高考第六周理科数学周测题

合集下载

高三数学理周练试卷答案

高三数学理周练试卷答案

一、选择题1. 答案:C解析:根据三角函数的定义,cos(α + β) = cosαcosβ - sinαsinβ。

代入α = π/3,β = π/6,得cos(π/3 + π/6) = cos(π/2) = 0。

2. 答案:A解析:根据指数函数的性质,a^0 = 1,对于任何非零实数a。

3. 答案:B解析:由等差数列的通项公式an = a1 + (n - 1)d,代入a1 = 2,d = 3,n = 10,得a10 = 2 + (10 - 1)×3 = 29。

4. 答案:D解析:由等比数列的通项公式an = a1 r^(n - 1),代入a1 = 3,r = 2,n = 4,得a4 = 3 2^(4 - 1) = 48。

5. 答案:C解析:由复数的乘法运算,(a + bi)(c + di) = ac - bd + (ad + bc)i。

代入a= 1,b = 2,c = 3,d = 4,得(1 + 2i)(3 + 4i) = 13 - 24 + (14 + 23)i = -5 + 10i。

二、填空题6. 答案:-1/2解析:由一元二次方程的根的判别式Δ = b^2 - 4ac,代入a = 1,b = 3,c = -2,得Δ = 3^2 - 41(-2) = 9 + 8 = 17。

由求根公式x = (-b ± √Δ) / 2a,得x = (-3 ± √17) / 2。

因为题目要求的是负根,所以x = (-3 - √17) / 2,化简得x = -1/2。

7. 答案:π/2解析:由三角函数的性质,sin(π - α) = sinα。

代入α = π/3,得sin(π - π/3) = sin(2π/3) = √3/2。

8. 答案:3解析:由数列的求和公式S_n = n(a1 + an) / 2,代入a1 = 1,an = 2n - 1,n = 5,得S_5 = 5(1 + 25 - 1) / 2 = 5(1 + 9) / 2 = 5 5 / 2 = 25 / 2 = 3。

高三理科数学周末测试卷含答案

高三理科数学周末测试卷含答案

高三数学周末测试卷测试时间:2015.12.26本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名、考号填写在答题卷上.2.考试结束,将答题卷交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的.1.函数y =ln x的定义域为 A .(-2,1) B .[-2,1] C .(0,1) D .(0,1]2.已知复数z i 为虚数单位),则复数z 的共轭 复数为A 12i -B 12i +C iD i3.执行如图的的程序框图,若输入m =4,n =6,则输出a ,i 的值分别为A .12,3B .24,2C .24,3D .24,44.已知等比数列{n a }中,a 5+a 7=2⎰-,则a 6(a 4+2a 6+a 8)的值为 A .162π B .42π C .22π D .2π5.已知点A (1),将OA 绕坐标原点O 逆时针旋转6π至OB ,设C (1,0),∠COB =α,则tan α=A B C D6.一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为A .8B .4C .83D .437.设F 1,F 2分别为双曲线22221x y a b-=(a >b >0)的左、右焦 点,A 为双曲线的一个顶点,以F 1F 2为直径的圆交双曲线的一条渐近线于B ,C 两点,若△ABC 的面积为212c ,则 该双曲线的离心率为A .3B .2 CD8.设x ,y 满足约束条件0,20,0.x y x y x ⎧⎪⎨⎪⎩-≥+-≥≤当且仅当x =y =4时,z =ax -y 取得最小值,则实数a 的取值范围是A .[-1,1]B .(-∞,1)C .(0,1)D .(-∞,-1)∪(1,+∞)9.已知函数f (x )=cos ωx (sin ωxωx )(ω>0),如果存在实数x 0,使得对任意的实数x ,都有f (x 0)≤f (x )≤f (x 0+2016π)成立,则ω的最小值为A .12016πB .14032πC .12016D .1403210.若函数f (x )=3log (2)a x x -(a >0,且a ≠11)内恒有f (x )>0,则f (x )的单调递减区间为A .(-∞,-3,(3 B .3,+∞) C .,D .11.已知F 为抛物线2y x =4的焦点,点A ,B 在该抛物线上,OA uu r ·OB uu u r =0(其中O 为坐标原点),则△ABO 与△BFO 面积之差的最小值是A .4B .8C .D .12.已知函数f (x )=xe x,关于x 的方程2()f x +(m +1)f (x )+m +4=0(m ∈R )有四个相异的实数根,则m 的取值范围是A .(-4,-e -4e +1) B .(-4,-3) C .(-e -4e +1,-3) D .(-e -4e +1,+∞)第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.在△ABC 中,∠A =90°,AB =3,AC =2,CD uu u r =2DB uu u r 则AB uu u r ·AD uuu r =____________.14.已知△EAB 所在的平面与矩形ABCD 所在的平面互相垂直,EA =EB =3,AD =2,∠AEB =60°,则多面体E -ABCD 的外接球的表面积为___________.15.已知函数f (x )=(12-12x +1)·x ,则方程f (x -1)=f (2x -3x +2)的所有实根构成的集合的非空子集个数为_______________.16.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则下列命题正确的是____________. (填写所有正确命题的序号)①若sinAsinB =22sin C ,则0<C <4π;②若a +b >2c ,则0<C <3π; ③若444a b c +=,则△ABC 为锐角三角形;④若(a +b )c <2ab ,则C >2π. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,n S =2n a +n -3,n ∈N ﹡.(1)证明数列{n a -1}为等比数列,并求{n a }的通项公式;(2)求数列{n na }的前n 项和n T .18.(本小题满分12分)如图,在△ABC 中,∠B =30°,AC =D 是边AB 上一点.(1)求△ABC 的面积的最大值;(2)若CD =2,△ACD 的面积为4,∠ACD 为锐角,求BC 的长.19.(本小题满分12分)如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直,已知BC =4,AB =AD =2.(1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面PAC ⊥平面BCEF?若存在,求出BP PE 的值;若不存在,请说明理由.20.(本小题满分12分) 已知椭圆C 1:22221x y a b +=(a >b >0)与椭圆C 2:224x y +=1有相同的离心率,经过 椭圆C 2的左顶点作直线l ,与椭圆C 2相交于P ,Q 两点,与椭圆C 1相交于A ,B 两点.(1)若直线y =-x 经过线段PQ 的中点M ,求直线l 的方程; (2)若存在直线l ,使得PQ uu u r =13AB uu u r ,求b 的取值范围.21.(本小题满分12分)已知函数f (x )=lnx -(1)1a x x +-,曲线y =f (x )在点(12,f (12))处的切线平行于 直线y =10x +1.(1)求函数f (x )的单调区间;(2)设直线l 为函数y =lnx 图象上任意一点A (x 0,y 0)处的切线,在区间(1,+∞)上是否存在x 0,使得直线l 与曲线y =xe 也相切?若存在,满足条件的x 0有几个?22.(本小题满分10分)在直角坐标系xOy 中,直线l 经过点P (-1,0),其倾斜角为α.以原点O 为极点,以x 轴非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系,设曲线 C 的极坐标方程为2 -6ρcos θ+1=0.(1)写出直线l 的参数方程,若直线l 与曲线C 有公共点,求a 的取值范围;(2)设M (x ,y )为曲线C 上任意一点,求x +y 的取值范围.高三A段理科数学周末测试卷.doc。

高三数学周测周测(理科)及答案解析

高三数学周测周测(理科)及答案解析

高三数学周测周测(理科)及答案解析一.选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|y=lg (2﹣x )},N={y|y=+},则( )A .M ⊆NB .N ⊆MC .M=ND .N ∈M2.已知向量=(1,y ),=(﹣2,4),若⊥,则|2+|=( ) A .5 B .4 C .3 D .23.设,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a4.函数f (x )=x)(21﹣log x 21的零点所在的区间是( )A .(0,)B .(,)C .(,1)D .(1,2)5.已知菱形ABCD 的边长为4,∠DAB=60°,=3,则的值为( ) A .7B .8C .9D .106.将函数f (x )=的图象向左平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象关于x=对称,则|φ|的最小值为( )A .B .C .D .7.已知某几何体的三视图如图,则该几何体的表面积是( )A .B .C .D .8.设Sn为等差数列{an}的前n项的和a1=1,,则数列的前2017项和为()A.B.C.D.9.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n④若α⊥γ,β⊥γ,则α∥β其中正确命题的序号是()A.①和②B.②和③C.③和④D.①和④二、填空题(本题共3道小题,每小题5分,共15分)10.不共线向量,满足,且,则与的夹角为.11.如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为.12.曲线y=x2与直线y=x所围成图形的面积为.三、解答题(本题共4道小题,每题10分)13.已知函数f(x)=sinωx·cosωx﹣23+3cos2ωx(ω>0)的最小正周期为π.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)若a,b,c分别为△ABC的三内角A,B,C的对边,角A是锐角,f (A)=0,a=1,b+c=2,求△ABC的面积.14.如图,三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC ,△ABC 为等腰直角三角形,∠BAC=90°,且AB=AA 1,E 、F 分别是CC 1,BC 的中点. (1)求证:平面AB 1F ⊥平面AEF ; (2)求二面角B 1﹣AE ﹣F 的余弦值.15.如图,四棱锥P ABC -中,PA ⊥平面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN平面PAB ;(II )求四面体N BCM -的体积.16.已知数列{a n }满足a 1=1,a n+1=3a n +1(1)证明{a n +}是等比数列,并求{a n }的通项公式(2)若b n =(2n ﹣1)(2a n +1),求数列{b n }的前n 项和S n .试卷答案1.B【考点】集合的包含关系判断及应用.【分析】由题意先化简集合M,N;再确定其关系.【解答】解:∵集合M={x|y=lg(2﹣x)}=(﹣∞,2),N={y|y=+}={0},故选B.2.A【考点】向量的模.【分析】向量⊥时•=0,求出y的值,再求|2+|的值.【解答】解:向量=(1,y),=(﹣2,4),且⊥,所以•=1×(﹣2)+4y=0,解得y=;所以2+=(2,1)+(﹣2,4)=(0,5),所以|2+|=5.故选:A.【点评】本题考查了平面向量的坐标运算与数量积、模长的应用问题,是基础题目.3. A【考点】对数值大小的比较.【分析】利用指数函数、对数函数的单调性求解.【解答】解:∵,>20160=1,1>b=>=,0=log2016c=<=,∴a>b>c.a,b,c的大小关系为a>b>c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.4.C【考点】二分法的定义.【分析】根据函数零点的判断条件,即可得到结论.【解答】解:∵f(x)=()x﹣log x,∴f()=﹣log<0,f(1)=()1﹣log1>0,∴在区间(,1)内函数f(x)存在零点,故选:C.【点评】本题主要考查方程根的存在性,利用函数零点的条件判断零点所在的区间是解决本题的关键.5.C【考点】平面向量数量积的运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】由题意画出图形,把都用表示,则答案可求.【解答】解:如图,∵AB=AD=4,∠DAB=60°,=3,∴=====9.故选:C.【点评】本题考查平面向量的数量积运算,是基础的计算题.6.B【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,求得|φ|的最小值.【解答】解:将函数f(x)=的图象向左平移个单位,可得y=sin[2(x+)+φ]= sin(2x++φ)的图象;再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),可得y=sin(x++φ)的图象.根据所得图象关于x=对称,可得+φ=kπ+,即φ=kπ﹣,故|φ|的最小值为,故选:B.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,属于基础题.7.C【考点】由三视图求面积、体积.【分析】根据三视图知该几何体是底面为等腰三角形,高为2的直三棱柱,画出几何体的直观图,结合图中数据计算它的表面积即可.【解答】解:根据三视图知,该几何体是底面为等腰三角形,高为2的直三棱柱,画出几何体的直观图,如图所示,结合图中数据,计算它的表面积是S 三棱柱=2××2×1+2×2+2×2+2×2=6+8.故选:C . 8.A【考点】等差数列的性质.【分析】利用等差数列的性质,等差数列的通项公式以及前n 项和公式,求得数列用裂项法进行求和{a n }的通项公式、前n 项公式,可得数列的通项公式,进而用裂项法求得它的前2017项和.【解答】解:S n 为等差数列{a n }的前n 项的和a 1=1,设公差为d ,∵=﹣=a 1+1008d ﹣(a 1+1007d )=d ,∴a n =a 1+(n ﹣1)d=n ,S n =n •1+•1=,∴==2(﹣),则数列的前2017项和为2[1﹣+﹣+﹣+…+﹣)=2(1﹣)=,故选:A .【点评】本题主要考查等差数列的性质,等差数列的通项公式以及前n 项和公式,用裂项法进行求和,属于中档题. 9.A【考点】空间中直线与平面之间的位置关系;命题的真假判断与应用;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【分析】根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【解答】解:对于①,因为n∥α,所以经过n作平面β,使β∩α=l,可得n ∥l,又因为m⊥α,l⊂α,所以m⊥l,结合n∥l得m⊥n.由此可得①是真命题;对于②,因为α∥β且β∥γ,所以α∥γ,结合m⊥α,可得m⊥γ,故②是真命题;对于③,设直线m、n是位于正方体上底面所在平面内的相交直线,而平面α是正方体下底面所在的平面,则有m∥α且n∥α成立,但不能推出m∥n,故③不正确;对于④,设平面α、β、γ是位于正方体经过同一个顶点的三个面,则有α⊥γ且β⊥γ,但是α⊥β,推不出α∥β,故④不正确.综上所述,其中正确命题的序号是①和②故选:A10.【考点】9S:数量积表示两个向量的夹角.【分析】设与的夹角为θ,利用两个向量垂直的性质,两个向量数量积的定义,求得cosθ的值,可得θ的值.【解答】解:设与的夹角为θ,∵不共线向量,满足,且,则θ∈(0,π),∴(﹣2)=﹣2=﹣2||•||cosθ=﹣2cosθ=0,∴cosθ=,∴θ=,故答案为:.11.34π【考点】简单空间图形的三视图;球的体积和表面积.【分析】由三视图知,该几何体是一个侧面与底面垂直的三棱锥,画出直观图,再建立空间直角坐标系,求出三棱锥外接球的球心与半径,从而求出外接球的表面积.【解答】解:由三视图知,该几何体是三棱锥S﹣ABC,且三棱锥的一个侧面SAC与底面ABC垂直,其直观图如图所示;由三视图的数据可得OA=OC=2,OB=OS=4,建立空间直角坐标系O﹣xyz,如图所示;则A(0,﹣2,0),B(4,0,0),C(0,2,0),S(0,0,4),则三棱锥外接球的球心I在平面xOz上,设I(x,0,z);由得,,解得x=z=;∴外接球的半径R=|BI|==,∴该三棱锥外接球的表面积S=4πR2=4π×=34π.故答案为:34π.【点评】本题考查了由三视图求几何体外接球的表面积,解题的关键是判断几何体的形状及外接球的半径,是综合性题目.12.【考点】定积分在求面积中的应用.【分析】先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为1,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为1,积分下限为0 直线y=x 与曲线y=x 2所围图形的面积S=∫01(x ﹣x 2)dx而∫01(x ﹣x 2)dx=(﹣)|01=﹣=∴曲边梯形的面积是故答案为:.13.【考点】余弦定理;三角函数中的恒等变换应用;正弦函数的图象;正弦定理.【分析】(Ⅰ)由已知利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2ωx+),利用周期公式可求ω,可得函数解析式,进而由2kπ﹣≤2x+≤2kπ+,(k∈Z),可得f(x)的单调递增区间.(Ⅱ)由,又角A是锐角,可求A的值,利用余弦定理可求bc=1,根据三角形面积公式即可计算得解.【解答】(本题满分为12分)解:(Ⅰ)=,…∴T==π,从而可求ω=1,…∴f(x)=sin(2x+)…由2kπ﹣≤2x+≤2kπ+,(k∈Z),可得:,所以f(x)的单调递增区间为:.…(Ⅱ)∵f(A)=0,∴,又角A是锐角,∴,∴,即.…又a=1,b+c=2,所以a2=b2+c2﹣2bc•cosA=(b+c)2﹣3bc,∴1=4﹣3bc,∴bc=1.…∴.…14.【考点】与二面角有关的立体几何综合题;平面与平面垂直的判定.【分析】(1)连结AF,由已知条件推导出面ABC⊥面BB1C1C,从而AF⊥B1F,由勾股定理得B1F⊥EF.由此能证明平面AB1F⊥平面AEF.(2)以F为坐标原点,FA,FB分别为x,y轴建立直角坐标系,利用向量法能求出二面角B1﹣AE﹣F的余弦值.【解答】(1)证明:连结AF,∵F是等腰直角三角形△ABC斜边BC的中点,∴AF⊥BC.又∵三棱柱ABC﹣A1B1C1为直三棱柱,∴面ABC⊥面BB1C1 C,∴AF⊥面BB1C1C,AF⊥B1F.…设AB=AA1=1,则,EF=,.∴=,∴B1F⊥EF.又AF∩EF=F,∴B1F⊥平面AEF.…而B1F⊂面AB1F,故:平面AB1F⊥平面AEF.…(2)解:以F为坐标原点,FA,FB分别为x,y轴建立直角坐标系如图,设AB=AA1=1,则F(0,0,0),A(),B1(0,﹣,1),E(0,﹣,),, =(﹣,,1).…由(1)知,B1F⊥平面AEF,取平面AEF的法向量:=(0,,1).…设平面B1AE的法向量为,由,取x=3,得.…设二面角B 1﹣AE ﹣F 的大小为θ,则cos θ=|cos <>|=||=.由图可知θ为锐角,∴所求二面角B 1﹣AE ﹣F 的余弦值为.…15.(Ⅱ)因为⊥PA 平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为PA 21. ....9分 取BC 的中点E ,连结AE .由3==AC AB 得BC AE ⊥,522=-=BE AB AE .由BC AM ∥得M 到BC 的距离为5,故525421=⨯⨯=∆BCM S . 所以四面体BCM N -的体积354231=⨯⨯=∆-PA S V BCM BCM N . .....12分【考点】LF :棱柱、棱锥、棱台的体积;LM :异面直线及其所成的角.【分析】(1)以A 为原点建立空间坐标系,求出,的坐标,利用向量的夹角公式得出AD ,EF 的夹角;(2)证明AE ⊥平面DEF ,求出AE 和S △DEF ,代入体积公式计算.【解答】解:(1)以A 为坐标原点,AB 、AC 、AA 1分别为x 轴,y 轴,z 轴建立空间直角坐标系.依题意有D (2,2,4),A (0,0,0),E (2,2,0),F (0,4,2),所以.设异面直线AD 、EF 所成角为α,则==,所以,即异面直线AD 、EF 所成角的大小为.(2)∵AB=AC=4,AB ⊥AC ,∴,,DE=AA 1=4,∴S △DEF ==4,由E 为线段BC 的中点,且AB=AC , ∴AE ⊥BC ,又BB 1⊥面ABC ,∴AE ⊥BB 1, ∴AE ⊥面BB 1C 1C ,∴,∴三棱锥D ﹣AEF 的体积为.16.【考点】等比数列的前n 项和;等比数列的通项公式.【分析】(1)由已知得a n+1+=3(a n +),=,从而能证明{a n +}是首项为,公比为3的等比数列.并能求出{a n }的通项公式.(2)由b n =(2n ﹣1)(2a n +1)=(2n ﹣1)•3n .利用错位相减法能求出数列{b n }的前n 项.【解答】证明:(1)∵数列{a n }满足a 1=1,a n+1=3a n +1,∴a n+1+=3(a n +),又=,∴{a n +}是首项为,公比为3的等比数列.∴==,∴{a n }的通项公式.(2)b n =(2n ﹣1)(2a n +1)=(2n ﹣1)•3n . ∴数列{b n }的前n 项和:S n =1•3+3•32+5•33+…+(2n ﹣1)•3n ,① 3S n =1•32+3•33+5•34+…+(2n ﹣1)•3n+1,②①﹣②,得:﹣2S n =3+2(32+33+34+…+3n )﹣(2n ﹣1)•3n+1=3+2×﹣(2n ﹣1)•3n+1=﹣6﹣(2n﹣2)•3n+1,=(n﹣1)•3n+1+3.∴Sn。

