人教版九年级数学--二次函数与最大利润问题

合集下载

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计
4.练习:布置一定数量的练习题,巩固学生对最大利润问题的解决方法。
5.总结:对本节课的内容进行总结,强调二次函数在实际问题中的应用。
6.课后作业:布置与最大利润问题相关的作业,让学生在课后进一步巩固所学知识。
教学评价:
1.课堂表现:关注学生在课堂上的参与程度,积极思考、提问的表现。
2.作业完成情况:评价学生对最大利润问题解决方法的掌握程度。
(2)鼓励学生尝试用不同的方法解决同一问题,提高他们的思维灵活性和创新意识。
3.拓展作业:
(1)引导学生关注生活中的最大利润问题,如超市促销、工厂生产等,要求学生运用所学知识进行分析,并提出解决方案。
(2)鼓励学生查找相关资料,了解二次函数在其他领域的应用,如经济学、管理学等。
4.作业要求:
(1)要求学生在作业本上规范书写,保持卷面整洁。
4.通过对最大利润问题的探讨,培养学生的数感和运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作探究、解决问题的能力。
2.引导学生运用数学建模的思想,从实际问题中抽象出数学模型,提高学生的数学思维能力。
3.运用数形结合的方法,让学生在解决最大利润问题的过程中,深入理解二次函数的性质和图像。
(2)新课:讲解二次函数在实际问题中的应用,通过例题让学生体会最大利润问题的解决方法。
(3)练习:设计不同难度的练习题,让学生在解决最大利润问题的过程中,巩固所学知识。
(4)总结:对本节课的重点知识进行总结,强调二次函数在实际问题中的应用。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点

人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计

人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计

人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计一. 教材分析《二次函数与最大利润问题》这一节内容,是在学生学习了二次函数的基础上进行的。

教材通过实例引出二次函数在实际问题中的应用,让学生感受数学与生活的紧密联系,培养学生的应用意识。

同时,本题也是中考的热点题型,对于学生来说,理解和掌握二次函数在最大利润问题中的应用,对于提高他们的数学素养和解决问题的能力具有重要意义。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。

但是,将二次函数应用于实际问题中,求最大利润问题,可能还存在一定的困难。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们解决问题的能力。

三. 教学目标1.理解二次函数在最大利润问题中的应用。

2.能够列出二次函数表示的生产成本函数,并求出最大利润。

3.培养学生的应用意识和解决问题的能力。

四. 教学重难点1.重点:二次函数在最大利润问题中的应用。

2.难点:如何将实际问题转化为二次函数问题,并求解最大利润。

五. 教学方法采用问题驱动的教学方法,通过实例引导学生主动探究二次函数在最大利润问题中的应用,培养学生的动手能力和解决问题的能力。

同时,辅以小组合作学习,让学生在讨论中加深对知识的理解。

六. 教学准备1.准备相关的实例,用于引导学生探究二次函数在最大利润问题中的应用。

2.准备PPT,用于展示问题和解答过程。

七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容:某工厂生产一种产品,固定成本为8000元,每生产一件产品的成本为200元,售价为300元,问工厂每月生产多少件产品时,可以获得最大利润?2.呈现(10分钟)引导学生将实际问题转化为数学问题,列出二次函数表示的生产成本函数和利润函数。

设每月生产x件产品,利润函数为:y = 300x - 200x - 8000 = 100x - 8000。

3.操练(10分钟)让学生尝试求解最大利润,引导他们发现这是一个二次函数的最大值问题。

人教版数学九年级上册:22.3 实际问题与二次函数 第2课时 二次函数与最大利润问题 教案

人教版数学九年级上册:22.3 实际问题与二次函数  第2课时  二次函数与最大利润问题  教案

22.3实际问题与二次函数第2课时二次函数与最大利润问题【知识网络】典案二导学设计一、阅读课本:二、学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题.三、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.四、课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x上市时间x/(月份) 1 2 3 4 5 6市场售价P(元/千克)10.5 9 7.5 6 4.5 3这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?。

