周世勋《量子力学教程》(第2版)-量子力学若干进展笔记和课后习题(含考研真题)详解(圣才出品)

合集下载

《量子力学教程》周世勋课后答案

《量子力学教程》周世勋课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

周世勋《量子力学教程》(第2版)-微扰理论笔记和课后习题(含考研真题)详解(圣才出品)

周世勋《量子力学教程》(第2版)-微扰理论笔记和课后习题(含考研真题)详解(圣才出品)

第5章微扰理论5.1复习笔记一、定态微扰理论1.适用范围及使用条件求分立能级及所属波函数的修正。

适用条件是:一方面要求H 可分成两部分,即'0H H H +=,同时0H 的本征值和本征函数已知或较易计算;另一方面又要求0H 把H 的主要部分尽可能包括进去,使剩下的微扰'H 比较小,以保证微扰计算收敛较快,即'(0)(0)(0)(0)1,mnn mn mH E E E E <<≠-(1)非简并情况微扰作用下的哈密顿量可表示为:'0H H H +=第n 个能级可近似表示为:∑+-++=mmnnmnn nn EEH H E E)0()0(2''')0(相应的波函数可近似表示为:∑+-+=mm mn mn nn E E H )0()0()0('')0(ψψψ(2)简并情况能级的一级修正由久期方程0det )1('=-v k v E H μμδ即)1(''2'1'2)1('22'21'1'12)1('11=---nkk k k knknE H H H H E H H H H E H给出。

个实根,记为有k k f E )1(k k f E ,,2,1,)1( =αα,分别把每一个根)1(αk E 代入方程∑==-kf v v v k va E H 1)1('0)(μαμδ,即可求得相应的解,记为v a α,于是可得出新的零级波函数∑>>=vkv vkv a φα||。

相应的能量为:)1()0(αk k k E E E +=。

2.氢原子的一级斯塔克效应(1)斯塔克(Stark)效应:原子在外电场作用下所产生的谱线分裂的现象。

(2)用简并情况下的微扰论解释氢原子的斯塔克效应:由于电子在氢原子中受到球对称的库仑场的作用,第n 个能级有2n 度简并。

《量子力学教程》周世勋_课后问题详解

《量子力学教程》周世勋_课后问题详解

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学教程(第二版)周世勋习题解答

量子力学教程(第二版)周世勋习题解答
整理(10)、(11)、(12)、(13)式,并合并成方程组,得
(10) (11) (12) (13)
ek1a B sin k 2aC cosk 2aD 0 0
k1ek1a B k 2 cosk 2aC k 2 sin k 2a D 0 0
0 sin k 2aC cosk 2aD ek1a F 0
(x) c (x)

④乘 ⑤,得 (x) (x) c2 (x) (x) , 可见,c 2 1 ,所以 c 1
当 c 1时, (x) (x) , (x) 具有偶宇称,
当 c 1时, (x) (x) , (x) 具有奇宇称,
18
当势场满足 U (x) U (x) 时,粒子的定态波函数具有确定的宇称。
3
第一章 绪论
1.1.由黑体辐射公式导出维恩位移定律: mT b, b 2.9 10 3 m0C 。
证明:由普朗克黑体辐射公式:
d
8h c33Βιβλιοθήκη 1hd ,
ekT 1
及 c 、 d c d 得
2
8hc 5
1,
hc
ekT 1
令 x hc ,再由 d 0 ,得 .所满足的超越方程为
kT
d
2
(x)
E
2
(x)

12
Ⅲ: x a
2 2m
d2 dx2
3
(x)
U
(x)
3
(x)
E
3
(x)

由于(1)、(3)方程中,由于U (x) ,要等式成立,必须
1(x) 0 2 (x) 0
即粒子不能运动到势阱以外的地方去。
方程(2)可变为
d
2 2 ( dx2