2023年高考数学一轮复习(新高考地区专用)6-6 分布列基础(精练)(解析版)

2023年高考数学一轮复习(新高考地区专用)6-6 分布列基础(精练)(解析版)

6.6 分布列基础(精练)(基础版)1.(2022·云南·昆明市第一中学西山学校)国家“双减”政策落实之后,某市教育部门为了配合“双减”工作,做好校园课后延时服务,特向本市小学生家长发放调查问卷了解本市课后延时服务情况,现从中抽取100份问卷,统计了其中学生一周课后延时服务总时间(单位:分钟),并将数据分成以下五组:[)[)[)[)[]100,120,120,140,140,160,160,180,180,200,得到如图所示的频率分布直方图.(1)根据如图估计该市小学生一周课后延时服务时间的众数、平均数、中位数(保留小数点后一位);(2)通过调查分析发现,若服务总时间超过160分钟,则学生有不满情绪,现利用分层随机抽样的方法从样本问卷中随机抽取8份,再从抽取的8份问卷中抽取3份,记其中有不满情绪的问卷份数为X ,求X 的分布列及均值.【答案】(1)150,151,150.9;(2)分布列见解析,34.【解析】(1)众数:150;第1到5组频率分别为:0.05,0.15,0.55,0.2,0.05,平均数:1100.051300.151500.551700.21900.05151x =⨯+⨯+⨯+⨯+⨯=, 设中位数为x ,则中位数在第3组,则()0.21400.02750.5x +-⨯=,150.9x ≈; (2)用分层随机抽样抽取8份问卷,其中学生有不满情绪的有8×(0.2+0.05)=2份,∴X 的可能取值为0,1,2,∴()306238C C 5C 140P X ===,()216238C C 15C 281P X ===,()126238C C 3C 282P X ===,∴X 的分布列为:题组一 超几何分布∴()515330121428284E X =⨯+⨯+⨯=. 2.(2022·北京·高三专题练习)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X 表示学生的考核成绩,并规定85X >为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:.(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核为优秀的概率;(2)从图中考核成绩满足[]70,79X ∈的学生中任取3人,设Y 表示这3人中成绩满足8510X -≤的人数,求Y 的分布列和数学期望;(3)根据以往培训数据,规定当8510.510X P ⎛-⎫≤≥⎪⎝⎭时培训有效.请你根据图中数据,判断此次冰雪培训活动是否有效,并说明理由.【答案】(1)15(2)分布列见解析,()158E Y = (3)有效,理由见解析 【解析】(1)解:设该名学生的考核成绩优秀为事件A ,由茎叶图中的数据可知,30名同学中,有6名同学的考核成绩为优秀,故()15P A =. (2)解:由8510X -≤可得7595X ≤≤,所以,考核成绩满足[]70,79X ∈的学生中满足8510X -≤的人数为5,故随机变量Y 的可能取值有0、1、2、3,()3338C 10C 56P Y ===,()213538C C 151C 56P Y ===,()123538C C 152C 28P Y ===,()3538C 53C 28P Y ===,所以,随机变量Y 的分布列如下表所示:因此,()115155150123565628288E Y =⨯+⨯+⨯+⨯=. (3)解:由85110X -≤可得7595X ≤≤,由茎叶图可知,满足7595X ≤≤的成绩有16个, 所以851610.51030X P ⎛-⎫≤=≥⎪⎝⎭,因此,可认为此次冰雪培训活动有效. 3.(2022·宁夏中卫·三模(理))共享电动车(sharedev )是一种新的交通工具,通过扫码开锁,实现循环共享.某记者来到中国传媒大学探访,在校园喷泉旁停放了10辆共享电动车,这些电动车分为荧光绿和橙色两种颜色,已知从这些共享电动车中任取1辆,取到的是橙色的概率为0.4P =,若从这些共享电动车中任意抽取3辆.(1)求取出的3辆共享电动车中恰好有一辆是橙色的概率;(2)求取出的3辆共享电动车中橙色的电动车的辆数X 的分布列与数学期望. 【答案】(1)12;(2)分布列见解析,数学期望为65.【解析】(1)因为从10辆共享电动车中任取一辆,取到橙色的概率为0.4,所以橙色的电动车有4辆,荧光绿的电动车有6辆.记A 为“从中任取3辆共享单车中恰好有一辆是橙色”,则()2164310C C 1C 2P A ⨯==. (2)随机变量X 的所有可能取值为0,1,2,3.所以()3064310C C 10C 6P X ⨯===,()2164310C C 11C 2P X ⨯===, ()()1264310C C 32C 10P X P A ⨯====,()0364310C C 13C 30P X ⨯===.所以分布列为数学期望()1131601236210305E X =⨯+⨯+⨯+⨯=.4.(2022·广东·华南师大附中三模)“双减”政策实施后,为了解某地中小学生周末体育锻炼的时间,某研究人员随机调查了600名学生,得到的数据统计如下表所示:(1)估计这600名学生周末体育锻炼时间的平均数t ;(同一组中的数据用该组区间的中点值作代表) (2)在这600人中,用分层抽样的方法,从周末体育锻炼时间在[)40,60内的学生中抽取15人,再从这15人中随机抽取3人,记这3人中周末体育锻炼时间在[)50,60内的人数为X ,求X 的分布列以及数学期望()E X . 【答案】(1)58.5;(2)分布列答案见解析,数学期望:95.【解析】(1)估计这600名学生周末体育锻炼时间的平均数 350.1450.2550.3650.15750.15850.158.5t =⨯+⨯+⨯+⨯+⨯+⨯=.(2)依题意,周末体育锻炼时间在[)40,50内的学生抽6人,在[)50,60内的学生抽9人,则()363154091C P X C ===,()216931527191C C P X C ===,()12693152162455C C P X C ===,()3931512365C P X C ===,故X 的分布列为: 则()42721612901239191455655E X =⨯+⨯+⨯+⨯=. 5.(2022·云南保山·模拟预测(理))某高中学校为了解学生的课外体育锻炼时间情况,在全校学生中随机抽取了200名学生进行调查,并将数据分成六组,得到如图所示的频率分布直方图.将平均每天课外体育锻炼时间在[40,60)上的学生评价为锻炼达标,将平均每天课外体育锻炼时间在[0,40)上的学生评价为锻炼不达标(1)根据频率分布直方图估计这200名学生每天课外体育锻炼时间的众数、中位数;(2)为了了解学生课外体育锻炼时间不达标的原因,从上述锻炼不达标的学生中按分层抽样的方法抽取10人,再从这10人中随机抽取3人,记这三人中每天课外体育锻炼时间在[0,20)的人数为ξ,求ξ的分布列和数学期望.【答案】(1)中位数为28.125,众数等于25(2)分布列见解析,0.9【解析】(1)众数就是直方图中最高矩形底边中点的横坐标,则样本众数等于25.由频率分布直方图可得,在[0,10)上的频率为0.08,在[10,20)上的频率为0.16,在[20,30)上的频率为0.32,0.080.160.50.080.160.32<<+++,则中位数在区间[20,30)上.设中位数为0x ,则()00.24200.0320.5+-⨯=x ,028.125x =,即样本中位数为28.125.(2)根据题意,在[0,10),[10,20),[20,30),[30,40)上抽取的人数分别为1,2,4,3,其中在[0,20)上抽取的人数为3,则0ξ=,1,2,3.3127373310103576321(0),(1),1202412040ξξ⨯========C C C P P C C , 2133733310102171(2),(3)12040120C C C P P C C ξξ=====⨯==. 从而得到随机变量ξ的分布列如下表:随机变量ξ的期望72171()01230.9244040120E ξ=⨯+⨯+⨯+⨯=6.(2022·北京市朝阳区人大附中朝阳分校模拟预测)自“新型冠状肺炎”疫情爆发以来,科研团队一直在积极地研发“新冠疫苗”.在科研人员不懈努力下,我国公民率先在2020年年末开始使用安全的新冠疫苗,使我国的“防疫”工作获得更大的主动权.研发疫苗之初,为了测试疫苗的效果,科研人员以白兔为实验对象,进行了一些实验:(1)实验一:选取10只健康白兔,编号1至10号,注射一次新冠疫苗后,再让它们暴露在含有新冠病毒的环境中,实验结果发现:除2号、3号、7号和10号四只白兔仍然感染了新冠病毒,其他白兔未被感染.现从这10只白兔中随机抽取3只进行研究,将仍被感染的白兔只数记作X ,求X 的分布列和数学期望.(2)实验二:疫苗可以再次注射第二针、加强针,但两次疫苗注射时间间隔需大于三个月.科研人员对白兔多次注射疫苗后,每次注射的疫苗对白兔是否有效互相不影响.试问:若将实验一中未被感染新冠病毒的白兔的频率当做疫苗的有效率,那么一只白兔注射两次疫苗后的有效率能否保证达到90%?如若可以,请说明理由;若不可以,请你参考上述实验给出注射疫苗后有效率在90%以上的建议. 【答案】(1)分布列见解析;数学期望()65E X =; (2)无法保证;建议:需要将注射一次疫苗的有效率提高到90%以上. 【解析】(1)由题意得:X 所有可能的取值为0,1,2,3,()3631020101206C P X C ∴====;216431060111202C C P XC ; 1264310363212010C C P X C ;3431041312030C P XC ; X ∴的分布列为:∴数学期望()1131601236210305E X =⨯+⨯+⨯+⨯=; (2)由已知数据知:实验一中未被感染新冠病毒的白兔的频率为0.6,则注射一次疫苗的有效率为0.6, ∴一只白兔注射两次疫苗的有效率为:()2110.60.8484%90%--==<, ∴无法保证一只白兔注射两次疫苗后的有效率达到90%;设每支疫苗有效率至少达到x 才能满足要求,()21190%x ∴--≥,解得:0.990%x ≥=,∴需要将注射一次疫苗的有效率提高到90%以上才能保证一只白兔注射两次疫苗后的有效率达到90%.7.(2022·全国·高三专题练习(理))高二年级某班学生在数学校本课程选课过程中,已知第一小组与第二小组各有六位同学.每位同学都只选了一个科目,第一小组选《数学运算》的有1人,选《数学解题思想与方法》的有5人,第二小组选《数学运算》的有2人,选《数学解题思想与方法》的有4人,现从第一、第二两小组各任选2人分析选课情况.(1)求选出的4 人均选《数学解题思想与方法》的概率;(2)设ξ为选出的4个人中选《数学运算》的人数,求ξ的分布列和数学期望. 【答案】(1)415(2)分布列见解析,期望为1 【解析】(1)解:设“从第一小组选出的2人选《数学解题思想与方法》”为事件A ,“从第二小组选出的2人选《数学解题思想与方法》”为事件B ,由于事 件A 、B 相互独立,且22542266C C 22(),()C 3C 5P A P B ====, 所以选出的4人均选《数学解题思想与方法》的概率为224()()()3515P A B P A P B ⋅=⋅=⨯=.(2)解:由题意,随机变量ξ可能的取值为0,1,2,3,可得4(0)15P ξ==,211125524422226666C C C C C 22(1)C C C C 45P ξ==⋅+⋅=,152266C 11(3)C C 45P ξ==⋅=,2(2)1(0)(1)(3)9P P P P ξξξξ==-=-=-==, 所以随机变量ξ的分布列为:ξ0 1 23 P415224529145所以随机变量ξ的数学期望 42221012311545945E ξ=⨯+⨯+⨯+⨯=. 1.(2022·北京·人大附中三模)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图: 组号分组频数1[)0,262 [)2,48题组二 二项分布每周课外阅读时间小于6小时的学生我们称之为“阅读小白”,大于等于6小时且小于12小时的学生称之为“阅读新手”,阅读时间大于等于12小时的学生称之为“阅读达人”.(1)从样本中随机选取一名学生,已知这名学生的阅读时间大于等于6小时,问这名学生是“阅读达人”概率; (2)从该校学生中选取3人,用样本的频率估计概率,记这3人中“阅读新手和阅读小白”的人数和为X ,求X 的分布列和数学期望;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论) 【答案】(1)1069(2)分布列答案见解析,()2710E X =(3)第4组【解析】(1)解:从样本中随机选取一名学生,其中阅读时间大于等于6小时的学生人数为1003169-=, “阅读达人”的学生人数为10,故所求概率为1069. (2)解:从该校学生中任选一人,该学生是“阅读小白”或“阅读新人”的概率为90910010=, 所以,9~3,10X B ⎛⎫ ⎪⎝⎭,则()3110101000P X ⎛⎫=== ⎪⎝⎭,()397293101000P X ⎛⎫=== ⎪⎝⎭,()21391271C 10101000P X ⎛⎫==⋅⋅= ⎪⎝⎭,()223912432C 10101000P X ⎛⎫==⋅⋅= ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:()927310100E X =⨯=. (3)解:样本中的100名学生该周课外阅读时间的平均数为10.0630.0850.1770.2290.25110.12130.06150.02170.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=7.68.因此,样本中的100名学生该周课外阅读时间的平均数在第4组.2.(2022·安徽·合肥一六八中学模拟预测(理))《关于加快推进生态文明建设的意见》,正式把“坚持绿水青山就是金山银山”的理念写进中央文件,成为指导中国加快推进生态文明建设的重要指导思想.为响应国家号召,某市2020年植树节期间种植了一批树苗,2022年市园林部门从这批树苗中随机抽取100棵进行跟踪检测,得到树高的频率分布直方图如图所示:(1)求树高在225-235cm 之间树苗的棵数,并求这100棵树苗树高的平均值;(2)若将树高以等级呈现,规定:树高在185-205cm 为合格,在205-235为良好,在235-265cm 为优秀.视该样本的频率分布为总体的频率分布,若从这批树苗中机抽取3棵,求树高等级为优秀的棵数ξ的分布列和数学期望.【答案】(1)15;220.5(2)分布列见解析;期望为0.6【解析】(1)树高在225-235cm 之间的棵数为:()10010.00530.0150.02000250.011015⎡⎤⨯-⨯++++⨯=⎣⎦..树高的平均值为:0.051900.152000.22100.252200.152300.12400.052500.05260220.5⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(2)由(1)可知,树高为优秀的概率为:0.10.050.050.2++=, 由题意可知()~3,0.2B ξ,则ξ的所有可能取值为0,1,2,3,()0330C 0.80.512P ξ===, ()1231C 0.80.20.384P ξ==⨯=, ()2232C 0.80.20.096P ξ==⨯=,()3333C 0.20.008P ξ===,故ξ的分布列为:因为()~3,0.2B ξ,所以()30.20.6E ξ=⨯=3.(2022·新疆克拉玛依·三模(理))第24届北京冬季奥林匹克运动会于2022年2月4日至2月20日在北京和张家口联合举办.这是中国历史上第一次举办冬季奥运会,它掀起了中国人民参与冬季运动的大热潮.某市举办了中学生滑雪比赛,从中抽取40名学生的测试分数绘制成茎叶图和频率分布直方图如下,后来茎叶图受到了污损,可见部分信息如图.(1)求频率分布直方图中的a 值,并根据直方图估计该市全体中学生的测试分数的中位数和平均数(同一组中的数据以这组数据所在区间中点的值作代表,结果保留一位小数);(2)将频率作为概率,若从该市全体中学生中抽取4人,记这4人中测试分数不低于90分的人数为X ,求X 的分布列及数学期望.【答案】(1)0.02a =,中位数为74.3,平均数为74.5;(2)分布列见解析,25.【解析】(1)由频率分布直方图和茎叶图知,测试分数在[50,60),[60,70),[70,80),[90,100]的频率依次为:0.1,0.25,0.35,0.1,因此,测试分数位于[)80,90的频率为10.10.250.350.10.2----=,则0.20.0210a ==, 显然测试分数的中位数t 在区间[70,80)内,则有:()700.0350.50.10.25t -⨯=--,解得:74.3t ≈, 测试分数的平均数为:550.1650.25750.35850.2950.174.5⨯+⨯+⨯+⨯+⨯=. (2)测试分数不低于90分的频率为110,X 的所有可能值是:0,1,2,3,4, 显然1(4,)10XB ,()4419C ()(),N,41010k k k P X k k k -==∈≤, 所以X 的分布列为:数学期望()124105E X =⨯=. 4.(2022·全国·模拟预测)为了中国经济的持续发展制定了从2021年2025年发展纲要,简称“十四五”规划,为了普及“十四五”的知识,某党政机关举行“十四五”的知识问答考试,从参加考试的机关人员中,随机抽取100名人员的考试成绩的部分频率分布直方图,其中考试成绩在[)70,80上的人数没有统计出来.(1)估算这次考试成绩的平均分数;(2)把上述的频率看作概率,把考试成绩的分数在[]80,100的学员选为“十四五”优秀宣传员,若从党政机关所有工作人员中,任选3名工作人员,其中可以作为优秀宣传员的人数为ξ,求ξ的分布列与数学期望.【答案】(1)70.5(2)分布列见解析,数学期望为0.9【解析】(1)设分数在[)70,80内的频率为x ,根据频率分布直方图得,()0.010.0150.020.0250.005101x ++++⨯+=,解得0.25x =,可知分数在[)70,80内的频率为0.25,则考试成绩的平均分数为450.10550.15650.2750.25850.25950.0570.5⨯+⨯+⨯+⨯+⨯+⨯=.(2)根据频率分布直方图可知考试成绩在[]80,100的频率为()0.0250.005100.3+⨯=,则0,1,2,3ξ=.()003334300.30.71000P C ξ==⨯=,()12344110.30.71000P C ξ==⨯=()22318920.30.71000P C ξ==⨯=,()3332730.31000P C ξ===,故随机变量ξ的分布列为因为该分布为二项分布,所以该随机变量的数学期望为()30.30.9E ξ=⨯=.5.