高一数学导学案一
高一数学必修一第一章导学案.doc
§1.2.1函数的概念(1) ©•学习目标 1. 通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用 集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2. 了解构成函数的要素;3. 能够正确使用“区间”的符号表示某些集合.心'教学重难点重点:理解函数的模型化思想。
难贞:用集合与对应的语言来刻画函数。
心1学习过程一、课前准备(预习教材P15~P17,找出疑惑之处)复习1:放学后骑口行车回家,在此实例中存在哪些变量?变量Z 间有什么关系?复习2:(初中对函数的定义)在一个变化过程屮,有两个变量X 和),,对于X 的每一个确定的值, y 都有唯一的值与之対应,此时y 是兀的函数,x 是自变量,y 是因变量.表示方法有:解析法、列表 法、图彖法.二、新课导学探学习探究探究任务一:函数模型思想及函数概念问题:研究下面三个实例:A. —枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度力(米)与时间 r (秒)的变化规律是"130—5/2.B. 近儿十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层 空洞而积的变化情况.C. 国际上常用恩格尔系数(食物支出金额十总支出金 额)反映一个国家人民生活质量的高低.“八五”计划以来 我们城镇居民的恩格尔系数如下表讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量Z 间存在着这样的对应关系?三个实 例冇什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集人小的每一个%,按照某种对应关系/, 在数集〃中都与唯一确定的y 和它对应,记作:£A T B ・年份 1991 19921993 1994 1995 • • • 恩格尔 系数% 53.8 52.9 50.1 49.9 49.9 • • •新知:函数定义.设人、B是____________ ,如果按照某种确定的 _____________ ,使对于集合A中的________ 一个数X,在集合B中都冇_______ 确定的数/(x)和它对应,那么称.f. A-B为从集合A到集合B的一个函数(function),记作:y = f (x), XG A .其中,x叫______ ,兀的取值范围人叫作 _______ (domain),与x的值对应的y值叫___________ , 函数值的集合{f(x)\xeA}叫________ (range).试试:如下图可作为函数y = /(x)的图象的是()・函数的对应关系:每一个x与y的对•应可以为:一对一,多对一,不可以一•对多。
高一数学导学案电子版
高一数学导学案电子版一、教学任务及对象1、教学任务本教学任务以“高一数学导学案电子版”为主题,旨在通过电子导学案的形式,为高一学生提供数学学科的系统学习指导。
教学内容涵盖高中数学一年级的主要知识点,如集合、函数、三角学等,注重培养学生数学思维能力、问题解决能力和自主学习能力。
通过精心设计的互动问题和丰富多样的教学活动,激发学生的学习兴趣,提高数学素养。
2、教学对象本教学设计的对象为高中一年级学生,他们对数学知识有一定的掌握,具备一定的逻辑思维能力和自主学习能力。
由于学生个体差异,教学过程中需关注不同学生的学习需求,充分调动他们的积极性,使他们在数学学习中找到适合自己的方法,提高学习效果。
同时,考虑到学生已适应电子产品的使用,采用电子版导学案有助于提高学生的学习兴趣和便捷性。
二、教学目标1、知识与技能(1)理解并掌握集合、函数、三角学等基本数学概念、性质、定理和公式,形成完整的知识体系。
(2)能够运用所学知识解决实际问题,提高数学建模和问题解决能力。
(3)掌握数学基本技能,如运算、推理、证明等,提高数学思维能力和逻辑推理能力。
(4)学会使用电子版导学案,掌握网络资源和电子设备在数学学习中的应用。
2、过程与方法(1)通过自主探究、合作学习和教师引导,培养学生主动发现问题、分析问题和解决问题的能力。
(2)运用比较、归纳、演绎等思维方法,提高学生的数学思维能力。
(3)注重学习过程中的反思与总结,培养学生自我评价和调整学习策略的能力。
(4)借助电子版导学案,引导学生进行个性化学习,提高学习效率。
3、情感,态度与价值观(1)培养学生对数学学科的兴趣和热爱,激发他们探索数学奥秘的欲望。
(2)树立正确的数学观念,认识到数学在自然科学、社会科学等领域的重要地位和作用。
(3)培养良好的学习态度,使学生具备勤奋、自律、合作的精神品质。
(4)通过数学学习,引导学生树立正确的价值观,认识到数学知识对个人成长和社会发展的意义。
高中数学人教版必修1导学案:2.2.1对数的换底公式(无答案)
§2.2.1 第2课时 对数的换底公式撰稿: 修订:高一备课组 学生姓名:__________第_____小组一、学习目标 心中有数:1、了解换底公式的推导过程.2、能用换底公式将一般对数化成自然对数和常用对数.3、能用对数运算解决一些简单的实际问题。
二.自主学习 体验成功:(一)知识回顾,温故知新1、⇔=N a b 。
2、如果a >0,且a ≠1,M >0,N >0,那么:⑴()log a M N ⋅=_________. ⑵log a M N=_________. ⑶log n a M =_________(n ∈R ).⑷若M a log =N a log ,则M N ;若N M =,则 M a log N a log 。
(二)知识梳理 形成体系问题1:已知=2lg 0.3010,=3lg 0.4771,你能求3log 2的值吗?问题2:(换底公式))1,0(log log log ≠>=c c ab bc c a ,如何证明?换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子。
问题3:请用换底公式证明下列结论: ①1log log a b b a= ②b b a m a n log log =(三)课前热身 自我检测1、23log 3log 2⋅=__________ 。
2、若a =2lg ,b =3lg ,则=4log 3 ;=12log 2 ;=23lg 。
三、合作探究,共同进步例1 、求下列各式的值。
(1)32log 9log 278⋅ (2)37254954log 31log 81log 2log ⋅⋅例2:⑴已知18log 9,185b a ==,用a 、b 表示36log 45.例3、一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,估计约经过多少年,该物质的剩留量是原来的一半.(结果保留1个有效数字)四、过手训练,步步为营:(一)课堂训练,及时突破1、=⋅⋅⋅2log 5log 7log 3log 7352 。
人教版高中数学必修1:11 集合 必修一导学案
1 / 9第一章 集合与函数概念1.1 集合1.1.1 集合的含义与表示(1课时)【学习目标】1. 学习重点:了解集合、元素与集合的关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2. 学习难点:列举法、描述法.3. 学习意义:了解集合在现代数学中的基础作用,初步体会集合思想在数学中的应用.【预习导学】(一)新课导入:我们在初中接触了一些集合,请你尝试用合适的方法表示下列集合:1. 自然数的集合 ;2. 不等式73x -<的解的集合 ;3. 圆 .(二)自主预习(预习教材P2―P5)完成该下列问题,不明白的做记号.1.集合的含义与特性阅读下列几个例子,理解其含义,能否构成集合?(1)1到20以内的所有素数 ;(2)身材较高的人 ;(3)方程2320x x +-=所有的实数根 ;(4)广美附中高一所有的学生 ;一般地,我们把研究对象统称为 ;把一些元素组成的总体叫 ;集合具有三大特性: 、 、 ,这是判断语句是否确定一个集合的依据;构成两个集合的元素是一样的,我们称之为两个集合 .2.元素与集合的关系(1). 集合通常用大写字母,,,A B C 表示,元素通常用 表示,如果a 是集合A 的元2 / 9素,就说a 属于集合A ,记作: ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作: .(2). 数的集合称之为 ;常用的数集的记法:自然数集(非负整数集)记作 ;正整数集记作 ;整数集记作 ;有理数集记作 ;实数集记作 ;3.集合的表示如何表示一个集合?上面我们表示数集可以采用自然语言描述一个集合,除此以外,还能用什么方法表示集合?(1). 列举法把集合的元素一一列举出来,并用花括号“{}”括起来,这种表示集合的方法叫做 . 请用列举法表示方程2x x =的实数解 ;问题探究:你能不能用列举法表示不等式73x -<的解集?为什么?(2). 描述法如果集合中的元素无法列举,用集合所含元素的共同特征表示集合的方法称为 , 一般形式为 ,其中x 代表元素,P 是确定条件. 用描述法表示集合时,如果从上下文关系来看,x R ∈、x Z ∈明确时可省略,例如{|21,}x x k k Z =-∈; {|0}x x >. 请用描述法表示不等式73x -<的解集 ;【例题精析】题型一: 集合的性质理解例1.下列语句是否能构成一个集合?如果是请指出集合的元素,不是说明理由.(1)全体实数组成的集合 ;(2)我国的小河流 ;(3)大于3小于11的偶数 ;(4)平方值等于1-的全体实数 .例2. 用符号∈或∉填空:0 N 0 R 3.7 +N 3.7 Z 3- Q题型二 集合的表示方法例3. 试分别用列举法和描述法表示下列集合:3 / 9方程220x -=的所有实数根组成的集合; ; .【变式训练】用合适的表示方法表示下列集合:1. 不等式50x -<中所有正整数: ;2. 一次函数3y x =+与26y x =-+的图象的交点组成的集合 .方法总结:1. 列举法的特点是 .2. 描述法的特点是 .【堂上练习】1. 下列说法正确的是A .高一年级中的高个子组成一个集合B .所有小正数组成一个集合C .{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D .13611,0.5,,,2244能组成一个集合 2. 给出下列关系:① 12R =;② 2Q ;③3N +-∉;④3.Q -其中正确的个数为A .1个B .2个C .3个D .4个3. 直线21y x =+与y 轴的交点所组成的集合为A. {0,1}B. {(0,1)}C. 1{,0}2-D. 1{(,0)}2-4. 试选择适当的集合表示方法表示下列集合(1)由方程290x -=的所有实数根组成的集合 .(2)不等式453x -<的解集 .【课堂小结】1.表示集合的主要的方法有 .2. 注意∈与⊆区别 .3. 集合具有三个性质是: .1.1.2 集合间的基本关系(1课时)【学习目标】4 / 91. 学习重点:理解集合之间包含于、相等的含义,能识集合的子集;了解空集的含义;2. 学习难点:子集、真子集、集合相等、空集之间的含义;3. 学习意义:通过学习集合之间的关系,为后章集合运算打下良好的基础.【预习导学】(一)新课导入回顾:用合适的方法表示下列集合:(1)方程2(1)0x x -=的所有实数根组成的集合 .(2)由大于10小于20的所有实数组成的集合 .(二)自主预习:(预习教材P6-P7)完成该下列问题,不明白的做记号.实数之间有大小关系,两个集合之间有没有关系呢?如:集合{}1,23A =,,{}1,2,3,4,5B =,我们发现,集合A 中任何一个元素都是集合B 中的元素,我们就说集合A 与集合B 有包含关系.1.子集:如果集合A 的任意一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集,记作: ,读作: ,或 .在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图. 用Venn 图表示两个集合间的“包含”关系为:图1-1 2. 集合相等:若A B B A ⊆⊆且,记作 .如:集合{}{}1,2=(1)(2)0x R x x ∈--=3.真子集:若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的真子集,记作: .4.空集:不含有任何元素的集合称为空集,记作: .并规定:空集是任何集合的 ,是任何非空集合的 . 如:{}210x R x ∈+== . 问题探究:你能用合适的方法表示子集、真子集、集合相等,空集之间的关系吗?【例题精析】题型:两集合之间的关系理解B A5 / 9例1.已知集合}{}{12,01A x x B x x =-<<=<<,则A. B A > B . B A ⊆ C. AB D. B A 例2. 用适当的符号填空.(1)a {,,}a b c (2)∅ {}230x R x ∈+= (3){0} 2{|0}x x x -=. 例3.写出集合{}1,2A =的所有子集:(1)不含元素的子集有 .(2)含1个元素的子集有 .(3)含2个元素的子集有 .(4)其中真子集有 个;非空真子集有 个. 【变式训练】写出集合{,,}a b c 的所有的子集,并指出其中哪些是它的真子集.方法总结:两个集合之间的关系主要有 .【堂上练习】1. 集合}{Z x x x A ∈<≤=且30的真子集的个数为A . 5B . 6C . 7D . 82. 满足M a ⊆}{的集合},,,{d c b a M 共有A . 6个B . 7个C . 8个D . 15个3. 设集合}{{ax x x B x x A -==-=2,01}02=-,若B A ⊆,求a 的值. 【课后作业】(一)基础题1. 下列结论正确的是A. ∅∈AB. {0}∅∈C. {1,2}Z ⊆D. {0}{0,1}∈2. 比较下面例子,用合适的符号表示两个集合之间的关系:(1){|(1)(2)0}E x x x x =--= {0,1,2}F = .6 / 9(2){|(1)(2)0}E x x x x =--= {}1,2F = .(3){}3E x x =>- {}2F x x => .3. 设{}2A x x =<,{}1B x x =<,则B A .4. 集合},02{2R x a x x x M ∈=-+=,且φM ,则实数a 的范围是 A . 1-≤a B . 1≤a C . 1-≥a D . 1≥a(二)能力提升1. 设{}2A x x =<,{}B x x a =<,B A ⊆,则a 的范围是 .2. 设{}2A x x =<,{}B x x a =<,B A ⊂≠,则a 的范围是 .3. 若集合{}{}2=1,1A x x B x ax ===,且满足B A ⊆,求实数a 的取值范围.1.1.3 集合的基本运算(2课时)【学习目标】1. 学习重点:(1)会求两个简单集合的并集与交集、补集.(2)能使用韦恩(Venn )图表达集合的关系及运算.2. 学习难点:两个简单集合的交集、并集、补集.3. 学习意义:理解集合的运算,类比数的运算,深刻理解集合思想.【预习导学】(一)新课导入:用适当的符号填空:0 {0}; ∅ {x |210,x x R +=∈}; {}3x x >- {}2x x >. (二)自主预习:(预习教材P8-P11)完成该下列问题,不明白的做记号.1. 并集、交集、补集(1). 由所有属于集合A 属于集合B 的元素所组成的集合,叫做A 与B 的并集,记作: ,读作:A 并B ,用描述法表示是: .并集的Venn 图如下表示.图1-2 (2). 由属于集合A 属于集合B 的元素所组成的集合,叫作A 、B 的交集,B A7 / 9记作 ,读“A 交B ”, 用描述法表示是: ;交集的 Venn 图如下表示.图1-3 (3). 如果一个集合含有我们所研究问题中所涉及的 元素,那么就称这个集合为全集,通常记作 .(4). 设集合A ⊆U ,由U 中所有 A 的元素组成的集合,称这个集合为 ,记作: ,读作:“A 在U 中补集”; 用描述法表示是 .补集的Venn 图表示如右:图1-42. 两个集合的交、并、补的性质.A ∩A = ;A ∩∅= ; A ∪A = ;A ∪∅= ;问题探究1:若A ∩B=A ,则集合A ,B 的关系是什么?试用韦恩图表示出来.问题探究2:若A B= A ,则集合A ,B 的关系是什么?试用韦恩图表示出来.【例题精析】题型一:理解集合的交集、并集、补集运算例1. 设集合{}123456U =,,,,,,{}1,23A =,,{}34,5,6B =,.用Venn 图表示,A B 如下: 则A B = ; A B = ; 【变式训练】设集合{}12x x =-<<,集合{}13B x x =<<,在数轴上表示AB ,A B . 则A B = ; A B = ; R A = .方法总结:一般地说,集合之间的运算,除了可以用韦恩图表示外,若是数集,还可以采用数轴的方法直观表示,体现了数形结合的解题方法.