,CD=ED,∠ABC =∠DCE=60°(此步不再赋分),由平角定义可得∠GCF=60°=∠FCE, ---------------------7分又由(1)可得∠GDC=∠FEC,∴△GDC≌△FEC(AAS). ----------8分∴GC=FC, --------------------------9分又∠GCF=60°,∴△GFC是等边三角形. -----------------------10分23.解:,,动点P从点C开始,按的路径运动,速度为每秒1cm,出发2秒后,则,,,的周长为:;-----------------3分,动点P从点C开始,按的路径运动,且速度为每秒1cm,在AC上运动时为直角三角形,,当P在AB上时,时,为直角三角形,,,解得:,,,速度为每秒1cm,,综上所述:当或为直角三角形;-----------------8分当P点在AC上,Q在AB上,则,直线PQ把的周长分成相等的两部分,,;当P点在AB上,Q在AC上,则,直线PQ把的周长分成相等的两部分,,,当或6秒时,直线PQ把的周长分成相等的两部分.-------------12分24.(本小题满分10分)解:根据题意,A ∠=90°,ACB ∠=60°,ACD ∠=30°, ∴603030DCB ∠=︒-︒=︒, 906030B ∠=︒-︒=︒, ∴DCB B ∠=∠∴CD BD = -----------2分 ∵A ∠=90°,ACD ∠=30° ∴2CD AD =∴2BD AD = -----------4分 又135AB =∴45AD =,,90BD = -----------5分 设货轮原来的速度是x 公里/时,列方程得45901281.2x x+=- ----------8分 解得 x =30 ----------9分 检验,当x =30时,1.2x ≠0. 所以,原分式方程的解为x =30.答: 货轮原来的速度是30公里/时. -----------10分注意:评分标准仅做参考,只要学生作答正确,均可得分。

2017-2018学年吉林省四平市伊通县八年级(下)期末数学试卷(解析版)

2017-2018学年吉林省四平市伊通县八年级(下)期末数学试卷(解析版)

故答案是:π﹣3.14. 8. (4 分)已知点(﹣2,y1) , (1,y2)都在直线 y=4x+2 上,则 y1,y2 的大小关系是 y1 <y2 (用“<”连接) . 【解答】解:∵点(﹣2,y1) 、 (1,y2)都在直线 y=4x+2 上, ∴y1=﹣6,y2=6. ∵﹣6<6, ∴y1<y2. 故答案为:y1<y2. 9. (4 分)已知一组数据 3、a、4、6 的众数为 3,则这组数据的平均数是 4 . 【解答】解:∵数据 3、a、4、6 的众数为 3, ∴a=3, 则这组数据的平均数是 故答案为:4. 10. (4 分)在 Rt△ABC 中,D 为斜边 AB 的中点,E 是 AC 的中点,且 AC=6,CD=5.则 线段 ED 的长是 4 . 【解答】解:∵Rt△ABC 中,D 为斜边 AB 的中点,CD=5, ∴CD= AB=5, ∴AB=10, ∵AC=6, ∴BC= =8, =4,

10. (4 分)在 Rt△ABC 中,D 为斜边 AB 的中点,E 是 AC 的中点,且 AC=6,CD=5.则 线段 ED 的长是 . .
11. (4 分)菱形的对角线长分别为 10、24,则菱形的面积为
12. (4 分)小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图 1 所示菱形,并测得∠B=60°,接着活动学具成为图 2 所示正方形,并测得正方形的对角 线 AC=40cm,则图 1 中对角线 AC 的长为 cm.
2 2 2
(2)若 4 是斜边,则第三边 x 为直角边,由勾股定理,得 3 +x =4 ,所以 x= 所以第三边的长为 5 或 故选:D. 3. (3 分)如图,在平行四边形 ABCD 中,下列结论错误的是( )
2 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【校级联考】吉林省四平市伊通县2017-2018学年八年级上期期末考试数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 下列说法正确的是()
A.周长相等的两个三角形全等B.面积相等的两个三角形全等
C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等
2. 点M(5,﹣4)关于x轴的对称点的坐标是()
A.(﹣5,﹣4)B.(5,4)C.(﹣5,4)D.(4,5)
3. 下列运算正确的是()
A.
B.
C.
D.
4. 等腰三角形一腰上的高与另一腰的夹角为30°,则底角的度数为()A.60°B.120°C.60°或120°D.60°或30°
5. 如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,△ABC的面积为10,DE=2,AB=6,则AC的长是()
A.4 B.3 C.6 D.5
6. 如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()
A.2个B.3个C.4个D.5个
二、填空题
7. 某种计算机完成一次基本运算的时间约为0.000000001s,把0.000000001用科学记数法表示为_____.
8. 七边形的内角和是__________.
9. 已知a﹣b=2,那么a2﹣b2﹣4b的值为_____.
10. 分解因式:2x2﹣20x+50=_____.
11. 如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,
∠ADG=130°,则∠DGF=__________.
12. 如图,A、C、N三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△MNC≌△ABC,则∠BCM:∠BCN=_____.
13. 将一副三角尺按如图所示方式叠放在一起,若AB=20cm,则阴影部分的面
积是_____cm2.
14. 八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,设学生骑车速度为x千米/时,则根据题意列出的方程为_____.
三、解答题
15. 已知一个多边形的内角和与外角和相加为2160°,求这个多边形的对角线的条数.
16. 化简:(x﹣)÷(2x-).
17. 解方程:.
18. 如图所示,∠A=∠D=90°,AB=DC,求证:
∠OCB=∠OBC.
19. 如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.
20. 为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.
(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?
(2)若单独租用一台车,租用哪台车合算?
21. 如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1) 请画出△ABC向左平移5个单位长度后得到的△A B C;
(2) 请画出△ABC关于原点对称的△A B C;
(3) 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P 的坐标.
22. 如图,在△ABC中,BA=BC,∠B=120°,线段AB的垂直平分线MN交AC于点D,且AD=8cm.求:
(1)∠ADG的度数;
(2)线段DC的长度.
23. 如图,把一个边长为a的大正方形,剪去一个边长为b的小正方形,即图
①称之为“前世”,然后再剪拼成一个新长方形如图②称之为“今生”,请你解答下面的问题:
(1)“前世”图①的面积与“今生”图②新长方形的面积;
(2)根据图形面积的和差关系直接写出“前世”图①的面积为:,标明“今生”图②新长方形的长为、宽为,面积
为:.
(3)“形缺数时少直观,数缺形式少形象”它体现了数学的数形结合思想,由(1)和(2)图形面积的计算,形象的验证了代数中的一个乘法公式为:.(4)请你根据(3)题中乘法公式,计算:2.001×1.999.
24. 特例探究:如图①,已知在△ABC中,AB=BC,∠ABC=90°,D为AC边的中点,连接BD,判断△ABD是什么三角形,并说明理由.
归纳证明:如图②,已知在△ABC中,AB=BC,∠ABC=90°,D为AC边的中点,连接BD,把Rt△DEF的直角顶点D放在AC的中点上,DE交AB于M,DF交BC
于N.证明:DM=DN.
拓展应用:在图②,AC=4,其他条件都不发生变化,请直接写出Rt△DEF与
△ABC的重叠部分的面积.。

相关文档
最新文档