周世勋《量子力学教程》(第2版)笔记和课后习题(含考研真题)详解(第4章 态和力学量的表象——第6章

周世勋《量子力学教程》(第2版)笔记和课后习题(含考研真题)详解(第4章 态和力学量的表象——第6章
换称为幺正变换。在量子力学中,两个表象之间的变换是幺正变换,如 (x) Sn n (x)
n
中,以 Sn 为矩阵元的矩阵 S 称为变换矩阵。设态 在 A,B 表象中的矩阵表示分别为 a,
b,S 为两表象之间的幺正变换,则态在两表象之间的变换为
b S 1a ,算符在两表象之间的变换为 F ' S 1FS 。
1
(2) 2
动量本征函数,则
C( p,t) 即为该态在动量表象中的波函数。 C( p,t) 的物理意义为: C( p.t) 2 dp 表示在该态
中,测量粒子的动量所得结果在 p 到 p+dp 范围内的几率。
二、幺正变换
1.变换矩阵
满足 S S 1 的矩阵称为幺正矩阵,幺正矩阵不是厄米矩阵。由幺正矩阵所表示的变
1 / 50
圣才电子书 十万种考研考证电子书、题库视频学习平台

a1
(t
)
a2 (t) 函数,则 (x,t) 在力学量 Q 表象中矩阵表示可写为: 。
a
n (t
)
aq (t)
3.算符 F 在 Q 表象中的矩阵表示.
算符 F 在 Q 表象中对应一个矩阵(方阵),矩阵元是 Fnm un* Fumdx ,平均值公式是
3.其他常用关系式
(1)粒子数算符本征方程 N | n n | n ;
(2)哈密顿量本征方程
H
p ( x)
1
i px
1e
(2 ) 2
本征方程
p p'
p ' p'
C( p,t) ( p' p) p ( p p' ) p' ( p p' )
5.一个典型的例子分析

量子力学教程习题答案周世勋

量子力学教程习题答案周世勋
《量子力学教程 (jiàochéng)》
习题解答
1
精品PPT
《量子力学教程》 习题(xítí)解答说明
• 为了满足量子力学(liànɡ zǐ lìxué)教学和学生 自学的需要,完善精品课程建设,我们编写了 周世勋先生编写的《量子力学(liànɡ zǐ lìxué) 教程》的课后习题解答。本解答共分七章,其 中第六章为选学内容。
2.3 一粒子在一维势场
,x 0 U (x) 0, 0 x a
,x a
中运动,求粒子的能级和对应的波函数。
解:U (x)与t 无关,是定态问题。其定态 S—方程
2
d 2 (x) U (x) (x) E (x)
2m dx2
在各区域的具体形式为
Ⅰ: x 0
2 2m
d2 dx2
1
(
x)
E A2 2 nh nh , n 0,1,2, 2T
6
精品PPT
(2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。由evB v2 ,得 R v
R
eB
再由量子化条件 pdq nh,n 1,2,3,,以, p Rv R2 eBR 2分别表示广义坐标和相应的
广义动量,所以相积分为
0
0.024A (电子的康普顿波长)。
8
精品PPT
第二章 波函数和薛定谔方程
2.1.证明在定态中,几率流与时间无关。
证:对于定态,可令
(r,t)
( r )f
(t)
( r )e
i
Et
J
i
( * * )
2m
i
[
( r )e
i
Et