题型二:集合思想的应用例2. 设平面内直线1l 上点的集合为1L ,直线2l 上点的集合为2L ,试分别说明下面三种情况时直线1l 与直线2l 的位置关系?(1)12{}L L P =点 . (2)12L L =∅ . (3)1212L L L L == .A B A U U A 1, 2 3456BA8 / 9 【变式训练】 设全集{}U x x =是三角形,{}A x x =是锐角三角形,{}B x x =是钝角三角形,求A B ,()U A B ,()()U U A B .方法总结:数学有很多的知识可以用集合的思想去理解,集合思想是数学的基本概念之一.【课堂练习】1. 已知集合P M ,满足M P M = ,则一定有A . P M =B . P M ⊇C . M P M =D . P M ⊆2. 集合(){},0P x y x y =+=,(){},2Q x y x y =-= ,AB 3. 设集合{}{}=04,7A x x B x a x ≤<=<≤. (1)若AB φ=,求a 的取值范围; (2)若A B B =,求a 的取值范围.【课堂小结】1.用自己的语言总结:两个集合的交集,就是 ;并集是 ;补集是2. 我们在解题时,常采用图示法解题,一般的图示法有 .特别要注意分类讨论的方法解题.【课后作业】(一)基础题1. 设{}{}5,1,A x Z x B x Z x =∈≤=∈>那么A B 等于A .{1,2,3,4,5}B .{2,3,4,5}C .{2,3,4}D .{}15x x <≤ 2. 设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U M =A .{}2,4,6B .{}1,3,5C .{}1,2,4D .U3. 若集合{}=0,1,2,3A ,{}=1,2,4B ,则集合A B =A .{}01234,,,,B .{}1234,,,C .{}12,D .{}04. 设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则ST =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-9 / 9 5. 设{|18}A x x =-<<,{|45}B x x x =><-或,在数轴上求A ∩B 、A ∪B .(二)能力提升1. 某校秋季运动会中,若集合A ={参加比赛的运动员},集合B ={参加比赛的男运动员},集合C ={参加比赛的女运动员},则下列关系正确的是A. A B ⊆B. B C ⊆C. B C = AD. A ∩B = C2. 集合{}{}22(,),1,(,),1A x y x y x y B x y x y x y =+==+=为实数,且为实数,且,则A B 的元素个数为A .4 B.3 C.2 D. 13. 设{|}A x x a =>,{|03}B x x =<<,若AB =∅,求实数a 的取值范围是 .4. 已知集合}023|{2=+-=x ax x A .(1) 若A 中至多有一个元素,则a 的取值范围是 .(2) 若A 中至少有一个元素,则a 的取值范围是 .。
人教版高中数学必修一《集合》导学案(含答案)
第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义 课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.45.符号____ ________ ____ 一、选择题1.下列语句能确定是一个集合的是( )A .著名的科学家B .留长发的女生C .2010年广州亚运会比赛项目D .视力差的男生2.集合A 只含有元素a ,则下列各式正确的是( )A .0∈AB .a ∉AC .a ∈AD .a =A3.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A .1B .-2C .6D .25.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可6.由实数x 、-x 、|x |、x 2及-3x 3所组成的集合,最多含有( )A .2个元素B .3个元素C .4个元素D .5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________.9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素; (4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a ,b ,c 与由元素b ,a ,c 组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义知识梳理1.(1)研究对象 小写拉丁字母a ,b ,c ,… (2)一些元素组成的总体 大写拉丁字母A ,B ,C ,… 2.确定性 互异性 无序性3.一样 4.a 是集合A a 不是集合A 5.N N *或N + Z Q R作业设计1.C [选项A 、B 、D 都因无法确定其构成集合的标准而不能构成集合.]2.C [由题意知A 中只有一个元素a ,∴0∉A ,a ∈A ,元素a 与集合A 的关系不应用“=”,故选C.]3.D [集合M 的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A 中含有3个元素,即a 2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]6.A [方法一 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素.方法二 令x =2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.]7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明(1)若a∈A,则11-a∈A.又∵2∈A,∴11-2=-1∈A.∵-1∈A,∴11-(-1)=12∈A.∵12∈A,∴11-12=2∈A.∴A中另外两个元素为-1,1 2.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}6二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号) ①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时集合的表示知识梳理1.一一列举 2.描述法{x|x<10}{x∈Z|x=2k,k∈Z}作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x<5}={1,2,3,4}.]2.D [集合{(x ,y)|y =2x -1}的代表元素是(x ,y),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧ x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x2-2x +1=0可化简为(x -1)2=0,∴x1=x2=1,故方程x2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x(x2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x|x =2n +1,且x<1 000,n ∈N};③{x|x>8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x2+3中y 的取值范围是y≥3,所以B ={y|y≥3}. 集合C 中代表的元素是(x ,y),这是个点集,这些点在抛物线y =x2+3上,所以C ={P|P 是抛物线y =x2+3上的点}.12.C [由集合的含义知{x|x =1}={y|(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A [M ={x|x =2k +14,k ∈Z},N ={x|x =k +24,k ∈Z}, ∵2k +1(k ∈Z)是一个奇数,k +2(k ∈Z)是一个整数,∴x0∈M 时,一定有x0∈N ,故选A.]。
高中高一数学导学案人教版必修1 学案
§1.1.1 集合的含义与表示(1)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.一、课前准备(预习教材P 2~ P 3,找出疑惑之处)讨论:军训前学校通知:8月15日上午8点,高一年级在体育馆集合进行军训动员. 试问这个通知的对象是全体的高一学生还是个别学生?引入:在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.集合是近代数学最基本的内容之一,许多重要的数学分支都建立在集合理论的基础上,它还渗透到自然科学的许多领域,其术语的科技文章和科普读物中比比皆是,学习它可为参阅一般科技读物和以后学习数学知识准备必要的条件.二、新课导学※ 探索新知探究1:考察几组对象: ① 1~20以内所有的质数;② 到定点的距离等于定长的所有点; ③ 所有的锐角三角形;④ 2x , 32x +, 35y x -, 22x y +; ⑤ 东升高中高一级全体学生; ⑥ 方程230x x +=的所有实数根;⑦ 隆成日用品厂2008年8月生产的所有童车; ⑧ 2008年8月,广东所有出生婴儿. 试回答:各组对象分别是一些什么?有多少个对象?新知1:一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set ).试试1:探究1中①~⑧都能组成集合吗,元素分别是什么?探究2:“好心的人”与“1,2,1”是否构成集合?新知2:集合元素的特征对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的,即集合元素三特征.确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.互异性:同一集合中不应重复出现同一元素. 无序性:集合中的元素没有顺序.只要构成两个集合的元素是一样的,我们称这两个集合 .试试2:分析下列对象,能否构成集合,并指出元素: ① 不等式30x ->的解; ② 3的倍数;③ 方程2210x x -+=的解; ④ a ,b ,c ,x ,y ,z ; ⑤ 最小的整数;⑥ 周长为10 cm 的三角形; ⑦ 中国古代四大发明; ⑧ 全班每个学生的年龄; ⑨ 地球上的四大洋; ⑩ 地球的小河流.探究3:实数能用字母表示,集合又如何表示呢?新知3:集合的字母表示集合通常用大写的拉丁字母表示,集合的元素用小写的拉丁字母表示. 如果a 是集合A 的元素,就说a 属于(belong to)集合A ,记作:a ∈A ; 如果a 不是集合A 的元素,就说a 不属于(not belong to)集合A ,记作:a ∉A .试试3: 设B 表示“5以内的自然数”组成的集合,则5 B ,0.5 B , 0 B , -1 B .探究4:常见的数集有哪些,又如何表示呢?新知4:常见数集的表示非负整数集(自然数集):全体非负整数组成的集合,记作N ; 正整数集:所有正整数的集合,记作N *或N +; 整数集:全体整数的集合,记作Z ; 有理数集:全体有理数的集合,记作Q ; 实数集:全体实数的集合,记作R .试试4:填∈或∉:0 N ,0 R ,3.7 N ,3.7 Z ,.探究5:探究1中①~⑧分别组成的集合,以及常见数集的语言表示等例子,都是用自然语言来描述一个集合. 这种方法语言文字上较为繁琐,能否找到一种简单的方法呢?新知5:列举法把集合的元素一一列举出来,并用花括号“{ }”括起来,这种表示集合的方法叫做列举法. 注意:不必考虑顺序,“,”隔开;a 与{a }不同.试试5:试试2中,哪些对象组成的集合能用列举法表示出来,试写出其表示.※ 典型例题例1 用列举法表示下列集合: ① 15以内质数的集合;② 方程2(1)0x x -=的所有实数根组成的集合; ③ 一次函数y x =与21y x =-的图象的交点组成的集合.变式:用列举法表示“一次函数y x =的图象与二次函数2y x =的图象的交点”组成的集合.三、总结提升※ 学习小结①概念:集合与元素;属于与不属于;②集合中元素三特征;③常见数集及表示;④列举法.※ 知识拓展集合论是德国著名数学家康托尔于19世纪末创立的. 1874年康托尔提出“集合”的概念:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素. 人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法正确的是( ).A .某个村子里的高个子组成一个集合B .所有小正数组成一个集合C .集合{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D .1361,0.5,,,2242. 给出下列关系: ①12R=;②Q ;③3N +-∉;④.Q 其中正确的个数为( ). A .1个B .2个C .3个D .4个3. 直线21y x =+与y 轴的交点所组成的集合为( ). A. {0,1} B. {(0,1)}C.1{,0}2- D.1{(,0)}2-4. 设A表示“中国所有省会城市”组成的集合,则:深圳A;广州A. (填∈或∉)5. “方程230x x-=的所有实数根”组成的集合用列举法表示为____________.1. 用列举法表示下列集合:(1)由小于10的所有质数组成的集合;(2)10的所有正约数组成的集合;(3)方程2100x x-=的所有实数根组成的集合.2. 设x∈R,集合2{3,,2}A x x x=-.(1)求元素x所应满足的条件;(2)若2A-∈,求实数x.§1.1.1 集合的含义与表示(2)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.一、课前准备(预习教材P4~ P5,找出疑惑之处)复习1:一般地,指定的某些对象的全体称为 .其中的每个对象叫作 .集合中的元素具备、、特征.集合与元素的关系有、 .复习2:集合2{21}A x x=++的元素是,若1∈A,则x= .复习3:集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?四个集合有何关系?二、新课导学※学习探究思考:①你能用自然语言描述集合{2,4,6,8}吗?②你能用列举法表示不等式13x-<的解集吗?探究:比较如下表示法① {方程210x-=的根};②{1,1}-;③2{|10}x R x∈-=.新知:用集合所含元素的共同特征表示集合的方法称为描述法,一般形式为{|}x A P∈,其中x代表元素,P是确定条件.试试:方程230x-=的所有实数根组成的集合,用描述法表示为 .※典型例题例1 试分别用列举法和描述法表示下列集合:(1)方程2(1)0x x-=的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.练习:用描述法表示下列集合.(1)方程340x x+=的所有实数根组成的集合;(2)所有奇数组成的集合.小结:用描述法表示集合时,如果从上下文关系来看,x R∈、x Z∈明确时可省略,例如{|21,}x x k k Z=-∈,{|0}x x>.例2 试分别用列举法和描述法表示下列集合:(1)抛物线21y x=-上的所有点组成的集合;(2)方程组3222327x yx y+=⎧⎨+=⎩解集.变式:以下三个集合有什么区别.(1)2{(,)|1}x y y x=-;(2)2{|1}y y x=-;(3)2{|1}x y x=-.反思与小结:①描述法表示集合时,应特别注意集合的代表元素,如2{(,)|1}x y y x=-与2{|1}y y x=-不同.②只要不引起误解,集合的代表元素也可省略,例如{|1}x x>,{|3,}x x k k Z=∈.③集合的{ }已包含“所有”的意思,例如:{整数},即代表整数集Z,所以不必写{全体整数}.下列写法{实数集},{R}也是错误的.④列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.※动手试试练1. 用适当的方法表示集合:大于0的所有奇数.练2. 已知集合{|33,}A x x x Z=-<<∈,集合2{(,)|1,}B x y y x x A==+∈. 试用列举法分别表示集合A、B.三、总结提升※学习小结1. 集合的三种表示方法(自然语言、列举法、描述法);2. 会用适当的方法表示集合;※ 知识拓展1. 描述法表示时代表元素十分重要. 例如:(1)所有直角三角形的集合可以表示为:{|}x x 是直角三角形,也可以写成:{直角三角形}; (2)集合2{(,)|1}x y y x =+与集合2{|1}y y x =+是同一个集合吗?2. 