第十二届中环杯三年级决赛试题
12届初赛解析
杯赛速递——三年级中环杯初赛在短短三年内,三年级中环杯的考点变了又变,让人有种琢磨不透的感觉,但不管考点发生了什么变化,对于杯赛考试总有些东西是不变的。
第一个不变的就是我们大多数家长让孩子参加杯赛的原因——小升初。
小升初是一条漫漫长路,三年级的杯赛只是一个开始,只有积累了经验、获得了认可和鼓励,在四年级的冲刺中才会充满信心,所以不论成绩如何,都请您和孩子一起进行反思,鼓励孩子继续努力。
其次,学习依旧是一个持续反复的过程,不会因为你是三年级的孩子就不考察二年级的知识点了,所以有空的时候就让孩子们回顾一下之前所学吧。
我们一直在努力的往前学,但之前所学的我们还记得多少呢?最后,孩子们需要全面的发展,中环杯的考题已经不仅仅是在考察孩子们的数学水平了,竞赛试题要求孩子们有着良好的阅读理解能力,来弄清题意,适当的把孩子们的精力分一些到语文上去吧。
好啦,说了那么多,让我们一起来看看今年三年级中环杯的解析吧~第十二届“中环杯”小学生思维能力训练活动三年级选拔赛试题解析一、填空题1、计算:100-96+92-88+……+12-8+4=()【解析】考点:速算与巧算(分组法),等差数列求和公式易错点:等差数列求和公式算出项数后需要除以2,求出组数。
100-96+92-88+……+12-8+4 =(100-96)+(92-88)+……+(12-8)+4求出项数:(100-8)÷4+1=24,24÷2=12,12+1=13100-96+92-88+……+12-8+4 =(100-96)+(92-88)+……+(12-8)+4=4×13=52【答案】522、在下列各数字间的适当位置填入恰当的运算符号或括号,使等式成立。
若数字间不填任何符号或括号,则视为一个数。
例如“2 0+1+1”视为“20+1+1”。
2 0 1 1 1 1 0 2 =2011【解析】考点:巧填算符本题的关键是找到2011,然后利用加减乘除和括号进行运算。
第12届中环杯四年级初赛详解
四年级 第十二届中环杯初赛解析第十二届“中环杯”小学生思维能力训练活动 四年级选拔赛试卷全方位解析一、填空题(每题 7 分,共 56 分) : 1.计算:20112012÷10001+30363033÷30003=( 【解析】计算:除法的性质 原式=20112012÷10001+10121011÷10001 =(20112012+10121011)÷10001 =30233023÷10001 =3023 【答案】3023 )2.从 1,3,5,7,……,47,49 这 25 个奇数中,不重复地取数字,至少取出( 中有两个数的和是 46。
【解析】抽屉原理,最不利原则。
先列出和为 46 的两数分组: (1,45) , (3,43)……(21,25) ,共 11 组; 剩余其他数字为 23,47,49,共 3 个。
)个数,才能保证取出的数考虑最不利原则,先从 11 组中每组取 1 个,将剩下 3 个数全取完,最后再取无论哪个数,都可完成这 件事,即至少取出 11+3+1=15(个) 。
【答案】153.一根绳子围着大树绕 9 圈剩 4 米,如果围着大树绕 10 圈又缺 1 米,那么绕 8 圈还剩( 【解析】盈亏问题。
)米。
由绕 9 圈多 4 米,可将绕 10 圈先绕 9 圈,此时多 4 米,且需再绕一圈,而再绕一圈时缺 1 米,可知 1 圈的长度为 5 米。
算式: (4+1)÷(10-9)=5(米) 由此可知绳长为 9×5+4=49(米) ,则绕 8 圈还剩 49-8×5=9(米) 。
【答案】94. 今年是中国共产党建党 90 周年。
据考证, 伟大的中国共产党的确切成立日期是 1921 年 7 月 23 日。
今年 (2011 年)的 7 月 23 日是星期六,那么 90 年前的这一天是星期( 【解析】余数与周期。
植树问题学生版
植树问题综合运用本讲说明:主要介绍两端都种、只种一端、两端都不种和封闭图形四种基本类型的植树问题,以及锯木头、爬楼梯、敲钟三个植树拓展。