(2022·江苏苏州·模拟预测)如图,在数轴上,一个质点在外力的作用下,从原点O 出发,每次等可能地向左或向右移动一个单位,质点到达位置的数字记为X .(1)若该质点共移动2次,位于原点O 的概率;(2)若该质点共移动6次,求该质点到达数字X 的分布列和数学期望. 【答案】(1)12;(2)分布列见解析,0.【解析】(1)质点移动2次,可能结果共有224⨯=种,若质点位于原点O ,则质点需要向左、右各移动一次,共有12C 2=种,故质点位于原点O 的概率2142P ==. (2)质点每次移动向左或向右,设事件A 为“向右”,则A 为“向左”,故1()()2P A P A ==, 设Y 表示6次移动中向左移动的次数,则1(6,)2Y B ,质点到达的数字62X Y =-,所以06611(6)(0)C ()264P X P Y =====,16613(4)(1)C ()232P X P Y =====,266115(2)(2)C ()264P X P Y =====, 36615(0)(3)C ()216P X P Y =====,466115(2)(4)C ()264P X P Y =-====, 56613(4)(5)C ()232P X P Y =-====,66611(6)(6)C ()264P X P Y =-====, 所以X 的分布列为:1()(62)2()626602E X E Y E Y =-=-+=-⨯⨯+=.6.(2022·北京通州·模拟预测)第24届冬季奥林匹克运动会,于2022年2月在北京市和张家口市联合举行.某校寒假期间组织部分滑雪爱好者参加冬令营集训.训练期间,冬令营的同学们都参加了“单板滑雪”这个项目相同次数的训练测试,成绩分别为A 、B 、C 、D 、E 五个等级,分别对应的分数为5、4、3、2、1.甲、乙两位同学在这个项目的测试成绩统计结果如图所示.(1)根据上图判断,甲、乙两位同学哪位同学的单板滑雪成绩更稳定?(结论不需要证明) (2)求甲单板滑雪项目各次测试分数的众数和平均数;(3)若甲、乙再同时参加两次测试,设甲的成绩为4分并且乙的成绩为3分或4分的次数为X ,求X 的分布列(频率当作概率使用).【答案】(1)乙比甲的单板滑雪成绩更稳定 (2)众数为3分,平均数为2.9分 (3)分布列答案见解析【解析】(1)解:由图可知,乙比甲的单板滑雪成绩更稳定.(2)解:因为甲单板滑雪项目测试中4分和5分成绩的频率之和为0.325, 3分成绩的频率为0.375,所以,甲单板滑雪项目各次测试分数的众数为3分,测试成绩2分的频率为10.20.3750.250.0750.1----=,所以,甲单板滑雪项目各次测试分数的平均数为10.220.130.37540.2550.075 2.9⨯+⨯+⨯+⨯+⨯=. (3)解:由题意可知,在每次测试中,甲的成绩为4分,并且乙的成绩为3分或4分的概率为30.250.375216⨯⨯=, 依题意,3~2,16X B ⎛⎫ ⎪⎝⎭,所以,()2131********P X ⎛⎫=== ⎪⎝⎭,()12313391C 1616128P X ==⋅⋅=,()239216256P X ⎛⎫=== ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:X0 1 2 P1692563912892561.(2022·全国·高三专题练习(理))冰壶是2022年2月4日至2月20日在中国举行的第24届冬季奥运会的比赛项目之一.冰壶比赛的场地如图所示,其中左端(投掷线MN 的左侧)有一个发球区,运动员在发球区边沿的投掷线MN 将冰壶掷出,使冰壶沿冰道滑行,冰道的右端有一圆形的营垒,以场上冰壶最终静止时距离营垒区圆心O 的远近决定胜负,甲、乙两人进行投掷冰壶比赛,规定冰壶的重心落在圆O 中,得3分,冰壶的重心落在圆环A 中,得2分,冰壶的重心落在圆环B 中,得1分,其余情况均得0分.已知甲、乙投掷冰壶的结果互不影响,甲、乙得3分的概率分别为13,14;甲、乙得2分的概率分别为25,12;甲、乙得1分的概率分别为15,16.(1)求甲所得分数大于乙所得分数的概率;(2)设甲、乙两人所得的分数之差的绝对值为X ,求X 的分布列和期望.题组三 独立重复实验【答案】(1)1130(2)分布列见解析,期望为:169180【解析】(1)由题意知甲得0分的概率为1211135515---=,乙得0分的概率为1111142612---=,甲所得分数大于乙所得分数分为:甲得3分乙得2或1或0分,甲得2分乙得1或0分,甲得1分乙得0分所以所求概率为1121111(1)()3456125123011⨯-+⨯++⨯=.(2)X 可能取值为0,1,2,3,()11211111290345256151290P X ==⨯+⨯+⨯+⨯=()112111111111++35565251283246121805P X ==⨯+⨯+⨯+⨯⨯⨯=()11111121231215180P X ==⨯+⨯+⨯+⨯=()11211121545334P X ==⨯+⨯=所以,随机变量X 的分布列为:所以()298331216918001239018018405E X =⨯+⨯+⨯+⨯= 2.(2022·全国·高三专题练习(理))为弘扬奥运精神,某校开展了“冬奥”相关知识趣味竞赛活动.现有甲、乙两名同学进行比赛,共有两道题目,一次回答一道题目.规则如下:∴抛一次质地均匀的硬币,若正面向上,则由甲回答一个问题,若反面向上,则由乙回答一个问题.∴回答正确者得10分,另一人得0分;回答错误者得0分,另一人得5分.∴若两道题目全部回答完,则比赛结束,计算两人的最终得分.已知甲答对每道题目的概率为45,乙答对每道题目的概率为35,且两人每道题目是否回答正确相互独立.(1)求乙同学最终得10分的概率;(2)记X 为甲同学的最终得分,求X 的分布列和数学期望. 【答案】(1)37100(2)分布列见解析,X 的数学期望为10【解析】(1)记“乙同学最终得10分”为事件A ,则可能情况为甲回答两题且错两题;甲、乙各答一题且各对一题;乙回答两题且对一题错一题, 则()1111141313123722252525252525100P A =⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=,所以乙同学得10分的概率是37100. (2)甲同学的最终得分X 的所有可能取值是0,5,10,15,20. ()1111111313131640225252525252510025P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯==,()111213121645222525252510025P X ==⨯⨯⨯⨯+⨯⨯⨯⨯==,()141114*********102225252525252510025P X ==⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯==,()1412164152252510025P X ==⨯⨯⨯⨯==,()141416420252510025P X ==⨯⨯⨯==.X 的分布列为()4191105101520102525252525E X =⨯+⨯+⨯+⨯+⨯=,所以X 的数学期望为10. 3.(2022·青海·海东市第一中学模拟预测(理))“民族要复兴,乡村必振兴”,为了加强乡村振兴宣传工作,让更多的人关注乡村发展,某校举办了有关城乡融合发展、人与自然和谐共生的知识竞赛.比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行,每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为35,且相互间没有影响.(1)求选手甲被淘汰的概率;(2)设选手甲在初赛中答题的个数为X ,试求X 的分布列和数学期望. 【答案】(1)9923125(2)分布列见解析,2541625【解析】(1)设“选手甲被淘汰”为事件A ,因为甲答对每个题的概率均为35,所以甲答错每个题的概率均为25.则甲答了3题都错,被淘汰的概率为33328C 5125⎛⎫= ⎪⎝⎭;甲答了4个题,前3个1对2错,被淘汰的概率为22323272C 555625⎛⎫⨯⨯= ⎪⎝⎭;甲答了5个题,前4个2对2错,被淘汰的概率为2224322432C 5553125⎛⎫⎛⎫⋅⨯= ⎪⎪⎝⎭⎝⎭. 所以选手甲被海的概率()87243299212562531253125P A =++=. (2)易知X 的可能取值为3,4,5,对应甲被淘汰或进入复赛的答题个数,则()3333333273C C 5525P X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,()2222333232322344C C 555555625P X ⎛⎫⎛⎫==⨯⨯+⨯⨯=⎪ ⎪⎝⎭⎝⎭, ()2224322165C 55625P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭. X 的分布列为则()7234216256225413456255625E X =⨯+⨯+⨯=. 4.(2022·湖南·长沙一中模拟预测)某靶场有A ,B 两种型号的步枪可供选用,其中甲使用A B ,两种型号的步枪的命中率分别为14,13;,(1)若出现连续两次子弹脱靶或者子弹打光耗尽的现象便立刻停止射击,若击中标靶至少3次,则可以获得一份精美礼品,若甲使用B 型号的步枪,并装填5发子弹,求甲获得精美礼品的概率;(2)现在A B ,两把步枪中各装填3发子弹,甲打算轮流使用A B ,两种步枪进行射击,若击中标靶,则继续使用该步枪,若未击中标靶,则改用另一把步枪,甲首先使用A 种型号的步枪,若出现连续两次子弹脱靶或者其中某一把步枪的子弹打光耗尽的现象便立刻停止射击,记X 为射击的次数,求X 的分布列与数学期望. 【答案】(1)1381(2)分布列见解析;X 的数学期望为3512.【解析】(1)甲击中5次的概率为513⎛⎫ ⎪⎝⎭1243=,甲击中4次的概率为14511C (1)()33-⋅10243=,甲击中3次的概率为()322511C 3133⎛⎫⎛⎫-⋅- ⎪⎪⎝⎭⎝⎭28243=, 所以甲获得精美礼品的概率为11028391324324324324381++==. (2)X 的所有可能取值为2,3,4,5,(2)P X =11(1)(1)43=--321432=⨯=,(3)P X ==111113(1)(1)14434416⨯--+⨯⨯=,(4)P X ==1111111(1)1(1)(1)(1)4334334-⨯⨯⨯+-⨯⨯-⨯-524=,11111111(5)(1)(1)1(1)(1)144334334P X ==⨯-⨯⨯-⨯+-⨯⨯-⨯⨯1111(1)14433+⨯-⨯⨯⨯548=,所以X 的分布列为:所以1355()23452162448E X =⨯+⨯+⨯+⨯3512=. 5.(2022·全国·二模(理))“百年征程波澜壮阔,百年初心历久弥坚”.为庆祝中国建党一百周年,哈市某高中举办了“学党史、知党情、跟党走”的党史知识竞赛.比赛分为初赛和决赛两个环节,通过初赛选出两名同学进行最终决赛.若该高中A ,B 两名学生通过激烈的竞争,取得了初赛的前两名,现进行决赛.规则如下:设置5轮抢答,每轮抢到答题权并答对则该学生得1分,答错则对方得1分.当分差达到2分或答满5轮时,比赛结束,得分高者获胜.已知A ,B 每轮均抢答且抢到答题权的概率分别为23,13,A ,B 每一轮答对的概率都为12,且两人每轮是否回答正确均相互独立. (1)求经过2轮抢答A 赢得比赛的概率;:(2)设经过抢答了X 轮后决赛结束,求随机变量X 的分布列和数学期望.【答案】(1)14(2)分布列见解析;期望为134【解析】(1)记事件C 为“经过2轮抢答A 赢得比赛” A 学生每轮得一分的概率()2111132322P A =⨯+⨯=,B 学生每轮得一分的概率()1121132322P B =⨯+⨯=,()21124P C ⎛⎫== ⎪⎝⎭,所以经过2轮抢答A 赢得比赛的概率为14.(2)X 的可能取值为2,4,5.2轮比赛甲赢或乙赢的概率为()2221122C 22P X ⎛⎫=== ⎪⎝⎭,4轮比赛甲赢或乙赢的概率为()121111142C 22224P X ==⨯⨯⨯=, 5轮比赛甲赢或乙赢的概率为()11151424P X ==--=.X 的分布列为:()111132452444E X =⨯+⨯+⨯=,数学期望为134.6.(2022·湖南·长沙市明德中学二模)沙滩排球是一项每队由两人组成的两队在由球网分开的沙地上进行比赛的运动.它有多种不同的比赛形式以适应不同人、不同环境下的比赛需求.国家沙滩排球队为备战每年一次的世界沙滩排球巡回赛,在文昌高隆沙湾国家沙滩排球训练基地进行封闭式训练.在某次训练中,甲、乙两队进行对抗赛,每局依次轮流发球(每队不能连续发球),连续赢得2个球的队获胜并结束该局比赛,并且每局不得超过5个球.通过对甲、乙两队过去对抗赛记录的数据分析,甲队发球甲队赢的概率为23,乙队发球甲队赢的概率为12,每一个球的输赢结果互不影响,已知某局甲先发球. (1)求该局第二个球结束比赛的概率;(2)若每赢1个球记2分,每输一个球记0分,记该局甲队累计得分为ξ,求ξ的分布列及数学期望. 【答案】(1)12(2)分布列见解析,18754【解析】(1)记:“甲队发球甲队赢”为事件A ,“乙队发球甲队赢”为事件B ,“第二个球结束比赛”为事件C ,则()23P A =,()12P B =,()()1132P A P B ==,,C AB AB =,因为事件AB 与AB 互斥,所以()()()()P C P ABAB P AB P AB ==+()()()()P A P B P A P B =+2111132322=⨯+⨯=,所以该局第二个球结束比赛的概率为12.(2)依题意知随机变量ξ的所有可能取值为0246,,, ()()()()1110326P P AB P A P B ξ====⨯=;()()()()2P P ABA ABAB P ABA P ABAB ξ===+21111115323323236=⨯⨯+⨯⨯⨯=; ()()4P P AB ABAABABAABABA ξ==()()()()P AB P ABA P ABABA P ABABA=+++21112111112121153++=323233232332323108=⨯+⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯; ()()()()()6P P ABAB ABABA ABABA P ABAB P ABABA P ABABAξ===++21212121211112113232323233232354=⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=. 所以ξ的分布列为ξ0 2 46 P16536531081154故数学期望()15531118702466361085454E ξ=⨯+⨯+⨯+⨯=. 1.(2022·江苏省木渎高级中学模拟预测)2012年国家开始实施法定节假日高速公路免费通行政策,某收费站统计了2021年中秋节前后车辆通行数量,发现该站近几天车辆通行数量2100(,)0N ξσ~,若()(1200,80)01200P a P b ξξ>=<<=,则当82ab b a ≥+时下列说法正确的是( )A .12a =B .14b =C .34a b +=D .12a b -=【答案】C【解析】因2100(,)0N ξσ~,且()(1200,80)01200P a P b ξξ>=<<=,则有122b a +=,即21a b =-,不等式82ab b a ≥+为:24(1)1(21)0b b b -≥⇔-≤,则12b =,14a =, 所以34a b +=,14a b -=-,A ,B ,D 均不正确,C 正确.故选:C2.(2022·江苏·高三专题练习)随机变量()2,XN μσ,已知其概率分布密度函数22()21()e2x f x μσσπ-=在2x =处取得最大值为12π,则(0)P X >=( )附:()0.6827,(22)0.9545P X P X μσμσμσμσ-≤≤+=-≤≤+=. A .0.6827 B .0.84135C .0.97725D .0.9545【答案】B【解析】由题意2μ=,1122σππ=,2σ=,所以2(2)41()e2x f x π-=, (022)0.6827P X ≤≤=,所以1(0)(10.6827)0.158652P X <=-=, (0)10.158650.84135P X ≥=-=.故选:B .3.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量题组四 正态分布(20,4)X N ,则全公司上一季度至少完成22套房屋销售的人员大概有( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.A .254人B .127人C .18人D .36人【答案】B 【解析】因为(20,4)X N ,所以20μ=,2σ=,所以()1()10.6827220.1586522P X P X μσμσ--<≤+-≥===所以全公司上一季度至少完成22套房屋销售的人员大概有8000.15865127⨯≈(人);故选:B4.(2022·广东·大埔县虎山中学高三阶段练习)(多选)已知某校高三年级有1000人参加一次数学模拟考试,现把这次考试的分数转换为标准分,标准分的分数转换区间为(]60,300,若使标准分X 服从正态分布N()180,900,()0.6826P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,3309().973P X μσμσ-<≤+=,则( )A .这次考试标准分超过180分的约有450人B .这次考试标准分在(]90,270内的人数约为997C .甲、乙、丙三人恰有2人的标准分超过180分的概率为38D .()2402700.0428P X <≤= 【答案】BC【解析】依题意得180μ=,2900σ=,30σ=,因为()()11802P X P X μ>=>=, 所以这次考试标准分超过180分的约有110005002⨯=人,故A 不正确;()()90270180330180330P X P X <≤=-⨯<≤+⨯(33)P X μσμσ=-<≤+=0.9973,所以这次考试标准分在(]90,270内的人数约为10000.9973997⨯≈人,故B 正确; 依题意可知,每个人的标准分超过180分的概率为12,所以甲、乙、丙三人恰有2人的标准分超过180分的概率为223113C 1228⎛⎫⎛⎫⋅⋅-= ⎪⎪⎝⎭⎝⎭,故C 正确; ()240270P X <≤()180230180330P X =+⨯<≤+⨯()23P X μσμσ=+<≤+。

