合并同类项练习题

合集下载

合并同类项练习题

合并同类项练习题

合并同类项练习题
1) 合并同类项得到:7x + y
2) 合并同类项得到:4a - 2b
3) 将括号内的表达式展开并合并同类项得到:-b
4) 将括号内的表达式展开并合并同类项得到:42x + 11
5) 合并同类项得到:-2x - 4y
6) 合并同类项得到:-2a + 10b
7) 合并同类项得到:-2x - 4y
8) 合并同类项得到:-2a + 10b
9) 合并同类项得到:-x + y
10) 合并同类项得到:-2a^2 - 3ab + 4
11) 合并同类项得到:2x^2 + x - 6
12) 合并同类项得到:-2a^2b - ab + a^2b + 6ab + a^2b
13) 合并同类项得到:(2a - b)^2
14) 合并同类项得到:3x^2y - 5yx - 3x^2y^2 - 7x - 4y^2x^2
15) 合并同类项得到:18x - 2y
16) 将括号内的表达式展开并合并同类项得到:5a - 4b + 1
17) 将括号内的表达式展开并合并同类项得到:10m + 3n
18) 将括号内的表达式展开并合并同类项得到:-3x^2 + 2y^2
19) 将括号内的表达式展开并合并同类项得到:-x - 6
20) 将括号内的表达式展开并合并同类项得到:2x - XXX
21) 合并同类项得到:5ab
22) 合并同类项得到:a^2b
23) 合并同类项得到:5ab
24) 合并同类项得到:a^3 + 2a^2b - 2ab^2 + b^3
25) 合并同类项得到:6xy + 2
26) 合并同类项得到:-ab。

合并同类项练习题初二

合并同类项练习题初二

合并同类项练习题初二根据题目要求,以下是一个合并同类项练习题的示例文章:合并同类项练习题练习题一:简化并合并下列各式:1. 3x + 2y + 5x + y2. 4a - 2b + 3a + 5b - 6a3. 7m - 5n + 2m + 3n解答:1. 3x + 2y + 5x + y = 8x + 3y2. 4a - 2b + 3a + 5b - 6a = a + 3b - 2a = -a + 3b3. 7m - 5n + 2m + 3n = 9m - 2n练习题二:合并同类项:1. 2x^2 + 3y^2 - 4x^2 + 5y^22. 4a^3 - 2b + 3a^3 + 5b - 6a^33. 7m^2n + 5n^2 - 2m^2n + 3n^2解答:1. 2x^2 + 3y^2 - 4x^2 + 5y^2 = -2x^2 + 8y^22. 4a^3 - 2b + 3a^3 + 5b - 6a^3 = a^3 - 2b + 5b = a^3 + 3b3. 7m^2n + 5n^2 - 2m^2n + 3n^2 = 5m^2n + 8n^2练习题三:将下列各式进行合并同类项,并进行简化:1. 2x^3 - 3x^2 + 4x^3 - x^22. 5a^2b - 2ab^2 + 3a^2b^2 + 4ab^23. 6m^2n^3 - 7mn^4 + 2m^2n^3解答:1. 2x^3 - 3x^2 + 4x^3 - x^2 = 6x^3 - 4x^22. 5a^2b - 2ab^2 + 3a^2b^2 + 4ab^2 = 5a^2b + 3a^2b^2 + 2ab^2 = 5a^2b^2 + 6a^2b + 2ab^23. 6m^2n^3 - 7mn^4 + 2m^2n^3 = 8m^2n^3 - 7mn^4练习题四:请将下列各式的同类项合并,并进行简化计算:1. 2x^4 - 3x^3 + 4x^4 - 2x^32. 5a^3b^2c - 2a^2b^3c^2 + 3a^3b^2c^2 + 4a^2b^3c^23. 6m^4n^2 - 7mn^4 + 2m^4n^2解答:1. 2x^4 - 3x^3 + 4x^4 - 2x^3 = 6x^4 - 5x^32. 5a^3b^2c - 2a^2b^3c^2 + 3a^3b^2c^2 + 4a^2b^3c^2 = 5a^3b^2c + 3a^3b^2c^2 - 2a^2b^3c^2 + 4a^2b^3c^2 = 5a^3b^2c + a^3b^2c^2 +2a^2b^3c^23. 6m^4n^2 - 7mn^4 + 2m^4n^2 = 8m^4n^2 - 7mn^4通过以上练习题的解答,我们可以发现合并同类项的规律和方法。

(完整版)合并同类项经典提高练习题

(完整版)合并同类项经典提高练习题

合并同类项经典练习题1.1.单项式单项式113a b a x y +--与345y x 是同类项是同类项,,求a b -的值2.x 5-y 3+4x 2y -4x +5,其中x =-1,y =-2;3.x 3-x +1-x 2,其中x =-3;4.4.已知已知622x y 和313m n x y -是同类项是同类项,,求29517m mn --的值5.5.若若22+k k y x与n y x23的和为5n y x 2,则k= k= ,,n= 6..求5xy -8x 2+y 2-1的值,其中x =21,y =4;7..若21|2x -1|+31|y -4|=0,试求多项式1-xy -x 2y 的值.的值.8.若0)2(|4|2=-+-x y x ,求代数式222y xy x +-的值。

的值。

9.求3y 4-6x 3y -4y 4+2yx 3的值,其中x =-2,y =3。

10.10.已知已知213-+b a y x与252x 是同类项,求b a b a b a 2222132-+的值。

的值。

11.求多项式13243222--++-+x x x x x x 的值,其中x =-2.12. 求多项式322223b ab b a ab b a a +-++-的值,其中a =-3,b=2.13.有理数a,b,c在数轴上的位置如图所示化简aa+bbcc----14已知:多项式6-2x2-my-12+3y-nx2合并同类项后不含有x、y,的值。