( r )e
i

量子力学教程习题答案周世勋

量子力学教程习题答案周世勋
2xe 2
2
1(x) 1(x) 2
4 2 2
x 2e 2x2
2 3 x e2 2x2
d1 (x) 2 3 [2x 2 2 x3 ]e 2x2
dx
令 d1(x) 0 ,得 dx
x 0
x1
x
由1(x) 的表达式可知, x 0,x 时,1(x) 0 。显然不是最大几率的位置。
2m
i
[
( r )
*
(
r
)
*
( r )
(r)]
2m
可见 J与t 无关。
9
2.2 由下列定态波函数计算几率流密度:
(1) 1
1 ei k r r
(2) 2
1 e i k r r
从所得结果说明 1 表示向外传播的球面波, 2 表示向内(即向原点) 传播的球面波。
解: J1和J 2只有r分量
而 d 21 (x) 2 3 [(2 6 2 x 2 ) 2 2 x(2x 2 2 x3 )]e2x2
dx 2
4 3 [(1 5 2 x 2 2 4 x 4 )]e 2x2
d 21(x) dx2
x 1
4 3 2
1 0, e
可见 x 1
是所求几率最大的位置。
2
#
17
2.6 在一维势场中运动的粒子,势能对原点对称:U (x) U (x) ,证明粒子的定态波函数具有确定的
在球坐标中
r0
r
e
1 r
e
1 r s i n
(1)
J1
i 2m
(
1
* 1
1* 1 )
i [1 2m r
eikr
r
(1 r

《量子力学教程》周世勋 课后答案

《量子力学教程》周世勋 课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教学教程》周世勋课后答案解析

《量子力学教学教程》周世勋课后答案解析

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

周世勋《量子力学教程》学习辅导书(量子力学若干进展)【圣才出品】

周世勋《量子力学教程》学习辅导书(量子力学若干进展)【圣才出品】

第8章 量子力学若干进展8.1 复习笔记二十世纪初物理学初创量子力学和相对论,它们是当代物理学研究的两大基石,尤其是量子力学,影响着物理学研究的方方面面,也已成为物理学研究工作者的日常工作用语,虽然量子力学自身一直发展着,但还存在着很多未解之谜。

相比于经典物理,量子力学有着令物理学家着迷的事情,却又能与物理实验结果完美符合。

对于量子力学的不可思议之处,物理学家费曼曾经说过:“我可以肯定,在这个世界上没有人真正懂得量子力学。

”的确如此,量子力学是一门美妙的学问,一定不要仅仅把它当做一个考试的科目。

在量子力学的世界,有着很多有趣的问题去思考、去发掘。

本章节选了量子力学中典型的三方面内容(朗道能级、AB 效应和Berry 相位)。

虽然这些都不是考试的重点内容,但值得对量子力学感兴趣的读者认真阅读,进一步体会量子力学不同于经典物理的神奇之处。

一、朗道能级 1.能级推导电子在均匀外磁场B (沿z 方向)中,取朗道规范后,得定态薛定谔方程ψψψE p p y c B e p m H z y x =⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-=22221鉴于力学量(H ⌒,p ⌒x ,p ⌒z )互相对易,得相应本征态为)(),,(/)(y e z y x z p x p i zxχψ +=其中,χ(y )满足谐振子能量本征值方程(平衡位置在y 0)2222202d ()()()()()()2d 22z p m eB y y y y E y m y mc mχχχ-+-=- 其中,0||xcp y e B=。