高考数学(理)二轮周测卷(6)抛物线(含答案)

高考数学(理)二轮周测卷(6)抛物线(含答案)

衡水万卷周测(六)理科数学抛物线考试时间:120分钟姓名:__________班级:__________考号:__________题号 一 二 三 总分 得分一 、选择题(本大题共求的)1.若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为 ( )A .B .C .D . 2.顶点在原点,对称轴为坐标轴的抛物线与直线2x y +=相切,则抛物线的方程是( )A.24x y =-B.24y x =-C.28x y =-或28y x =-D.22x y =-或22y x =-3.抛物线24x y = 上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( )A.2B.3C.4D.54.抛物线(>)的焦点为,已知点、为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为 ( ) A.B. 1C.D. 2 5.抛物线y =2ax 2(a ≠0)的焦点是( )A .(,0)B .(,0)或(-,0)C .(0,)D .(0,)或(0,-)6.抛物线的弦与过弦的断点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的断点的来两条切线的交点在其准线上,设抛物线22(0)y px x =>,弦AB 过焦点,ABQ ∆且其阿基米德三角形,则ABQ ∆的面积的最小值为( )A .22p B .2p C .22p D .24p7.已知抛物线)0(22>=p px y ,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于A .B 两点,A '.B '分别为A .B 在l 上的射影,M 为B A ''的中点,给出下列命题:①F B F A '⊥';②BM AM ⊥;③F A '∥BM ;④F A '与AM 的交点在y 轴上;⑤B A '与B A '交于原点.其中真命题的个数为( ) A.2个B.3个C.4个D.5个8.已知F 是抛物线2y x =的焦点,,A B 是该抛物线上的两点,3AF BF +=,则线段AB 的中点到y 轴的距离为( )A.34B.1C.54D.749.直线l 的方向向量为)3,4(=n 且过抛物线y x 42=的焦点,则直线l 与抛物线围成的封闭图形面积为A .885B .24125C . 12125D .2438510.过抛物线y 2=2px (p>0)的焦点F 且倾斜角为60o的直线l 与抛物线在第一、四象限分别交于A 、B 两点,则AFBF=( )A .5B .4C .3D .211.在平面直角坐标系中,抛物线的焦点为,是抛物线上的点,若的外接圆与抛物线的准线相切,且该圆面积为,则 ( ) A . B . C . D . 12.如图,已知点(0,3)S ,,SA SB 与圆22:0(0)C x y my m +-=>和抛物线22(0)x py p =->都相切,切点分别为,M N 和,A B ,//SA ON ,AB MN λ=,则实数λ的值为( )A .4B .23C .3D .33 二 、填空题(本大题共4小题,每小题5分,共20分)13.已知抛物线22(0)y px p =>的焦点为F ,△ABC 的顶点都在抛物线上,且满足FC FB FA -=+,则=++CABC AB k k k 111_______. 14.(陕西高考真题)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .15.已知抛物线1C :)0(212>-=p x py 的焦点与双曲线2C :2213x y -=的左焦点的连线交1C 于第三象限的点M 。

周六高三理科数学测试试卷元月份第一次

周六高三理科数学测试试卷元月份第一次

A.(0,2)
B.(1,3)
C.(2,4)
) D.(3,5)
12.函数 f (x) 2sin x 与函数 f (x) 3 x 1 的图象所有交点的横坐标之和为 ( )
A.8
B.9
C.16
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)
D.17
13. 已知抛物线 y2 4x ,圆 F : x 1 2y 2 1 ,直线 y k x 1k 0 自上而下顺次与上述两曲
2
sin B sin C

4 3
cos B cos C

sin A
cos A
的用水吨数。 20. 已知函数 f x ex x a ln x a x,a R .
(1)证明: b c 2a .
(2)若 b c,设AOB 0 ,OA 2OB 2 ,求四边形 OACB 面
(2)直线
l
的极坐标方程是
2

sin


4


2
2 ,曲线 C1 的极坐标方程为 0 0 ,其中0 满
足 tan 0 2 ,曲线 C1 与圆 C 的交点为 O,P 两点,与直线 l 的交点为 Q,求线段 PQ 的长.
23.(本小题满分 10 分)选修 4—5:不等式选讲
1, x 0.
A. sgn[g(x)] sgn x
B. sgn[g(x)] sgn x
C. sgn[g(x)] sgn[ f (x)]
D. sgn[g(x)] sgn[ f (x)]
6. 已知 f (x) 是定义域为 R 的奇函数, f (4) 1 , f (x) 的导函数 f '(x) 的图象如图所示。若两正数

2021年高三上学期周考(六)数学理试题 Word版含答案

2021年高三上学期周考(六)数学理试题 Word版含答案

2021年高三上学期周考(六)数学理试题 Word版含答案本试卷共22小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签宇笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 命题“”的否命题...是()A. B.C. D.2.下图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx的图像,则a、b、c、d与1的大小关系是()A.;B.;C.;D.3.函数y=a x在[0,1]上的最大值与最小值的和为3,则a等于()A. B.2 C.4D.4.复数(i)3的值是()A. -iB.iC.-1D.15. sin2x>cos2x,则x的取值范围是()A.{x|2kπ-π<x<2kπ+,k∈Z}B.{x|2kπ+<x<2kπ+π,k∈Z}C.{x|kπ-<x<kπ+,k∈Z}D.{x|kπ+<x<kπ+π,k∈Z}6.在5张卡片上分别写着数字1、2、3、4、5,然后把它们混合,再任意排成一行,则得到的数能被5或2整除的概率是( )(A) 0.8 (B) 0.6 (C) 0.4 (D) 0.27. 一给定函数的图象在下列图中,并且对任意,由关系式得到的数列满足,则该函数的图象是()ABCD8.若,则下列不等式:①;②;③;④中,正确的不等式有( )A.1个B.2个C.3个D.4个9.已知集合,函数的定义域、值域都是,且对于任意,. 设是的任意一个排列,定义数表,若两个数表的对应位置上至少有一个数不同,就说这是两张不同的数表,那么满足条件的不同的数表的张数为 ( )A.216 B.108 C.48 D.2410.已知:如图:平面上两点P(0,1)、Q(3,6),在直线y= x上取两点M、N,使(a> 0,a为常数)且使的值取最小,则N的坐标为()A.(,)B.(a,a)Q(3,6)y = x yyxO2C .(,)D .(,)二、填空题:本大题共6小题,考生作答5小题,每小题5分,满分25分. (一)必做题(11~13题) 11. 方程的解是_________12. 已知圆(x +1)2+y 2=1和圆外一点P (0,2),过点P 作圆的切线,则两条切线夹角的正切值是 .13. 若(x+1)n =x n +…+ax 3+bx 2+…+1(n ∈N *),且a ∶b =3∶1,那么n=_____. (二)选做题(14 ~ 16题,考生只能从中选做两题)14. (不等式选讲选做题)不等式的解集为__________________.15. (坐标系与参数方程选做题) 在平面直角坐标系中,点是椭圆上的一个动点,则x+y 的最大值是__________________16. (几何证明选讲选做题)如图,半径为的 ⊙O 中,OB 垂直于直径AC ,M 为AO 上一点,BM 的延长线交⊙O 于N ,过N 点的切线交CA 的延 长线于P .若OA =OM ,则MN 的长为 .三、解答题:本大题共6小题,满分75分.解答须写出文字说明、证明过程和演算步骤, 17. (本小题满分12分)已知函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图象如图所示.(Ⅰ) 求函数的解析式;(Ⅱ) 如何由函数的图象通过适当的变换得到函数的图象, 写出变换过程.18. (本小题满分12分)一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)求这箱产品被用户接收的概率;(2)记抽检的产品件数为,求的分布列和数学期望.OCM NAPB19.(本小题满分12分)如图5,已知等腰直角三角形,其中∠=90º,.点A、D使⊥,连结、.(1)求证:⊥;(2)求二面角的平面角的余弦值.20.(本小题满分13分)已知将圆上的每一点的纵坐标压缩到原来的,对应的横坐标不变,得到曲线C;经过点M(2,1)且平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点.(1)求曲线的方程;(2)求m的取值范围.21.(本小题满分13分)已知函数在处取得极值2.(1)求函数的表达式;(2)当满足什么条件时,函数在区间上单调递增?(3)若为图象上任意一点,直线与的图象切于点,求直线的斜率的取值范围。

高三数学周测试卷(理科)