求:2m+3n-mn的值。

15.有一道题目是一个多项式减去x+14x-6,小强误当成了加法计算,,正确的结果应该是多少?结果得到2 x2-x+3,正确的结果应该是多少?。

合并同类项练习题

合并同类项练习题

合并同类项练习题一、选择题1. 合并同类项,其结果正确的是( )A .4a +b =5abB .6x 2 -2x 2 =4C .22660xy y x -=D .3x 2 +2x 3 =5x 5 2. 下列化简正确的是( )A .(3a -b )-(5c -b )=3a -2b -5cB .(a+b )-(3b -5a )=-2b -4aC .(2a -3b+c )-(2c -3b+a )=a +3cD .2(a -b )-3(a+b )=-a -5b3. 下列各选项中,两个代数式是同类项的是( )A .2123mn mn --与 B .18ab 与18abc C .221616a b ab -与 D .336x 与 4. 关于x 的多项式ax +bx 合并后的结果为0,则a 与b 的关系是__________.5. 把多项式中的同类项__________的过程,叫做合并同类项.6. 已知496b a -和445b a n 是同类项,则代数式1012-n 的值是( )A .17B .37C .-17D .987. 若536x y 与12b c ax y --是同类项,则________b c ==,.8. 关于x ,y 的多项式312x y xy k -+-,当k= 值时,不含常数项. 9. 把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果应为( ) A .-4(x -3)2-(x -3) B .4(x -3)2+x (x -3) C .4(x -3)2-(x -3) D .-4(x -3)2+(x -3) 10. 若关于a ,b 的代数式a 2m -1b 与a 5b m +n 是同类项,那么(mn +5)2004等于( )A .0B .1C .-1D .5200411.下列计算正确的是( )A.2a +b =2abB.3x 2-x 2=2C.7mn -7nm =0D.a +a =a 22.当a =-5时,多项式a 2+2a -2a 2-a +a 2-1的值为( )A.29B.-6C.14D.2412.下列单项式中,与-3a 2b 为同类项的是( )A.-3ab 3B.-41ba 2C.2ab 2D.3a 2b 213.下面各组式子中,是同类项的是( )A.2a 和a 2B.4b 和4aC.100和21 D.6x 2y 和6y 2x 二、填空题1.合并同类项:-mn +mn =_______-m -m -m =_______.2.在多项式5m 2n 3 , -32m 2n 3中,5m 2n 3与-32m 2n 3都含有字母_______,并且_______都是二次,_______ 都是三次.因此5m 2n 3与-32m 2n 3是_______. 3.两个单项式-2a m 与3a n 的和是一个单项式,那么m 与n 的关系是_______.三、根据题意列出代数式1.三个连续偶数中,中间一个是2n ,其余两个为_______,这三个数的和是_______.2.一个长方形宽为x cm,长比宽的2倍少1 cm ,这个长方形的长是_______,周长是_______.3.一个圆柱形蓄水池,底面半径为r ,高为h ,如果这个蓄水池蓄满水,可蓄水_______.四、解答题如果单项式2mx a y 与-5nx 2a -3y 是关于x 、y 的单项式,且它们是同类项. 1.求(4a -13)2003的值.2.若2mx a y +5nx 2a -3y =0,且xy ≠0,求(2m +5n )2003的值.五、合并同类项1、a a a652-+- 2、2a-5b+4c-7a+5a+5b-4c3、6321+-st st 4、537532-+-+--x y y x5、a a a a 742322-+-6、y x y y x y 33332443+--7、3x+2x 2-2-15x 2+1-5x 8、a a a a a 6425445222+---+-9、342522+-++-x x x x 10、424232222-+--ab b a ab b a11、67482323---++-a a a a a a12、355264733---+++xy xy x xy xy去括号 合并同类项11、(2)()xyy y yx ---+ 2、()()2354x y x y --+3、)522(2)624(22-----a a a a4、)32(3)32(2a b b a -+-5、)3123()31(22122n m n m m ----6、 )1()21(1)31(61-+-+---x x x7、[])3(43b a b a --+- 8、2237(43)2x x x x ⎡⎤----⎣⎦9、[])3(4)2(222x x x x---+ 10、 {}])([22y x -----11、)]2([2)32(3)(222222y xy x x xy x xy x +------去括号 合并同类项21、(-2ab +3a )-(2a -b )+6ab2、2x -3(x -2y+3x)+2(3x -3y+2z)3、-xy -(4z -2xy )-(3xy -4z )4、2a -[-4ab +(ab -2a )]-2ab5、8m 2-[4m 2―2m ―(2m 2-5m)]6、212a -[21(ab -2a )+4ab ]-21ab7、-2(ab -3a 2)-[2b 2-(5ba+a 2)+2ab ] 8、(x -3)2-2(x -3)-5(x -3)2+(x -3)。

七年级数学合并同类项同步练习(附答案)

七年级数学合并同类项同步练习(附答案)