人教版九年级数学上册第22章 二次函数 二次函数与商品利润问题

人教版九年级数学上册第22章 二次函数 二次函数与商品利润问题

某商店经营衬衫,已知获利(元)与销售单价(元)之间满
足关系式 = − + + ,则销售单价定为多少元时,
获利最多?最多获利为多少元?
自主探究
请同学们阅读课本50页探究2. 请同学们思考:
(1)调价包括哪几种情况? (涨价和降价两种)
(2)先来讨论涨价的情况.
①设每件涨价x元,你能否用含x的式子表示单件的利润和销售数量?
− = −( − )² + .
故当 = 时,W最大,为125.
答:当销售单价为13万元时,利润最大,最大利润为125万元.
变式 为满足市场需求,某超市在“端午节”来临前夕,购进一种品
牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根
据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700
例1 某商店从厂家以每件21元的价格购进一批商品,该商店可以
自行定价.若每件商品售价为 x 元,则可卖出(350-10x)件商
品,那么卖出商品所赚钱数y(元)与每件售价x(元)之间的
函数解析式为(
B)
A.y=-10x²-560x+7 350
C.y=-10x²+350x
B.y=-10x²+560x-7 350
− .当 =
× − × − −
× −


× −
= 时, 最大 =
= ,即当每盒售价定为60
元时,每天销售的利润P(元)最大,最大利润为8 000元.
(3)为稳定物价,有关管理部门限定:这种粽子每盒的售价不得高
盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数

数学九年级人教版第二课时二次函数最大利润问题ppt课件

数学九年级人教版第二课时二次函数最大利润问题ppt课件






知识点 2
“每……每……”的销售利润问题
3.将进货价为70元/件的某种商品按零售价100元/件出售时
每天能卖出20件,若这种商品的零售价在一定范围内每降价
1元/件,其日销售量就增加1件,为了获得最大利润,决定每件
降价x元,则单件的利润为
元,每天的销售量为
(30-x)
(20+x) 件,则每天的利润y(元)关于x(元)的函数关系式是
把(280,40),(290,39)代入,得
1
=- ,
280 + = 40,
10
解得
290 + = 39,
= 68,
1
∴y 与 x 之间的函数解析式为 y=- x+68(200≤x≤320).
10







(2)当每个房间每天的定价定为多少时,宾馆每天所获利润最
大?最大利润是多少元?
A.2500元
B.47500元
C.50000元
D.250000元
[解析] 因为抛物线的对称轴为直线x=500,在对称轴左侧,y随x的
增大而增大,因此在0<x≤450的范围内,当x=450时,函数有最大值
为47500.







6.(2021鄂尔多斯)鄂尔多斯市某宾馆共有50个房间供游客居
住,每个房间每天的定价不低于200元且不超过320元.如果
(1)求y与x之间的函数解析式(不必写出自变量的取值范围);
解:(1)根据题意,得y=300-10(x-60)=-10x+900.

人教版初中数学九上 微专题11 二次函数的应用(二)——利润问题

人教版初中数学九上 微专题11 二次函数的应用(二)——利润问题

3.(2021·抚顺)某厂家生产一批遮阳伞,成本价是 20 元/把,试销售时发 现:遮阳伞每天的销售量 y(把)与售价 x(元/把)之间满足一次函数关 系,且当售价为 28 元/把时,每天的销售量为 260 把;当售价为 30 元/把时, 每天的销售量为 240 把. (1)y 与 x 之间的函数解析式为 y=-10x+540 ; (2)设遮阳伞每天的销售利润为 w(元),则当售价定为多少时,才能使每 天的销售利润最大?最大利润是多少元? 解:由题意,得w=(x-20)(-10x+540)=-10(x-37)2+2 890. ∵-10<0, ∴当x=37时,w有最大值,最大值为2 890. 答:当售价定为37元/把时,才能使每天的销售利润最大,最大利润是2 890元.
x/辆
45678
y/万元
0 0.5 1 1.5 2
(1)y 与 x 之间的函数解析式为 y=12x-2(x22 万元,不考虑其他成本,则当月销售量 为多少时,该品牌汽车销售店销售利润最大?最大利润是多少? 解:设该品牌汽车销售店销售利润为w万元.
∴当x=8时,w有最大值,最大值为32. 答:当月销售量为8辆时,该品牌汽车销售店销售利润最大,最大利润是32万元.
4.(2021·铜仁)某品牌汽车销售店销售某种品牌的汽车,已知该品牌汽车 每辆的进价为 16 万元,且当每辆汽车的售价为 22 万元时,每月可销售 4 辆.现根据市场行情决定进行降价销售,通过市场调查得到了每辆汽车下降
的价格 y(万元)与月销售量 x(辆)(x≥4)满足一次函数关系,部分数据
如下表:
微专题11 二次函数的应用(二) ——利润问题
1.某商品的利润 y(元)与每件的售价 x(元)之间的函数解析式为 y=-x2 +8x+9,且每件的售价不低于 1 元不高于 3 元,则最大利润为 24 元. 2.某商店销售一批头盔,且售价为每顶 80 元时,每月可售出 200 顶.在创 建文明城市期间,计划将头盔降价销售,经调查发现:每降价 1 元,每月可 多售出 20 顶.已知头盔的进价为每顶 50 元,当该商店每月获得最大利润 时,每顶头盔的售价为 70 元.