高三数学周测试卷(理科)

高三数学周测试题(理数)第I 卷(选择题)一、单选题(本大题共12小题,共60.0分。

在每小题列出的选项中,选出符合题目的一项) 1. 若复数z 在复平面内对应的点为(1,1),则其共轭复数z −的虚部是( ) A. i B. −i C. 1 D. −1 2. 集合A ={x|x 2>2x},B ={−2,−1,0,1,2},则(∁R A)∩B =( ) A. {−1,0,1}B. {−1,1}C. {0,1,2}D. {1,2}3. 设x ∈R ,则“sinx =1”是“cosx =0”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 4. 在△ABC 中,已知AB =5,BC =3,CA =4,则AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =( ) A. 16 B. 9 C. −9 D. −16 5. 已知数列{a n }满足a n+1=2a n (n ∈N ∗),S n 为其前n 项和.若a 2=2,则S 5=( )A. 20B. 30C. 31D. 626. 已知双曲线C :x 2a2−y 2b2=1(a >0,b >0))的焦距为2√5,且实轴长为2,则双曲线C 的渐近线方程为( )A. y =±12xB. y =±2xC. y =±√5xD. y =±√52x7. 中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱.假设空间站要安排甲,乙,丙,丁4名航天员开展实验,其中天和核心舱安排2人,问天实验舱与梦天实验舱各安排1人,则甲乙两人安排在同一个舱内的概率为( )A. 16B. 14C. 13D. 128. 先将函数f(x)=sin(x −π3)图象上各点的横坐标缩短为原来的12,再把所得函数图象向左平移π6个单位长度,得到函数g(x)的图象,则下列说法错误的是( )A. 函数g(x)是奇函数B. 函数g(x)的最小正周期是πC. 函数g(x)图像关于直线x =π4+kπ(k ∈Z)对称 D. 函数g(x)在(−π6,π3)上单调递增9. 已知随机变量X ~N(2,1),其正态分布密度曲线如图所示,则图中阴影部分的面积为( )附:若随机变量ξ~N(μ,σ2),则P(μ−σ<ξ<μ+σ)=0.6827,P(μ−2σ<ξ<μ+2σ)=0.9545,P(μ−3σ<ξ<μ+3σ)=0.9973A. 0.1359B. 0.7282C. 0.8641D. 0.9320510. 己知F 1,F 2是椭圆E :x 2a 2+y 2b2=1(a >0,b >0)的左、右焦点,点M 在椭圆E上,MF 1与x 轴垂直,sin∠MF 2F 1=12,则椭圆E 的离心率为( ) A. √33B. √53C. 2√33D. √3211. 已知三棱锥S −ABC 的所有顶点都在表面积为64π的球面上,且SA ⊥平面ABC ,SA =4,∠BAC =2π3,AB =2√3,M 是边BC 上一动点,则直线SM 与平面ABC 所成的最大角的正切值为( )A. 3B. 4√33C. √3D. 3212. 已知函数f(x)=xlnx ,若关于x 的方程[f(x)]2+af(x)+a −1=0有且仅有三个不同的实数解,则实数a 的取值范围是( )A. (−2e,1−e)B. (1−e,0)C. (−∞,1−e)D. (1−e,2e)第II 卷(非选择题)二、填空题(本大题共4小题,共20.0分)13. 我国中医药选出的“三药三方”对治疗新冠肺炎均有显著效果,“三药”分别为金花清感颗粒、连花清瘟胶囊、血必净注射液;“三方”分别为清肺排毒汤、化湿败毒方、宜肺败毒方.若某医生从“三药三方”中随机选出三种药方,事件A 表示选出的三种药方中至少有一药,事件B 表示选出的三种药方中至少有一方,则P(A|B)=______.14. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足bcosAcosB +a =2c ,则角B =______. 15. 已知(1+x)n 的展开式中,唯有x 3的系数最大,则(1+x)n 的系数和为______.16. 在等腰梯形ABCD 中,已知AB//CD ,AB =4,BC =2,∠ABC =60∘,动点E 和F 分别在线段BC 和DC 上,且BE ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,DF ⃗⃗⃗⃗⃗ =19λDC ⃗⃗⃗⃗⃗ ,当λ=______时,则AE ⃗⃗⃗⃗⃗ ⋅AF⃗⃗⃗⃗⃗ 有最小值为______. 三、解答题(本大题共4小题,共50.0分。

周考理科数学 答案

周考理科数学 答案

高三年级周考理数(10月30日) 参考答案及评分细则一.选择题:二.填空题:13 . (-1,2] 14.32 16. 1-三.解答题:17.解析:当命题p 为真时,303a ,a ->∴> 当命题q 为真时,23402428340a a (a )(a )->⎧∴<<⎨∆=--<⎩----------------------------------------5分 (1)当命题p q ∨为真时,即命题p 或命题q 为真即可,∴2a >(2)当命题p q ∨为真,且命题p q ∧为假时,即只有命题p q 和为真即可,∴234a (,][,)∈+∞------------------------------------------------10分 18. 解析:(1) 要求f (x )单调减区间,则有3222262k x k ,k Z πππ+π<+<+π∈即2++63k x k ,k Z πππ<<π∈ 又 0x (,)∈π∴f (x )单调减区间:263()ππ,--------------------------------------------------6分(2)解法一:由(1)知2222166f (A)sin(A ),sin(A )ππ=+=∴+=由正弦定理得:3321213sin sin =⨯==CAc a ------------------------------12分19. 解析:---------------------------------------4分 设225f (x )a(x )=--(a ≠0)2140214283f ()f ()a x [,],f (x )x x +=∴=∴∈=-+ ------------------------------8分22133********3511528+3514505522f (),k x [,],f (x )x x [,],f (x )x x y f (x )T x,k x kf (x )x x ,k x k,k Z f (x )[k x k Z =-∴=-∴∈-=-∴∈=-+==--≤≤+⎧∴=⎨-+<≤+∈⎩∴≤≤≤++∈(3)由(2)知 又的周期的解集是:-----12分20. 【解析】(1)当x<-12时,f(x)=12 -x-x-12=-2x<2,解得-1<x<-12;当-12≤x ≤12时,f(x)=12 -x+x+12=1<2恒成立;当x>12时,f(x)=2x<2,解得12<x<1. 综上可得,M={x|-1<x<1}.(2)当a,b ∈(-1,1)时,有(a 2-1)(b 2-1)>0,即a 2b 2+1>a 2+b 2,则a 2b 2+2ab+1>a 2+2ab+b 2, 则(ab+1)2>(a+b)2,即|a+b|<|ab+1|.21.解:(Ⅰ)*∈-=N n n a S n n ,232,当211==a n 时,得又当)1(232,211--=≥--n a S n n n ,两式相减得:23321--=-n n n a a a ,即)2)(1(311≥+=+-n a a n n{}1,311+∴=+n a a 是以3为首项,3为公比的等比数列,故:13-=n n a ----------------------------------------------6分;(Ⅱ)当2≥n 时,)1(222)1(421)21(132->=-⨯+≥-+=-n n n n n n nn 所以:)111(21)1(211n n n n a n--=-< 则当1=n 时,;12111<=a 当时,2≥n )1113121211(212111121n n a a a n --++-+-+<+++故:对一切正整数n ,有.111121<+++na a a ------------------12分22. 解:(Ⅰ)函数)(x f 的定义域是),1(+∞-当递增递增;)(,0)(,1)(,0)(,01)1(1)(,0x f x f x x f x f x x x xx f a >'-><'<<-∴->+='=当0≠a 时,xa x ax x x a ax x f +-+-=+-+-='1)11(1)1()(2 令11,0,0)(21-==='ax x x f 得:, 当,11102-<-=<a x a 时,递增递增;)(,0)(,1)(,0)(,01x f x f x x f x f x >'-><'<<-∴当10<<a 时,,0112>-=ax 则 当()递减;恒成立,在时,)(,10)(,0121x f x f x x a +∞-≤'===当1>a 时,,011112x ax =<-=<- 综上可得:上递减;递增,在在时,当)上递增;,上递减,在(在时当),11(),0,1()11,0()(100)0,1()(,0+∞---<<∞+-≤aa x f a x f a当上递减;在时,),1()(1+∞-=x f a 当.)0,11(),0(),11,1()(1递增上递减,在在时,-+∞-->aa x f a -----------------6分则 0sin )1(1)(,cos 1)(2>++=''-+='x x x g x x x x g , 所以:)(x g '在),0(π上递增,因为:02)2(,01)0(>+='<-='πππg g , 所以存在唯一实数)2,0(0π∈x ,使得0)(0='x g ,因而上递增,上递减,在在),(),0()(00πx x x g因为0)0(=g ,所以0)1ln()(;0)(),0(0>+-=<∈πππg x g x x 又时,, 故上有唯一零点上无零点,在在),(),0()(00πx x x g ,所以:函数x x f x g sin )()(-=在()π,0上有且只有1个零点.------------------------12分。

河北省衡水中学2018届高三下学期第6周周考理科数学试题 Word版含解析

河北省衡水中学2018届高三下学期第6周周考理科数学试题 Word版含解析

理数周日测试6一、选择题1.已知集合,则()A. B. C. D.【答案】C【解析】【分析】由条件可知A为偶数集,求出,即可得到.【详解】由条件可知A为偶数集,,故.故选C【点睛】本题考查集合的混合运算,属基础题.2.已知i是虚数单位,则()A. B. C. D.【答案】B【解析】【分析】根据虚数单位i的性质以及复数的基本运算法则,直接计算化简.【详解】故选B.【点睛】本题考查复数代数形式的混合运算.除法中关键是分子分母同乘以分母的共轭复数,实现分母实数化.3.已知,则()A. B. C. D.【答案】A【解析】【分析】利用诱导公式及同角的三角函数基本关系式即可化简求值.【详解】已知,则由三角函数的诱导公式可得.故选A.【点睛】本题考查的知识点是运用诱导公式化简求值,属于基础题.4.已知椭圆的离心率为,且椭圆的长轴与焦距之差为4,则该椭圆为方程为()A. B. C. D.【答案】D【解析】【分析】利用已知条件求出a,b,即可求解椭圆方程.【详解】设椭圆的焦距为,由条件可得,故,由椭圆的长轴与焦距之差为4可得,即,所以,,,故,故该椭圆的方程为. 【点睛】本题考查椭圆的简单性质椭圆方程的求法,是基本知识的考查.5.公元五世纪,数学家祖冲之估计圆周率的值的范围是:3.1415926<<3.1415927,为纪念祖冲之在圆周率的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们从小数点后的7位数字1,4,1,5,9,2,6随机选取两位数字,整数部分3不变,那么得到的数字大于3.14的概率为()A. B. C. D.【答案】A【解析】选择数字的方法有:种,其中得到的数字不大于3.14的数字为:,据此可得:得到的数字大于3.14的概率为 .本题选择A选项.点睛:求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算.二是间接求法,先求此事件的对立事件的概率,再用公式P(A)=1-P(),即运用逆向思维(正难则反),特别是“至多”,“至少”型题目,用间接求法就显得较简便.6.运行如图所示的程序,输出的结果为()A. 8B. 6C. 5D. 4【答案】D【解析】【分析】由已知中的程序语句,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】所给程序的运行过程如下:,;,;,;,,不满足,输出b的值为4.故选D.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.已知某几何体的三视图如图所示,则该几何体的表面积为()A. 6πB. 8πC. 6π+6D. 8π+4【答案】C【解析】【分析】几三视图可知,该几何体是一个圆柱的,结合直观图求相关几何量的数据,把数据代入柱体的表面积公式计算即可.【详解】三视图可知,该几何体是一个圆柱的,故表面积为.故选C.【点睛】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的结构特征及求相关几何量的数据是解答本题的关键.8.已知直线与之间的距离为2,则直线被圆截得的弦长为()A. 4B. 3C. 2D. 1【答案】A【解析】【分析】由条件可知,直线过圆心,则圆心C到直线的距离等于直线与之间的距离2,根据勾股定理可求直线被圆截得的弦长【详解】由条件可知,直线过圆心,则圆心C到直线的距离等于直线与之间的距离2,故直线被圆C截得的弦长为.故选A.【点睛】本题考查直线与圆的位置关系,以及直线与圆相交时的弦长问题,属于中档题.9.已知实数满足不等式组,则目标函数的最大值为()A. 1B. 2C.D.【答案】B【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】等式组表示的平面区域如下图中的阴影部分所示:且点,,,易得目标函数在点C处取得最大值5.故选B.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.在边长为1的正中,点D在边BC上,点E是AC中点,若,则()A. B. C. D.【答案】C【解析】【分析】设,,,则,,则由求出,即可得到.【详解】设,,,则,,则故,即.【点睛】本题考查向量的线性运算及向量的数量积的运算,属中档题.11.已知定义在R上的函数,满足,且时,,图象如图所示,则满足的实数x的取值范围是()A. B. C. D.【答案】B【解析】【分析】由条件可知,的图象关于直线对称,结合可得,而,可得,由可得,结合图像根据对称性可得实数x的取值范围.【详解】由条件可知,的图象关于直线对称,结合可得,而,即,解之得,由可得,当时,由,解之得,所以,,再结合对称性可得x的取值范围是.故选B.【点睛】本题考查了基本初等函数的图象与性质、对数不等式等知识,属于中档题.12.已知函数的最小正周期为,且,则( )A. B. C. D.【答案】B【解析】由题可知:由最小正周期为2可得又代入可得:,得,则二、填空题13.在正方体中,点M是的中点,则与所成角的正切值为__________.【答案】2【解析】【分析】根据异面直线所成角的定义可得即为与所成角,在中计算即可.【详解】即为与所成角,取中点N,连接,则,则.即答案为2.【点睛】本题考查异面直线所成角的定义及计算,属基础题.14.已知双曲线的离心率为2,过双曲线的右焦点垂直于x轴的直线被双曲线截得的弦长为m,则__________.【答案】6【解析】【分析】根据双曲线的离心率求出a、b的关系,再求出过右焦点且垂直于x轴的直线被双曲线截得的弦长m,即可计算的值.【详解】双曲线的焦距为,则,即,则把代入双曲线可得,故,所以,.【点睛】本题考查了双曲线的简单几何性质的应用问题,是中档题.15.已知函数,若,且的最小值为m,则__________.【答案】3【解析】【分析】由题意,由可得,即,结合,且的最小值为m,即可求出的值.【详解】由可得,即,∴,则,当且仅当,即时,取得最小值2.故.即答案为3.【点睛】本题考查分段函数的运用,考查基本不等式的应用,考查学生的计算能力,属中档题.16.已知的三个内角所对的边分别为,且,,则__________.【答案】【解析】【分析】由及正弦定理可得,.由可得,由余弦定理可得,即,解之得.【详解】由及正弦定理可得,即,而,∴.由可得,由余弦定理可得,即,解之得(舍去负值).【点睛】本题考查利用正弦定理和余弦定理解三角形,属中档题.三、解答题17.已知等比数列满足:,且.(1)求的通项公式及前n项和;(2)若,求的前n项和.【答案】(1)(2)【解析】【分析】(1)设的公比为q,由可得,由此可求的通项公式及前n项和;2)由(1)可得,则,利用错位相减法可求的前n项和. 【详解】(1)设的公比为q,由可得,∴,∴,∴.(2)由(1)可得,则①所以,②由①②可得,所以,.【点睛】本题考查等比数列的通项公式及前n项和;以及利用错位相减法求和,属基础题.18.如图,三棱锥中,,,且.(1)求证:;(2)若,求三棱锥的体积.【答案】(1)见解析(2)【解析】【分析】(1)取的中点O,连接,.易证平面,又∵平面,∴,而O是的中点,∴.(2)由平面平面,平面,由条件可得,.则,则三棱锥的体积可求【详解】(1)取的中点O,连接,.∵,∴,∵,,,平面,∴平面,又∵平面,∴,而O是的中点,∴.(2)∵平面平面,平面,平面平面,∴平面,由条件可得,.则,∴三棱锥的体积为:.【点睛】本题考查线面垂直的证明以及三棱锥体积的求法,属中档题.19.某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.(1)试根据所给数据计算每小时点击次数的均值方差并分析两组数据的特征;(2)若把乙公司设置的每次点击价格为x,每小时点击次数为y,则点(x,y)近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线.(附:回归方程系数公式:)【答案】(1)见解析(2)【解析】【分析】(1)结合图象分别求出甲、乙公司的平均数和方差,根据其大小判断结论即可;(2)求出平均数,计算回归方程的系数,求出回归方程即可.【详解】(1)由题图可知,甲公司每小时点击次数为9,5,7,8,7,6,8,6,7,7,乙公司每小时点击次数为2,4,6,8,7,7,8,9,9,10.甲公司每小时点击次数的平均数为:,乙公司每小时点击次数的平均数为:.甲公司每小时点击次数的方差为:;乙公司每小时点击次数的方差为:,由计算已知,甲、乙公司每小时点击次数的均值相同,但是甲的方差较小,所以,甲公司每小时点击次数更加稳定. (2)根据折线图可得数据如下:则,,则,,∴所求回归直线方程为:.【点睛】本题考查了均值和方程的求法,考查回归方程问题,是一道中档题.20.如图,直线与y轴交于点A,与抛物线交于P,Q,点B 与点A关于x轴对称,连接QB,BP并延长分别与x轴交于点M,N.(1)若,求抛物线C的方程;(2)若,求外接圆的方程.【答案】(1)(2)【解析】【分析】(1)联立可得,设点,,由,可得,,,表示出.利用,可得,即可可得到抛物线方程;(2)设直线,的斜率分别为,点,由,,可得.则直线的方程为:,直线的方程为:,由此可得,结合可得,,∴,且,故,即是等腰三角形,且,则的外接圆的圆心一定在y轴上,设为,由圆心到点M,B的距离相等可解得,于是得到外接圆方程.【详解】(1)由可得,设点,,则,即,,,故.由可得(舍去负值),∴抛物线C的方程为.(2)设直线,的斜率分别为,点,,,∴.直线的方程为:,直线的方程为:,则,,则,由可得,∴,∴,∴,且,故,即是等腰三角形,且,则的外接圆的圆心一定在y轴上,设为,由圆心到点M,B的距离相等可得,解之得,外接圆方程为.【点睛】本题考查直线与抛物线的位置关系,考查抛物线方程的求法,考查圆的方程等知识,属难题.21.已知函数.(1)若的图像在处的切线与轴平行,求的极值;(2)若函数在内单调递增,求实数的取值范围.【答案】(1)极大值,无极小值;(2).【解析】试题分析:(1)求出,由求得,研究函数的单调性,即可求得的极值;(2)化简,可得,对求实数分三种情况讨论,分别利用导数研究函数的单调性,验证函数在内是否单调递增即可得结果.试题解析:(1)因为,所以.由条件可得,解之得,所以,.令可得或(舍去).当时,;当时,,所以在内单调递增,在内单调递减,故有极大值,无极小值;(2),则.设,①当时,,当时,,当时,,所以在内单调递增,在内单调递减,不满足条件;②当时,是开口向下的抛物线,方程有两个实根,设较大实根为.当时,有,即,所以在内单调递减,故不符合条件;③当时,由可得在内恒成立,故只需或,即或,解之得.综上可知,实数的取值范围是.22.以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线l的参数方程为(其中t为参数).(1)把曲线C的极坐标方程化为普通方程;(2)若直线l与曲线C有两个公共点,求实数m的取值范围.【答案】(1)(2)【解析】【分析】(1)曲线C的极坐标方程化为4ρ2-3ρ2cos2θ=4,由此能求出曲线C的普通方程.(2)把代入,得5x2-8mx+4m2-4=0,由直线l与曲线C有两个公共点,能求出实数m的取值范围.【详解】(1)方程可化为,即,把代入可得,整理可得.(2)把代入可得,由条件可得,解之得,即实数m的取值范围是.【点睛】本题考查曲线的普通方程的求法,考查实数的取值范围的求法,考查根据的判别式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.23.已知函数.(1)关于x的不等式的解集为M,且,求实数m的取值范围;(2)求的最小值,及对应的x的取值范围.【答案】(1)(2)【解析】【分析】(1)分当时和当时两种情况解不等式,得到解集M,由,可得可解得实数m的取值范围;(2)利用三角不等式可得,可得的最小值,及对应的x的取值范围.【详解】(1)当时,不等式可变为,解之得,∴;当时,不等式可变为,解之得,∴x不存在.综上可知,不等式的解集为.由,可得,解之得,即实数m的取值范围是. (2),当且仅当,即时,取得最小值1,此时,实数x的取值范围是.【点睛】本题考查绝对值不等式的解法,三角不等式等知识,属中档题.24.已知函数.(Ⅰ)求函数在点处的切线方程;(Ⅱ)当函数处取得极值-2,求函数的解析式;(Ⅲ)当时,设,若函数在定义域上存在单调减区间,求实数b的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)求出函数f(x)的导数,求得切线的斜率和切点,运用点斜式方程即可得到切线方程;(2)求得g(x)的导数,由题意可得g(2)=-2,g′(2)=0,解方程即可得到所求解析式;(3)若函数h(x)在定义域上存在单调减区间依题存在x>0使().h′(x)<0(x>0)即存在x>0使x2-bx+1<0,运用参数分离,求得右边的最小值,即可得到所求范围【详解】(Ⅰ)由(),可得(),∴在点处的切线方程是,即,所求切线方程为. (Ⅱ)∵又可得,且在处取得极值.∴可得解得,.所求().(Ⅲ)∵,().依题存在使,∴即存在使,不等式等价于(*)令(),∵.∴在上递减,在上递增,故,∵存在,不等式(*)成立,∴,所求.【点睛】本题考查导数的运用:求切线方程和单调区间、极值和最值,同时考查函数的单调性的运用以及存在性问题,属于中档题.。