合并同类项一、选择题1 .计算223a a +的结果是( ) A.23a B.24a C.43a D.44a2 .下面运算正确的是( ).A.ab b a 523=+B.03322=-ba b aC.532523x x x =+ D.12322=-y y 3 .下列计算中,正确的是( )A 、2a +3b =5ab ;B 、a 3-a 2=a ;C 、a 2+2a 2=3a 2;D 、(a -1)0=1.4 .已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A.51x --B.51x +C.131x --D.131x + 5 .下列合并同类项正确的是A.2842x x x =+B.xy y x 523=+C.43722=-x xD.09922=-ba b a 6 .下列计算正确的是( )(A)3a+2b=5ab (B)5y 2-2y 2=3 (C)-p 2-p 2=-2p 2(D)7m-m=77 .加上-2a-7等于3a 2+a 的多项式是 ( )A 、3a 2+3a-7B 、3a 2+3a+7C 、3a 2-a-7D 、-4a 2-3a-7 8 .当1=a 时,a a a a a a 10099432-++-+- 的值为( )A. 5050B. 100C. 50D. -50 二、填空题9 .化简:52a a -=_________. 10.计算:=-x x 53_________。11.一个多项式与2x 2-3xy 的差是x 2+xy,则这个多项式是_______________. 三、解答题12.求多项式:10X 3-6X 2+5X-4与多项式-9X 3+2X 2+4X-2的差。13.化简:2(2a 2+9b)+3(-5a 2-4b)14.化简:2222343423x y xy y xy x -+--+.15.先化简,后求值.(1)化简:()()22222212a b ab ab a b +--+-(2)当()221320b a -++=时,求上式的值.16.先化简,再求值:x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2),其中x=1,y=3.17.计算:(1)()()32223232y xy y x xy y ---+-;(2)5(m-n)+2(m-n)-4(m-n)。18.先化简,再求值:)52338()5333(3122222y xy x y xy x x +++-+-,其中21-=x ,2=y .19.化简求值: )3()3(52222b a ab ab b a +--,其中31,21==b a .20.先化简,后求值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----,其中21-=a22.给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.23.先化简,再求值:()()2258124xy x xxy ---+,其中1,22x y =-=.24.先化简,再求值。(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中a=-1 b=125.化简求值(-3x 2-4y )-(2x 2-5y +6)+(x 2-5y -1) 其中 x =-3 ,y =-126.先化简再求值:(ab-3a 2)-2b 2-5ab-(a 2-2ab),其中a=1,b=-2。27.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-。”甲同学把“12x =”错抄成了“12x =-”但他计算的结果也是正确的,请你通过计算说明为什么?28.已知:21(2)||02x y ++-= ,求22222()[23(1)]2xy x y xy x y +----的值。3.4合并同类项参考答案一、选择题1 .B2 .B;3 .C ;4 .A5 .D6 .C7 .B8 .D 二、填空题9 .3a ; 10.-2x 11.3x 2-2xy 三、解答题12.粘贴有误,原因可能为题目为公式编辑器内容,而没有其它字符13.解:原式=4a 2+18b-15a 2-12b =-11a 2+6b14.解:原式=)44()32()33(2222y y xy xy x x -+-+- =-xy15.原式=21a b -=1.16.x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2)= x 2-x 2 +3xy +2y 2-x 2+xy-2y 2 = 4xy-x 2当x=1,y=3时 4xy-x 2=4×1×3-1=11。 17.(1)()()yx xy y xy y x xy y y xy y x xy y 2232223322232232232-=+--+-=---+-(2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n) =-2(m-n) =-2m+2n 。18.解:原式=2222252338533331y xy x y xy x x ++++--=)5253()33()38331(22222y y xy xy x x x ++-++- =2y 当21-=x ,y =2时,原式=4 .19.解:原式=3220.原式mn =,当2,1-==n m 时,原式2)2(1-=-⨯=;21.原式=692-+a a ;-2;22.(1) (212x x +)+(2132x y +)=23x x y ++ (去括号2分)当1,2x y =-=,原式=2(1)(1)326-+-+⨯=(2)(212x x +)-(2132x y +) =3x y - (去括号2分)当1,2x y =-=,原式=(1)327--⨯=- (212x x +)+(2113x +)=255166x x ++= (212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++= (2132x y +)-(2113x +)=21313166x y +-=23.解:原式2258124xy x x xy =-+- ()()2254128xy xy x x =-+- 24xy x =+当1,22x y =-=时,原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=024.解:原式=5a 2-3b 2+a 2+b 2-5a 2-3b 2=-5b 2+a 2当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4 25.33. 26. -827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+-3223(211)(33)(22)(11)x x y xy y =--+-++-++-- 32y =-∴此题的结果与x 的取值无关。28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+--=22(22)(21)(32)xy x y -+-+-=21x y + ∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y = ∴原式=21(2)12-⨯+=3。

合并同类项练习题

合并同类项练习题

1-6+8ab ab ab -、 221610+125x x x x --、22223465x x x -+--、 22222537+a b a b a b a b --、223325325x x x x -++--、222235343x x y x y x y y --++-、22244237382x y xy y x +-++--、2222443283a b a b a b ++--、2253()4()7()6()x y x y x y x y ---+---、2253(23)()3(23)4()a b a b a b a b -------、2332163a b a b a b a b +--5、已知与是同类项,7求、的值526263m n a b a b m n -3、若与的和是单项式,4求、的值222142+31(3)x x x x x x x +----=-、求值:3 2210.2235735x x x x x =-+-+-、当时,求多项式的值22287677(3,3)a p q p p q -+--==-、求值 42342322005525221x x x x x x x x =-+-+-+-、当时,求多项式的值2222231+0,45652x x y xy x y x xy y --=-++--、已知(2)求的值 354763436,3a b a b a a b a b b a b a b +++--++==、求的值其中2332322457+453m n x y x y m m n n m n m nm -+-+、若的和是单项式,求的值 32223223114212,32112212x y x y y x y x y x y x y x x -+--+-=-=-=3、其中2,=1小明在做这道题时,将错抄成了,可他的计算结果却是正确的,这是怎么回事?5、小张刚买的一套住房的平面示意图如下所示(单位:米)小张计划在卧室和客厅铺上地板,请你算一算他至少需要买多少地板?332332360.35,0.28333100.35,0.28a b a a b a b a a b a b aa b ==-++--==-、有这样一道题:“当时,求多项式7-6+6的值。