对于植树问题而言,“段数”是核心,解决植树问题的基本思路即判断植树类型,确定“段数”和“棵树”之间的关系,拓展题目部分有些涉及到与容斥原理的综合等题目,难度稍大,老师可结合班级情况选择性讲解。
【基本公式】段数= 总长÷每段长每段长= 总长÷段数总长= 每段长×段数四大类型1.两端都种(两端都没有障碍物):棵数=段数+12.只种一端(一端有障碍物):棵树=段数3.两端都不种(两端都有障碍物):棵树=段数-14.封闭图形:棵树=段数常 1.已知棵数,及每段长(即题目中两棵树的距离)锯木头:刀数=段数-1注:锯木头问题,钱和时间都花在刀数上。
爬楼梯:住的层数=爬的层数+1(一楼敲钟:间隔=点数-1(时间花在敲钟间隔里)温馨小贴士:植树问题的核心是“段数”:路长----段数----棵数& 棵数----段数----路长;“两边”、“两侧”、“两旁”,先看一边。
1. (2010年第十一届“中环杯” 三年级决赛)在长120米的直道上,从距离起点4米处开始,依次重复地轮换插上红、黄、蓝三种彩旗,相邻的两面彩旗间间隔4米。
问:距离起点88米的地方插不插旗?如果插,插的是什么颜色的旗?2. (2009年第十届“中环杯” 三年级决赛)小林与小胖比赛爬楼梯,小林跑到第6楼时,小胖恰好跑到第5楼。
以这样的速度,小林跑到第31楼时,小胖跑到第()楼。
【例1】【例1】为了优化居住环境,大头儿子一家进行了轰轰烈烈的植树活动。
(1)大头儿子的任务是要在家门口600米长的公路一边每隔4米种一棵树,那么他需要种多少棵树?(2)小头爸爸负责家门口到邻居家的一段路。
路长200米,每隔4米种一棵树,小头爸爸需要种多少棵树?(3)大头儿子和爸爸要一起在家门口长1000米的路上每隔10米装一盏路灯,一共要装多少盏?(4)围裙妈妈要在后院周长为200米的水池周围种树,每隔4米种一棵,求围裙妈妈一共要种多少棵树?【例2】【例2】(1)一个湖泊周长1800米,沿湖泊周围每隔3米栽一棵柳树,每两棵柳树中间栽一棵桃树,湖泊周围栽柳树()棵,栽桃树()棵。
2024小学三年级奥林匹克数学竞赛决赛试卷及答案
2024小学三年级奥林匹克数学竞赛决赛试卷(满分120分,时间90分钟)一、选择题(每小题5分,共80分)1.今年是2022年(农历虎年),那么今年2月有( )天。
A.28B.29C.30D.312.得数不是2022的算式是( )。
A.2022×1B.2022×0C.2022÷1D.2022×2022÷20223.唐诗“飞流直下三千尺,疑是银河落九天”中“三千尺”大约有( )。
A.30多层楼高B.100多层楼高C.150多层楼高D.300多层楼高4.算式1+2+4+8+16+32+…+512+1024=( )。
A.2000B.2022C.2047D.20485.用选项中的3块五格拼板拼出右边的图形,没有用到的五格拼板是( )6.欧欧、小泉、小美发现了一个宝箱,宝箱里有红、黄、蓝三颗宝石,他们一人一颗,欧欧拿的不是黄宝石,小泉拿的是红宝石,那么小美拿的是( )宝石。
A.红B.黄C.蓝 D黄或蓝7.2022年成都世界乒乓球团体锦标赛,中国、美国、日本、韩国进行团体小组循环赛。
到目前为止,中国队已赛了3场,美国队赛了2场,日本队赛了1场,那么韩国队己赛了( )场。
A.1B.2C.3D.48.用七巧板摆出如图所示的正方形,移动两块积木可以得到一个三角形,移动的积木是( )。
A.1和7B.5和6C.3和4D.2和49.龙博士在古玩市场购买了9枚银币,其中有一枚是假的,假银币的外观与真银币一模一样,只是重量稍轻一些。
龙博士想用一架没有砝码的天平来称,那么他至少称( )次可以保证找出这枚假银币。
A.1B.2C.3D.410.“从前有座山,山里有座庙,庙里有个老和尚和小和尚,老和尚给小和尚讲故事:从前有座山,山里有座庙…”这是一个讲不完的故事。
如果有个不怕麻烦的小孩照这样念了2022句话,那么他念的最后一句话是( )。
A.从前有座山B.山里有座庙C.庙里有个老和尚和小和尚D.老和尚给小和尚讲故事11.在下面的一排方格中,每个方格里都写了一个数,其中任意3个连续方格中的数之和都是22,那么“我”+“是”+“中”+“国”+“好”+“娃”=( )。