由此可得出朗道能级2,1()22z z p nc p E n m ω=++2.结果讨论(1)从经典观点出发:电子沿磁场方向做螺旋运动。

从量子观点出发:电子沿磁场方向做自由运动,在xy 平面内绕z 轴旋转。

(2)磁场对能量贡献1||()2z e n B B mcμ+=-,μz <0称为朗道抗磁性,与电荷正负无关,是自由带电粒子在磁场中的一种量子效应。

周世勋《量子力学教程》(第2版)笔记和课后习题(含考研真题)详解(第7章 自旋与全同粒子——第8章

周世勋《量子力学教程》(第2版)笔记和课后习题(含考研真题)详解(第7章 自旋与全同粒子——第8章

(2)无耦合表象
力学量组
(
J12
,
J1z
,
J
2 2
,
J
2
z
)
也相互对易,相应的表象称为无耦合表象。无耦合表象的基
矢为:| j1m1 j2m2 。
五、光谱的精细结构
在无外场的情形下,电子自旋对原子能级和谱线有影响。在哈密顿量中体现在电子的自
旋和轨道运动之间的相互作用引起了附加项。体系的哈密顿量可表示为:
2
三、简单塞曼效应 1.简单塞曼效应概念 在没有外磁场时的一条谱线在外磁场中分裂为三条,这即是简单塞曼效应。
2.简单塞曼效应的物理机制
考虑氢原子或类氢原子在均匀外磁场中的情形。在较强的外磁场作用下,须考虑电子的
轨道磁矩和自旋磁矩与磁场 B 的相互作用。由于外磁场较强,可略去电子的自旋和轨道运
动之间的相互作用能量。此时,哈密顿量可表示为:
H
2
2me
2
U (r)
eB 2mec
(2Sz
Lz )
力学量组 (H , L2 , J 2 , J z ) 相互对易,其共同本征函数是定态薛定谔方程的解:
nlmms (r, ,, sz ) Rnl (r)Ylm ( ,)ms (sz )
则 Enlmms
Enl
eB 2mec
(m
2ms
)
EEnlnl22ememBBecec((mm11)), ,

(r , 2 ,t)
2 / 31
圣才电子书 十万种考研考证电子书、题库视频学习平台


z
表象中,s
z
的本征值为:
2
,相应的本征态为:
1 2

周世勋《量子力学教程》(第2版)-绪论笔记和课后习题(含考研真题)详解(圣才出品)

周世勋《量子力学教程》(第2版)-绪论笔记和课后习题(含考研真题)详解(圣才出品)
2.玻尔假设 (1)电子在原子中不可能沿着经典理论所允许的每一个轨道运动,而只能沿着其中一 组特殊的轨道运动。称沿这组特殊轨道运动的电子处于稳定状态(简称定态)。 (2)电子保持在该状态时,既不吸收也不发出辐射。 (3)只有当电子由一个定态跃迁到另一个定态时,才产生辐射的吸收或发射现象。电
子由能量为 Em 的定态跃迁到能量为 En 的定态时所吸收或发射的辐射频率 满足:
四、微粒的波粒二象性
1.玻尔理论所遇到的困难说明探索微观粒子运动规律的迫切性
在光的波粒二象性的启示下,德布罗意提出微粒具有波粒二象性的假设。
微粒的粒子性(E,p)与波动性( , 或,k )的关系满足
E h
p
h
n
k
这公式称为德布罗意公式,或德布罗意关系。
戴维孙-革末的电子衍射实验 该实验充分说明电子具有波动性,验证了德布罗意波的存在。
vd
v
8hv 3 c3
1
hv
dv ,
e kT 1
以及
(1)
v c ,
(2)
v dv d ,
(3)

dv d
v
()
d
d
c
v () 2
c
8 hc 1
5
hc
ekT 1
这里的 的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。
本题关注的是λ取何值时, 取得极大值,因此,就得要求 对λ的一阶导数为零,
的,这样则有
mT
hc xk
把 x 以及三个物理常量代入到上式便知
b mT 2.9 103 m K
这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较

量子力学教程习题答案周世勋

量子力学教程习题答案周世勋

2 n a
a
A2a
∴归一化常数 A 1 a
16
精品PPT
2.5 求一维谐振子处在激发态时几率最大的位置。
解: (x)
1 2x2
2xe 2
2
1(x) 1(x) 2
4 2
2
x 2e 2x2
2 3 x e2 2x2
d1 (x) 2 3 [2x 2 2 x3 ]e 2x2
dx
• 第一章 第二章 第三章 第四章 第五章 第六章 第七章
2
精品PPT
目录(mùlù)
• 第一章 绪论 • 第二章 波函数和薛定谔方程(fāngchéng) • 第三章 力学量的算符表示 • 第四章 态和力学量的表象 • 第五章 微扰理论 • 第六章 弹性散射 • 第七章 自旋和全同粒子
3
精品PPT
《量子力学教程 (jiàochéng)》
习题解答
1
精品PPT
《量子力学教程》 习题(xítí)解答说明
• 为了满足量子力学(liànɡ zǐ lìxué)教学和学生 自学的需要,完善精品课程建设,我们编写了 周世勋先生编写的《量子力学(liànɡ zǐ lìxué) 教程》的课后习题解答。本解答共分七章,其 中第六章为选学内容。
r0
k mr3
r
J1与
r
同向。表示向外传播的球面波。
10
精品PPT
(2)
J2
i 2m
(
2
* 2
2*
)
i 2m
[1 r
eikr
r
(1 r
eikr
)
1 r
eikr
r
(1 r
eikr
)]r0