合并同类项练习题

合并同类项练习题

合并同类项练习题选择题1. 下列式子中正确的是( )A. B.C. y x xy y x 22254-=-D.2. 下列各式中,合并同类项正确的是( )A 、-a+3a=2B 、x 2-2x 2=-xC 、2x+x=3xD 、3a+2b=5ab3. 合并4(a-b)2-9(a-b)2+5(b-a)2-4(a-b)2=( )A 、-4a 2+4b 2B 、-14a 2+14b 2C 、-14(a-b)2D 、-4(a-b)24. 下列说法错误的是( )A 、53723+-a a 的项是5,3,723a a -B 、8-4t 中t 的系数是-4C 、532y x +中y 的系数是3D 、532y x +中有2项,分别是x 52和y 53 5. 若b a m 232-与433a b n --是同类项,则n m +的值是( )A 、2B 、3C 、4D 、66. 当m <0时,m m -2=( )A 、m -B 、m 3-C 、mD 、m 37. 若关于x 的多项式ax+bx 合并同类项后结果为0,则下列说法正确的是( )A 、a,b 都必为0B 、a,b,x 都必为0C 、a,b 必相等D 、a,b 必互为相反数填空题1. 下列各组单项式:①3x 3y 2与-5x 2y 3 ;②4ab 2与-2xy 2; ③3x 3y 2与-y 2x 3. 其中是同类项的有 。

2. 下列各题合并同类项的结果:①3a 3 + 2a 3 = 5a 6;②3x 2 + 2x 3 = 5x 5;③5y 2 - 3y 2 = 2; ④ 4x 2y - 5y 2x = - x 2y 。

其中正确的有 。

3. 在代数式4x 2+4xy-8y 2-3x+1-5x 2+6-7x 2中,4x 2的同类项是 ,6的同类项是 。

4、在a 2+(2k-6)ab+b 2+9中,不含ab 项,则k= 。

5. 若y x m 2-与x y mn 31的和是mn m y x 232-,则n m +-2= 。

合并同类项、去括号练习题

合并同类项、去括号练习题

合并同类项、去括号试题1.合并下列各式中的同类项(1)3x 2-1—2x —5+3x-x 2(2)4xy —3y 2-3x 2+xy-3xy-2x 2—4y 2(3)—0。

8a 2b —6ab —1。

2a 2b+5ab+a 2b (4)222b ab a 43ab 21a 32-++-(5)5(a-b )2—7(a —b)+3(a-b )2—9(a-b) (6)3x n+1-4x n —1+12x n+1+32x n-1+5x n -2x n(7)3a -(4b -2a +1) (8)x -[(3x +1)-(4-x )](13)5(43)(3)a b a a b +---+ (14)222(25)(32)2(41)a a a -+-----(15)(531)(21)x x y x y +-+--+ (16)()232a a b a ---⎡⎤⎣⎦(17)8(2)4(3)2x y x y z z --+-+ (18)[]{}23(2)2a b a b a a -----(19)8x +2y +2(5x -2y ) (20)(x 2-y 2)-4(2x 2-3y 2)(21)-3(2x 3y -3x 2y 2+3xy 3) (22)(-4y +3)-(-5y -2) +3y(23)(6x 2-x +3)-2(4x 2+6x -2 (24){}222234(3)x x x x x ⎡⎤--+--⎣⎦(25)11(46)3(22)32a abc c b ---+-+ (26)[](43)(3)()5x y y x x y x ----+--(27)22121232a ab a b ⎛⎫⎛⎫--++-+ ⎪ ⎪⎝⎭⎝⎭(28) 2—[2(x+3y )—3(x —2y )](29)(2m —3)+m-(3m —2) (30)3(4x-2y )—3(—y+8x).(31)(2x —3y)+(5x+4y ) (32)(8a —7b)—(4a-5b )(33)a —(2a+b )+2(a —2b) (34)3(5x+4)—(3x-5)(35)(8x —3y )-(4x+3y —z )+2z (36)-5x 2+(5x —8x 2)—(—12x 2+4x )+2(37)2-(1+x)+(1+x+x 2—x 2) (38)3a 2+a 2—(2a 2—2a )+(3a —a 2)(39)2a —3b+[4a-(3a —b )] (40)3b-2c —[-4a+(c+3b)]+c(41)x-(3x-2)+(2x-3) (42)(3a 2+a —5)—(4-a+7a 2)(43)x 2+(-3x-2y+1) (44)x-(x 2—x 3+1)(45)3a+4b —(2b+4a )(46)(2x-3y )-3(4x —2y )(47)(2x-3y)+(5x+4y ) (48)(8a-7b)-(4a-5b )(49)a-(2a+b)+2(a-2b ) (50)3(5x+4)-(3x —5)(51)(8x —3y)-(4x+3y-z )+2z (52)—5x 2+(5x —8x 2)—(-12x 2+4x)+2(53)2—(1+x)+(1+x+x 2—x 2) (54)3a 2+a 2-(2a 2-2a)+(3a —a 2)(55)5a +(3x -3y -4a ) (56)3x -(4y -2x +1)(57)7a +3(a +3b) (58)(x 2-y 2)-4(2x 2-3y )(59)2a -3b +[4a -(3a -b)] (60)3b -2c -[-4a +(c +3b )]+c(61)x+[x+(-2x-4y )] (62) (a+4b )- (3a —6b )(63)3x 2-1—2x-5+3x —x 2 (64) -0。

