电切削工(技师、高级技师)第四章

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4-5 三点圆法圆弧逼近
2.三点圆法圆弧逼近的节点计算
图4-6 相切圆法圆弧逼近
3.相切圆法圆弧逼近的节点计算
1)自起点A开始,任意选定B、C、D三点,求圆心坐标。 解以上两式得两法线的交点M的坐标为 2)计算B、C、D三点坐标值,即 3)B、C、D三点坐标求出后,利用求圆心的方程式求圆心M和圆心N 的坐标,并求出RM和RN。
1.圆弧分割法(曲率圆法)圆弧逼近的节点计算
2)以点(ξn,ηn)为圆心、Rn±Δ允为半径作圆,与曲线交于点(+1,+1)。 3)求逼近圆弧的圆心坐标(ξm,ηm)。 4)以点(xn,yn)为起点坐标、(+l,+1)为终点坐标、(ξm,ηm)为圆心, 可进行第一个逼近圆弧的程序编制,然后以点(+l,+1)为起点重复上 述步骤,求出第二个节点坐标(+2,+2)。
图4-14 含有阿基米德螺旋线的凸轮
1.绘图
(1)作圆C1和C2 单击“绘制”→“基本曲线”→“圆”→选圆心半 径、输入(0,0)→按Enter键→输入10→按Enter键,作出R=10mm的 圆C1→输入12→按Enter键,作出R=12mm的圆C2→按鼠标右键结束。 (2)作点P1至P2之间的阿基米德螺旋线 1)计算点P1和P2之间的阿基米德螺旋线系数α。 2)计算当极角t=0°(即X轴正向)时的极径ρ0。
第二节 非圆曲线工件加工程序计算机软件(CAXA) 一、渐开线齿轮和花键的编程
1.扇形渐开线齿轮编程 2.渐开线内花键的编程
1.扇形渐开线齿轮编程
(1)绘图 1)绘五个齿形。
图4-7 扇形齿轮
Fra Baidu bibliotek
1.扇形渐开线齿轮编程
图4-8 【渐开线齿轮齿形参数】对话框
1.扇形渐开线齿轮编程
2)作R=5的圆。
2.生成轨迹及代码
1)生成轨迹。
2)生成代码。
图4-17 渐开线内内花键加工轨迹生成
三、已知函数方程曲线零件的编程
1.绘图 2.生成轨迹及代码
1.绘图
1)作点P1与点P2之间的函数方程曲线。 2)绘图C1。
图4-18 含有函数方程曲线的图形
1.绘图
3)绘直线L1、L3和L5
图4-19 【公式曲线】对话框
二、圆弧逼近的节点计算
1.圆弧分割法(曲率圆法)圆弧逼近的节点计算 2.三点圆法圆弧逼近的节点计算 3.相切圆法圆弧逼近的节点计算
1.圆弧分割法(曲率圆法)圆弧逼近的节点计算
图4-4 圆弧分割法求节点
1)求曲线y=f(x)在起点(xn,yn)处的曲率半径Rn和曲率中心(圆心)坐 标(ξn,ηn),即
图4-10 生成轨迹
1.扇形渐开线齿轮编程
(2)生成轨迹及代码 1)生成轨迹。 2)生成代码。
2.渐开线内花键的编程
(1)绘图 单击“绘制”→“高级曲线”→“花键”图标→在【渐开 线花键齿形参数】对话框(见图4-11)中,选择内花键、平齿根、压 力角=30°、渐开线花键的齿数=8、渐开线花键的模数=2.5→单击 “下一步”按钮→在【渐开线花键齿形预显】对话框(见图4-12)中, 输入齿顶圆角半径=0.15,齿根圆角半径=0.5,大径=23.75,小径= 17.78,有效齿数=8,精度=0.01。
1.绘图
① 绘制L3直线。单击“绘制”→“基本曲线”→“直线”→选角度 线、角度输入0→输入(-15,-15)→按Enter键→输入70→按Enter键, 作出直线L3。 ② 绘制L1直线。单击“绘制”→“基本曲线”→“等距线”→选单 个拾取、指定距离、单向、空心,距离输入25→单击L3后,单击偏 移方向,作出直线L1。 ③ 绘制L5直线。单击“绘制”→“基本曲线”→“等距线”→选单 个拾取、指定距离、单向、空心,距离输入15+39.27→单击L3后, 单击偏移方向,作出直线L5。 4)绘制直线L2和L4。 5)裁剪。
图4-11 【渐开线花键齿形参数】对话框
2.渐开线内花键的编程
(2)生成轨迹及代码 1)生成轨迹。
图4-12 【渐开线花键齿形预显】对话框
2.渐开线内花键的编程
2)生成代码。
图4-13 渐开线内内花键加工轨迹生成
二、阿基米德螺旋线凸轮的编程
1.绘图 2.生成轨迹及代码
二、阿基米德螺旋线凸轮的编程
2.等弦长法直线逼近的节点计算
图4-3 等误差法直线逼近
3.等误差法直线逼近的节点计算
1)以起点A(xA,yA)为圆心、Δ允为半径画公差圆,得公差圆的方程为 2)作允差圆与曲线的公切线PT,并求公切线PT的斜率k,即 3)求切线PT的方程,解联立方程。 4)过点A作PT的平行线交曲线于点B,求平行线AB的方程 5)求点B的坐标,解联立方程。
图4-9 【渐开线齿轮齿形预显】对话框
3)绘过圆心、夹角为60°的两条斜线L1和L2
1.扇形渐开线齿轮编程
① 绘斜线L1。单击“基本曲线”→“直线”→选角度线、X轴夹角, 角度输入66°→输入第一点坐标(0,0)→按Enter键。 ② 绘斜线L2。单击“基本曲线”→“直线”→选角度线、X轴夹角, 角度输入126°→输入第一点坐标(0,0)→按Enter键。 4)绘两个R=1mm的过渡圆。 5)图形裁剪修整。
图4-15 【公式曲线】对话框(一)
1.绘图
3)起始角和终止角。 4)作图。 (3)作点P3至P4之间的另一段阿基米德螺旋线 1)计算点P3至P4之间的阿基米德螺旋线系数α 2)计算极角t=0°时的极径ρ0。 3)确定起始角和终止角。
图4-16
(二)
1.绘图
4)作图。 (4)作直线L1 单击“绘制”→“基本曲线”→“直线”→选角度线、 角度输90→输入(0,10)→单击空格“端点”→单击点P4。 (5)作圆C1至直线L1上交点处R=1mm的过滤圆 单击“绘制”→“曲 线编辑”→“过渡”→选圆角,半径改为1mm→单击圆C1,再单击 直线L1。 (6)裁剪 单击“绘制”→“曲线编辑”→“裁剪”→单击选中多余 线段,逐段裁剪。
第四章
第一节 非圆曲线节点的数学处理* 一、用直线逼近法计算节点
1.等间距法直线逼近的节点计算 2.等弦长法直线逼近的节点计算 3.等误差法直线逼近的节点计算
1.等间距法直线逼近的节点计算
图4-1 等间距法直线逼近
2.等弦长法直线逼近的节点计算
图4-2 等弦长法直线逼近
解式,求出x坐标值,代入(曲率半径)公式,得到最小曲率半径Rmin。
相关文档
最新文档