人教版数学九年级上册实际问题与二次函数——利润最大(小)值问题课件

人教版数学九年级上册实际问题与二次函数——利润最大(小)值问题课件

即房价为180+170=350时,利润 y 有最大值。
分析题目的两个变量
解:设房租涨价10x元,则利润为y元,
y写 出(18函0 数10关x)系(50式 x) 20(50 x) (0 x 5写0)出等量关系
利润=房价×入住数量—支出
9000180x 500x 10x2 1000 20x
三、总结提升
实际问题
目 标
实际问题 的答案
归纳
二次函数
抽象
y ax2 bx c
图象 性质
利用二次函数的 图像和性质求解
变式1 原条件不变,旅游局为了促进低碳 环保,规定宾馆空房率不能超过20%,房 价定为多少的时候,利润最大?
y (18010x)(50 x) 20(50 x) (0 x 10) y
本题是以文字信息情势出现,求最大 利润的实际应用问题,要抓住题目中的关 键词来审题,对信息进行梳理、分析 。
二、解题过程
问题一:题目研究的是哪两个变量的关系? (利润随房价的变化而变化)
问题二:能根据题意列出等量关系吗?
(利润=房价×入住数量—支出) 问题三:等量关系中各数据关系是什么?
房价=180+涨价 入住数量=涨10元空一间 支出=20 ×入住数量
x 设涨价 元,利润为 y 元.
y (180 x)(50 x ) 20(50 x ) 0 x 50
10
10
9000 1 x2 32x 1000 2x
1
10
x2 34x 8000
10
当 x b 34 170 时,利润y 有最大值。
2a 2 ( 1 ) 10
一、题目分析
四、自我评价
1、数学教育要使学生掌握现代生活和学习中 所需要的数学知识与技能。题目的解决体现 了知识对日常生活的重大作用,学生对数学 知识实用性的有更深一层认识。

人教版九年级数学上知识点深度解析第2课时 商品利润最大问题

人教版九年级数学上知识点深度解析第2课时 商品利润最大问题

12345
3. 教材P51习题T2变式某种商品每件进价为20元,调 查表明:在某段时间内若以每件 x 元(20≤ x ≤30, 且 x 为整数)出售,可卖出(30- x )件.若使利润最 大,每件的售价应为 25 元.
12345
4. 教材P50探究2变式一件工艺品进价为100元,以 标价135元售出,每天可售出100件.根据销售统计, 一件工艺品每降价1元,则每天可以多售出4件.要使 日利润最大,则每件应降价 5 元.
12345
Hale Waihona Puke 谢谢观看运用策略常见的关系式: 商品 ①商品利润=商品售价-商品进价; 利润 ②商品利润、进价、利润率之间的关系: 最大 商品利润÷商品进价=商品利润率; 问题 ③标价=进价×(1+提高率);
④实际售价=标价×打折率.
当堂检测
1. 某超市销售一种商品,发现一周利润 y (元)与销
售单价 x (元)之间的关系满足 y =-2( x -20)2+
1558,由于某种原因,销售单价只能为15≤ x ≤22,
那么一周可获得最大利润是( A )
A. 1558元
B. 1550元
C. 1508元
D. 20元
12345
2. 某超市销售一种商品,每件成本为50元,超市的销 售经理经调查发现,该商品每月的销售量 y (件)与销 售单价 x (元)之间满足函数关系式 y =-5 x +550.若 设该商品每月所获利润为 w (元),则 w 与 x 之间化简 后的函数关系式为 w =-5 x2+800 x -27500 , w 的 最大值为 4500 .
第二十二章 二次函数
22.3 实际问题与二次函数 第2课时 商品利润最大问题
要点归纳