创新设计(浙江专用)高考数学二轮复习 大题规范天天练 星期六 第四周 综合限时练(2021年整理)

创新设计(浙江专用)高考数学二轮复习 大题规范天天练 星期六 第四周 综合限时练(2021年整理)

创新设计(浙江专用)2017届高考数学二轮复习大题规范天天练星期六第四周综合限时练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(创新设计(浙江专用)2017届高考数学二轮复习大题规范天天练星期六第四周综合限时练)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为创新设计(浙江专用)2017届高考数学二轮复习大题规范天天练星期六第四周综合限时练的全部内容。

星期六 (综合限时练)解答题综合练(设计意图:训练考生在规定时间内得高分,限时:80分钟) 1。

(本小题满分12分)在公比为2的等比数列{a n }中,a 2与a 5的等差中项是93。

(1)求a 1的值;(2)若函数y =a 1sin 错误!(其中0〈φ〈π)的一部分图象如图所示,M (-1,a 1),N (3,-a 1)为图象上的两点,设∠MON =θ,其中O 为坐标原点,0〈θ<π,求cos(θ-φ)的值。

解 (1)由题可知a 2+a 5=18错误!,又a 5=8a 2,故a 2=2错误!,∴a 1=错误!。

(2)∵点M (-1,a 1)在函数y =a 1sin ⎝ ⎛⎭⎪⎫π4x +φ的图象上,∴sin 错误!=1,又∵0〈φ<π,∴φ=错误!π. 连接MN ,在△MON 中,由余弦定理得 cos θ=错误!=错误!=-错误!。

又∵0<θ〈π,∴θ=错误!π,∴cos(θ-φ)=cos 错误!=cos 错误!cos 错误!+sin 错误!sin 错误!=错误!.2.(本小题满分12分)甲、乙两所学校高三年级分别有600人,500人,为了解两所学校全体高三年级学生在该地区五校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:分组 [70,80)[80,90)[90,100)[100,110)频数 3 4 7 14 分组[110,120)[120,130)[130,140)[140,150]乙校:(1)计算x,y的值;(2)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写下面的2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异;(3)若规定考试成绩在[120,150]内为优秀,现从已抽取的110人中抽取两人,要求每校抽1人,所抽的两人中有人优秀的条件下,求乙校被抽到的同学不是优秀的概率.参考公式:K2=错误!,其中n=a+b+c+d,临界值表解(1)从甲校抽取110×错误!=60(人),从乙校抽取110×错误!=50(人),故x=9,y=6。