第十三届“中环杯”小学生思维能力训练活动三年级决赛答案版
第十三届“中环杯”小学生思维能力训练活动三年级决赛一、填空题(5’×10=50’)1.计算:12345+23451+34512+45123+51234=(166665)。
速算巧算:原式=(1+2+3+4+5)×11111=1666652.水果店原来有156箱苹果和84箱橘子。
苹果和桔子各卖出相等的箱数后,剩下的苹果箱数比橘子箱数多2倍。
苹果和桔子各卖出(48)箱。
和差倍:156-84=72,72÷2=364,84-36=483.在一次学科测试中,小芳的语文、数学、英语、科学4门学科的平均分是88分,前2门的平均分是93分,后3门的平均分为87分,小芳的英语测试成绩是(95)分。
(本题英语成绩无法确定,疑为求数学的成绩)平均数:93×2=186,87×3=261,88×4=352,186+261-352=954.星期天,小军帮助妈妈做一些家务。
各项家务花的时间为:叠被子3分钟,洗碗8分钟,用洗衣机洗衣服30分钟,晾衣服5分钟,拖地板10分钟,削土豆皮12分钟。
经过合理安排,小军至少要用(38)分钟才能完成这些家务。
统筹规划:洗衣机一边洗衣服,小军一边完成其他任务,3+8+5+10+12=385.图中共有16个方格,要把A、B、C、D四个不同的棋子放在四个不同的方格里,并使每行,每列只能出现一个棋子。
共有(576)种不同的放法。
棋盘问题:4!×4!=576或16×9×4×1=5766.如图,正方体的每个角上有一个小圆圈。
请你把2至9这8个数分别填入小圆圈内,使正方体6个面每一面上的4个数之和都相等。
数阵图:2+3+...+9=44,44÷2=22,22=2+3+8+9=2+4+7+9=2+5+7+8=2+5+6+9,结果如图7.如图是某地区所有街道的平面图。
甲、乙两人同时分别从A、B出发,以相同的速度行进。
第十二届 “华杯赛”浙江赛区三年级数学复赛试题
第十二届“华杯赛”浙江赛区复赛试题(三年级组)一、填空题(每题10分,共80分)1、计算:123456+234567+345678+456789+567901+679012+790123+901234= __________.2、国庆节接受检阅的一列车队共52辆,每辆车长4米,每相邻两辆车相隔6米,车队每分钟行驶105米。
这列车队要通过536米长的检阅场地,要分钟。
3、把长2厘米宽1厘米的长方形如图(1)一层、两层、三层地摆下去,摆完第十五层,这个图形的周长是厘米。
4、北京某四合院子正好是个边长10米的正方形,在院子中央修了一条宽2米的“十字形”甬路,如图(2)这条“十字形”甬路的面积是平方米。
图(1)图(2)5、哥哥和弟弟共有故事书120本,哥哥的故事书本数是弟弟的3倍,哥哥有故事书本,弟弟有故事书本.6、甲、乙两个粮仓共存粮320吨,后来从甲粮仓运出40吨,给乙粮仓运进20吨,这时甲仓存粮是乙仓的2 倍,甲、乙两个粮仓原来各存粮分别为吨和吨.7、今年爸爸的年龄是小芳年龄的3倍,几年前,爸爸的年龄是小芳年龄的5倍,再几年前,爸爸的年龄是小芳年龄的7倍.他们的年龄差在20岁至30岁之间,爸爸今年岁.8、篮中有许多李子,如果将其中的一半又1个给第一个人,将余下的一半又2个给第二个人,然后将剩下的一半又3个给第三个人,篮中刚好一个也不剩,篮中原来有个李子.二、解答题(共70分,要求写出解答过程)9、如果小方给小明一个玻璃球,两人的玻璃球数相等;如果小明给小方一个玻璃球,则小方的玻璃球数就是小明的两倍.问小明、小方原来各有多少个玻璃球?(本题15分)10、原计划有420块砖让若干学生搬运,每人运砖一样多,实际增加了一个学生,这样每个学生就比原计划少搬2块.问:原有学生多少人?(本题15分)11、把99粒棋子放在两种型号的17个盒子里,每个大盒子里放12粒,每个小盒子里放5粒,恰好放完.问大、小盒子各多少个?