我们还可以用一条封闭的曲线的内部来表示一个集合,即:文氏图,或称Venn 图.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设{|16}A x N x =∈≤<,则下列正确的是( ). A. 6A ∈ B. 0A ∈ C. 3A ∉ D. 3.5A ∉2. 下列说法正确的是( ).A.不等式253x -<的解集表示为{4}x <B.所有偶数的集合表示为{|2}x x k =C.全体自然数的集合可表示为{自然数}D. 方程240x -=实数根的集合表示为{(2,2)}-3. 一次函数3y x =-与2y x =-的图象的交点组成的集合是( ). A. {1,2}- B. {1,2}x y ==- C. {(2,1)}- D. 3{(,)|}2y x x y y x =-⎧⎨=-⎩4. 用列举法表示集合{|510}A x Z x =∈≤<为.5.集合A ={x |x =2n 且n ∈N }, 2{|650}B x x x =-+=,用∈或∉填空: 4 A ,4 B ,5 A ,5 B .1. (1)设集合{(,)|6,,}A x y x y x N y N =+=∈∈ ,试用列举法表示集合A .(2)设A ={x |x =2n ,n ∈N ,且n <10},B ={3的倍数},求属于A 且属于B 的元素所组成的集合.2. 若集合{1,3}A =-,集合2{|0}B x x ax b =++=,且A B =,求实数a 、b .§1.1.2 集合间的基本关系1. 了解集合之间包含与相等的含义,能识别给定集合的子集;2. 理解子集、真子集的概念;3. 能利用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用;4. 了解空集的含义.一、课前准备(预习教材P 6~ P 7,找出疑惑之处)复习1:集合的表示方法有 、 、 . 请用适当的方法表示下列集合. (1)10以内3的倍数;(2)1000以内3的倍数.复习2:用适当的符号填空.(1) 0 N ;2 Q ; -1.5 R .(2)设集合2{|(1)(3)0}A x x x =--=,{}B b =,则1 A ;b B ;{1,3} A .思考:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?二、新课导学※ 学习探究探究:比较下面几个例子,试发现两个集合之间的关系: {3,6,9}A =与*{|3,333}B x x k k N k ==∈≤且; {}C =东升高中学生与{}D =东升高中高一学生;{|(1)(2)0}E x x x x =--=与{0,1,2}F =.新知:子集、相等、真子集、空集的概念.① 如果集合A 的任意一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset ),记作:()A B B A ⊆⊇或,读作:A 包含于(is contained in )B ,或B 包含(contains)A . 当集合A 不包含于集合B 时,记作A B .② 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图. 用Venn 图表示两个集合间的“包含”关系为:()A B B A ⊆⊇或.③ 集合相等:若A B B A ⊆⊆且,则A B =中的元素是一样的,因此A B =.④ 真子集:若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的真子集(proper subset ),记作:A B(或B A ),读作:A 真包含于B (或B 真包含A ).⑤ 空集:不含有任何元素的集合称为空集(empty set ),记作:∅. 并规定:空集是任何集合的子集,是任何非空集合的真子集.试试:用适当的符号填空.(1){,}a b {,,}a b c ,a {,,}a b c ; (2)∅ 2{|30}x x +=,∅ R ; (3)N {0,1},Q N ; (4){0} 2{|0}x x x -=.反思:思考下列问题.(1)符号“a A ∈”与“{}a A ⊆”有什么区别?试举例说明.(2)任何一个集合是它本身的子集吗?任何一个集合是它本身的真子集吗?试用符号表示结论.(3)类比下列实数中的结论,你能在集合中得出什么结论?① 若,,a b b a a b ≥≥=且则;② 若,,a b b c a c ≥≥≥且则.※ 典型例题 例1 写出集合{,,}a b c 的所有的子集,并指出其中哪些是它的真子集.B A变式:写出集合{0,1,2}的所有真子集组成的集合.例2 判断下列集合间的关系:(1){|32}A x x=->与{|250}B x x=-≥;(2)设集合A={0,1},集合{|}B x x A=⊆,则A与B的关系如何?变式:若集合{|}A x x a=>,{|250}B x x=-≥,且满足A B⊆,求实数a的取值范围.※动手试试练1. 已知集合2{|320}A x x x=-+=,B={1,2},{|8,}C x x x N=<∈,用适当符号填空:A B,A C,{2} C,2 C.练2. 已知集合{|5}A x a x=<<,{|2}B x x=≥,且满足A B⊆,则实数a的取值范围为 .三、总结提升※学习小结1. 子集、真子集、空集、相等的概念及符号;Venn图图示;一些结论.2. 两个集合间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,特别要注意区别“属于”与“包含”两种关系及其表示方法.※知识拓展如果一个集合含有n个元素,那么它的子集有2n个,真子集有21n-个.学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列结论正确的是().A. ∅AB. {0}∅∈C. {1,2}Z⊆ D. {0}{0,1}∈2. 设{}{}1,A x xB x x a=>=>,且A B⊆,则实数a的取值范围为().A. 1a< B. 1a≤C. 1a> D. 1a≥3. 若2{1,2}{|0}x x bx c=++=,则().A. 3,2b c=-= B. 3,2b c==-C. 2,3b c=-= D. 2,3b c==-4. 满足},,,{},{dcbaAba⊂⊆的集合A有个.5. 设集合{},{},{}A B C===四边形平行四边形矩形,{}D=正方形,则它们之间的关系是,并用Venn 图表示.课后作业1. 某工厂生产的产品在质量和长度上都合格时,该产品才合格. 若用A表示合格产品的集合,B表示质量合格的产品的集合,C表示长度合格的产品的集合.则下列包含关系哪些成立?,,,A B B A A C C A⊆⊆⊆⊆试用Venn图表示这三个集合的关系.2. 已知2{|0}A x x px q =++=,2{|320}B x x x =-+=且A B ⊆,求实数p 、q 所满足的条件.§1.1.3 集合的基本运算(1)1. 理解交集与并集的概念,掌握交集与并集的区别与联系;2. 会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题;3. 能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.一、课前准备(预习教材P 8~ P 9,找出疑惑之处) 复习1:用适当符号填空.0 {0}; 0 ∅;∅ {x |x 2+1=0,x ∈R }; {0} {x |x <3且x >5};{x |x >-3} {x |x >2}; {x |x >6} {x |x <-2或x >5}.复习2:已知A ={1,2,3}, S ={1,2,3,4,5},则A S , {x |x ∈S 且x ∉A }= .思考:实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?二、新课导学※ 学习探究探究:设集合{4,5,6,8}A =,{3,5,7,8}B =.(1)试用Venn 图表示集合A 、B 后,指出它们的公共部分(交)、合并部分(并);(2)讨论如何用文字语言、符号语言分别表示两个集合的交、并?新知:交集、并集.① 一般地,由所有属于集合A 且属于集合B 的元素所组成的集合,叫作A 、B 的交集(intersection set ),记作A ∩B ,读“A 交B ”,即:{|,}.A B x x A x B =∈∈且Venn 图如右表示.② 类比说出并集的定义.由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集(union set ),记作:AB ,读作:A 并B ,用描述法表示是:{|,}AB x x A x B =∈∈或.Venn 图如右表示.试试:(1)A ={3,5,6,8},B ={4,5,7,8},则A ∪B = ;(2)设A ={等腰三角形},B ={直角三角形},则A ∩B = ; (3)A ={x |x >3},B ={x |x <6},则A ∪B = ,A ∩B = . (4)分别指出A 、B 两个集合下列五种情况的交集部分、并集部分.A反思:(1)A ∩B 与A 、B 、B ∩A 有什么关系?(2)A ∪B 与集合A 、B 、B ∪A 有什么关系?(3)A ∩A = ;A ∪A = . A ∩∅= ;A ∪∅= .※ 典型例题例1 设{|18}A x x =-<<,{|45}B x x x =><-或,求A ∩B 、A ∪B .变式:若A ={x |-5≤x ≤8},{|45}B x x x =><-或,则A ∩B = ;A ∪B = .小结:有关不等式解集的运算可以借助数轴来研究. 例2 设{(,)|46}A x y x y =+=,{(,)|327}B x y x y =+=,求A ∩B .变式:(1)若{(,)|46}A x y x y =+=,{(,)|43}B x y x y =+=,则A B = ; (2)若{(,)|46}A x y x y =+=,{(,)|8212}B x y x y =+=,则A B = .反思:例2及变式的结论说明了什么几何意义?※ 动手试试练1. 设集合{|23},{|12}A x x B x x =-<<=<<.求A ∩B 、A ∪B .练2. 学校里开运动会,设A ={x |x 是参加跳高的同学},B ={x |x 是参加跳远的同学},C ={x |x 是参加投掷的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释A B 与B C的含义.三、总结提升※ 学习小结1. 交集与并集的概念、符号、图示、性质;2. 求交集、并集的两种方法:数轴、Venn 图.※ 知识拓展A B C A B A C =()()(), A B C A B A C =()()(), A B C A B C =()(), A B C A B C =()(), A A B A A A B A ==(),().你能结合Venn 图,分析出上述集合运算的性质吗?※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设{}{}5,1,A x Z x B x Z x =∈≤=∈>那么A B 等于( ).A .{1,2,3,4,5}B .{2,3,4,5}C .{2,3,4}D .{}15x x <≤2. 已知集合M ={(x , y )|x +y =2},N ={(x , y )|x -y =4},那么集合M ∩N 为( ). A. x =3, y =-1 B. (3,-1) C.{3,-1}D.{(3,-1)}3. 设{}0,1,2,3,4,5,{1,3,6,9},{3,7,8}A B C ===,则()A B C 等于( ).A. {0,1,2,6}B. {3,7,8,}C. {1,3,7,8}D. {1,3,6,7,8}4. 设{|}A x x a =>,{|03}B x x =<<,若A B =∅,求实数a 的取值范围是 .5. 设{}{}22230,560A x x x B x x x =--==-+=,则A B = .课后作业1. 设平面内直线1l 上点的集合为1L ,直线2l 上点的集合为2L ,试分别说明下面三种情况时直线1l 与直线2l 的位置关系? (1)12{}L L P =点; (2)12L L =∅;(3)1212L L L L ==.2. 若关于x 的方程3x 2+px -7=0的解集为A ,方程3x 2-7x +q =0的解集为B ,且A ∩B ={13-},求AB .§1.1.3 集合的基本运算(2)学习目标1. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集;2. 能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用. 学习过程一、课前准备(预习教材P 10~ P 11,找出疑惑之处) 复习1:集合相关概念及运算.① 如果集合A 的任意一个元素都是集合B 的元素,则称集合A 是集合B 的 ,记作 . 若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的 ,记作 .若A B B A ⊆⊆且,则 .② 两个集合的 部分、 部分,分别是它们交集、并集,用符号语言表示为:A B = ;A B = .复习2:已知A ={x |x +3>0},B ={x |x ≤-3},则A 、B 、R 有何关系?二、新课导学※ 学习探究探究:设U ={全班同学}、A ={全班参加足球队的同学}、B ={全班没有参加足球队的同学},则U 、A 、B 有何关系?新知:全集、补集.① 全集:如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U .② 补集:已知集合U , 集合A ⊆U ,由U 中所有不属于A 的元素组成的集合,叫作A 相对于U 的补集(complementaryset ),记作:U C A ,读作:“A 在U 中补集”,即{|,}U C A x x U x A =∈∉且. 补集的Venn 图表示如右:说明:全集是相对于所研究问题而言的一个相对概念,补集的概念必须要有全集的限制. 试试:(1)U ={2,3,4},A ={4,3},B =∅,则U C A = ,U C B = ;(2)设U ={x |x <8,且x ∈N },A ={x |(x -2)(x -4)(x -5)=0},则U C A = ; (3)设集合{|38}A x x =≤<,则RA = ;(4)设U ={三角形},A ={锐角三角形},则U C A = .反思:(1)在解不等式时,一般把什么作为全集?在研究图形集合时,一般把什么作为全集? (2)Q 的补集如何表示?意为什么?※ 典型例题例1 设U ={x |x <13,且x ∈N },A ={8的正约数},B ={12的正约数},求U C A 、U C B .例2 设U =R ,A ={x |-1<x <2},B ={x |1<x <3},求A ∩B 、A ∪B 、U C A 、U C B .变式:分别求()U C A B 、()()U U C A C B .※ 动手试试练1. 已知全集I ={小于10的正整数},其子集A 、B 满足()(){1,9}I I C A C B =,(){4,6,8}I C A B =,{2}A B =. 求集合A 、B .练2. 分别用集合A 、B 、C 表示下图的阴影部分.(1) ; (2) ;(3) ; (4) . 反思:结合Venn 图分析,如何得到性质:(1)()U A C A = ,()U A C A = ; (2)()U U C C A = .三、总结提升※ 学习小结1. 补集、全集的概念;补集、全集的符号.2. 集合运算的两种方法:数轴、Venn 图.※ 知识拓展试结合Venn 图分析,探索如下等式是否成立? (1)()()()U U U C A B C A C B =; (2)()()()U U U C A B C A C B =.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设全集U =R ,集合2{|1}A x x =≠,则U C A =( ) A. 1 B. -1,1 C. {1} D. {1,1}-2. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A =( ). A. {|02}x x x ≤≥或 B. {|02}x x x <>或 C. {|2}x x ≥ D. {|2}x x >3. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--, {}0,3,4N =--,则()I M N =( ).A .{0}B .{}3,4--C .{}1,2--D .∅4. 已知U ={x ∈N |x ≤10},A ={小于11的质数},则U C A = .5. 定义A —B ={x |x ∈A ,且x ∉B },若M ={1,2,3,4,5},N ={2,4,8},则N —M = .1. 已知全集I =2{2,3,23}a a +-,若{,2}A b =,{5}I C A =,求实数,a b .2. 已知全集U =R ,集合A ={}220x x px ++=,{}250,B x x x q =-+= 若{}()2U C A B =,试用列举法表示集合A§1.1 集合(复习)1. 掌握集合的交、并、补集三种运算及有关性质,能运行性质解决一些简单的问题,掌握集合的有关术语和符号;2. 能使用数轴分析、Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.一、课前准备(复习教材P 2~ P 14,找出疑惑之处)复习1:什么叫交集、并集、补集?符号语言如何表示?图形语言?AB = ;A B = ;U C A = .复习2:交、并、补有如下性质.A ∩A = ;A ∩∅= ; A ∪A = ;A ∪∅= ;()U A C A = ;()U A C A = ; ()U U C C A = .你还能写出一些吗?二、新课导学※ 典型例题例1 设U =R ,{|55}A x x =-<<,{|07}B x x =≤<.求A ∩B 、A ∪B 、C U A 、C U B 、(C U A )∩(C U B )、(C U A )∪(C U B )、C U (A ∪B )、C U (A ∩B ).小结:(1)不等式的交、并、补集的运算,可以借助数轴进行分析,注意端点; (2)由以上结果,你能得出什么结论吗? 例2已知全集{1,2,3,4,5}U =,若A B U =,A B ≠∅,(){1,2}U A C B =,求集合A 、B .小结:列举法表示的数集问题用Venn 图示法、观察法.例3 若{}{}22430,10A x x x B x x ax a =-+==-+-=,{}210C x x mx =-+=,A B A A C C ==且,求实数a 、m 的值或取值范围.变式:设2{|8150}A x x x =-+=,{|10}B x ax =-=,若B ⊆A ,求实数a 组成的集合、.※ 动手试试练1. 设2{|60}A x x ax =-+=,2{|0}B x x x c =-+=,且A ∩B ={2},求A ∪B .练2. 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围。