初一合并同类项练习题汇总带答案

初一合并同类项练习题汇总带答案

初一合并同类项练习题汇总带答案在初一数学的学习中,合并同类项是一个重要的知识点。

为了帮助同学们更好地掌握这一内容,下面为大家汇总了一些相关的练习题,并附上详细的答案解析。

一、基础练习题1、 3x + 2x =答案:5x解析:3 个 x 加上 2 个 x 等于 5 个 x。

2、 5y 3y =答案:2y解析:5 个 y 减去 3 个 y 等于 2 个 y。

3、 2a + 3a 5a =答案:0解析:2 个 a 加上 3 个 a 等于 5 个 a,再减去 5 个 a 就等于 0。

4、 4b 2b + 3b =答案:5b解析:4 个 b 减去 2 个 b 等于 2 个 b,再加上 3 个 b 就等于 5 个 b。

5、 6x²+ 3x²=答案:9x²解析:6 个 x²加上 3 个 x²等于 9 个 x²。

6、 8y² 5y²=答案:3y²解析:8 个 y²减去 5 个 y²等于 3 个 y²。

7、 5a²+ 2a 3a²=答案:2a²+ 2a解析:5 个 a²减去 3 个 a²等于 2 个 a²,再加上 2 个 a 不变。

8、 7b² 4b²+ 5b =答案:3b²+ 5b解析:7 个 b²减去 4 个 b²等于 3 个 b²,5 个 b 不变。

二、提高练习题1、 3x²+ 2xy 5x²+ 4xy =答案:-2x²+ 6xy解析:3 个 x²减去 5 个 x²等于-2 个 x²,2 个 xy 加上 4 个 xy 等于 6 个 xy 。

2、 5y² 3y + 2y²+ 5y =答案:7y²+ 2y解析:5 个 y²加上 2 个 y²等于 7 个 y²,-3 个 y 加上 5 个 y 等于 2 个 y 。

合并同类项练习题

合并同类项练习题

合并同类项练习题1、下列各组中的两项是不是同类项?说明理由。

(1)a2bc与ab2c(2)-8xy2与xy2(3)3ab与-ba(4)-0.5 与9 (5)abm 与abn(6)xy与xyz(7)2m3n 与-6nm32.求代数式(2a+7b)3-8(a+5b)3+12(2a+7b)3-7(a+5b)3+7(2a+7b)3的值.其中a=9,b=-33.如果5a4b与3a2xbx是同类项,那么x=____,y=_____, 它们的次数是____4.如果xky与- x2y是同类项,则k=______,xky+(- x2y)=________.5.当m=________时,-x3b2m与x3b是同类项.6.如果5akb与-4a2b是同类项,那么5akb+(-4a2b)=_______如果5a4b与3a2xbx是同类项,那么x=____,y=_____, 它们的次数是_____。

2、当k=_____时,多项式中不含xy的项。

7.合并同类项1)-4x2y-8xy+2xy-3x2y;2)3x2-1-2x-5+3x-x2;3)-0.8a2b-6ab-1.2a2b+5ab+a2b;4)5yx-3x2y-7xy2+6xy-12xy+7xy2+8x2y 5)(3x-5y)-(6x+7y)+(9x-2y)6)2a-[3b-5a-(3a-5b)]7)(6m2n-5mn2)-6(m2n-mn2)8) (4x-2y)-{5x-[8y-2x-(x+y)]-x}9) m2+(-mn)-n2+(-m2)-(-0.5n2)10) 2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)11) 2ab2 -a2b +ab212)- 4ab+8a - 2b2 - 9ab – 8a13)m3 - 3m2n - m3 + 2nm2– 7 + 2m38.求下列多项式的值:(1)a2-8a- +6a- a2,其中a=2 ;(2)3x2y2+2xy-7x2y2- xy+2+4x2y2,其中x=2,y=-1 .9.已知:A=3x2-4xy+2y2,B=x2+2xy-5y2求:(1)A+B (2)A-B (3)若2A-B+C=0,求C。