量子力学周世勋第二版课后习题解答第4章

量子力学周世勋第二版课后习题解答第4章

4.1.求在动量表象中角动量x L 的矩阵元和2x L 的矩阵元。

解:⎰⋅⋅'-'-=τπd e p z py e L r p i y z rp i p p x)ˆˆ()21()(3 ⎰⋅⋅'--=τπd e zp yp e r p i y z rp i)()21(3⎰⋅⋅'-∂∂-∂∂-=τπd e p p p p i e rp i zy y z r p i))(()21(3⎰⋅'-∂∂-∂∂-=τπd e p p p p i r p p i z y y z)(3)21)()(()()(p p p p p p i yz z y '-∂∂-∂∂= δ⎰''=τψψd L x L px p p p x 2*2)()( ⎰⋅⋅'--=τπd e p z p y e r p i y z r p i23)ˆˆ()21(⎰⋅⋅'---=τπd e p z p y p z py e r p i y z y z rp i)ˆˆ)(ˆˆ()21(3 ⎰''-∂∂-∂∂-=τπd e p p p p i p z p y e rp i yz z y y z r p i))()(ˆˆ()21(3⎰⋅⋅'--∂∂-∂∂=τπd e p z p y e p p p p i r p i y z rp i y z z y)ˆˆ()21)()((3⎰⋅'-∂∂-∂∂-=τπd e p p p p r p p i y z z y)(322)21()()()(22p p p p p p yz z y '-∂∂-∂∂-= δ4.2 求能量表象中,一维无限深势阱的坐标与动量的矩阵元。

解:基矢:x a n a x u n πsin 2)(=能量:22222a n E n μπ =对角元:2sin 202a xdx a m x a x a mm ==⎰π 当时,n m ≠ ⎰⋅⋅=a mn dx ax x a m a x 0)(sin )(sin2π[][]1)1()(4)(1)(11)1(])(sin )()(cos )([ ])(sin )()(cos )([1)(cos )(cos 12222222022202220---=⎥⎦⎤⎢⎣⎡+----=⎥⎥⎦⎤+++++-⎢⎢⎣⎡--+--=⎥⎦⎤⎢⎣⎡+--=--⎰nm n m aaa n m m n an m n m a x a n m n m ax x a n m n m a x a n m n m ax x a n m n m a a dx x a n m x a n m x a ππππππππππππ [][]m n i n m n m a a n i x a n m n m a x a n m n m a a n i dx x an m x a n m a n i xdxa n x a m a n i xdx an dx d x am a i dx x u px u p n m nm aa a a n m mn 21)1(]1)1()(1)(1 )(cos)()(cos )()(sin)(sin cos sin 2sin sin 2)(ˆ)(2220202020*--=--⎥⎦⎤⎢⎣⎡-++=⎥⎦⎤⎢⎣⎡--+++=⎥⎦⎤⎢⎣⎡-++-=⋅-=⋅-==--⎰⎰⎰⎰πππππππππππππππ解:定态薛定谔方程为),(),(2),(2122222t p EC t p C p t p C dp d =+-μμω 即 0),()2(),(2122222=-+-t p C p E t p C dp d μμω 两边乘以ω2,得0),()2(),(11222=-+-t p C p E t p C dp dμωωμω 令μωββμωξ1, 1===p pωλ E2=0),()(),(222=-+t p C t p C d d ξλξ跟课本P.39(2.7-4)式比较可知,线性谐振子的能量本征值和本征函数为t E i n p n n n e p H e N t p C n E--=+=)(),()(22211βωβ 式中n N 为归一化因子,即2/12/1)!2(n N nn πβ= 4.4.求线性谐振子哈密顿量在动量表象中的矩阵元。