山东省高密市第三中学人教版B版高一数学必修一 1.1.2集合表示法(导学案)
1.1.2集合表示法通过本节学习应达到如下目标:1.掌握集合的表示方法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题2.发展运用数学语言的能力,感受集合语言的意义和作用,学习从数学的角度认识世界.3.通过合作学习培养合作精神.学习重点:集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合学习难点:难点是集合特征性质的概念,以及运用特征性质描述法表示集合学习过程(一)自主学习阅读课本,完成下列问题1。
集合的表示方法(1)列举法: 把一一列举出来,写在内,用逗号隔开。
(2)描述法:把集合中的元素的公共属性描述出来,写在大括号内,具体方法在大括号内先写上表示这个集合元素的.及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的。
{x I | p(x)}其中:1)x是集合中元素的代表形式,2)I是x的范围,3)p(x)是集合中元素的共同特征,4)竖线不可省略.思考?1、{x|x=3}与{y|y=3}是否是同一集合?2、{y | y=x2}与{(x,y)| y=x2 }是否是同一集合?(二) 合作探讨1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有素数组成的集合;(4)方程x2-2=0的所有实数根组成的集合;(5)由大于10小于20的所有整数组成的集合。
2、试用描述法表示下列集合:1)方程x2—2=0的所有实数根组成的集合;2) 所有的奇数;所有偶数;比3的倍数多一的整数3)不等式x—10〉0的解集4)一次函数y=2x+1图象上的所有的点。
思考?请你结合具体例子,试比较用自然语言、列举法、描述法表示集合时,各自的特点和适用对象。
自己举几个集合的例子,并分别用自然语言,列举法和描述法表示出来。
(三)巩固练习1、已知A={x∣x=3k-1,k∈Z},用“∈”或“∉”符号填空:(1 ) 5 A,(2 ) 7 A ,(3 ) —10 A.2、试选择适当的方法表示下列集合:1)由小于8的所有素数组成的集合2)一次函数y=x+3与y=-2x+6的图象的交点组成的集合;3)不等式4x—5〈3的解集4) 二次函数y= x2-4的函数值组成的集合;2的自变量的值组成的集合;5) 反比例函数y=x3、已知-3∈{m-1,3m,m2+1},求m的值。
导学案高一数学
导学案高一数学一、教学任务及对象1、教学任务本教学设计旨在针对高一学生,以导学案的形式进行数学教学。
教学内容将围绕高中数学的核心概念、原理和技能进行,强调学生的主动探索和问题解决能力的培养。
具体任务包括:培养学生的数学思维能力,提高解决实际问题的能力,通过自主与合作学习,使学生掌握数学基础知识,形成系统的数学知识体系。
2、教学对象本教学设计的对象为高中一年级学生,他们已经完成了初中的数学学习,具备一定的数学基础。
然而,由于高中数学知识点的增多和难度加大,学生在学习过程中可能会遇到困难和挑战。
因此,在教学过程中,教师需要关注学生的个体差异,充分调动学生的学习积极性,引导他们克服困难,逐步提高数学素养。
此外,考虑到学生年龄特点,教学过程中应注重激发学生的兴趣,使他们能够主动参与到数学学习中,形成良好的学习习惯和态度。
二、教学目标1、知识与技能(1)掌握高中数学的基本概念、性质、定理和公式,形成完整的知识结构。
(2)熟练运用数学知识解决实际问题,提高数学应用能力。
(3)培养逻辑推理、空间想象、数据分析等数学思维能力。
(4)学会运用数学语言表达和交流,提高数学表达能力和解题技巧。
2、过程与方法(1)通过自主探究、合作交流等学习方式,培养学生的问题发现和解决能力。
(2)引导学生运用类比、归纳、演绎等方法,掌握数学知识的学习规律。
(3)借助现代教育技术手段,如多媒体、网络资源等,丰富教学手段,提高学习效率。
(4)注重学习过程中的反思与总结,培养学生自我评价和调整学习策略的能力。
3、情感,态度与价值观(1)激发学生对数学学科的兴趣,形成积极向上的学习态度。
(2)培养学生勇于探索、克服困难的意志品质,增强自信心。
(3)通过数学学习,使学生认识到数学在科学、技术、经济等领域的重要地位和价值,提高社会责任感。
(4)培养学生良好的合作精神,学会尊重他人,善于倾听和表达自己的观点。
(5)引导学生形成正确的价值观,将数学知识应用于实际生活,为我国的社会发展做出贡献。
高一数学导学案
高一数学导学案一、教学任务及对象1、教学任务本教学任务以“高一数学导学案”为主题,旨在通过引导学生自主学习、合作探究和问题解决,帮助学生掌握高一数学的基本知识、技能和方法。
具体包括:理解数学概念,熟练运用数学公式,解决实际问题,培养逻辑思维和分析能力,提高数学素养。
2、教学对象教学对象为高中一年级学生,他们已经完成了初中阶段的数学学习,具有一定的数学基础和逻辑思维能力。
在此基础上,他们对高中数学知识充满好奇,但可能在学习过程中遇到一定的困难。
因此,本教学设计将针对学生的实际情况,采用适当的教学策略,激发学生的学习兴趣,帮助他们克服困难,提高数学能力。
二、教学目标1、知识与技能(1)理解并掌握高中数学的基本概念、性质、定理和公式,如函数、三角函数、数列、立体几何等;(2)能够运用所学知识解决实际问题,提高数学运算能力和解决问题的能力;(3)培养逻辑思维和分析能力,能从多个角度审视问题,形成系统的数学知识体系;(4)掌握数学学习方法,如归纳总结、类比推理、演绎推理等,提高自学能力。
2、过程与方法(1)通过自主探究、合作学习和问题解决,让学生在过程中体验数学知识的形成和发展;(2)运用启发式教学策略,引导学生主动提出问题、分析问题、解决问题,培养创新精神和实践能力;(3)采用多元化的教学手段,如实物演示、多媒体辅助、实际操作等,丰富教学过程,提高教学效果;(4)注重数学思想的渗透,培养学生的数学素养,提高学生对数学美的鉴赏能力。
3、情感,态度与价值观(1)激发学生对数学学科的兴趣,使他们热爱数学,树立学习数学的信心;(2)培养学生积极的学习态度,养成勤奋、严谨、求实的学风,形成良好的学习习惯;(3)通过数学学习,使学生认识到数学在科学技术、社会发展和人类文明中的重要作用,增强社会责任感和使命感;(4)引导学生用数学的眼光观察世界,用数学的思维分析问题,用数学的语言表达思想,提高数学素养;(5)培养学生团结协作、乐于助人的品质,使他们能够在集体中发挥个人优势,共同进步。
高中数学必修1全册导学案及答案(145页)
§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义; 3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合. [知识要点] 1. 集合和元素(1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈; (2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉. 2.集合中元素的特性:确定性;无序性;互异性. 3.集合的表示方法:列举法;描述法;Venn 图. 4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R . [预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它. (1)小于5的自然数; (2)某班所有高个子的同学; (3)不等式217x +>的整数解; (4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形 一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合 (B )0与 {}0的意义相同 (C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集 (D )方程0122=++x x 的解集只有一个元素 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .}01|{2=+-x x x 3.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B= . [归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。
高一数学导学案全套
高一数学导学案第1课时向量的概念及表示数学建构(一)生成概念引导学生思考、讨论上面的问题,从而引出以下概念.(1)定义:既有大小又有方向的量叫向量,如位移、力、速度、加速度等.(2)向量的表示方法1°几何表示法:有向线段——具有一定方向的线段,如;2°字母表示法:如a.(3)模的概念:向量的大小称为向量的模,记作||,模是可以比较大小的.(4)两个特殊的向量1°零向量:长度(模)为0的向量,记作0.0的方向是任意的.2°单位向量:长度(模)为1个单位长度的向量叫做单位向量.(5)平行向量:方向相同或相反的非零..向量叫做平行向量.向量a,b平行, 记作a∥b.规定:0与任一向量平行.(6)相等向量:长度相等且方向相同的向量叫做相等向量.向量a,b相等,记作a=b.规定:0=0.(7)相反向量:长度相等且方向相反的向量叫做相反向量.(8)共线向量:任一组平行向量都可移到同一条直线上,所以平行向量也叫共线向量.如图3,=a,=b,=c,且a∥b∥c,则向量a,b,c可以平移到一条直线上.(图3)(二)理解概念(1)数量与向量的区别:数量只有大小,可以比较大小;向量既有方向又有大小,不能比较大小(2)0与0的区别:0是向量,是有方向的(虽然方向是任意的);0是数量,没有方向.(3)任意两个相等的非零向量都可用同一条有向线段表示,与起点无关.数学运用【例1】下列命题中正确的是(填序号).①向量a与b共线,b与c共线,则a与c也共线;②任意两个相等的非零向量的始点与终点是一平行四边形的四顶点;③向量a与b不共线,则a与b都是非零向量;④有相同起点的两个非零向量不平行.[3]【例2】已知O为正六边形ABCDEF的中心,在下图所标出的向量中:(例2)(1)试找出与共线的向量;(2)确定与相等的向量;(3)与相等吗?[4](变式1在图中标出的向量中,与向量模相等的向量有多少个?变式2如图,在以1cm×3cm方格纸中的格点为起点和终点的所有向量中,请写出以A为起点的不同向量,并求其大小.[5](变式2)课堂练习1.有下列命题:①向量的模是一个正实数;②两个相等向量必是两个平行向量;③坐标平面上的x轴和y轴都是向量;④温度有零上温度和零下温度,所以温度是向量.其中真命题的个数是.2.设点O为正方形ABCD的中心,在以正方形的顶点及点O为起点或终点的向量中,分别与,相等的向量是————————,3.某人从A点出发向东走了5m到达B点,然后改变方向往东北方向走了10m到达C点,到达C点后又改变方向向西走了10m到达D点,求的模.课堂小结1.向量的概念:定义、表示方法、零向量、单位向量.(三个定义,两种表示)2.向量的关系:平行向量(共线向量)、相等向量、相反向量.(三个关系)3.两种思想:数形结合思想、分类讨论思想.第2课时向量的加法数学建构一般地,如何定义向量的加法运算?1.向量的加法的含义如图2,已知向量a和b,在平面内任取一点O,作=a,=b,则向量叫做a与b 的和,记作a+b.即a+b=+=.(图2)求两个向量的和的运算叫做向量的加法.2.向量加法的三角形法则根据向量加法的定义得出的求向量和的方法,称为向量加法的三角形法则.说明三角形法则使用时应该“首尾相连”,即其中一个向量的起点应该与另一个向量的终点相连,若不“首尾相连”可通过平移使之“首尾相连”.3.向量运算(类比于数的加法)的法则对于零向量和任一向量a,有a+0=0+a=a.对于相反向量,有a+(-a)=(-a)+a=0.向量的加法满足交换律、结合律:a+b=b+a,(a+b)+c=a+(b+c).通过作图方式验证向量的加法满足交换律.如图3,作▱OABC,使=a,=b,则==a,==b.因为=+=a+b,=+=b+a,所以a+b=b+a.(图3)4.向量加法的平行四边形法则图3还表明,对于两个不共线的非零向量a,b,我们还可以作平行四边形来求两个向量的和.分别记作=a,=b,以OA,OB为邻边作▱OABC,则以O为起点的对角线就是向量a与b的和.我们把这种方法叫做向量加法的平行四边形法则.说明平行四边形法则使用时应该“共起点”,即其中一个向量的起点应该与另一个向量的起点相同,若不“共起点”可通过平移使之“共起点”.同样,根据图4可以验证,向量的加法满足结合律.(图4)思考如果平面内有n个向量依次首尾连接组成一条封闭折线,那么这n个向量的和是什么?数学运用)【例2】如图,已知D,E,F分别是△ABC三边AB,BC,CA的中点,求证:++ =0.(例2)【例3】在长江南岸某渡口处,江水以12.5km/h的速度向东流,渡船的速度为25km/h.渡船要垂直地渡过长江,其航向应如何确定?(例3)四、课堂练习1.在矩形ABCD中,||=,||=1,则向量的模等于______2.化简:(1)++=_____-; (2)++++=___3.在正六边形ABCDEF中,=a,=b,则=________(用a,b表示).4.在Rt△ABC中,∠A=90°,若||=3,||=4,则|+|=_______.第3课时向量的减法数学建构问题1类似于实数的减法,你能定义向量的减法吗?向量的减法是向量的加法的逆运算.若b+x=a,则向量x叫做a与b的差,记为a-b,求两个向量差的运算,叫做向量的减法.问题2类似于向量的加法,你能作出向量减法的几何表示吗?作法:如图1、图2,在平面内任取一点O,作=a,=b.(图1)(图2)因为+=,即b+=a,所以=a-b.这就是说,当向量a,b起点相同时,从b的终点指向a的终点的向量就是a-b.由向量加法结合律可知,[a+(-b)]+b=a+[(-b)+b]=a,所以a-b=a+(-b).这表明:减去一个向量等于加上这个向量的相反向量.三、数学运用【例1】如图,已知向量a,b,求作a-b.[3](例1)(例2)【例2】如图,O是▱ABCD对角线的交点,若=a,=b,=c,试证明:b+c-a=.四、课堂练习【例3】证明:对于任意两个向量a,b都有||a|-|b||≤|a+b|≤|a|+|b|.1.在四边形ABCD中,=+,则四边形ABCD 的形状为____________2.