七年级数学上册《合并同类项》练习题

七年级数学上册《合并同类项》练习题

《合并同类项》练习一一、选择题1 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与C 、xy 与2pxyD 、11113+--+-n n n n x y y x 与 2 .下列各对单项式中,不是同类项的是( )A.0与31 B.23n m x y +-与22m n y x + C.213x y 与225yx D.20.4a b 与20.3ab 3 .如果23321133a b x y x y +--与是同类项,那么a___、b ______4 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n -B.5xy 和5xyC.-1和14D.2a 和3x 5 .已知代数式y x 2+的值是3,则代数式142++y x 的值是A.1B.4C. 7D.不能确定6.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )b a +10 B.b a +100 C.b a +1000 D.b a +二、填空题7.写出322x y -的一个同类项_______________________.8.单项式113a b a x y +--与345y x 是同类项,则a b -的值为_________。 9.已知622x y 和313m n x y -是同类项,则29517m mn --的值是_____________. 10.某公司员工,月工资由m 元增长了10%后达到_______元。11.判断下列单项式是同类项的是 .(1) 3x 与5x (2) 3a 与2a 2 (3) 5xy 2与2xy 2(4) -1与6 (5) 3a 与2ab (6) x 与2三、用不同的标识分别标出下列多项式的同类项(1)3x-4y-2x+y (2)5ab -4a ²b ² +3ab ² -3ab -ab ² +6a ²b ²同类项练习二1填空:若 571b a m 与n b a 3109-是同类项,则m= ; n= . 如果23k x y x y -与是同类项,那么k = .如果3423x y a b a b -与是同类项,那么x = . y = .2、判断题:(对的画“√”,错的画“×”)(1)-41ab 与0.25ba 不是同类项;( )(2)y x 232与232xy -是同类项;( )(3)2mn 与2m 不是同类项;( ) (4)n n y y 3121与是同类项;( ) (5)23与32不是同类项;( ) (6)在多项式中,如果两项所含字母相同,并且次数也相同,那么这两项是同类项.( )3.单项式52a 2与5n a n 是同类项,则n 等于 ( )(A )2 (B )3 (C )2或3 (D )不确定4.已知4x 5y 2与-3x 3m y 2是同类项,则代数式12m -24的值是( )(A )-3 (B )-5 (C )-4 (D )-65、如果123237x y a b a b +-与是同类项,那么x = . y = . 如果232634k x y x y -与是同类项,那么k = .如果k y x 23与2x -是同类项,那么k = .如果-3x 2y 3k 与4x 2y 6是同类项,则k = .如果47b a x 和y b a 597-是同类项,则x y 53-的值是__________________. 6.在9)62(22++-+b ab k a 中,不含ab 项,则k=7.若22+k k y x 与n y x 23的和未5n y x 2,则k= ,n=8. 若-3x m-1y 4与2n 2y x 31+是同类项,求m,n.。

初一合并同类项经典练习题

初一合并同类项经典练习题

秋季周末班是学习的大好时机, 可以在这学期里, 学习新知识, 总结旧知识, 查漏补缺, 巩固提高。

在这个收获的季节, 祝你学习轻松愉快.秋季周末班是学习的大好时机,可以在这学期里,学习新知识,总结旧知识,查漏补缺,巩固提高。

在这个收获的季节,祝你学习轻松愉快.代数式(复习课)一、典型例题代数式求值例1 当时, 求代数式的值。

例2 已知是最大的负整数, 是绝对值最小的有理数, 求代数式的值。

例3已知, 求代数式的值。

合并同类项例1.合并同类项(1)(3x-5y)-(6x+7y)+(9x-2y)(2)2a-[3b-5a-(3a-5b)](3)(6m2n-5mn2)-6(m2n-mn2)解: (1)(3x-5y)-(6x+7y)+(9x-2y)=3x-5y-6x-7y+9x-2y (正确去掉括号)=(3-6+9)x+(-5-7-2)y (合并同类项)=6x-14y(2)2a-[3b-5a-(3a-5b)] (应按小括号, 中括号, 大括号的顺序逐层去括号)=2a-[3b-5a-3a+5b] (先去小括号)=2a-[-8a+8b] (与时合并同类项)=2a+8a-8b (去中括号)=10a-8b(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)=(6-2)m2n+(-5+3)mn2 (合并同类项)=4m2n-2mn2例2. 已知: A=3x2-4xy+2y2, B=x2+2xy-5y2求:(1)A+B (2)A-B (3)若2A-B+C=0, 求C。

解: (1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)=3x2-4xy+2y2+x2+2xy-5y2(去括号)=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)=4x2-2xy-3y2(按x的降幂排列)(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)=3x2-4xy+2y2-x2-2xy+5y2 (去括号)=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)=2x2-6xy+7y2 (按x的降幂排列)(3)∵2A-B+C=0∴C=-2A+B=-2(3x2-4xy+2y2)+(x2+2xy-5y2)=-6x2+8xy-4y2+x2+2xy-5y2 (去括号, 注意使用分配律)=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)=-5x2+10xy-9y2 (按x的降幂排列)例3. 计算:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an) (3)化简: (x-y)2-(x-y)2-[(x-y)2-(x-y)2]解: (1)m2+(-mn)-n2+(-m2)-(-0.5n2)=m2-mn-n2-m2+n2 (去括号)=(-)m2-mn+(-+)n2 (合并同类项)=-m2-mn-n2 (按m的降幂排列)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)=8an+2-2an-3an-an+1-8an+2-3an (去括号)=0+(-2-3-3)an-an+1 (合并同类项)=-an+1-8an(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)=(1--+)(x-y)2 (“合并同类项”)=(x-y)2例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值, 其中x=2。

合并同类项练习题

合并同类项练习题

合并同类项练习题.A1.找出下列多项式中的同类项:1) 3xy-4xy-3+5xy+2xy+52) 2ab-3ab+223) a-ab+ab+ab-ab+b4) 3x+4x-2x-x+x-3x-12.合并下列多项式中的同类项:1) 2ab+3) 2ab+3ab-3.下列各题合并同类项的结果对不对?若不对,请改正。

1) 2x+3x=5x2) 3x+2y=3x+2y (结果正确,不需要改正)3) 7x-3x=4x4) 9ab-9ba=0B1.求多项式3x+4x-2x+x+x-3x-1的值,其中x=-2.3(-2) + 4(-2) - 2(-2) + (-2) + (-2) - 3(-2) - 16 - 8 + 4 - 2 - 2 + 6 - 192.求多项式a-ab+ab+ab-ab+b的值,其中a=-3.b=2.3) - (-3)(2) + (-3)(2) + (-3)(2) - (-3)(2) + 23 - (-6) + (-6) + (-6) - (-6) + 23C1.填空:1) 如果3xy与-xy是同类项,那么k=-1/4.2) 如果2ab与-3ab是同类项,那么x=5/2.y=1/2.3) 如果3ab与-7a^3b^2y是同类项,那么x=3/7.y=1.4) 如果-3xy与4xy是同类项,那么k=-7/3.5) 如果3xy与-x是同类项,那么k=-1/4.2.已知3xyb-2与12无关系,求x和y的值。