量子力学(第二版)周世勋原著课后习题整理版

量子力学(第二版)周世勋原著课后习题整理版

证明在定态中,几率流密度与时间无关。

证:对于定态,可令)]()()()([2 ])()()()([2 )(2 )( )()()(******r r r r i e r e r e r e r i i J er t f r t r Et iEt iEt iEt iEtiψψψψμψψψψμμψψ∇-∇=∇-∇=ψ∇ψ-ψ∇ψ===ψ----)()(,可见t J 与无关。

2.4证明(2.6-14)式中的归一化常数是aA 1='证:⎪⎩⎪⎨⎧≥<+'=a x a x a x an A n ,0 ),(sin πψ (2.6-14)由归一化,得aA a x a n n a A a A dx a x an A x A dx a x an A dx a x an A dx aa aaaa a a aan 222222222)(sin 2)(cos22)](cos 1[21)(sin 1'=+⋅'-'=+'-'=+-'=+'==-----∞⎰⎰⎰⎰πππππψ∴归一化常数aA 1='3.8.在一维无限深势阱中运动的粒子,势阱的宽度为a ,如果粒子的状态由波函数)()(x a Ax x -=ψ描写,A 为归一化常数,求粒子能量的几率分布和能量的平均值。

解:由波函数)(x ψ的形式可知一维无限深势阱的分布如图示。

粒子能量的本征函数和本征值为⎪⎩⎪⎨⎧≥≤≤≤a x x a x x an a x ,0 ,0 0 ,sin 2)(πψ 22222a n E n μπ = ) 3 2 1( ,,,=n 动量的几率分布函数为2)(n C E =ω⎰⎰==∞∞-an dx x x an dx x x C 0*)(sin)()(ψπψψ 先把)(x ψ归一化,由归一化条件,⎰⎰⎰+-=-==∞∞-aa dx x ax a x A dx x a x A dx x 022220222)2()()(1ψ⎰+-=adx x ax x a A 043222)2(30)523(525552a A a a a A =+-= ∴530aA =∴⎰-⋅⋅=an dx x a x x a n aa C 05)(sin 302π ]sin sin [1520203x xd a n x x xd a n x a a a a ⎰⎰-=ππ ax a n n a x a n x n a x a n x n a x a n n a x a n x n a a 0333222222323]cos 2sin 2 cos sin cos [152ππππππππππ--++-=])1(1[15433nn --=π∴2662])1(1[240)(n nn C E --==πω⎪⎩⎪⎨⎧=== ,6 ,4 ,205 3 196066n n n ,,,,,π ⎰⎰==∞∞-adx x p x dx x H x E 02)(2ˆ)()(ˆ)(ψμψψψ ⎰--⋅-=adx a x x dx d a x x a 02225)](2[)(30μ)32(30)(303352052a a adx a x x a a-=-=⎰μμ 225aμ = 4.5 设已知在Z L L ˆˆ2和的共同表象中,算符yx L L ˆˆ和的矩阵分别为 ⎪⎪⎪⎭⎫⎝⎛=010******** x L ⎪⎪⎪⎭⎫⎝⎛--=0000022ii i i L y 求它们的本征值和归一化的本征函数。

量子力学周世勋第二版课后习题解答第2章

量子力学周世勋第二版课后习题解答第2章

2.1.证明在定态中,几率流与时间无关。

证:对于定态,可令)]r ()r ()r ()r ([m 2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。

2.2 由下列定态波函数计算几率流密度: ikr ikr e re r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇s i n r 1e r 1e r r 0 r mrk r mr k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。

表示向外传播的球面波。

rmr k r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i mi J ikr ikr ikr ikr3020220*2*222 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )2(-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。