人教版九年级上册数学二次函数与商品利润问题课件

人教版九年级上册数学二次函数与商品利润问题课件
y=-10x+1200. (1)求利润W(元)与销售单价x(元)之间的关系式(利润= 销售额-成本); (2)当销售单价定为多少时,该公司每天获取的利润最 大?最大利润是多少元?
解:(1) W=y(x-40)=(-10x+1200)(x-40)=-10x2+ 1600x-48 000; (2) W=-10x2+1600x-48000=-10(x-80)2+16000, ∴当销售单价定为80元时,该公司每天获取的利润最大 ,最大利润是16000元.
练习
1.教材P51 习题22.3第2题. 2.将进货单价为70元的某种商品按零售价100元一个
售出时,每天能卖出20个;若这种商品在一定范围内
每降价1元,每日销量就增加1个.为了获得最大利润
,则应该降价( A )
A.5元
B.10元
C.15元
D.20元
3.某商品单个利润y(元)与变化的单价x(元)之间的关
提出问题: (1)问题中的定价可能在现在售价的基础上涨价或降价,获 取的利润会一样吗?如果你是老板,你会怎样定价? (2)若设每件涨价x元,获得的利润为y元,则每星期少卖多 少件?实际卖出多少件?销售额为多少元?买进商品时需 付多少元?由此你得到的函数解析式是什么?何时有最大 利润,最大利润为多少元? (3)若设每件商品降价x元,获得的利润为y元,则每星期多 卖多少件?实际卖出多少件?销售额为多少元?买进商品 时需付多少元?由此你得到的函数解析式是什么?何时有 最大利润,最大利润为多少元? (4)由此可知应如何定价才能使利润最大?
解:(1) y甲=1.5×80%·x+900=1.2x+900(x≥500); y乙=1.5x+900×60%=1.5x+540(x≥500); (2) 由题意,得1.2x+900=1.5x+540,解得x=1 200. ∴当印刷1 200份时,两个印刷厂费用一样;当印刷数 量大于1 200份时,甲印刷厂费用少;当印刷数量大于 500小于1 200份时,乙印刷厂费用少.

人教版九年级上册22.3实际问题与二次函数(最大利润问题)(教案)

人教版九年级上册22.3实际问题与二次函数(最大利润问题)(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数在最大利润问题中的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在学生小组讨论环节,虽然学生们提出了很多有见地的观点,但我感觉他们在分析问题和解决问题的能力上还有待提高。为此,我计划在今后的教学中,多设计一些开放性的问题,引导学生深入思考,培养他们的逻辑思维和分析能力。
总之,在本次教学过程中,我深刻认识到了自身在教学方法和策略上的不足,也看到了学生在学习过程中遇到的困难。在今后的教学中,我将不断调整和改进,努力提高教学效果,让每个学生都能在数学学习的道路上取得更好的成绩。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-二次函数模型的建立:如何根据问题的具体情境,正确地建立二次函数模型,包括确定自变量和因变量,理解函数中各个参数的实际意义。
-实际问题与数学模型的关联:将实际问题抽象成数学模型,理解数学模型背后的实际背景,以及如何将数学结果应用到实际问题中去。
举例:在农产品销售问题中,重点在于让学生理解售价、销售量和成本之间的关系,并将其表达为二次函数的形式。

初中数学人教九年级上册第二十二章二次函数-商品利润最大问题

初中数学人教九年级上册第二十二章二次函数-商品利润最大问题
大利润1960元.
适时小结:
运用二次函数的性质求实际问题的最大值和最小值 的一般步骤 : ➢求出函数解析式和自变量的取值范围
➢配方变形,或利用公式求它的最大值或最小值。
➢检查求得的最大值或最小值对应的自变量的值必 须在自变量的取值范围内 。
例3:某商店试销一种新商品,新商品的进价为30元/件 ,经过一段时间的试销发现,每月的销售量会因售价的
当x1=51时,y1=-2x+160=-2×51+160= 58(件) 当x2=59时,y2=-2x+160= -2×59+160= 42(件)
∴若4月份该商品销售后的总利润为1218元,则该商品 售价为51元或59元,当月的销售量分别为58件或42件.
变式:(1)若该商品售价在40~70元之间变化,根据例
最大利润是1250元.
(3)若4月份该商品销售后的总利润为1218元,则该商 品售价与当月的销售量各是多少?
解:∵当40≤x≤50时, Q最大= 1200<1218 当50≤x≤70时, Q最大= 1250>1218
∴售价x应在50~70元之间.
∴令:-2(x-55)2 +1250=1218
解得:x1=51,x2=59
调整而不同.令每月销售量为y件,售价为x元/件,每月的 总利润为Q元.
(1)当售价在40~50元时,每月销售量都为60件,则 此时每月的总利润最多是多少元?
解:由题意得:当40≤x≤50时,
Q = 60(x-30)= 60x-1800
∵ y = 60 > 0,Q随x的增大而增大 ∴当x最大= 50时,Q最大= 1200 答:此时每月的总利润最多是1200元.
300
6000
涨价销售