2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(六)答案

2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(六)答案

2023年普通高等学校招生全国统一考试·仿真模拟卷数学(六)注意事项:1.本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}210A x x =-≤,{}20B x x a =-≥,若A B B ⋃=,则实数a 的取值范围是()A.(],2-∞- B.[)2,-+∞C.1,2⎡⎫-+∞⎪⎢⎣⎭D.1,2⎛⎤-∞-⎥⎝⎦【答案】C 【解析】【分析】求出{}11A x x =-≤≤,{}2B x x a =≥,根据A B B ⋃=,得到A B ⊆,从而得到不等式,求出实数a 的取值范围.【详解】{}{}21011A x x x x =-≤=-≤≤,{}{}202B x x a x x a =-≥=≥,因为A B B ⋃=,所以A B ⊆,故21a ≤-,解得:12a ≤-,故选:C2.如果一个复数的实部和虚部相等,则称这个复数为“等部复数”,若复数()i 3i z a =-为“等部复数”,则实数a 的值为()A.-1B.0C.3D.-3【答案】C【解析】【分析】利用复数的乘法法则得到3i z a =+,从而得到3a =.【详解】()2i 3i i 3i 3i z a a a =-=-+=+,故3a =.故选:C3.双曲线()222210,0x y a b a b-=>>,且过点()2,2A ,则双曲线方程为()A.2212y x -= B.22124x y -=C.22142x y -= D.22136x y -=【答案】B 【解析】【分析】通过已知得出a 与b 的两个关系式,即可联立求解,代入双曲线方程即可得出答案.【详解】 双曲线()222210,0x ya b a b-=>>ca∴=,222a b c += ,2223a b a+∴=,即222a b =, 双曲线()222210,0x y a b a b-=>>过点()2,2A ,22441a b∴-=,则由222a b =与22441a b -=联立解得:a =,2b =,∴双曲线的方程为:22124x y -=,故选:B.4.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,设x ∈R ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如[]2.12=,[]33=,[]1.52-=-,设0x 为函数()33log 1f x x x =-+的零点,则[]0x =()A.2B.3C.4D.5【答案】A 【解析】【分析】首先判断函数的单调性,再根据零点存在性定理判断0x 所在区间,最后根据高斯函数的定义计算可得.【详解】解:因为3log y x =与31y x =-+在()0,∞+上单调递增,所以()33log 1f x x x =-+在()0,∞+上单调递增,又()33313log 3103144f =-=-=>+,()3332log 2log 21021f =-=-<+,所以()f x 在()2,3上存在唯一零点0x ,即()02,3x ∈,所以[]02x =.故选:A5.已知点P 是圆(()22:34C x y -+-=上一点,若点P 到直线2y =-的距离为1,则满足条件的点P 的个数为()A.1B.2C.3D.4【答案】C 【解析】【分析】根据圆心到直线的距离即可求解.【详解】由题意可知圆心为)C,所以)C到2y =-的距离为1d ==,故与直线2y =-平行且过圆心的直线与圆相交的两个交点即为满足条件的点P ,此时有两个,又圆的半径为2,故当过圆心且与2y =-垂直的直线与圆的下半部分相交的一个点也符合,故共有3个.故选:C6.已知ππ,42α⎛⎫∈⎪⎝⎭,且25cos 10sin 29αα+=,则tan α=()A.29B.2C.12D.92【答案】B 【解析】【分析】由已知利用二倍角公式,平方关系22sin cos 1αα+=代换,可得25209t ta an 1n αα+=+,根据α的范围即可求解.【详解】由25cos 10sin 29αα+=,得25cos 20sin cos 9ααα+=,则2225cos 20sin cos 9sin cos ααααα+=+,即25209t ta an 1n αα+=+,得29tan 20tan 40αα-+=,则()()9tan 2tan 20αα--=,得2tan 9α=或tan 2α=,又ππ42α⎛⎫∈ ⎪⎝⎭,,所以tan 1α>,故tan 2α=.故选:B7.随着北京冬奥会的开幕,吉祥物“冰墩墩”火遍国内外,现有甲、乙、丙、丁4名运动员要与1个“冰墩墩”站成一排拍照留恋,已知“冰墩墩”在最中间,甲、乙、丙、丁4名运动员随机站于两侧,则甲、乙2名运动员站“冰墩墩”同一侧的概率为()A.14B.12C.13 D.16【答案】C 【解析】【分析】先求出甲、乙、丙、丁4名运动员与1个“冰墩墩”排成一排,且“冰墩墩”在最中间的所有排法的所有排法,再求甲、乙2名运动员站“冰墩墩”同一侧的排法,根据古典概型概率公式求概率.【详解】甲、乙、丙、丁4名运动员与1个“冰墩墩”排成一排,且“冰墩墩”在最中间的所有排法有44A =24种,甲、乙2名运动员站“冰墩墩”同一侧的排法有22222A A =8种,由古典概型的概率公式可得甲、乙2名运动员站“冰墩墩”同一侧的概率:81243P ==,故选:C .8.如图,在正方体1111ABCD A B C D -中,点P 在线段1BD 上运动(包含端点),则直线1B P 与1C D 所成角的取值范围是()A.ππ,32⎡⎤⎢⎥⎣⎦ B.ππ,63⎡⎤⎢⎥⎣⎦C.ππ,43⎡⎤⎢⎥⎣⎦ D.ππ,62⎡⎤⎢⎥⎣⎦【答案】B 【解析】【分析】要求直线所成角,转化为方向向量所成角,建立如图所示空间直角坐标系,所以1111B P B B BP B B BD λ=+=+ (,,1)λλλ=---+(01λ≤≤),又1(0,1,1)DC =,设则直线1B P 与1C D 所成角为θ,则11cos cos ,B P DC θ=,结合λ的范围即可得解.【详解】以1,,DA DC DD 为,,x y z 建立如图所示空间直角坐标系,设正方体的棱长为1,则(1,1,0)B ,1(0,0,1)D ,1(0,1,1)C ,1(1,1,1)B ,所以1111B P B B BP B B BD λ=+=+(0,0,1)(1,1,1)(,,1)λλλλ=-+--=---+(01λ≤≤)1(0,1,1)DC =,则设直线1B P 与1C D 所成角为π20θθ⎛⎫≤≤⎪⎝⎭,则111111cos cos ,B P DC B P DC B P DC θ⋅===⋅ ,由01λ≤≤,所以221223213,2333λλλ⎛⎫⎡⎤-+=-+∈ ⎪⎢⎥⎝⎭⎣⎦,13cos ,22θ⎡∈⎢⎣⎦,所以ππ,63θ⎡⎤∈⎢⎥⎣⎦,故选:B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.圆柱的侧面展开图是长4cm ,宽2cm 的矩形,则这个圆柱的体积可能是()A.38πcmB.38cm πC.316cm πD.34cm π【答案】BD 【解析】【分析】由已知中圆柱的侧面展开图是长4cm ,宽2cm 的矩形,我们可以分圆柱的底面周长为4cm ,高为2cm 的和圆柱的底面周长为2cm ,高为4cm ,两种情况分别由体积公式即可求解.【详解】 侧面展开图是长4cm ,宽2cm 的矩形,若圆柱的底面周长为4cm ,则底面半径2cm πR =,2cm h =,此时圆柱的体积238πcm πV R h ==若圆柱的底面周长为2cm ,则底面半径1cm πR =,4cm h =,此时圆柱的体积23πcm π4V R h ==故选:BD10.已知随机变量X 服从二项分布()4,B p ,其方差()1D X =,随机变量Y 服从正态分布(),4N p ,且()()21P X P Y a =+<=,则()A.12p =B.()328P X ==C .()38P Y a <=D.()118P Y a >-=【答案】AB 【解析】【分析】根据二项分布的方差公式得到方程求出p ,再根据独立重复试验的概率公式求出()2P X =,即可判断A 、B 、C ,最后根据正态分布的性质判断D.【详解】解:因为随机变量X 服从二项分布()4,B p ,且其方差()1D X =,所以()()411D X p p =-=,解得12p =,故A 正确;所以()22241132C 1228P X ⎛⎫⎛⎫==⋅-= ⎪ ⎪⎝⎭⎝⎭,又()()21P X P Y a =+<=,所以()58P Y a <=,所以B 正确,C 错误;所以1,42Y N ⎛⎫⎪⎝⎭,则正态曲线关于12x =对称,因为()11122a a -=--,所以()()518P Y a P Y a >-=<=,故D 错误.故选:AB11.已知直线1y x =+交椭圆22:163x yC +=于A ,B 两点,P 是直线AB 上一点,O 为坐标原点,则()A.椭圆C 的离心率为22B.423AB =C.2OA OB ⋅=-D.若1F ,2F 是椭圆C 的左,右焦点,则21PF PF -≤【答案】AD 【解析】【分析】根据椭圆方程求出a 、b 、c ,即可求出离心率,即可判断A ,设()11,A x y ,()22,B x y ,联立直线与椭圆方程,消元、列出韦达定理,根据弦长公式判断B ,求出()()121211y y x x =++,根据数量积的坐标表示判断C,设()1F 关于直线AB 的对称点为(,)E e f ,求出对称点的坐标,再根据221P P F F F E -≤,即可判断D.【详解】解:因为椭圆22:163x y C +=,所以26a =,23b =,则a =,c ==所以离心率22c e a ===,故A 正确;设()11,A x y ,()22,B x y ,由221163y x x y =+⎧⎪⎨+=⎪⎩,消去y 得23440+-=x x ,显然0∆>,所以1243x x +=-,1243x x =-,所以12823AB x =-==,故B 错误;又()()1212121251113y y x x x x x x =++=+++=-,所以12123OA OB x x y y ⋅=+=-,故C 错误;设()1F 关于直线AB 的对称点为(,)E e f ,则13122f e =-+⎪=+⎪⎩,解得11e f =-⎧⎪⎨=-⎪⎩,即(1,1E --,则1PF PE =,2221PF P P F E F E P F =--≤,当且仅当P ,E ,2F 三点共线时取等号,所以21PF PF -的最大值为2EF =,即21PF PF -≤,故D 正确,故选:AD12.已知函数()()3e xf x x =-,若经过点()0,a 且与曲线()y f x =相切的直线有两条,则实数a 的值为()A.3-B.2- C.e- D.2e -【答案】AC【解析】【分析】设出切点并根据导函数性质设出过切点的切线方程,参变分离构建新函数,求导画出草图即可根据条件得出答案.【详解】设切点为()(),3e tt t -,由()()3e xf x x =-,得()()()e 3e 2e xxxf x x x ='+-=-,则过切点的切线方程为:()()()3e 2etty t t x t --=--,把()0,a 代入,得()()()3e 2e 0tta t t t --=--,即()2e 33ta t t -=-+,令()()2e33xg x x x =-+,则()()2e xg x x x ='-,则当()(),01,x ∞∞∈-⋃+时,()0g x '>,当()0,1x ∈时,()0g x '<,()g x ∴的增区间为(),0∞-与()1,+∞,减区间为()0,1,做出草图如下:因为过点()0,a 且与曲线()y f x =相切的直线有两条,则e a -=或3a -=,则3a =-或e a =-,故选:AC.三、填空题:本题共4小题,每小题5分,共20分.13.已知向量(a = ,(b =-,则a b b ⋅-= ______.【答案】0【解析】【分析】根据向量的数量积和向量的模长公式,直接进行计算即可.【详解】((4,1,4620a b b ⋅-=⋅---+-=,故答案为:014.写出一个同时满足下列条件的非常数函数______.①在[)0,∞+单调递增②值域[)1,+∞③()()=f x f x -【答案】()21f x x =+(不唯一)【解析】【分析】结合函数的性质选择合适函数即可.【详解】由()()=f x f x -得函数为偶函数,关于y 轴对称,结合单调性及值域,可以为()21f x x =+.故答案为:()21f x x =+(不唯一).15.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2022这2022个数中,能被3除余1且被4除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为______.【答案】169【解析】【分析】根据题意可知所求数为能被12除余1,得出数列{}n a 的通项公式,然后再求解项数即可.【详解】解:因为能被3除余1且被4除余1的数即为能被12除余1的数,故1211,(N )n a n n *=-∈,又2022n a ≤,即12112022n -≤,解得203312n ≤,又*N n ∈,所以1169n ≤≤且*N n ∈.故答案为:169.16.函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图中实线所示,A ,C 为()f x 的图象与x 轴交点,且1,06A ⎛⎫- ⎪⎝⎭,M ,N 是()f x 的图象与圆心为C 的圆(虚线所示)的交点,且点M 在y 轴上,N 点的横坐标为23,则圆C 的半径为______.【答案】3【解析】【分析】根据函数()2sin()f x x ωϕ=+的图象以及圆C 的对称性可得函数的周期,结合1,06A ⎛⎫- ⎪⎝⎭可得π()2sin(2π3f x x =+,进而求解M 的坐标,由勾股定理即可求解半径.【详解】根据函数()2sin()f x x ωϕ=+的图象以及圆C 的对称性,可得M ,N 两点关于圆心(,0)C c 对称,所以13c =,于是11π12π2622T c ωω=+=⇒=⇒=,由2πω=及1,06A ⎛⎫- ⎪⎝⎭,得ππ0π,Z π,Z 33k k k k ϕϕ-+=+∈⇒=+∈,由于π2ϕ<,所以π3ϕ=,所以π()2sin(2π)3f x x =+,(0)f =,从而M ,故半径为3CM ==,故答案为:273四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 满足11a =,()()1102n n n a na n ---=≥.(1)求数列{}n a 的通项公式;(2)若2n nn b a =⋅,求数列{}n b 的前n 项和n S .【答案】(1)n a n =(2)()1122n n S n +=-⋅+【解析】【分析】(1)由题意得数列n a n ⎧⎫⎨⎬⎩⎭为常数列,可数列{}n a 的通项公式;(2)利用错位相减法求数列前n 项和.【小问1详解】由()()1102n n n a na n ---=≥,得()121n n a a n n n -=≥-,所以数列n a n ⎧⎫⎨⎬⎩⎭为常数列,有111n a a n ==,∴n a n =【小问2详解】22n n n n b a n =⋅=⋅,()123122232122n n n S n n -=+⨯+⨯++-+⋅ ,()2341222232122n n n S n n +=+⨯+⨯++-+⋅ ,两式相减,()()12311121222222212212n n n n n n S n n n +++--=++++-⋅=-⋅=-⋅-- ,所以()1122n n S n +=-⋅+18.如图,在ABC 中,4AB =,2AC =,π6B =,点D 在边BC 上,且cos 7ADB ∠=-.(1)求BD ;(2)求ABC 的面积.【答案】(1(2)【解析】【分析】(1)由cos 7ADB ∠=-求出sin ADB ∠,再由正弦定理即可求出BD(2)根据余弦定理可求出BC ,进而求出ABC 的面积.【小问1详解】在ADB中,cos 7ADB ∠=-,则sin 7ADB ∠=,π6B =,所以1sin sin 6272714BAD ADB π⎛⎫⎛⎫∠=+∠=⨯-+⨯= ⎪⎪ ⎪⎝⎭⎝⎭,由正弦定理可得:sin sin BD ABBAD ADB=∠∠2127147BD =⇒=.【小问2详解】在ABC 中,由余弦定理可得:23164cos30224BC BC +-︒==⋅,解得:BC =.所以ABC的面积11422S =⨯⨯=.19.近年来,师范专业是高考考生填报志愿的热门专业.某高中随机调查了本校2022年参加高考的100位文科考生首选志愿(第一个院校专业组的第一个专业)填报情况,经统计,首选志愿填报与性别情况如下表:(单位:人)首选志愿为师范专业首选志愿为非师范专业女性4515男性2020假设考生选择每个科目的可能性相等,且他们的选择互不影响.(1)根据表中数据,能否有99%的把握认为首选志愿为师范专业与性别有关?(2)若以上表中的频率代替概率,从该校考生中随机选择8位女生,试估计选择师范专业作为首选志愿的人数.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:()20P K k ≥0.100.050.0100.0010k 2.7063.8416.63510.828【答案】(1)没有99%的把握认为首选志愿为师范专业与性别有关;(2)6.【解析】【分析】(1)首先利用数据求得()2210045201520 6.593 6.63560406535K ⨯-⨯=≈<⨯⨯⨯,对照表格数据即可得解;(2)根据人数可得女生中首选志愿为师范专业的概率0.75P =,设该校考生中随机选择8位女生中选择师范专业作为首选志愿的人数为x ,所以(8,0.75)x B ,利用二项分布即可得解.【小问1详解】根据所给数据求得()2210045201520 6.593 6.63560406535K ⨯-⨯=≈<⨯⨯⨯,所以没有99%的把握认为首选志愿为师范专业与性别有关.【小问2详解】100名高考考生中有60名女生,首选志愿为师范专业有45人,故首选志愿为师范专业的概率0.75P =,设该校考生中随机选择8位女生,选择师范专业作为首选志愿的人数为x ,所以(8,0.75)x B ,所以()80.756E x =⨯=,所以随机选择8位女生计选择师范专业作为首选志愿的人数为6.20.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,AB CD ∥,AB AD ⊥,1PA =,2BC CD ==,3AB =,点E 在棱PC 上.(1)证明:平面AED ⊥平面PAB ;(2)已知点E 是棱PC 上靠近点P 的三等分点,求二面角C AE D --的余弦值.【答案】(1)见解析(2)14【解析】【分析】(1)由题意可证得PA AD ⊥,又AB AD ⊥,由线面垂直的判定定理可得AD ⊥平面PAB ,再由面面垂直的判定定理即可得证;(2)以A 为原点,AD ,AB ,AP 分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,分别求出平面CAE 和平面AED 的法向量,再由二面角公式即可得出答案.【小问1详解】因为PA ⊥平面ABCD ,AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,PA AB A = ,PA AB Ì,平面PAB ,所以AD ⊥平面PAB ,又AD ⊂平面ADE ,所以平面AED ⊥平面PAB .【小问2详解】以A 为原点,AD ,AB ,AP 分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,过C 作//CG AD ,交AB 于点G ,则易知四边形ADCG 是矩形,所以AD CG ===,则(0,0,0)A ,(3,0,0)B ,(0,0,1)P,(2C,D ,E 是棱PC 上靠近点P 的三等分点,所以设(),,E x y z ,则13PE PC = ,所以()()1,,113x y z -=-,则232,,333x y z ===,则232,,333E ⎛⎫ ⎪ ⎪⎝⎭,232,,333AE AD ⎛⎫== ⎪ ⎪⎝⎭,设平面ADE 的法向量为(,,)n x y z = ,则0n AD ⋅= 且0n AE ⋅= ,0=且2320333x y z ++=,∴0y =,令1x =,则1z =-,∴平面ADE 的一个法向量()1,0,1n =-,设平面ACE 的法向量为111(,,)m x y z =,()()0,0,1,AP AC == 则0m AC ⋅= 且0m AP ⋅=,∴10z =且1120x =,∴令x ==2y -,∴平面ACE的一个法向量)2,0m =-,∴cos ,14m n m n m n⋅===,二面角C AE D --的余弦值为14.21.已知直线220x y +-=过抛物线()2:20C x py p =>的焦点.(1)求抛物线C 的方程;(2)动点A 在抛物线C 的准线上,过点A 作抛物线C 的两条切线分别交x 轴于M ,N 两点,当AMN 的面积是时,求点A 的坐标.【答案】(1)24x y =(2)()1,1A -或()1,1--【解析】【分析】(1)求出焦点坐标为()0,1,从而得到2p =,求出抛物线方程;(2)设出(),1A m -,过点A 的抛物线的切线方程设为()1y k x m =-+-,与抛物线方程联立,根据Δ0=得到21616160k mk --=,设过点A 的抛物线的两条切线方程的斜率分别为12,k k ,求出1212,1k k m k k +==-,表达出1221MN x x k k =-=-,AMN S =52=,求出1m =±,得到点A 的坐标.【小问1详解】220x y +-=中令0x =得:1y =,故焦点坐标为()0,1,故12p=,解得:2p =,故抛物线方程为24x y =;【小问2详解】抛物线准线方程为:1y =-,设(),1A m -,过点A 的抛物线的切线方程设为()1y k x m =-+-,联立24x y =得:24440x kx km -++=,由21616160k mk ∆=--=,设过点A 的抛物线的两条切线方程的斜率分别为12,k k ,故1212,1k k m k k +==-,令()1y k x m =-+-中,令0y =得:1x m k=+,不妨设121211,x m x m k k =+=+,故211221121211k k MN x x k k k k k k -=-=-==-,则211151222AMN S MN k k =⨯=-===,解得:1m =±,故点A 的坐标为()1,1A -或()1,1--.【点睛】已知抛物线方程22y px =,点()00,A x y 为抛物线上一点,则过点()00,A x y 的抛物线切线方程为()00y y p x x =+,若点()00,A x y 在抛物线外一点,过点()00,A x y 作抛物线的两条切线,切点弦方程为()00y y p x x =+.22.已知函数()e xf x x =,()2ln22xg x =+.(1)求函数()f x 的最值;(2)若关于x 的不等式()()f x g x kx -≥恒成立,求实数k 的取值范围.【答案】(1)最小值为1(1)f e-=-,无最大值.(2)2k ≤【解析】【分析】(1)利用导函数讨论函数的单调性即可求最值;(2)分离参变量,构造函数22()e ln 2x x g x x x=--,利用导数结合单调性讨论其最小值即可求解.【小问1详解】因为()e xf x x =,所以()e e (1)e xxxf x x x '=+=+,令()(1)e 0xf x x '=+>解得1x >-,令()(1)e 0xf x x '=+<解得1x <-,所以()e xf x x =在(),1-∞-单调递减,在()1,-+∞单调递增,所以当=1x -时,()f x 有最小值为1(1)f e-=-,无最大值.【小问2详解】由()2ln22xg x =+的定义域可得()0,x ∈+∞,()()f x g x kx -≥即e 2ln 22x xx kx --≥,等价于22e ln (0)2xx k x x x≤-->恒成立,令22()e ln 2x x h x x x=--,所以222222e 2ln22222()e ln e ln 22x x x x x x xh x x x xx x +⎡⎤⎛⎫'=--++=+=⎪⎢⎝⎭⎣⎦,令2()e 2ln,02xxF x x x =+>,所以()2()2e 02xxF x x x '=++>在()0,x ∈+∞恒成立,所以2()e 2ln,2xxF x x =+单调递增,1e(1)e ln 40,()ln16024F F =->=->,所以存在唯一01,12x ⎛⎫∈⎪⎝⎭,使得0()0F x =,即0200e 2ln 02x x x +=,所以当()000,x x ∈时,()0<F x ,即()0h x '<,()h x 单调递减,()00,x x ∈+∞时,()0F x >,即()0h x '>,()h x 单调递增,所以00min 00022()()e ln ,2x x h x h x x x ==--由0200e 2ln 02x x x +=得00002e ln02x x x x +=,也即002ln 002e ln e x x x x =,即002()(ln )f x f x =,由(1)知()f x 在()1,-+∞单调递增,所以002lnx x =,00002e ,ln 2x x x x =-=,所以000min 00000022222()()e ln ln 222xx x g x g x x x x x x ==--=-=,所以2k ≤.【点睛】方法点睛:分离参变量是求参数取值范围常用的方法,本题第二问对不等式等价变形为22e ln (0)2xx k x x x ≤-->,从而min 22e ln 2x x k x x ⎛⎫≤-- ⎪⎝⎭,构造函数讨论单调性及最值是常用的方法,解决的关键在于利用零点的存在性定理得0200e 2ln02xx x +=,再根据(1)得()e xf x x =的单调性,进一步得到002lnx x =,00002e ,ln 2x x x x =-=,等量代换求出最小值.。