由于3xyb-2与12无关系,所以它们的指数和必须相等,即x+y+1=2,解得x+y=1.但是由于没有更多的信息,无法求出x和y的具体值。

合并同类项练习题及答案

合并同类项练习题及答案

合并同类项练习题及答案练习题1:合并下列各组数的同类项:1) 5x + 2x + 7x2) 3y + 4y + 6y3) 10a + 12a + 15a4) 2m + 5m + 8m答案1:1) 5x + 2x + 7x = 14x2) 3y + 4y + 6y = 13y3) 10a + 12a + 15a = 37a4) 2m + 5m + 8m = 15m练习题2:合并下列各组数的同类项:1) 2x^2 + 3x^2 + 5x^22) 4y^3 + 2y^3 + 6y^33) 7a^2b + 9a^2b + 12a^2b4) 2m^2n + 5m^2n + 8m^2n答案2:1) 2x^2 + 3x^2 + 5x^2 = 10x^22) 4y^3 + 2y^3 + 6y^3 = 12y^33) 7a^2b + 9a^2b + 12a^2b = 28a^2b4) 2m^2n + 5m^2n + 8m^2n = 15m^2n练习题3:合并下列各组数的同类项:1) 3x^2y + 2xy + 4xy2) 5a^2b^2c + 3ab^2c^2 + ab^2c3) 8m^2n^3 + 5m^2n^4 + 6m^2n^34) 2x^3y^2z + 3xy^2z^2 + x^3yz^2答案3:1) 3x^2y + 2xy + 4xy = 3x^2y + 6xy = 3x^2y + 6xy2) 5a^2b^2c + 3ab^2c^2 + ab^2c = 5a^2b^2c + ab^2c + 3ab^2c^23) 8m^2n^3 + 5m^2n^4 + 6m^2n^3 = 14m^2n^3 + 5m^2n^44) 2x^3y^2z + 3xy^2z^2 + x^3yz^2 = 2x^3y^2z + x^3yz^2 + 3xy^2z^2练习题4:合并下列各组式子的同类项:1) (2x + 5y) + (3x + 4y)2) (4a^2b - 3ab^2) + (ab - 2a^2b)3) (3m^2n^3 + 5mn^2) + (8mn^2 - 2m^2n^3)4) (2x^2 + 3xy - y^2) + (x^2 - 2xy + y^2)答案4:1) (2x + 5y) + (3x + 4y) = 5x + 9y2) (4a^2b - 3ab^2) + (ab - 2a^2b) = ab + 2a^2b - 3ab^2 + 4a^2b3) (3m^2n^3 + 5mn^2) + (8mn^2 - 2m^2n^3) = 5mn^2 + m^2n^34) (2x^2 + 3xy - y^2) + (x^2 - 2xy + y^2) = 3x^2 - 2xy练习题5:合并下列各组式子的同类项:1) 2(3x + 2y) + 3(4x + 3y)2) 4(2a^2 - ab) + 2(ab^2 + 3a^2b)3) 5(3mn^2 + 4m^2n^3) + 3(2m^2n^3 + mn^2)4) 2(2x^2 + xy - y^2) + 3(x^2 - 2xy + y^2)答案5:1) 2(3x + 2y) + 3(4x + 3y) = 6x + 4y + 12x + 9y = 18x + 13y2) 4(2a^2 - ab) + 2(ab^2 + 3a^2b) = 8a^2 - 4ab + 2ab^2 + 6a^2b = 14a^2 + 2ab^2 + 6a^2b3) 5(3mn^2 + 4m^2n^3) + 3(2m^2n^3 + mn^2) = 15mn^2 + 20m^2n^3 + 6m^2n^3 + 3mn^2 = 18mn^2 + 26m^2n^34) 2(2x^2 + xy - y^2) + 3(x^2 - 2xy + y^2) = 4x^2 + 2xy - 2y^2 + 3x^2 - 6xy + 3y^2 = 7x^2 - 4xy + y^2练习题6:合并下列各组式子的同类项:1) 2x(3x + 2y) + 3y(4x + 3y)2) 4a(2a^2 - ab) + 2b(ab^2 + 3a^2b)3) 5mn(3mn^2 + 4m^2n^3) + 3n(2m^2n^3 + mn^2)4) 2x(2x^2 + xy - y^2) + 3y(x^2 - 2xy + y^2)答案6:1) 2x(3x + 2y) + 3y(4x + 3y) = 6x^2 + 4xy + 12xy + 9y^2 = 6x^2 +16xy + 9y^22) 4a(2a^2 - ab) + 2b(ab^2 + 3a^2b) = 8a^3 - 4a^2b + 2ab^3 + 6a^3b = 14a^3 + 2ab^3 + 2a^3b - 4a^2b3) 5mn(3mn^2 + 4m^2n^3) + 3n(2m^2n^3 + mn^2) = 15m^2n^3 +20m^3n^4 + 6m^2n^4 + 3mn^3 = 15m^2n^3 + 26m^3n^4 + 3mn^34) 2x(2x^2 + xy - y^2) + 3y(x^2 - 2xy + y^2) = 4x^3 + 2x^2y - 2xy^2 + 3x^2y - 6xy^2 + 3y^3 = 4x^3 + 5x^2y - 8xy^2 + 3y^3练习题7:合并下列各组式子的同类项:1) 2x^2(3x + 2y) + 3xy(4x + 3y)2) 4a^2(2a^2 - ab) + 2ab(ab^2 + 3a^2b)3) 5mn^2(3mn^2 + 4m^2n^3) + 3m(2m^2n^3 + mn^2)4) 2x^3(2x^2 + xy - y^2) + 3y^2(x^2 - 2xy + y^2)答案7:1) 2x^2(3x + 2y) + 3xy(4x + 3y) = 6x^3 + 4x^2y + 12x^2y + 9xy^2 = 6x^3 + 16x^2y + 9xy^22) 4a^2(2a^2 - ab) + 2ab(ab^2 + 3a^2b) = 8a^4 - 4a^3b + 2a^3b^2 + 6a^4b = 14a^4 + 2a^3b^2 - 4a^3b + 6a^4b3) 5mn^2(3mn^2 + 4m^2n^3) + 3m(2m^2n^3 + mn^2) = 15m^2n^4 + 20m^3n^5 + 6m^3n^4 + 3m^2n^3 = 15m^2n^4 + 26m^3n^5 + 3m^2n^34) 2x^3(2x^2 + xy - y^2) + 3y^2(x^2 - 2xy + y^2) = 4x^5 + 2x^3y - 2x^2y^2 + 3x^2y^2 - 6xy^3 + 3y^4 = 4x^5 + 2x^3y + x^2y^2 - 6xy^3 + 3y^4练习题8:合并下列各组式子的同类项:1) (2x + 3y)(3x - 2y) + (3x + 4y)(4x + 3y)2) (4a^2 - 3ab)(2a^2 + ab) + (ab - 2a^2b)(ab^2 + 3a^2b)3) (3mn^2 + 4m^2n^3)(2m^2n^3 + mn^2) + (8mn^2 -2m^2n^3)(2m^2n^3 + mn^2)4) (2x^2 + 3xy - y^2)(x^2 - 2xy + y^2) + (x^2 - 2xy + y^2)(2x^2 + 3xy - y^2)答案8:1) (2x + 3y)(3x - 2y) + (3x + 4y)(4x + 3y) = 6x^2 - 4xy + 9xy - 6y^2 + 12x^2 + 9xy + 16y^2 = 18x^2 + 24y^22) (4a^2 - 3ab)(2a^2 + ab) + (ab - 2a^2b)(ab^2 + 3a^2b) = 8a^4 - 4a^3b + 6a^3b^2 - 3a^2b^2 - 2a^3b^2 + a^2b^3 + 3a^4b^2 - 6a^3b^2 = 11a^4 -3a^2b^2 + a^2b^33) (3mn^2 + 4m^2n^3)(2m^2n^3 + mn^2) + (8mn^2 -2m^2n^3)(2m^2n^3 + mn^2) = 6m^3n^5 + 2m^2n^4 + 12m^3n^5 +4m^2n^4 + 16mn^4 - 4m^3n^5 + 4m^2n^4 - 8mn^4 = 30m^3n^5 +14m^2n^4 + 8mn^44) (2x^2 + 3xy - y^2)(x^2 - 2xy + y^2) + (x^2 - 2xy + y^2)(2x^2 + 3xy - y^2) = 2x^4 - 4x^3y + 2x^2y^2 + 3x^3y - 6x^2y^2 + 3xy^3 - x^2y^2 +2xy^3 - y^4 + x^2 - 2xy + y^2 = 2x^4 - x^3y - 2x^2y^2 + 5xy^3 + x^2 +y^2。