下列各式中,能化简为的是__________(填序号).①+(-);②(-)+(-);③--;④-+.3.在△ABC中,D,E分别为AB,AC的中点,则-=_______4.设D是正三角形ABC的BC边中点,若|-|=1,则|-|=______.第4课时向量的数乘一、问题情境一艘船上午8点从某港口出发,以v km/h的速度向南偏东45°的方向航行,下午1点半该船到达何处?若设该船每小时的位移为a,则该船5.5小时的位移应如何表示?二、数学建构问题1位移为5.5a,它是向量吗,有什么特点?问题2向量5.5a可以看成什么运算的结果?问题3一般地,实数λ与向量a的积是一个向量,记作λa,叫做向量的数乘, 那它的方向、大小与向量a有什么关系?(1)|λa|=|λ‖a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;特别地,当λ=0或a=0时,λa=0.问题4类比于实数的运算,向量的数乘有哪些运算律?根据向量数乘的定义,可以验证向量的数乘满足下列运算律:(1)λ(μa)=(λμ)a; (2)(λ+μ)a=λa+μa; (3)λ(a+b)=λa+λb.三、数学运用【例1】如图(1),已知向量a,b,c,求作向量3a-2b+c.【例2】计算:(1) 3(a-b)-2(a+2b);(2) 2(2a+6b-3c)-3(-3a+4b-2c).【例3】如图,在平行四边形ABCD中,M是AB的中点,N在BD上且BN=BD, 求证:M,N,C三点共线.[4]一般地,对于两个向量a(a≠0)和b,有如下的向量共线定理:如果有一个实数λ,使b=λa(a≠0),那么b与a(a≠0)是共线向量;反之,如果b与a(a≠0)是共线向量,那么有且只有一个实数λ,使b=λa.证明根据向量数乘的定义可知,对于两个向量a(a≠0)和b,如果有一个实数λ,使b=λa(a≠0),那么b与a(a≠0)是共线向量.反过来,如果向量b与a是共线向量,当b与a同方向时,令λ=;当b与a反方向时,令λ=-;若b=0,则令λ=0.从而有一个实数λ,使b=λa.假设有两个实数λ,λ',使b=λa,b=λ'a,则b-b=(λ-λ')a=0,即|λ-λ'‖a|=0.因为|a|≠0,所以λ-λ'=0,即λ=λ'.从而有且只有一个实数λ,使b=λa.四、课堂练习1.计算:-3(4a-5b)=-_________,2(2a-3b)-4(3a-2b)= -_________,.2.若向量a,b,c满足(4a-3c)+3(5c-4b)=0,则c=-_________,.3.已知点R在线段PQ上,且=,设=λ,则λ=-_________,.4.已知向量a=e1-e2,b=-3(e2-2e1),求证:a与b是共线向量.五、课堂小结1.理解并掌握向量数乘的定义及运算律.2.理解向量共线定理,并能运用它判断两个向量是否共线.第5课时向量线性运算习题课问题情境梳理知识结构数学运用【例1】设e是非零向量,若a+b=2e,2a-b=-3e,向量a与b是否平行?【例2】如图,设P,Q是线段AB的三等分点,若=a,=b,试用a,b表示向量, .(例2)【例3】如图,在△OAB中,C为直线AB上一点,=λ(λ≠-1),求证:=.(例3)【例4】已知点G为△ABC的重心,过G作直线与AB,AC两边分别交于M,N 两点,且=x,=y,求+的值.四、课堂练习1.下列命题中真命题的个数为1.①若|a|=|b|,则a=b或a=-b;②若=,则A,B,C,D是一个平行四边形的四个顶点;③若a=b,b=c,则a=c;④若a∥b,b∥c,则a∥c.2.在△ABC中,=a,=b,M是CB的中点,N是AB的中点,且CN,AM交于点P,则可用a,b 表示为________________3.设=x+y,且A,B,C三点共线(该直线不过点O),则x+y=_____-4.已知x,y∈R,向量a,b不共线,若(x+y-2)a+(x-y)b=0,则x=_____,y=_____.五、课堂小结1.平面向量线性运算法则的巩固、强化,线性运算几何意义的理解.2.通过向量线性运算进一步体会“向量是既有大小又有方向的量”,同时感受向量在求解平面几何问题中的灵活应用.第6课时平面向量基本定理一、问题情境[3]1.情境:火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度(如下图所示).在力的分解的平行四边形法则中,我们看到一个力可以分解为两个不共线方向的力的和.(图1)2.问题:平面内任一向量是否可以用两个不共线的向量来表示?二、数学建构设e1,e2是平面内两个不共线的向量.活动1请同学们作出向量=2.5e1+1.5e2.[4]活动2a是平面内的任一向量,能否通过作图用e1,e2表示呢?[5]如图2,在平面内任取一点O,作=e1,=e2,=a.过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交直线OB于N,则有且只有一对实数λ1,λ2,使得=λ1e1,=λ2e2.因为=+,所以a=λ1e1+λ2e2.(图2)问题1是不是平面内每一个向量都可以分解成两个不共线的向量?这样的分解是否唯一?问题2对于平面上两个不共线的向量e1,e2,是不是平面上所有的向量都可以用它们来表示?[6]平面向量基本定理如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.我们把不共线的向量e1,e2,叫做表示这一平面内所有向量的一组基底.一个平面向量用一组基底e1,e2表示成a=λ1e1+λ2e2的形式,我们称它为向量的分解.当e1,e2互相垂直时,就称为向量的正交分解.定理理解(1)基底e1,e2必须不共线;(2)λ1,λ2是被e1,e2,a唯一确定的实数对.思考平面向量基本定理与前面所学的向量共线定理,在内容和表述形式上有什么区别和联系?(平面向量基本定理是向量共线定理的推广)三、数学运用【例1】如图,▱ABCD的对角线AC和BD交于点M,=a,=b,试用基底a,b 表示,,和.(例1)变式在▱ABCD中,E和F分别是边CD和BC的中点,=λ+μ,其中λ,μ∈R, 则λ+μ=___【例2】设e1,e2是平面内的一组基底,如果=3e1-2e2,=4e1+e2,=8e1-9e2, 求证:A,B,D三点共线.[9]变式设两个非零向量e1和e2不共线.(1)如果=e1-e2,=3e1+2e2,=-8e1-2e2,求证:A,C,D三点共线;(2)如果=e1+e2,=2e1-3e2,=2e1-k e2,且A,C,D三点共线,求k的值.【例3】如图,在△ABC中,M是BC的中点,点N在AC上,且AN=2NC,AM与BN 相交于点P,求AP∶PM的值.(例3)(例4)【例4】如图,在△OAB中,=,=,AD与BC交于点M,设=a,=b.(1)用a,b表示;(2)在线段AC上取一点E,在线段BD上取一点F,使EF过M点,设=p,=q,求证:+=1.四、 课堂练习 1. 在▱ABCD 中, =a ,=b ,=3, M 为BC 的中点,则=-_________, (用a , b 表示).2. 在△ABC 中,D 是AB 边上一点,若=2, =+λ,则λ=-_________,3. 设a , b 是不共线向量,且a +2b =(x-1)a +y b ,则x=-_________,,y=-_________,.4. 已知非零向量a , b 不共线,若m a +b 与a -n b 平行,则mn=.第7课时 平面向量的坐标运算(1)一、 问题情境我们知道,在平面直角坐标系内,点M 可以用坐标(x , y )表示.这种表示在确定点M 的同时也确定了的长度及的方向.换句话说,向量也可以用坐标来表示.二、 数学建构问题1平面向量基本定理的内容是什么?[2]问题2 如图1,分别取与x 轴、y 轴方向相同的两个单位向量i , j 作为基底,那么如何用i , j 表示呢?(=3i +4j )(图1)(图2)对于向量a ,如图2,根据平面向量基本定理又如何表示?(由平面向量基本定理可知有且只有一对实数x , y ,使得a =x i +y j )归纳1 平面向量的坐标表示一般地,对于向量a ,如图2,当它的起点移至原点O 时,其终点坐标(x , y )称为向量a 的(直角)坐标,记作a =(x , y ).探究1 相等向量的坐标有关系吗?探究2 将表示向量的有向线段的起点移至坐标原点后有何结论呢?[3] 问题3 当向量用坐标表示时,向量的加、减、数乘运算也都可以用相应的坐标来表示吗?[4]设a =(x 1, y 1), b =(x 2, y 2),那么a +b =(x 1, y 1)+(x 2, y 2)=(x 1i +y 1j )+(x 2i +y 2j )=(x 1+x 2)i +(y 1+y 2)j =(x 1+x 2, y 1+y 2).同理得a -b =(x 1-x 2, y 1-y 2),λa =(λx 1,λy 1).归纳2 已知向量a =(x 1, y 1), b =(x 2, y 2)和实数λ,那么a +b =(x 1+x 2, y 1+y 2),a -b =(x 1-x 2, y 1-y 2), λa =(λx 1,λy 1).问题4 向量的坐标与它对应的有向线段的起点、终点坐标有何关系?如图3,已知A(x1,y1),B(x2,y2),则=-=(x2,y2)-(x1,y1)=(x2-x1,y2-y1).(图3)归纳3一个向量的坐标等于该向量终点的坐标减去起点的坐标.三、数学运用【例1】如图,已知O是坐标原点,点A在第一象限,||=4,∠xOA=60°,求向量的坐标.【例2】已知a=(2, 1),b=(-3, 4),求a+b,a-b, 3a+4b的坐标.变式已知a=(x, 2),A(1,-1),B(-2,y),且a=,求x,y的值.【例3】(1)已知a=(-1, 2),b=(1,-1),c=(3,-2),且有c=p a+q b,试求实数p,q的值;(2)已知a=(2, 1),b=(1,-3),c=(3, 5),把a,b作为一组基底,试用a,b表示c.变式已知a=(2,-4),b=(-1, 3),c=(6, 5),p=a+2b-c,试以a,b为基底求p.【例4】已知P1(x1,y1),P2(x2,y2),P是直线P1P2上一点,且=λ(λ≠-1), 求点P的坐标.[8]*【例5】已知平行四边形ABCD的三个顶点的坐标分别是A(-2, 1),B(-1, 3),C(3, 4),求顶点D的坐标.(例5)变式已知平面上三点的坐标分别为A(-2, 1),B(-1, 3),C(3, 4),求点D的坐标,使这四点构成平行四边形的四个顶点.四、课堂练习1.已知向量a=(1, 1),b=(1,-1),则向量a-b=________.2.已知O是坐标原点,A(-2, 1),B(4,-3),且-3=0,则=_______3.在平面直角坐标系xOy中,四边形ABCD的边AB∥DC,AD∥BC,已知点A(-2,0),B(6,8),C(8,6),则点D的坐标为____________.第8课时平面向量的坐标运算(2)一、问题情境前面我们如何判定向量a,b平行(或共线)?向量a=(1,-4)与b=(-2, 8)是否平行?二、数学建构活动1引导学生回顾平面向量共线定理.如果有一个实数λ,使b=λa(a≠0),那么b与a是共线向量;反之,如果b与a(a≠0)是共线向量,那么有且只有一个实数λ,使b=λa.活动2判断向量a=(1,-4)与b=(-2, 8)是否平行?[3]归纳一般地,设向量a=(x1,y1),b=(x2,y2)(a≠0),如果a∥b,那么x1y2-x2y1=0;反过来,如果x1y2-x2y1=0,那么a∥b.概念理解当a=0时,由于0与任意向量平行,故x1y2-x2y1=0恒成立.三、数学运用【例1】(教材第80页例5)已知a=(1, 0),b=(2, 1),当实数k为何值时,向量k a-b 与a+3b平行?并确定此时它们是同向还是反向.[5]变式1已知a=(2, 3),b=(-1, 2).若k a-b与a-k b平行,求实数k的值.变式2已知点A(-1,-1),B(1, 3),C(1, 5),D(2, 7),向量与平行吗?直线AB平行与直线CD吗?【例2】已知点O,A,B,C的坐标分别为(0, 0),(3, 4),(-1, 2),(1, 1),是否存在常数t,使得+t=成立?解释你所得结论的几何意义.[6]变式已知O(0, 0),A(1, 2),B(4, 5),点P坐标满足=+t(t∈R).(1)t为何值时,点P在x轴上?t为何值时,点P在y轴上?(2)四边形OABP能否构成一个平行四边形?若能,求t的值;若不能,请说明理由.【例3】已知点A(x, 0),B(2x, 1),C(2,x),D(6, 2x).(1)求实数x的值,使向量与共线;(2)当向量与共线时,点A,B,C,D是否在一条直线上?[【例4】在平面直角坐标系中,O为坐标原点,点A(-2, 1),B(1, 3),求线段AB的中点M和三等分点P,Q(点P靠近点A)的坐标.四、课堂练习1.当x=_____时,向量a=(2,-3)与b=(x, 9)平行.2.已知向量a=(1, 1),b=(2,x).若a+b与4b-2a平行,则实数x的值是_______.3.已知向量=(3,-4),=(6,-3),=(5-m,-3-m),若点A,B,C构成三角形,则实数m的取值范围为____________第9课时向量的数量积(1)一、问题情境问题1前面已经学过向量加法、减法和实数与向量的乘法,它们有一个共同的特点,即运算的结果还是向量,那么向量与向量之间有没有“乘法”运算呢?如果有,这种“乘法”运算的结果是什么量呢?问题2物理学中,一个物体在力F的作用下发生了位移s,那么该力对此物体所做的功是如何计算的?(图1)通过对物理公式:W=|F‖s|cosθ(其中θ是F与s的夹角)的分析,得到如下结论:(1)功W是两个向量F和s的某种运算结果,而且这个结果是一个数量;(2)功不仅与力和位移的大小有关,而且还与它们的方向有关,具体地,它和力F与位移s的夹角有关.二、数学建构1.平面向量数量积(内积)已知两个非零向量a和b,它们的夹角是θ,我们把数量|a‖b|cosθ叫做向量a和b 的数量积(内积),记作a·b,即a·b=|a‖b|cosθ.规定:零向量与任一向量的数量积为零.可见,功W就是两个向量F和s的数量积.2.两个向量的夹角问题3向量数量积(内积)的定义中,提到了“两个向量的夹角”的概念,它究竟代表什么意义呢?从问题情境中的力和位移的夹角出发,得到下面的结论:对于两个非零向量a和b,作=a,=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b 的夹角.(这里要特别强调找向量的夹角两向量要移到共同的起点)当θ=0°时,a与b同向;当θ=180°时,a与b反向;当θ=90°时,则称向量a与b垂直, 记作a⊥b.理解概念(1)当a≠0且b≠0时,a·b=|a‖b|cosθ;而当a=0或b=0时,由于零向量的方向是不确定的,因此我们不定义零向量与其他向量的夹角,为了定义的完整性.特别规定:零向量与任一向量的数量积为零.(2)两个向量的数量积的结果是一个实数,而不是向量,符号由cosθ的符号所决定.(3)向量的数量积a·b中的符号“·”,既不能省略,也不能写成“×”,a×b是向量的另外一种运算,不是数量积.三、数学运用【例1】已知向量a与b的夹角为θ,|a|=2,|b|=3,分别在下列条件下求a·b:(1)θ=135°;(2)a∥b;(3)a⊥b.问题1在理解例1的基础上,思考数量积有哪些性质?[3]由平面向量数量积的定义和向量夹角的定义可知:(1)当a与b同向时,a·b=|a‖b|;(2)当a与b反向时,a·b=-|a‖b|;(3)a·a=a2=|a|2,|a|=;(4)当a⊥b时,a·b=0.问题2定义了向量的数量积运算,那么它的运算遵循什么规律呢?即向量数量积的运算律是什么?设向量a,b,c和实数λ,向量的数量积满足下列运算律:(1)a·b=b·a;(2)(λa)·b=a·(λb)=λ(a·b)=λa·b;(3)(a+b)·c=a·c+b·c.【例2】已知向量a与b的夹角为120°,|a|=2,|b|=3,求: (1)(a+b)·(a-b);(2)|a-b|.变式根据例2中的条件求|a+2b|.【例3】已知x=a+b,y=2a+b,且|a|=|b|=1,a⊥b.(1)求|x|,|y|;(2)若x与y的夹角为θ,求cosθ的值.四、课堂练习1.有下列命题:①若a·b=0,则a=0,或b=0;②若a⊥b,则a·b=0;③若a≠0,且a·b=a·c,则b=c;④对任意向量a,都有a2=|a|2.其中正确的是_________.2.在▱ABCD中,已知||=4,||=3,∠DAB=60°,那么·=_____,·=________.3.已知向量a,b满足|a|=2,|b|=1,且a与b的夹角为120°,求b·(2b-3a)的值.第10课时向量的数量积(2)二、数学建构1.投影的概念定义:|b|cosθ叫做向量b在a方向上的投影.(一)理解概念(图1)①投影也是一个数量,不是向量;②当θ为锐角时(图1),与a同向,投影为正值;当θ为钝角时(图2),与a反向,投影为负值;当θ为直角时(图3),投影为0;当θ=0°时,投影为|b|;当θ=180°时,投影为-|b|.