人教版二次函数与最大利润

人教版二次函数与最大利润
九年级上学期 新人教版
二次函数与实际问题
——何时获最大利润
一、复习引入
求二次函数最值的方法: 1、利用配方法化为顶点式,求最值
y=ax2+bx+c
y=a(x+ b )2+ 4ac-b2
2a
4a
2、代入顶点坐标公式,求最值
(-
b 2a
,4ac-b2 4a
)
3、观察二次函数图象,找最高点或最低点, 求最值
y=(60+x-40)(300-10x)
y \元
=-10x2+100x+6000
6250
=-10(x-5)2+6250
6000
因为a=-10<0 开口向下 所以x=5时 y最大=6250
05
30
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
分析:
法2:设每件售价x元,利润为y元。
60
300 自变量的取值范围 60≤x≤90
x 300-10(x-60)
y=(x-40)[300-10(x-60)]
二、问题再探究
小明的父母开了一家服装店,出售一种进价为 40元的服装,现以每件60元出售,每星期可卖出 300件. 小明对市场进行了调查,得出如下报告:
若物价局规定每件服 装获利不得高于 60%,则销售单价 定为多少时,商场 可获得最大利润?
如果调整价格:每件涨价 1元,每星期要少卖出10 件服装
(3)怎样定价才能使每星期利润y达到最大?
y\元
6250 6000
0 45
y=-10(x-5)2+6250 (0≤x≤4)
注意: 取值范 围改变 了
30

最新人教版初中数学九年级上册《实际问题与二次函数(第2课时商品销售最大利润问题)》优质教学课件

最新人教版初中数学九年级上册《实际问题与二次函数(第2课时商品销售最大利润问题)》优质教学课件

故300 − 10 ≥ 0,且 ≥ 0,因此自变量的取值范围是0 ≤ ≤ 30.
(3)涨价多少元时利润最大,最大利润是多少?
= −102 + 100 + 6 000,
当 = −
100
2× −10
= 5时, = −10 × 52 + 100 × 5 + 6 000 = 6 250.
模型,相信所有的题目都万变不
离其宗。
谢谢聆

单件利润(元) 销售量(件)
正常销售
涨价销售
20
+
每星期利润(元)
300
6000

( + )( − )
建立函数关系式: = (20 + )(300 − 10),
即 = −102 + 100 + 6000.
(2)如何确定自变量x的取值范围?
通常价格上涨,则销量下降,因此只考虑销售量即可,
当 =−
=

时,二次函数


.

= + + 有最小(大)值
新课导入
日常生活中到处可以
用到数学知识,商品
买卖过程中,商家追
求的目标往往是利润
的最大化.
如果你是商场经理,
如何定价才能使商场
获得最大利润呢?
知识讲解
商品利润最大问题
问题
商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:
(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?
y
解:(1)由图象可得函数图象过点(5,0),(7,16),
代入得 = −2 + 20 − 75.