(本题20分)12、有A、B、C、D、E五个小足球队参加足球比赛,到现在为止,A队赛了4场,B队赛了3场,C队赛了2场,D队赛了1场.那么E队赛了几场?(本题20分)第十二届“华杯赛”浙江赛区复赛试题(三年级组)参考答案答案4098760 10 90 36 90,30 240,80 36 34注:第5题、6题,每空5分.填空题参考详解:1. 4098760解:123456+234567+345678+456789+567901+679012+790123+901234=(123456+901234)+(234567+790123)+(345678+679012)+(456789+567901)=1024690+1024690+1024690+1024690=1024690×4=40987602.10解:因为车队行驶的路程等于检阅场地的长度与车队长度的和。
第十届中环杯决赛题+解析
题型一、填空题二、动手动脑题共计得分第十届“中环杯”小学生思维能力训练活动三年级决赛一、填空题:(每题5分,共50分。
)1.计算:2401-2009+199+1209=()。
2.一堆糖一共15颗,老师拿走一些后,8个学生正好平分了剩下的糖,那么老师拿走了()颗糖。
3.M 是两位数,如果M÷11=A ……B ,当A+B 的和最大时,M=穴雪。
4.20个孩子排成一排,从第1个孩子开始报数,要求每相邻4个孩子报出来的数字和为28。
已知第2个孩子报出的数字为6,第7个孩子报出的数字为8,第12个孩子报出的数字为4,则第5个孩子报出的数字为()。
5.小王和小明出去吃午饭。
小王带了50元,小明带了30元,他们各自买了一份相同的快餐。
已知小王剩下的钱是小明剩下的钱的3倍,则他们午饭一共花了()元。
6.一辆小轿车上还有一只备用轮胎,一次长途旅行中,司机适当地调换轮胎,使每只轮胎的行程相同。
小轿车共行了600千米,那么每只轮胎平均行()千米。
7.小林与小胖比赛爬楼梯,小林跑到第6楼时,小胖恰好跑到第5楼。
以这样的速度,小林跑到第31楼时,小胖跑到第()楼。
8.31个同学要坐船过河,渡口处只有一条能载6人的小船穴无船工雪。
他们要全部渡过河去,至少要使用这条小船渡河()次。
9.有A 、B 、C 三人,一位是导演,一位是编辑,一位是司机。
已知A 的年龄比编辑大,司机的年龄比导演大,编辑的年龄比C 大。
那么,这三人中,导演是(),编辑是(),司机是()。
10.仓库存有一批钢材,由两个汽车队负责运往工地。
已知甲队单独运要29天,乙队每天可运30吨。
现在由甲、乙两队同时运输,运了8天之后,甲队的汽车坏了一辆,每天少运5吨,结果又运了4天才全部运完。
那么这批钢材共有()吨。
二、动手动脑题:(每题10分,共50分。
)1.如图,将两个任意大小的三角形部分重叠,它们的公共部分是由3条线段组成的。
那么经过你的摆放后,它们的公共部分的边数最大可能是多少?请画出示意图。
十二届三年级中环杯决赛答案
第十二届“中环杯”中小学生思维能力训练活动三年级决赛答案一、填空题:1. 答:3850()25775514157755711511273571157115233850⨯+⨯+⨯=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=⨯⨯⨯++=2. 答:9,163. 答:如下(3) 9×(1) 83 (1)(2)(3)(9)(7)(0)(2)或(4) 9×(1) 83 (9)(2)(4)(9)(8)(8)(2)4. 答:1×2=6÷3=4+5-75. 答:3,36. 答:264把图形分解开来左图可以构成长方形的个数:15×15=225(个);右图可以构成长方形的个数:3×28=84(个);重复的长方形的个数:3×15=45(个);所以构成长方形的个数是:(225+84)-45=264(个)。
7.答:1362×5×12+2×2×4=136cm2或者(2×2+3×5)×(2×2+3×5)-5×5×9=136cm28.答:540从倒入5杯水,到倒入8杯水,总重量增加了680-470=210(克)。
所以可以求出1杯水的重量是210÷3=70(克)。