(图2)(图3)问题2向量的数量积的几何意义是什么?数量积a·b等于a的长度与b在a方向上的投影|b|cosθ的乘积.(二)巩固概念练习已知向量a,b满足|a|=8,|b|=3,它们的夹角为θ.当θ=30°时,a在b上的投影为_______;当θ=90°时,a在b上的投影为________;当θ=120°时,a在b上的投影为_____-.2.对上节课运算律的简要证明(1)交换律:a·b=b·a.(2)数乘结合律:(λa)·b=λ(a·b)=a·(λb).(3)分配律:(a+b)·c=a·c+b·c.问题3向量的数量积是否满足结合律? (a·b)c=a(b·c)?三、数学运用【例1】已知|a|=5,|b|=4,a与b的夹角为60°,问:当k为何值时,(k a-b)⊥(a+2b)?【例2】已知a,b都是非零向量,且a+3b与7a-5b垂直,a-4b与7a-2b垂直,求a与b的夹角.【例3】若O为△ABC所在平面内任意一点,且满足(-)·(+-2)=0, 试判断△ABC的形状.变式用向量方法证明:菱形对角线互相垂直.四、课堂练习1.在△ABC中,已知||=||=4,且·=8,则△ABC的形状是________.2.设向量a,b满足|a|=|b|=1,a·b=-,则|a+2b|=________.3.已知向量a,b满足(a+2b)·(a-b)=-6,且|a|=1,|b|=2,则a与b的夹角为________.4.已知a与b为两个不共线的单位向量,k为实数,若向量a+b与k a-b垂直,则k=________五、课堂小结1.向量数量积的几何意义.2.能运用向量数量积处理一些常见的问题,如①向量模的计算;②向量夹角的计算;③判断三角形的形状等.第11课时向量的数量积(3)一、问题情境问题1已知两个向量a=(x1,y1),b=(x2,y2),如何用a和b的坐标来表示它们的数量积a·b呢?二、数学建构设x轴上的单位向量为i,y轴上的单位向量为j,则i·i=1,j·j=1,i·j=j·i=0.∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1i·(x2i+y2j)+y1j·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1j·i+y1y2j2=x1x2+y1y2.这就是说:两个向量的数量积等于它们对应坐标的乘积的和,即a·b=x1x2+y1y2.问题2已知a=(x,y),如何将|a|用其坐标表示?∵a·a=a2=|a|2=x2+y2,∴|a|==.问题3设A(x1,y1),B(x2,y2),如何将||用A,B的坐标表示?设表示向量a的有向线段的起点是A(x1,y1),终点是B(x2,y2),则=a=(x2,y2)-(x1,y1)=(x2-x1,y2-y1),∴||=|a|=.这就是通过向量求模来推导平面内两点间的距离公式.问题4前面学过的向量的夹角、平行、垂直公式可以用坐标表示吗?(1)两个非零向量a=(x1,y1),b=(x2,y2),θ为a和b的夹角,则由向量数量积的定义得cosθ==.(2)a⊥b⇔a·b=0,可以写成a⊥b⇔x1x2+y1y2=0.(3)a∥b(b≠0)⇔存在唯一的实数λ,使得a=λb,可以写成a∥b⇔x1y2-x2y1=0.[3]三、数学运用【例1】已知向量a=(2, 1),b=(3,-1),求:(1)(3a-b)·(a-2b);(2)a与b的夹角θ.【例2】已知向量a=(1, 1),b=(0,-2),当k为何值时: (1)k a-b与a+b共线;(2)k a-b与a+b的夹角为120°.【例3】在△ABC中,设=(2, 3),=(1,k),且△ABC是直角三角形,求k的值变式将例3中△ABC是直角三角形改为钝角三角形,其他条件不变,求k的取值范围.四、课堂练习1.已知向量a=(-2, 1),b=(1,-3),则a·b=-5,向量a与b的夹角为________.2.已知a+b=(-4, 6),a-b=(2,-8),则a·b=________3.已知向量a=(-3, 2),b=(-1, 0).若λa+b与a-2b垂直,则实数λ=________4.已知平面内四点A(-1, 0),B(0, 2),C(4, 3),D(3, 1),则四边形ABCD________ (填序号,从①正方形,②矩形,③菱形,④平行四边形中选择).5.已知△ABC的3个顶点为A(1, 2),B(4, 1),C(0,-1),求证:△ABC是等腰直角三角形.。
高一数学必修一导学案及答案
⾼⼀数学必修⼀导学案及答案课题:1.1.1集合的含义与表⽰(1)⼀、三维⽬标:知识与技能:了解集合的含义,体会元素与集合的属于关系;掌握常⽤数集及其记法、集合中元素的三个特征。
过程与⽅法:通过实例了解,体会元素与集合的属于关系。
情感态度与价值观:培养学⽣的应⽤意识。
⼆、学习重、难点:重点:掌握集合的基本概念。
难点:元素与集合的关系。
三、学法指导:认真阅读教材P1-P3,对照学习⽬标,完成导学案,适当总结。
四、知识链接:军训前学校通知:8⽉13⽇8点,⾼⼀年级在操场集合进⾏军训动员;试问这个通知的对象是全体的⾼⼀学⽣还是个别学⽣?初中时你听说过“集合”这⼀词吗?你在学习那些知识点中提到了“集合”这⼀词?(试举⼏例)五、学习过程:1、阅读教材P2页8个例⼦问题1:总结出集合与元素的概念:问题2:集合中元素的三个特征:问题3:集合相等:问题4:课本P3的思考题,并再列举⼀些集合例⼦和不能构成集合的例⼦。
2、集合与元素的字母表⽰:集合通常⽤⼤写的拉丁字母A,B,C…表⽰,集合的元素⽤⼩写的拉丁字母a,b,c,…表⽰。
问题5:元素与集合之间的关系?A例1:设A表⽰“1----20以内的所有质数”组成的集合,则3、4与A的关系?B 例2:若+∈N x ,则N x ∈,对吗?六、达标检测:A 1.判断以下元素的全体是否组成集合:(1)⼤于3⼩于11的偶数;()(2)我国的⼩河流;()(3)⾮负奇数;()(4)本校2009级新⽣;()(5)⾎压很⾼的⼈;()(6)著名的数学家;()(7)平⾯直⾓坐标系内所有第三象限的点()A 2.⽤“∈”或“?”符号填空:(1)8 N ;(2)0 N ;(3)-3 Z ;(4;(5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A ; B 3.下⾯有四个语句:①集合N 中最⼩的数是1;②若N a ?-,则N a ∈;③若N a ∈,N b ∈,则b a +的最⼩值是2;④x x 442=+的解集中含有2个元素;其中正确语句的个数是()A.0B.1C.2D.3B 4.已知集合S 中的三个元素a,b,c 是?ABC 的三边长,那么?ABC ⼀定不是()A 锐⾓三⾓形B 直⾓三⾓形C 钝⾓三⾓形D 等腰三⾓形B 5. 已知集合A 含有三个元素2,4,6,且当A a ∈,有6-a ∈A ,那么a 为()A .2 B.2或4 C.4 D.0B 6. 设双元素集合A 是⽅程x 2-4x+m=0的解集,求实数m 的取值范围。
最新人教版高一数学必修一导学案(全册)
1.1 集合的含义及其表示(1)【教学目标】1.初步理解集合的概念,知道常用数集的概念及其记法.2.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号.3.能根据集合中元素的特点,使用适当的方法和准确的语言将其表示出来,并从中体会到用数学抽象符号刻画客观事物的优越性.【考纲要求】1.知道常用数集的概念及其记法.2.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号.【课前导学】1.集合的含义:构成一个集合.(1)集合中的元素及其表示:.(2)集合中的元素的特性:.(3)元素与集合的关系:(i)如果 a 是集合 A 的元素,就记作 ________ 读作“__________________ ”;(ii )如果 a 不是集合 A 的元素,就记作__ 或_____ 读作“ ____________ ”【思考】构成集合的元素是不是只能是数或点?【答】2.常用数集及其记法:一般地,自然数集记作___________ ,正整数集记作__________ 或 _________ ,整数集记作 _______ ,有理数记作______ ,实数集记作 ______ .3.集合的分类:按它的元素个数多少来分:(1) ______________________ 叫做有限集;(2)___________________ ____ 叫做无限集;(3)____________ _叫做空集,记为______________________4.集合的表示方法:(1) ______ ___________________ 叫做列举法;(2)________________ _______ 叫做描述法.(3)_____ ___________________ 叫做文氏图【例题讲解】例1、下列每组对象能否构成一个集合?(1)高一年级所有高个子的学生;(2)平面上到原点的距离等于 2 的点的全体;(3)所有正三角形的全体;(4)方程x2 2 的实数解;(5)不等式x 1 2的所有实数解例2、用适当的方法表示下列集合①由所有大于10 且小于20 的整数组成的集合记作A;②直线y x 上点的集合记作B ;③不等式4x 5 3的解组成的集合记作C ;xy2④方程组的解组成的集合记作D ;xy0⑤第一象限的点组成的集合记作E ;⑥坐标轴上的点的集合记作F .例3、已知集合A x| ax22x 1 0,x R ,若A 中至多只有一个元素,求实数a的取值范围.课堂检测】1.下列对象组成的集体:①不超过45 的正整数;②鲜艳的颜色;③中国的大城市;④绝对值最小的实数;⑤高一(2)班中考500 分以上的学生,其中为集合的是_____________22.已知2a∈A,a2-a∈A,若 A 含 2 个元素,则下列说法中正确的是① a取全体实数;②a 取除去0 以外的所有实数;③a取除去3以外的所有实数;④ a取除去0和3以外的所有实数3.已知集合A {0,1, x 2} ,则满足条件的实数x组成的集合B教学反思】1.1 集合的含义及其表示(2)教学目标】1.进一步加深对集合的概念理解;2.认真理解集合中元素的特性;3. 熟练掌握集合的表示方法,逐渐培养使用数学符号的规范性【考纲要求】3.知道常用数集的概念及其记法4.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号【课前导学】1.集合A 0,1 , 2,3 ,则集合A中的元素有个.2.若集合x|ax 0,x R 为无限集,则a .3. 已知x2∈{1,0,x},则实数x 的值124. 集合A x|x N, N ,则集合A=6x例题讲解】例1、观察下面三个集合,它们表示的意义是否相同?(1) A x|y x21 (2) B y|y x21 (3)C (x,y)|y x21a,b,1 ,也可表示为a2,a b,0 ,求a2011b2011.a例2、含有三个实数的集合可表示为例3、已知集合A a 2,(a 1)2,a23a 3 ,若1 A,求a 的值.【课堂检测】1. 用适当符号填空:(1) A x|x2x , 1 _________ A (2) B x|x2x 6 0 , 3 ____________________ B 3C x| x 22,x R,2 5___Cb2.设a,b R,集合1,a b,a 0, ,b ,则b a . a3.将下列集合用列举法表示出来:1 A m| m N且6 m N ;2 B x| 9 N,x N 9x教学反思】1.2 子集·全集·补集(1)【教学目标】1.理解子集、真子集概念,会判断和证明两个集合包含关系,会判断简单集合的相等关系;2.通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点.【考纲要求】1.能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集.2.清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.【课前导学】1.子集的概念及记法:如果集合 A 的任意一个元素都是集合 B 的元素(),则称集合A为集合B的子集,记为________ 或_________ 读作“_________ ”或“___________ ”用符号语言可表示为:________________ ,如右图所示:_______________ .2.子集的性质:① A A ② __________________ A ③ A B,B C,则A___C【思考】: A B与B A能否同时成立?【答】3.真子集的概念及记法:如果A B ,并且A B ,这时集合A称为集合B 的真子集,记为_________ 或__________ 读作“ ___________________ ”或“________________ ”4.真子集的性质:① 是任何的真子集符号表示为 _______________________________②真子集具备传递性符号表示为 _______________________________【例题讲解】例1、下列说法正确的是_________(1)若集合A 是集合B 的子集,则A 中的元素都属于B ;(2)若集合A不是集合B 的子集,则A中的元素都不属于B ;(3)若集合A 是集合B 的子集,则B 中一定有不属于A 的元素;(4)空集没有子集.例 2. 以下六个关系,其中正确的是________(1){ };(2){ }(3){0} (4)0 (5){0} (6){ }例3.( 1)写出集合{a,b}的所有子集,并指出子集的个数;a,b,c}的所有子集,并指出子集的个【思考】含有n 个不同元素的集合有个子集,有个真子集,有个非空真子集.例 4.集合A {x|x 1} ,集合B {x|x a} .(1) 若A B ,求a的取值范围;(2)若A B,求a的取值范围.【课堂检测】1.下列关系一定成立的是________1 3 x|x 102 {1, 2} { 2,1}3 1,2 x,y |x y 32.集合A x| x(x 1)(x 2) 0 ,则集合A的非空子集有个.3.若A a |a 3n 1,n Z ,B b |b 3n 2,n Z ,C c|c 6n 1,n Z ,则集合A,B,C 的包含关系为.教学反思】1.2 子集·全集·补集( 2)【教学目标】1.理解全集、补集概念,会进行简单集合的运算;2.通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点.【考纲要求】1. 理解全集、补集概念,会进行简单集合的运算;2. 通过概念教学,提高学生逻辑思维能力.【课前导学】1.全集的概念:如果集合U 包含我们所要研究的各个集合,这时U 可以看做一个全集.全集通常记作___ 2.补集的概念:设___________ ,由U 中不属于A的所有元素组成的集合称为U 的子集A的补集, 记为 ____ 读作“ __________________________________________ 即:”C U A = ______ C U A 可用右图阴影部分来表示:____________________________________3.补集的性质:① C U = _______________________② C U U = _____________________③ C U (C U A) = ________________【例题讲解】例 1 已知全集U {2,3, a2 2a 3}, A {| 2a 1|, 2}, C U A {5} ,求实数a的值.例 2 设U R,A {x| 1 x 6},B {x|a 2 x 2a} ,若B C U A,求实数a 的取值范围.例 3 若方程x2 x a 0至少有一个非负实数根,求a 的取值范围【课堂检测】1.全集U 1,2,3,4,5 ,A 1,5 ,B C U A,则集合 B 有个.2.全集U R,A x |x 3 2 ,a 1 , 则下面正确的有231 a C U A2 a C U A3 a A4 a C U A 3.(1)已知全集U x|x 3 ,集合A x|x 1,则C U A= .(2)设全集U Z,A x|x 3k 1,k Z ,则C U A为.教学反思】1.3 交集·并集(1)教学目标】1.理解交集和并集的概念,会求两个集合的交集和并集;2.提高学生的逻辑思维能力,培养学生数形结合的能力;3.渗透由具体到抽象的过程;【考纲要求】交集和并集的概念、符号之间的区别与联系.【课前导学】1.交集:叫做 A 与 B 的交集.记作,即:.2.并集:叫做 A 与 B 的并集,记作,即: .3.设集合A x| x 2n,n N ,B x|x 3n,n N ,则A B ________________________ 4.设M 1,2,m2 3m 1,P 1,3 ,M P 3 ,则m的值为【例题讲解】例1.设A { 1,0,1}, B {0,1,2,3},求A B及A B.例2.