合并同类项练习题 (答案)

合并同类项练习题 (答案)

合并同类项练习题①已知-2x2m 1y3与5x7y n-1是同类项,那么m+n= 。

答案:7解析:根据同类项定义,相同字母的指数相同,2m+1=7,3=n-1,得出m=3,n=4所以m+n=7②已知n是个正整数,如果2axⁿ + 3x²+1是一个单项式,那么aⁿ= 。

答案:2.25解析:根据单项式定义2axⁿ + 3x²不能存在,即这个单项式是1。

所以n=2,2a=-3,即a=-1.5。

所以aⁿ=(-1.5)ⁿ=2.25③多项式ax³-7x²+ax²-7x+7+bx²-x³ 是一个一次多项式,那么a²b=。

答案:6解析:合并同类项得(a-1)x³+(a+b-7)x²-7x+7根据最高项的次数是1,所以三次项(a-1)x³不存在,a-1=0,即a=1二次项(a+b-7)x²也不存在,所以a+b-7=0,b=6。

所以a²b=6④已知x=-1234,计算x²+2x³-x(1+2x²)+10的值。

但是计算时漏掉了负号把-1234当成1234,算出的结果是1521532。

那么正确的结果是。

答案:1524000解析:先合并同类项x²+2x³-x(1+2x²)+10=x²-x+10由于x²的值不变,正确的应该比错误答案多1234×2=2468所以答案是1521532+2468=1524000⑤已知|a-2|与|b+1|互为相反数,求3b³+3ab²+3b²-ab²-2a²b-2ab²-b³的值。

答案:9解析:根据|a-2|+|b+1|=0 可知a=2,b=-1先合并同类项3b³+3ab²+3b²-ab²-2a²b-2ab²-b³=2b³+3b²-2a²b把a=2,b=-1代入,2b³+3b²-2a²b=-2+3+8=9⑥已知x+2y=5,求(-2x-4y+8)³+(x-3)²-x²-12y+7的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档