由于5杯水连瓶共重470克,所以6杯水连瓶共重470+70=540(克)9.答:154沿与长边平行方向剪两刀,剪成三个小长方形,它们的周长和最大,最大为+⨯+⨯=(厘米)(2017)220415410.答:20一棵树上最多有鹦鹉18-4×2=10(只),此时同一棵树上杜鹃也最多只有10只,所以一棵树上最多可有鸟10+10=20(只)。
二、动手动脑题:1.答:7个四边形,24个三角形最初只有1个四边形。
每操作一次,增加1个四边形、4个三角形。
所以直至第六次,共有四边形1+1×6=7(个),三角形4×6=24(个)。
第13届中环杯3年级决赛试题
第十三届“中环杯”小学生思维能力训练活动三年级决赛题一填空题1、12345+23451+34512+45123+51234=2、水果店原有156箱苹果和84箱橘子,苹果和橘子各卖出相等的箱数后,剩下的苹果箱数比橘子箱数多2倍,苹果和橘子各卖出多少箱。
3、在一次学科测试中,小方的语文,英语,数学,科学4门学科的平均分是88分,前两门的平均分是93分,后三门的平均分为87分,小芳的英语测试成绩是几分。
4、星期天,小军帮助妈妈做一些家务,各项家务花的时间为叠被子3分钟,洗碗8分钟,用洗衣机洗衣服30分钟,晾衣服5分钟,拖地板10分钟,削土豆皮12分钟。
经过合理安排,小军至少要用几分钟完成家务。
5、图中共有16个方格。
要把A,B,C,D四个不同的棋子放在四个不同的方格里,并使每行每列只能出现一个棋子,共有几种不同的放法。
6、如图,正方体的每个角上都有一个小圆圈,请把2--9这8个数分别填入圆圈内,使正方体6个面每一面上4个数之和相等。
7、如图是某地区所有街道的平面图,甲乙两人同时从AB两地出发,以相同的速度行进,如果允许选择最短路径的话,谁先走遍所有的街道。
8、在一个运动会的开幕式上,有一大一小两个方阵合并成15行15列的方阵,则原来的大方阵有几人,小方阵有几人。
9、一个十几岁的男孩把自己的岁数写在父亲的岁数之后,组成一个四位数,从这个四位数中减去他们父子俩岁数的差,得到的结果是4289,那么,父亲几岁,儿子几岁。
10、如图,左面的表面展开图是右面的三个正方体中的哪一个的表面展开图。
二、动手动脑题1、如图是一个用15块大小相同的正方体木块叠成的金字塔的截面图,已知每块木块各边长为4厘米,求这个金字塔的截面图的周长是多少。
2、王师傅要加工一批零件,如果每天加工20个零件,可以比原计划提前一天完成,现在工作4天后,由于改进技术,之后每天比原来多加工5个零件,结果比原计划提前三天完成,这批零件共有多少个。
3、张爷爷种了一排梨树,共18棵,相邻两棵梨树之间间隔3,米。
十二届五年级中环杯决赛答案
4/5
第十二届“中环杯”中小学生思维能力训练活动五年级决赛答案
年 新 好 好 新
年
年
新 年 好 新 好
(2)18 (2 5) 2 4 18
5/5
1/5
第十二届“中环杯”中小学生思维能力训练活动五年级决赛答案
有 8889,8888889, 其中不能被 9 整除的最小数是 8889 ,其次为 8888889 。所以能够被 27 整除但不能被 81 整除的第二小数是 80000001 。 8. 答:9 分成三种情况,得 n 1 10 11 n 9 11 n 10 10 2671 ,所以
2/5
第十二届“中环杯”中小学生思维能力训练活动五年级决赛答案
2011÷4=502„„3,所以木块从左向右翻转 2011 次,“13”在右面(如下图)。此时左面 是“3”,后面是“11”,下面是“9”。
木块从前向后翻转 1 次,“9”在正面;翻转 2 次,“11”在正面;翻转 3 次,“7”在正 面;翻转 4 次,“5”在正面。所以木块从前向后翻转 4 次,又回到初始状态。 2012÷4=503„„0,所以最后木块正面的数字是 5。 2. 答:9 平方厘米 我们知道,4 个同样的等腰直角三角形可以拼成一个正方形。如图,以斜边 AB 为正方形 的边长。