设A {x|2x2 px q 0},B {x|6x2 (p 2)x 5 q 0},若A B {1} ,求A B.例3.设集合 A {x 2 x 4}, B {x x a}.(1)若A B B ,求a的取值范围;(2)若A B ,求a的取值范围【课堂检测】1.设集合A 1,2 ,B 1,2,3 ,C 2,3,4 ,则A B C ___________________ .2.若集合S x|x 2或x 3 ,T x|2 x 3 ,则S T ____________________ .213.设集合U R,A x|0 x 2.5 ,B x|x 或x ,则(C U A) (C U B)=324.已知A 1,a2 1,a2 3,B a 3,a 1,a 1,则A B 2 ,则a _________________________ .教学反思】1.3 交集·并集( 2)【教学目标】、(1)掌握集合交集及并集有关性质;运用性质解决一些简单问题;( 2)掌握集合的有关术语和符号;使学生树立创新意识.【考纲要求】集合的交、并运算及正确地表示一些简单集合.【课前导学】1.有关性质:A A= A = AB B AA A= A = AB B A2.区间:设a,b R, 且a b,规定[a,b] ,(a,b) ,[a,b) ,(a,b] ,(a, ) ,( ,b] ,( , ) .3. U {1,2,3,4,5,6},A {2,3,5}, B {1,4},求C U (A B)与( C U A) (C U B),并探求C U(A B),C U A, C U B三者之间的关系4.求满足P Q {1,2} 的集合P,Q 共有多少组?【例题讲解】例1设A 2, 1,x2 x 1,B 2y, 4,x 4,C 1,7,且A B C,求x, y的值及A B.例 2 设A {| a 1|,3,5}, B {2a 1,a2 2a,a2 2a 1}, 若A B {2,3} ,求A B.例3设A {x|x2 4x 0}, B {x|x2 2(a 1)x a2 1 0}.(1)若A B B,求a的值;( 2)若A B B,求a的值.例 4 设全集U {(x,y)|x R,y R},M {(x,y)| y 3 1},P {(x,y)|y x 1} ,求C U (M P).x2【课堂检测】1.设集合I x| x 3,x Z , A 1,2 , B 2, 1,2 ,则A C U B 等于2.若A 非负整数,B 非正整数,则A B , A B .3.设U R,A x|0 x 5, , B x|x 1,则C U A C U B4.已知集合A,B,C 满足A B B C ,则A _________ C .教学反思】2) xx2.1.1 函数的概念与图像( 1)【 教学目标 】1. 通过现实生活中的实例体会函数是描述变量之间的依赖关系得重要模型,理解函数概念; 2. 了解构成函数的三要素:定义域、对应法则、值域,会求一些简单函数的定义域并能说出 他们的值域 . 【 考纲要求 】了解构成函数的三要素; 【 课前导学 】1.函数的定义: 设 A ,B 是两个数集, 如果按照某种确定的 ,使对于集合 A中的 一个数 x ,在集合 B 中 和它对应,那么这样的对应叫做从 A 到B 的一个函数,记为,其中 x 叫, x 的取值范围叫做函数的,与 x 的值相对应的 y 的值叫 , y 的取值范围叫做函数的 ;2.在对应法则 f :x y,y x b,x R,y R 中,若 2 5,则 2【 例题讲解 】 例1以上 4 个对应中,为函数的有3.下列图象中不能.作为函数 y f (x) 的图象的是:1) x,x N ;3) y, 其中 y x 1x1,x N,y N ;R ; 4)y ,其中 y 1 2x,x 1,0,1, y1,0,1,2,3变式:下列各组函数中,为同一函数的是 ;(1) f x x 3与 g x x 26x 9 (2) f x x 1与 g(t)t 2 2t 1x2 4 2(3) f(x)与 g(x) x 2 (4) f (x) x 2与圆面积 y 是半径 x 的函数x2例 2 求下列函数的定义域:1(1) f(x)11x*变式:若 y f (x)的定义域为 1,4 , f (x 2)的定义域为例 3已知函数 y x 2 2x 3,求 f (0), f (1), f (1), f (n) f (n 1).变式 1:函数 y x 22x 3,( 3 x 2)的值域是函数 yx 2 2x 3 ,1x2 x2x 2, 1,0,1,2 的值域是 .变式 2:若一系列函数的解析式相同, 值域相同, 但定义域不同, 则称这些函数为 “同族函数 那么函数 y x 2,值域为 1,4 的“同族函数 ”共有 个;课堂检测 】1. 对于集合 A {x|0 x 6},B {y|0 y 3} ,有下列从 A 到B 的三个对应:①1y x ;③ x y x ;其中是从 323. 若 f (x) (x 1)21,x { 1,0,1,2,3} ,则 f (f (0))教学反思 】1x y x ;② x2A 到B 的函数的对应的序号2. 函数 f (x)3 | x 1| 2的定义域为 ____________2.1.1 函数的概念与图像(2)【教学目标】通过现实生活中的实例体会函数是描述变量之间的依赖关系得重要模型,理解函数概念;构成函数的三要素:定义域、对应法则、值域,会求一些简单函数的定义域并能说出他们的值域.【考纲要求】了解构成函数的三要素;【课前导学】1.求下列函数的定义域:(1)y x 2 x 2 (2)y 2 x2x 32.函数y f (x)的定义域为1,4 ,则函数y f (2x)的定义域为3.求下列函数的值域:( 1) y 1 x(0 x 2)(2) y 2x3) y x2 2x 3(0 x 3)了解【例题讲解】例 1. 求下列函数的定义域:1)0 x1 y x x2) y 2x 3 1 12 x x例 2. 求下列函数的值域:1) y 3x22) y x24x 6, x 1,53) y8x24x 54) y x x 1例3(1)已知函数y mx26mx m 8的定义域为R,求实数m 的取值范围;(2)设A 1,b(b 1),函数f(x) 1(x 1)21,当x A,f (x)的值域也是A,求b 的值.【课堂检测】1.函数y x 1 x 2 的定义域为,y 11的定义域为11x 12.函数y 2的值域为. x13.函数y x x 2 的值域为教学反思】2.1.1 函数的概念与图像( 3)【 教学目标 】1.理解函数图象的意义; 2.能正确画出一些常见函数的图象; 3.会利用函数的图象求一些简单函数的值域、判断函数值的变化趋势; 4.从 “形 ”的角度加深对函数的理解 .【 课前导学 】1.函数的图象:将函数 f (x) 自变量的一个值 x 0作为 坐标,相应的函数值作为 坐标, 就得到坐标平面上的一个点 (x 0, f(x 0)),当自变量,所有这些点组成的图形就是函数 y f(x) 的图象. 2.函数 y f ( x)的图象与其定义域、 值域的对应关系: 函数 y f (x)的图象在 x 轴上的射影 构成的集合对应着函数的 ,在 y 轴上的射影构成的集合对应着函数的 .22xx 3. 函数 f (x) x 与 g(x) 的图象相同吗?并画出函数 g(x) 的图像 . xx4. 画出下列函数的图象:(1) f (x) x 1;3) y 5x ,x {1,2,3,4} ; 4) f (x) x .2 2) f (x) (x 1)2 1,x [1,3) ;【例题讲解】例 1. 画出函数f (x) x2 1 的图象,并根据图象回答下列问题:1)比较f ( 2), f (1), f (3)的大小;2)若0 x1 x2 (或x1 x2 0,或|x1| |x2 |)比较f (x1)与f (x2)的大小;3)分别写出函数f(x) x2 1( x ( 1,2] ),2f(x) x2 1( x (1,2] )的值域.2x 3,(x 1)例 2. 已知函数f (x) = x2 ,(-1 x 1)x,(x 1)(1)画出函数图象;(2)求f(f(f( 2))) 的值(3)求当f (x) 7 时,求x 的值;例 3 作出下列函数的图像(1) y x23x 42(2) y x22 x 1课堂检测】1.函数f (x) 的定义域为2,3 ,则y f(x) 的图像与直线x 2的交点个数为2. 函数y f(x) 的图象如图所示,(1) f (0) _______ ;(2)f (1) _( 4) 若1 x1 x21,则x3.画出函数f (x) x 的图像.填空:_____ ;(3) f (2) ________ ;f (x1)与f (x2) 的大小关系是x教学反思】2.1.2 函数的表示方法( 1)【教学目标】1.掌握函数的三种表示方法 (图象法、列表法、解析法),理解同一个函数可以用不同的方法来表示;2.了解分段函数,会作其图,并简单地应用;3.会用待定系数法、换元法求函数的解析式.【考纲要求】在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数【课前导学】1.一次函数一般形式为.2.二次函数的形式:( 1)一般式:;( 2)交点式:;( 3)顶点式:.3.已知f (x) 3x 1,g(x) 2x 3,则f [g(x)] ,g[ f (x)] .4.已知函数f (x)是二次函数,且满足f(0) 1,f(x 1) f(x) 2x,求f(x) .【例题讲解】例 1.下表所示为x与y 间的函数关系:那么它的解析式为例 2. 函数 f (x)在闭区间 [ 1,2] 上的图象如下图所示,则求此函数的解析式.例 3.(1)已知一次函数 f (x) 满足 f f (x) 4x 3,求 f (x).2)已知 f(x 1) x 2 2x ,求 f(x).课堂检测 】2x 21,x 0 1.已知 f(x) , 2x 1,x 02.已知 f ( x 1) x 2 x ,则 f (x)223.若二次函数 y x 2 2mx m 23的图像对称轴为 x 2 0,则 m = ,顶点 坐标为教学反思】f ( 2)= 2; f (a 2 1)=2.1.2 函数的表示方法( 2)【教学目标】掌握函数的三种表示方法(图象法、列表法、解析法) ,会根据不同的需要选择恰当的方法表示函数;会用待定系数法、换元法求函数的饿解析式;通过实际问题体会数学知识的广泛应用性,培养抽象概括能力和解决问题的能力.【考纲要求】在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数【课前导学】1.函数f (x) 2x x 0 ,则f (1)是;x 1 x2.已知f ( x 1) x 1,那么f (x) 的解析式为;23.一个面积为100m 2的等腰梯形,上底长为xm,下底长为上底长的3倍,则高y与x的解析式为;4.某种笔记本每本5元,买x( x 1,2,3,4 )个笔记本的钱数记为y (元),则以x为自变量的函数y 的解析式为;例题讲解】例 1. 动点P从边长为1的正方形ABCD的顶点A出发,顺次经过B、C、D 再回到A,设x 表示点P的行程,y表示线段PA的长,求y关于x 的函数解析式.变式:如图所示,梯形 ABCD 中, AB//CD , AD BC 5,AB 10,CD 4,动 点 P 自 B 点出发沿BC CD DA 路线运动,最后到达 A 点,设点 P 的运动路程 为 x , ABP 的面积为 y ,试求 y f (x)的解析式并作出图像 .例 2已知函数满足 f (x) 2f (1) ax , x(1)求 f (1), f (2) 的值;2)求 f(x) 的解析式.【课堂检测】1.周长为定值l的矩形,它的面积S是此矩形的长为x 的函数,则该函数的解析式2.若函数f (x)满足关系式f(x) 2f(1) 3x,则f(2) =x教学反思】2.1.3 函数的单调性(1)教学目标】1.会运用函数图象判断函数是递增还是递减;2.理解函数的单调性,能判别或证明一些简单函数的单调性;3.注意必须在函数的定义域内或其子集内讨论函数的单调性.【考纲要求】通过已学过的函数特别是二次函数,理解函数的单调性,学会运用函数图象理解和研究函数的性质【课前导学】1.下列函数中,在区间0,2 上为增函数的是;12(1)y (2)y 2x 1 (3)y 1 x (4)y (2x 1)2x2.若f(x)(2k 1)x b在, 上是减函数,则k 的取值范围是3.函数y 2x 2 x 1的单调递增区间为4.画出函数y 2x 1 的图象,并写出单调区间【例题讲解】例1:画出下列函数图象,并写出单调区间.21(1)y x2 2 ;(2)y ;x3) f(x)x21, x 02x 2, x 01例 2.求证函数f(x) 1在0, 上是减函数思考:在,0 是函数,在定义域内是减函数吗?例 3.求证函数f(x) x3 x 在, 上是增函数课堂检测】1.函数x2 6x 10 在单调增区间是2.函数1 1 的单调递减区间为x3.函数(x 0)(x 0)的单调递增区间为,单调递减区间为4.求证:函数f (x) x2 x在,1上是单调增函数2教学反思】2.1.3 函数的单调性( 2)【教学目标】1.理解函数的单调性、最大(小)值极其几何意义;2.会用配方法、函数的单调性求函数的最值;3.培养识图能力与数形语言转换的能力.【课前导学】1.函数y 2x 1 在1,2 上的最大值与最小值分别是;2.函数y x2 x 在3,0 上的最大值与最小值分别是;3.函数y 2 1 在1,3 上最大值与最小值分别是;x4.设函数f(x) a(a 0),若f (x)在,0 上是减函数,则a的取值范围为x【例题讲解】例 1. (1)若函数f(x) 4x2 mx 5 m在[ 2, )上是增函数,在( , 2] 上是减函数,m 的值为;2)若函数f(x) 4x2 mx 5 m在[ 2, ) 上是增函数,3)若函数f(x) 4x2 mx 5 m的单调递增区间为[ 2, ) ,则实数m的值为则实数则实数m 的取值范围为2.已知函数y f (x) 的定义域是[a,b] ,a c b.当x [a,c]时,f (x) 是单调增函数;x [c,b] 时,f (x) 是单调减函数,试证明f (x) 在x c 时取得最大值.3.(1)求函数f (x) x 1的单调区间;xx22x 12)求函数f (x) x 2x 1,x 1,4 的值域. 4,4 的值域x【课堂检测】1. 函数f (x) (a 1)x 1在, 上是减函数实数a 的取值范围是22. 函数f (x) x2 mx 4(m 0) 在( ,0] 上的最小值是.3. 函数f (x) x x 2 的最小值是,最大值是.教学反思】2.1.3 函数的奇偶性( 1)【教学目标】3.了解函数奇偶性的含义;4.掌握判断函数奇偶性的方法,能证明一些简单函数的奇偶性;5.初步学会运用函数图象理解和研究函数的性质。
人教版高中数学必修一全册导学案
人教版高中数学必修一全册导学案1.1.1集合的含义使用说明:“自主学习”10分钟,发现问题,小组讨论,展示个人成果,教师对重点概念点评。
“合作探究”10分钟,小组讨论,互督互评,展示个人成果,教师对重点讲评。
“巩固练习”10分钟,组长负责,组内点评。
“个人总结”5分钟,根据组内讨论情况,指出对规律,方法理解不到位的问题。
能力展示5分钟,教师作出总结性点评。
通过本节学习应达到如下目标:(1)初步理解集合的含义,知道常用数集及其记法.,初步了解“∈”关系的意义.。
.(2)通过实例,初步体会元素与集合的”属于”关系,从观察分析集合的元素入手,正确地理解集合.(3)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(4)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(5)在学习运用集合语言的过程中,增强认识事物的能力,初步培养实事求是、扎实严谨的科学态度.学习重点:集合概念的形成。
学习难点:理解集合的元素的确定性和互异性.学习过程(一)自主学习阅读课本,完成下列问题:1、例(3)到例(8)和例(1)(2)是否具有相同的特点,它们能否构成集合,如果能,他们的元素是什么?结合现实生活,请你举出一些有关集合的例子。
2、一般地,我们把研究对象称为,把一些元素组成的总体叫做3、集合的元素必须是不能确定的对象不能构成集合。
4、集合的元素一定是的,相同的几个对象归于同一个集合时只能算作一个元素。
5、集合通常用大写的拉丁字母表示,如。
6、如果a是集合A的元素,就说a属于A,记作读作”。
如果a不是集合A的元素,就说a不属于A,记作,读作””。
7有理数集,实数集(二)合作探讨1、下列元素全体是否构成集合,并说明理由(1)世界上最高的山(2)世界上的高山。
(3)2的近似值(4)爱好唱歌的人(5)本届奥运会我国取得优秀成绩的运动员。
(6)本届奥运会我国参加的所有运动项目。
高一数学导学案1
7.如图,空间四边形 ABCD 被一平面所截,截面 EFGH 是平行四边形. (1)求证:CD∥平面 EFGH ; (2)如果 AB⊥CD, AB a,CD b , E、F、G、H 分别是所在棱的中点,求截面 EFGH 的面积. . A
E H B G C F D
高考链接
五、学后反思
线的平面和这个平面相交,那么这条直线和交线平 行.