最新人教版九年级数学上册《第2课时 最大利润问题》精品教学课件

最新人教版九年级数学上册《第2课时 最大利润问题》精品教学课件
即涨价情况下,定价65元时,有最大利润6250元.
状元成才路
降价
进价/元 售价/元 销量/件
40
60-m 300+20m
利润
降价情况下的最大利润又是多少呢?
解: (2)设每件降价m元,利润为y2. 则y2=(60-m – 40 )(300 +20m) 即y2=-20m2+100m+6000 其中,0≤m≤20.
71 12
.
2.某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(200-x)件,应如何定价才能使利润最大?
解:设所得利润为y元, 由题意得y=x(200-x)-30(200-x)
=-x2+230x-6000 =-(x-115)2+7225 (0<x<200) 当x=115时,y有最大值. 即当这件商品定价为115元时,利润最大.
状元成才路
课堂小结
利用二次函数解决利润问题的一般步骤: (1)审清题意,理解问题; (2)分析问题中的变量和常量以及数量之间的关系; (3)列出函数关系式; (4)求解数学问题; (5)求解实际问题.
状元成才路
பைடு நூலகம்
课后研讨
上完这节课,你收获了什么? 有什么样的感悟?与同学相互交 流讨论。
我的课堂反思
状元成才路
推进新课
某商品现在的售价为每件60元,每星期可卖出300件. 市场调查反映:如调整价格,每涨价1元,每星期要少 卖出10件;每降价1元,每星期可多卖出20件.已知商 品的进价为每件40元,如何定价才能使利润最大?
分析:
现价 涨价 降价
进价/元 40 40 40
售价/元 60
60+n 60-m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:销售单价为10.5元时,最大利润为6400元.
问题3.已知某商品的进价为每件40元。
现在的售价是每件60元,每星期可卖 出300件。市场调查反映:如调整价格, 每降价一元,每星期可多卖出20件。 如何定价才能使利润最大?
解:设每件降价x元时的总利润为y元.
y=(60-40-x)(300+20x) 怎样确定x的 取值范围 =(20-x)(300+20x) =-20x2+100x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 (0≤x≤20) 所以定价为60-2.5=57.5时利润最大,最大 值为6125元.
22.3 实际问题与二次函数
第2课时 二次函数与商品利润
在日常生活中存在着许许多多的与数学知识有关的 实际问题。如繁华的商业城中很多人在买卖东西。
如果你去买商品,你会选买哪一家呢?如果你是商场经理, 如何定价才能使商场获得最大利润呢?
自主探究
问题1.已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调 整价格 ,每涨价1元,每星期要少卖出10件。要想获 得6090元的利润,该商品应定价为多少元?
2.某商店经营一种小商品,进价为2.5元,据市场 调查,销售单价是13.5元时平均每天销售量是 500件,而销售单价每降低1元,平均每天就可以 多售出100件.
(1)假设每件商品降低x元,商店每天销售这种 小商品的利润是y元,请你写出y与x之间的函数 关系式,并注明x的取值范围; (2)每件小商品销售价是多少元时,商店每天销 售这种小商品的利润最大?最大利润是多少? (注:销售利润=销售收入-购进成本)
问题4.已知某商品的进价为每件40元。
现在的售价是每件60元,每星期可卖 出300件。市场调查反映:如调整价格 , 每涨价一元,每星期要少卖出10件; 每降价一元,每星期可多卖出20件。 如何定价才能使利润最大?
由(2)(3)的讨论及现在的销 售情况,你知道应该如何定 价能使利润最大了吗?
答:综合以上两种情况,定价为65元时可获得 最大利润为6250元.
合作交流
问题2.已知某商品的进价为每件40元,每涨价一元, 每星期要少卖出10件。该商品应定价为多 少元时,商场能获得最大利润?
解:设每件涨价为x元时获得的总利润为y元. y =(60-40+x)(300-10x) (0≤x≤30) =(20+x)(300-10x) =-10x2+100x+6000 =-10(x2-10x ) +6000 =-10[(x-5)2-25 ]+6000 =-10(x-5)2+6250 当x=5时,y的最大值是6250. 定价:60+5=65(元)
分析:没调价之前商场一周的利润为 6000元; 设销售单价上调了x元,那么每件商品的利润 可表示为 (20+x)元,每周的销售量可表示为 件,一周的利润可表示为 (300-10x) (20+x)( 300-10x)元,要想获得6090元利润可 列方程 (20+x)( 300-10x) =6090 。
解析:(1)降低x元后,所销售的件数是(500+100x), y=-100x2+600x+5500 (0<x≤11 ) (2)y=-100x2+600x+5500 (0<x≤11 ) 配方得y=-100(x-3)2+6400
当x=3时,y的最大值是6400元.
即降价为3元时,利润最大.
所以销售单价为10.5元时,最大利润为6400元.
解决这类题目的一般步骤
(1)列出二次函数的解析式,并根据自变量的 实际意义,确定自变量的取值范围; (2)在自变量的取值范围内,运用公式法或通 过配方求出二次函数的最大值或最小值.
某商店购进一批单价为20元的日用品,如果以单 价30元销售,那么半个月内可以售出400件.根据销 售经验,提高单价会导致销售量的减少,即销售单价 每提高1元,销售量相应减少20件.售价提高多少元 时,才能在半个月内获得最大利润? 解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500 ∴当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元
相关文档
最新文档