表示向内(即向原点) 传播的球面波。

补充:设ikxex =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰∞dx x ψ方式归一化。

其相对位置几率分布函数为12==ψω表示粒子在空间各处出现的几率相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章量子力学若干进展
8.1复习笔记
一、朗道能级
1.能级推导
电子在均匀外磁场B(沿z 方向)中,取朗道规范后,得定态薛定谔方程:
ψψψE p p y B e p m H z y x =⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-=22221 鉴于力学量(,,)x z H p p 互相对易,得相应本征态为:
)(),,(/)(y e z y x z p x p i z
x χψ +=其中,()y χ满足谐振子能量本征值方程(平衡位置在0y ):
)()2()()()(2)(22202222y m
p E y y y mc eB m y dy d m z χχχ-=-+- 其中,0||x cp y e B =。

由此可得出朗道能级:2,1()22
z z p n c p E n m ω=++ 。

2.结果讨论
(1)从经典观点出发:电子沿磁场方向做螺旋运动。

从量子观点出发:电子沿磁场方向做自由运动,在垂直磁场方向绕z 轴旋转。

(2)磁场对能量贡献1||(2z e n B B mc
μ+=- ,0z μ<称为朗道抗磁性,与电荷正负无关,是自由带电粒子在磁场中的一种量子效应。

(3)二维电子气的朗道能级简并度是外磁场ϕ中含元磁通量子(0||hc e ϕ=
)数目。

二、阿哈罗诺夫-玻姆效应
在经典电动力学中,场的基本物理量是电场强度E 和电磁感应强度B,势ψ和A 是为了方便引入的,并不是真实的物理量。

但在量子力学中,势ψ和A 具有可观测意义。

图8-1
1.实验及其现象
如图8-1,从电子枪S 出射的电子束流经双缝和两条路径21,P P 到达屏上,在两条路径中放置一个很长的电流螺线管,垂直纸面,管内磁场强度B 垂直纸面向外(取为z 轴)。

当螺线管通以电流时,屏上出现的干涉条纹产生了移动。

2.现象讨论
(1)因螺线管的外部并不存在磁场,所以经典电动力学中,磁场的物理效应不能完全用B 来进行描述。

(2)当螺线管内有磁通ϕ时,电子经过的外部空间B=0,但0≠A 时,因为对包围螺
线管的任一闭合回路路径积分有⎰=⋅φl d A ,矢势A 可以对电子发生相互作用。

因此,A-B
效应表明矢势A 具有可测量的物理效应。

它可以影响电子束的相位,从而使干涉条纹发生
移动。

三、贝利相位
量子力学中最重要的是概率幅的存在,而在实验中我们只能观测到概率幅的模方,因此,存在相位的变化并不影响模方,它是所有干涉现象的根源。

1.贝利相位的引入
在绝热变化过程中,系统每一瞬间都是准静止的,满足瞬时定态薛定谔方程:
(())|(())(())|(())n H R t n R t E R t n R t >=>
其中mn t R m t R n δ>=<))((|))((。

可以解得
()()|()|(())m m i t i t t e e m R t γαψ>=>
其中
,⎰-=t m m t R E dt 0''))((1 α称为动力学相位。

))(())
(()(''0''t R m t
t R m dt i t t m ∂∂=⎰γ称为贝利相位,是实的。

2.贝利相位的意义
首先引入R 空间的“矢势”>∇<=)(||)()(R m R m i R A R m ,则贝利相位)(C m γ可表
示为:
()()m m m
S
C dS B R γϕ=-⋅=-⎰⎰ 上式说明贝利相位是参数空间磁场强度的磁通量的负值,与演化路径的几何结构有关,又称几何相位。

其中,
∑≠-∇⨯∇=⨯-∇=m
n n m R R m m R E R E R m H R n R n H R m R A R B ))()(()()()()()()(Im )()( ,称为参数空间的磁场强度。

8.2
课后习题详解
本章无课后习题。

8.3名校考研真题详解
本章非重点,相关知识点在考研试题中涉及较少,可做选择性阅读。

相关文档
最新文档