a // b . 图形如右. b 3 结论: 平面外的两条平行直线中的一条平行于这个平面, 求证: 另一条也平行于这个平面。 a //
2. 符号语言表示为:a
4.线线平行
线面平行
四、反馈练习 1. 已知直线 l //平面 , m 为平面 内任一直线, 则直线 l 与直线 m 的位置关系是 ( ) A. 平行 B. 异面 C. 相交 D. 平行或异面 2.梯形 ABCD 中 AB//CD,AB 平面 ,CD 平面 ,则直线 CD 与平面 内的直线的 位置关系只能是( ) A. 平行 B.平行和异面 C. 平行和相交 D. 异面和相交 3.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系 是( ) A. 异面 B.相交 C.平行 D.不能确定 4.已知 l 是过正方体 ABCD—A1B1C1D1 的顶点的平面 AB1D1 与 下底面 ABCD 所在平面的交线,下列结论错误的是( ) A .D1B1∥l B.BD//平面 AD1B1 C .l∥平面 A1D1B1 D.l⊥B1 C1 5.若直线 a 、b 均平行于平面α ,则 a 与 b 的关系是 6.已知正方体 AC1 的棱长为 1,点 P 是的面 AA1 D1 D 的中心, 点 Q 是面 A1 B1C1 D1 的对角线 B1 D1 上一点,且 PQ // 平面 AA1 B1 B ,则 线段 PQ 的长为.
潍坊一中学案高一上学期 数学 导学案平面基本性质与推论
平面基本性质与推论【学习目标】(1)了解可以作为推理依据的公理和定理;(2)理解空间直线、平面位置关系的定义;(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题。
【重难点】(1)对于平面的三个公理,要深刻理解其含义,并能用符号准确的表述;(2)共点、共线、共面问题是本节内容的难点;【学习过程】课前预习案预习教材有关内容,填空梳理有关知识)1. 平面的基本性质公理1:如果一条直线上的在一个平面内,那么这条直线上的所有点都在这个平面内符号语言:图形:应用:(1)判定直线在平面内的依据(2)判定点在平面内的方法公理2:经过的三点,有且只有一个平面。
符号语言:图形:应用:(1)确定一个平面的依据(2)判定若干个点共面的依据公理3:如果不重合的两个平面,那么它们有且只有符号语言:图形:应用:(1)判定两个平面相交的依据(2)判定若干个点在两个相交平面的交线上公理4:平行于同一直线的两条直线互相符号语言:应用:推论1:经过一条直线和一点,有且只有一个平面。
应用:(1)判定若干条直线共面的依据(2)判断若干个平面重合的依据(3)判断几何图形是平面图形的依据推论2:经过两条直线,有且只有一个平面。
推论3:经过两条直线,有且只有一个平面。
2. 空间直线与直线的位置关系(1)共面:异面:(2)公共点个数:3. 空间直线与平面的位置关系(1)直线在平面内——有无数个公共点(2)直线不在平面内——①直线和平面相交——有且只有一个公共点②直线和平面平行——没有公共点符号语言:4.空间平面与平面的位置关系(1)平行——(2)相交——有且只有一条公共直线符号语言:图形:5.共点、共线、共面问题(1)证明共面问题一般有两种证法:一是由某些元素确定一个平面,再证明其余元素在这个平面内;二是分别由不同元素确定若干个平面,再证明这些平面重合。
(2)证明三点共线问题,通常证明这些点都在两个平面的交线上,即先确定出某两点在这两个平面的交线上,再证明第三个点是这两个平面的公共点,当然必在两个平面的交线上。
指数幂的运算性质导学案 高一上学期数学北师大版(2019)必修+第一册
§2指数幂的运算性质【学习目标】1.掌握实数指数幂的运算性质及利用性质进行综合运算,能够熟练、准确地进行指数式、根式等的相互转化,能够熟练地利用性质进行数式的化简、求值等综合运算.2.通过实数指数幂的综合运算,提高数学运算的核心素养.◆知识点实数指数幂的运算性质对于任意正数a,b和实数α,β,实数指数幂满足下面的运算性质:(1)aα·aβ=;(2)(aα)β=aαβ;(3)(ab)α=aαbα.【诊断分析】1.有理数指数幂的运算性质是否适用于底数a=0或a<0的情况?2.a n·b n=(a·b)n,a,b,n∈R,这个等式对吗?◆探究点一指数幂的综合运算例1化简与计算(式中的字母均为正实数):(1)(2√a56·√b34)(-6√a4·√b4)-3√a·√b;(2)a 23·b12·(2a12b13)÷(15a16b56);(3) [√2√223(213)2]5.变式(1)计算:(335)+22×(214)12-(279)×(35)2.(2)已知a=√27,b=13,求√a3b2·√ab23√ba23的值.[素养小结]利用分数指数幂的运算性质化简、求值的方法技巧:(1)有括号,则先化简或计算括号里的式子;(2)无括号,则先进行指数运算;(3)负指数幂化为正指数幂的倒数;(4)底数是小数,先要化为分数,底数是带分数,先要化为假分数,然后要尽可能用幂的形式表示,利用指数运算性质求解.◆ 探究点二 条件求值例2已知a 12+a -12=5(a>0),求a 32-a -32a 12-a -12的值.变式 若将例2中的条件a 12+a -12=5改为a 12-a -12=5,则结论如何?[素养小结] 对于“条件求值”问题,要根据式子的特点,弄清已知条件与待求式的联系,然后用整体代换的思想求解.要注意恰当地变形,如分解因式等,还要注意开方时正负值的选取.拓展 [2024·皖豫名校联盟高一期中] 已知10a =2,102b =5,求10a 2-b 的值.§2 指数幂的运算性质【课前预习】知识点(1)a α+β诊断分析1.解:因为0的负数指数幂无意义,所以a ≠0.若a<0,如取a=-2,则[(-2)3]12没有意义. 故有理数指数幂的运算性质不适用于底数a=0或a<0的情况.2.解:不对,例如(-2)12×(-2)12=[(-2)×(-2)]12不成立,其中(-2)12无意义.【课中探究】探究点一例1 解:(1)√a 56·√b 34)(√a 4·√b 4)-3√a 12·√b =-12a 56b 34a 14b 14-3a 112b 12=4a b 12. (2)a 23·b 12·(2a 12b 13)÷(15a 16b 56)=10a 23+12-16b 12+13-56=10a.(3)[√2√223(213)2]5=(√2×223223)5=(√253223)5=(256223)5=(256-23)5=(216)5=256. 变式 解:(1)原式=1+4×(94)12-259×925=1+6-1=6.(2)原式=[a 3b 2(ab 2)13]12a(b a 2)13=(a 103b 83)12a 13b 13=a 53b 43a 13b 13=a 43b ,因为a=√27,b=13,所以原式=(332)43×3-1=3. 探究点二例2 解:因为a 32-a -32=(a 12)3-(a -12)3, 所以a 32-a -32a 12-a -12 =(a 12-a -12)(a+a 12·a -12+a -1)a 12-a -12= a+a -1+1=(a 12+a -12)2-2+1=52-1=24.变式 解:因为a 32-a -32=(a 12)3-(a -12)3,所以a 32-a -32a 12-a -12=(a 12-a -12)(a+a 12·a -12+a -1)a 12-a -12= a+a -1+1=(a 12-a -12)2+2+1=52+3=28. 拓展 解:因为10a =2,102b =5,所以10a 2-b =(10a ÷102b )12=√25=√105.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
高一数数学导学案一
因式分解
班级------------- 姓名-------------------
一、公式法
673ab a -)(
练习 分解因式:(1)4a 2-9b 2 = (2)-25a 2y 4+16b 16
(3) m 2-2mn+4
1n 2 =
2. 提公因式后用公式
例2 分解因式:(1)5a b -ab (2)a 4(m+n)-b 4(m+n)
(3)-161 11-++m m a a 练习 分解因式:
(1)76a ab - (2) x 3-6x 2+9x
(3)a -2a 2+a 3 (4)a 4x 2-4a 2x 2y+4x 2y 2
3. 化简后用公式 例3
4. 整体用公式
例4 分解因式:(1)(x+2y)2-(x -2y)2 (2)-4(m+n)2+25(m -2n)2 练习 分解因式:
(1)(2m -n)2-121(m+n)2 (2)(3a+2b)2-(2a+3b)2
33
(1) 8 (2) 12527x b +-
3
5. 连续用公式 例5
练习 分解因式:x 4-1=
6. 变换成公式的模型用公式
例
6
练习 分解因式:
2
1(x 2-2y 2)2-2(x 2-2y 2)y 2+2y 4 二、分组分解法 1.分组后能提取公因式 例:2105ax ay by bx -+-=
练习: 2222()()ab c d a b cd ---
2.分组后能直接运用公式 例:a 2-b 2-2b -1=
练习:a 2+4b 2-4ab -c 2=
三、十字相乘法
1. 22()()()()()x p q x pq x px qx pq x x p q x p x p x q +++=+++=+++=++ 例:把下列各式因式分解:
(1)276x x -+ (2)2524x x +-
(3) 226x xy y +-
练习:(1)21336x x ++ (2)2215x x -- (3)x 2+6ax+9a 2
3
2.一般二次三项式2ax bx c ++型的因式分解
大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++.
反过来,就得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++
例:把下列各式因式分解:
(1) 21252x x -- (2) 22568x xy y +-
练习:(1)2616x x +- (2
四、其它因式分解的方法
1.配方法 例:分解因式2616x x +-
2.拆、添项法 例:分解因式3234x x -+
3. 待定系数 例:3529422x xy y x y +-++-
一般地,把一个多项式因式分解,可以按照下列步骤进行:
(1) 如果多项式各项有公因式,那么先提取公因式;
(2) 如果各项没有公因式,那么可以尝试运用公式来分解;
(3) 如果用上述方法不能分解,那么可以尝试用分组或其它方法(如十字相乘法)来分解;
(4) 分解因式,必须进行到每一个多项式因式都不能再分解为止.
五、课后小测:(每小题10分,共100分)
1、 (1)
2、 9(a-b)2-(x-y)2;
3、(x-2)2+12(x -2)+36
4、
5、
6. 已知:a+b=3,x-y=1,求a+2ab+b-x+y的值.
7.求证(x+1)(x+2)(x+3)(x+4)+1是一个完全平方式。
9.设x+2z=3y,试判断x2-9y2+4z2+4xz的值是不是定值?
3。