高三数学理科周测答案

高三数学理科周测答案

高三数学理科周测11一、选择题1. 设集合{|22}A x x =-≤≤,集合2{|230}B x x x =-->,则A B =( )A .(,1)(3,)-∞-+∞ B .(1,2]- C .(,2](3,)-∞+∞ D .[2,1)--2. 设复数z 满足1132z i z +=--,则||z =( ) A .5BC .2D3.等差数列{}n a 的前n 项和为n S ,且满足41020a a +=,则13S =( )A .130B .150C .200D .2604.已知向量,a b 满足2=|a |=|b |,2⋅-=-()a b a ,则|2|-=a b ( ) A. 2B.C. 4D. 85.已知函数()cos(2))f x x x ϕϕ=--(||2πϕ<)的图象向右平移12π个单位后关于y 轴对称,则()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最小值为( ) A .1- BC .2- D.6.已知函数()f x 是定义在R 上的偶函数,设函数()f x 的导函数为()f x ',若对任意0x >都有2()()0f x xf x '+>成立,则( )A .4(2)9(3)f f -<B .4(2)9(3)f f ->C .2(3)3(2)f f >-D .3(3)2(2)f f -<- 二、填空题7. 在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是 .8.已知1sin 3θ=,(,)2πθπ∈,则tan θ=9. 已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. 10. 已知数列{}n a 、{}n b 满足2log ,n n b a n N *=∈,其中{}n b 是等差数列,且920094a a =,则1232017b b b b ++++= .三、解答题11. 已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且满足222sin sin sin sin sin A B C A B +=-.(1)求角C ;(2)若c =ABC ∆的中线2CD =,求ABC ∆面积S 的值.12.设函数2()2ln 1f x x mx =-+. (1)讨论函数()f x 的单调性; (2)当()f x 有极值时,若存在0x ,使得0()1f x m >-成立,求实数m 的取值范围.13.在直角坐标系xOy 中,圆C 的参数方程为2cos ,22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的普通方程;(2)直线l的极坐标方程是2sin 6πρθ⎛⎫+= ⎪⎝⎭,射线:6OM πθ=与圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.1. C2. B3. A4. B5. D6. A 二、填空题 7.甲 8.4- 9. 1 10. 2017. 三、解答题11. 解:(I )由正弦定理得:222a b c ab +-=-, ……………2分 由余弦定理可得2221cos 22a b c C ab +-==-. ……………4分0C π<<,∴23C π= ……………5分(II )由122CD CA CB =+=可得:22216CA CB CA CB ++⋅=, 即2216a b ab +-= ……………8分 又由余弦定理得2224a b ab ++=,∴4ab =.……………10分∴1sin 2S ab C ab === ……………12分 12. (1)函数()f x 的定义域为(0,)+∞,222(1)()2mx f x mx x x--'=-=,当0m ≤时,()0f x '>, ∴()f x 在(0,)+∞上单调递增; 当0m >时,解()0f x '>得0x <<∴()f x在(0,m 上单调递增,在()m+∞上单调递减. ………………6分 (2)由(1)知,当()f x 有极值时,0m >,且()f x在(0,m 上单调递增,在()m+∞上单调递减.∴max 1()(2ln 1ln f x f m m m m m==-⋅+=-, 若存在0x ,使得0()1f x m >-成立,则max ()1f x m >-成立. 即ln 1m m ->-成立, 令()ln 1g x x x =+-,∵()g x 在(0,)+∞上单调递增,且(1)0g =, ∴01m <<. ∴实数m 的取值范围是(0,1).………………12分13.(I)由圆C 的参数方程2cos 22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数)知,圆C 的圆心为(0,2),半径为2,圆C 的普通方程为22(2) 4.x y +-= ……4分 将cos ,sin x y ρθρθ==代入22(2) 4.x y +-=得圆C 的极坐标方程为4sin .ρθ= ……5分 设11(,)P r q ,则由4sin 6ρθπθ=⎧⎪⎨=⎪⎩解得112,.6πρθ== ……7分 设22(,)Q r q ,则由2sin()66πρθπθ⎧+=⎪⎪⎨⎪=⎪⎩解得115,.6πρθ== ……9分 所以12 3.PQ ρρ=-= ……10分。

河北省衡水中学2018届高三下学期第6周周考理科数学试卷及参考答案

河北省衡水中学2018届高三下学期第6周周考理科数学试卷及参考答案

x 2 bx 1 0 ,∴即存在 x 0 使 x2 bx 1 0 , x
1 (*) x
不等式 x 2 bx 1 0 等价于 b x 令 x x
1 x 1 x 1 1 ( x 0) . (x 0) ,∵ ' x 1 2 x x2 x


1 时,设 h x f x g x ,若函数 h x 在定义域上存在单调减区间,求实数 2
b 的取值范围.
理数周测 6
3/3
周日测答案
附加题 (1 ) y x 1 (2 ) g x
1 2 x 2 x (3) b 2, 2
1 2, , x
∴ x 在 0,1 上递减,在 1, 上递增,故 x x ∵存在 x 0 ,不等式(*)成立,∴ b 2 .所求 b 2,
试题解析:(Ⅰ)由 f x lnx ( x 0 ), 可得 f பைடு நூலகம் x
1 ( x 0 ), x
∴ f x 在点 1, f 1 处的切线方程是 y f 1 f ' 1 x 1 ,即 y x 1 ,所求切线方程为


y x 1.
1 2 . x 2x ( x R ) 2
所求 g x
x 2 bx 1 1 2 (Ⅲ)∵ h x f x g x lnx x bx , h ' x ( x 0 ). x 2
依题存在 x 0 使 h ' x
(Ⅱ)∵又 g x ax bx 可得 g ' x 2ax b ,且 g x 在 x 2 处取得极值 2 .

高考第六周理科数学周测题 .docx

高考第六周理科数学周测题 .docx

2014级第六周理科数学周测题班级: 姓名: 得分: 一.选择题(本大题共8小题,每小题6分,共48)1.“0<x ”是“0)1ln(<+x ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 2.设sin 33,cos55,tan 35,a b c =︒=︒=︒则 ( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >>3. 若向量,a b r r满足:()()1,,2,a a b a a b b =+⊥+⊥r r r r r r r 则b =r ( )A .2 B.1 D.24. 设函数))((R x x f ∈满足()()sin f x f x x π+=+,当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A .12B .23C .0D .21-5. 若函数()12f x x x a =+++的最小值为3,则实数a 的值为( )A .5或8B .1-或5C .1-或4-D .4-或86. 已知命题 :p 对任意x R ∈,总有20x>; :"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝ 7.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。

现有下列命题:①()()f x f x -=-;②22()2()1xf f x x =+;③|()|2||f x x ≥。

其中的所有正确命题的序号是 A .①②③ B .②③ C .①③ D .①②8.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( )A .1247[,][,]4334U B .3112[,][,]4343--U C .1347[,][,]3434U D .3113[,][,]4334--U二.填空题(本大题4小题,每小题6分,共24分,请将答案填在答题卡相应横线上)9. 若将函数()sin 24f x x π⎛⎫=+⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称, 则ϕ的最小正值是________. 10. 已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是 11.如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=u u u r u u u r u u u r u u u r ,,则AB AD ⋅u u u r u u u r的值是12. 已知两个不相等的非零向量,a b r r ,两组向量12345,,,,x x x x x u r u u r u u r u u r u u r 和12345,,,,y y y y y u u r u u r u u r u u r u u r均由2个a r 和3个b r排列而成。

高三数学上学期周考六理B层 试题

高三数学上学期周考六理B层 试题

卜人入州八九几市潮王学校信丰2021届高三数学上学期周考六〔理B层〕一、选择题:本大题一一共8小题,每一小题5分,一共40分.1.“〞是“〞的〔〕2.,那么〔〕A.B. C. D.的图象大致是()4.,那么〔〕A.B. C. D.升水缓慢注入空桶乙中,分钟后甲桶中剩余的水量符合指数衰减曲线.假设过5分钟后甲桶和乙桶的水量相等,假设再过分钟甲桶中的水只有升,那么的值是()6.,那么的值是〔〕A.B. C. D.是定义在R上奇函数,且满足,当时,那么当时的最大值为〔〕A. B. C. D.,当时,有解,那么的取值范围〔〕A. B. C. D.二、填空题:本大题一一共4小题,每一小题5分,一共20分.将答案填在答题卡的相应位置.______________.的图象恒过点,且点在角的终边上,那么11.如图,正方形ABCD的边长为平行于轴,顶点分别在函数的图象上,那么实数的值是.,假设在区间上没有零点,那么的取值范围是.三、解答题:一共24分.解容许写出文字说明,证明过程或者演算步骤.13.〔12分〕函数〔1〕假设,求函数的单调递减区间;〔2〕假设把向右平移个单位得到函数,求在区间上的最值.12.〔12分〕.函数〔其中〕.〔1〕讨论的单调性;〔2〕假设,设是函数的两个极值点,假设,且恒成立,务实数的取值范围.信丰二零二零—二零二壹上学期高三数学周练六〔理〕答案一、选择题:本大题一一共8小题,每一小题5分,一共40分.ABBDABCD二、填空题0.1 2.三、解答题:13.解:〔1〕=1+2sin x cosx-2sin2x=sin2x+cos2x=2sin〔2x+〕,……2分令2kπ+≤2x+≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,…………………………………………………….4分又,∴可得函数的单调减区间为[,].……………………………………..6分〔2〕假设把函数f〔x〕的图像向右平移个单位,得到函数=的图像,…………..8分∵x∈[-,0],∴2x-∈[-,-],…………………………………………………………..9分∴∈[-2,1].………………………………………..11分故g〔x〕在区间上的最小值为-2,最大值为1.………………….12分14.〔1〕的定义域为,〔i〕假设,那么.由得或者;由得∴在,上单调递增,在上单调递减;〔ii〕假设,那么,∴在上单调递增;〔iii〕假设,那么,由得或者;由得∴在,上单调递增,在上单调递减.〔2〕∵,,由得,∴,,∴∵∴解得∴设,那么∴在上单调递减;当时,∴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014级第六周理科数学周测题
班级: 姓名: 得分: 一.选择题(本大题共8小题,每小题6分,共48)
1.“0<x ”是“0)1ln(<+x ”的()
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件 2.设sin33,cos55,tan35,a b c =︒=︒=︒则() A .a b c >>B .b c a >>C .c b a >>D .c a b >>
3.若向量,a b 满足:()()
1,,2,a a b a a b b =+⊥+⊥则b =()
A .2
B
C .1
D .
2
4.设函数))((R x x f ∈满足()()sin f x f x x π+=+,当π<≤x 0时,0)(=x f ,则=)6
23(
π
f () A .
1
2
B .23
C .0
D .21-
5.若函数()12f x x x a =+++的最小值为3,则实数a 的值为()
A .5或8
B .1-或5
C .1-或4-
D .4-或8
6.已知命题:p 对任意x R ∈,总有20x
>;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是()
.A p q ∧.B p q ⌝∧⌝.C p q ⌝∧.D p q ∧⌝
7.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。

现有下列命题:
①()()f x f x -=-;②2
2(
)2()1
x
f f x x =+;③|()|2||f x x ≥。

其中的所有正确命题的序号是 A .①②③B .②③C .①③D .①②
8.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)
2
x x f x x x π⎧
∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为()
A .12
47[,][,]4334B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334
--
二.填空题(本大题4小题,每小题6分,共24分,请将答案填在答题卡相应横线上)
9.若将函数()sin 24f x x π⎛

=+
⎪⎝

的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是________.
10.已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是 11.如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,
,则AB AD ⋅的值是
12.已知两个不相等的非零向量,a b ,两组向量12345,,,,x x x x x 和12345,,,,y y y y y 均
由2个a 和3个b 排列而成。

记1122334455S x y x y x y x y x y =⋅+⋅+⋅+⋅+⋅,m in S 表示S 所有可能取值中的最小值。

则下列命题的是_________(写出所有正确命题的编号)。

①S 有5个不同的值。

②若a b ⊥则m in S 与||a 无关。

③若a b 则min S 与||b 无关.④若||4||b a >,则0min >S 。

⑤若2min ||2||,8||b a S a ==,则a 与b 的夹角为
4
π
三.解答题(本大题共2小题,共24分,解答应写出文字说明,证明过程和演算步骤) 13.(本题满分14分)设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且3,1,2.b c A B ===
(Ⅰ)求a 的值;(Ⅱ)求sin()4
A π
+的值。

14.(本题满分14分)18.(本小题满分12分)设函数2
3
()1(1)f x a x x x =++--其中0a >。

(Ⅰ)讨论()f x 在其定义域上的单调性;
(Ⅱ)当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值。

BCBADDAA
9.
38
π,10.0⎛⎫
⎪⎝⎭11.2212.②④, 解析:S 有下列三种情况:
222222222
123,,S a a b b b S a a b a b b b S a b a b a b a b b =++++=+⋅+⋅++=⋅+⋅+⋅+⋅+∵
22
2212232()||0S S S S a b a b a b a b -=-=+-⋅=-=-≥,∴min 3S S =,
若a b ⊥,则2
min 3S S b ==,与||a 无关,②正确; 若a b ,则2
min 34S S a b b ==⋅+,与||b 有关,③错误;
若||4||b a >,则2222
min 34||||cos ||4||||||||||0S S a b b a b b b b θ==⋅+≥-⋅+>-+=,④正确; 若2min ||2||,8||b a S a ==,则2
222min 348||cos 4||8||S S a b b a a a θ==⋅+=+= ∴1
cos 2
θ=
,∴3πθ=,⑤错误。

16.(本小题满分12分)
解析:(Ⅰ)∵2A B =,∴sin sin 22sin cos A B B B ==,
由正弦定理得222
22a c b a b ac
+-=⋅
∵3,1b c ==,∴212,a a ==
(Ⅱ)由余弦定理得22291121
cos 263
b c a A bc +-+-=
==-,
由于0A π<<,∴sin 3
A ===

故14sin()sin cos
cos sin
()4
4
4
32326
A A A π
π
π
+
=+=
+-⨯=。

17.(本小题满分12分)(Ⅰ)()f x 的定义域为(,)-∞+∞,2
'()123f x a x x =+--
令'()0f x =得121211,33
x x x x --+=
=<
所以12'()3()()f x x x x x =---
当1x x <或2x x >时'()0f x <;当12x x x <<时'()0f x >
故()f x 在1(,)x -∞和2(,)x +∞内单调递减,在12(,)x x 内单调递增。

(Ⅱ)∵0a >,∴120,0x x <>
(1)当4a ≥时21x ≥,由(Ⅰ)知()f x 在[0,1]上单调递增 ∴()f x 在0x =和1x =处分别取得最小值和最大值。

(2)当40a >>时,21x <,
由(Ⅰ)知()f x 在2[0,]x 上单调递增,在2[,1]x 上单调递减
∴()f x 在213
x x -==
处取得最大值
又(0)1,(1)f f a ==
∴当10a >>时()f x 在1x =处取得最小值 当1a =时()f x 在0x =和1x =处同时取得最小值 当41a >>时,()f x 在0x =取得最小值。

相关文档
最新文档