因为正方形的面积是=AB2=122=144(平方厘米),所以,三角形 ABC 的面积=144÷4= 36(平方厘米)。 1 3 1 又因为在等腰直角三角形 ABC 中,MN= BC,PC=(1- )AC= AC,所以三角形 PMN 的 4 3 4 1 1 1 3 1 1 1 面积是: ×MN×PC= × × ×BC×AC= ×BC×AC= S△ABC= ×36=9(平方厘 2 2 3 4 8 4 4 米)。 3. 答:80 立方厘米 如图,上面四个棱长为 12 厘米的小正方体在大正方体的上底面内交出一个边长为 12+12 -20=4(厘米)的正方形,由此可知它们的公共部分是一个长方体,底面为 4×4=16(平 方厘米)的正方形,高 12 厘米。
第十三届中环杯中小学生思维能力训练活动三年级决赛试卷及解析
图1
第十三届“中环杯”中小学生思维能力训练活动三年级决赛答案
第十三届“中环杯”中小学生思维能力训练活动
三年级决赛答案
一、填空题 1. 答:166665
4. 答:本题方法不唯一,但最少要移动 3 根。下图为一种移动方法。
2/3
第十三届“中环杯”中小学生思维能力训练活动三年级决赛答案
5. 答:(1)如图
(2)45 分两种情况。第一种是竖着的,一共有 1+2+3+4+5=15(个);第二种是 横着的,有 2+4+6+8+10=30(个)。所以总共有 15+30=45(个)。 (3)不存在
6. 答:本题填法不唯一,符合题目要求即可。下图为一种填法。
7 4
5 6
2
8
9
3
7. 答:甲 此题为一笔画问题。A、D 是奇点,其他点都是偶点,因此从 A 或 D 出发可完 成一笔画。所以甲能先走遍所有街道,而乙必有重复路线。
8. 答:144,81 因为要构成方阵,所以大方阵和小方阵的人数都是完全平方数。 15 行15 列的方阵由1515 225 (人)组成,则大方阵人数应大于 225÷2=
4. 答:38 晾衣服必须要等洗衣机洗完后才能进行,而在用洗衣机洗衣服的同时。可先 后完成洗碗、拖地板和削土豆皮,正好 8+10+12=30(分钟)。之后再完成 叠被子和晾衣服。所以共用 30+3+5=38(分钟)。
5. 答:576 由于每放入一个棋子就有 1 行 1 列不可以再放入其他棋子,所以第一个棋子 有 4×4=16(格)可以放,第二个棋子有 3×3=9(格)可以放,第三个子只 有 2×2=4(格)可以放,最后一个棋子就只有 1 格可以放。所以共有 16×9× 4×1=576(种)种不同的放法。
第12届中环杯四年级初赛题目
第十二届“中环杯”小学生思维能力训练活动 四年级选拔赛试卷全方位解析一、填空题(每题 7 分,共 56 分) : 1.计算:20112012÷10001+30363033÷30003=( )2.从 1,3,5,7,……,47,49 这 25 个奇数中,不重复地取数字,至少取出( 中有两个数的和是 46。
)个数,才能保证取出的数3.一根绳子围着大树绕 9 圈剩 4 米,如果围着大树绕 10 圈又缺 1 米,那么绕 8 圈还剩()米。
4. 今年是中国共产党建党 90 周年。
据考证, 伟大的中国共产党的确切成立日期是 1921 年 7 月 23 日。
今年 (2011 年)的 7 月 23 日是星期六,那么 90 年前的这一天是星期( )。
5.有 A、B、C 三辆货车,C 车装的货物是 B 车的一半,B 车装的货物比 A 车少 180 千克,A 车装的货物是 C 车的 4 倍。
A、B 两辆车共装货物( )千克。
16.将 9、12、15、18、21、24、27、33 33 分别填入下图中的圆圈内,使得每条直线上的三个数的和相等 使得每条直线上的三个数的和相等 。
7.小明报名参加运动会 2000 米长跑比赛。
他请体育老师对他进行训练后成绩有了显著提高 米长跑比赛 他请体育老师对他进行训练后成绩有了显著提高 ,跑完全程所用时 间比原来缩短了 。
则他的速度比原来提高了 则他的速度比原来提高了( )。
8.如图所示,在大长方形中放入六个形状大小相同的小长方形 在大长方形中放入六个形状大小相同的小长方形 ,图中阴影部分面积是 图中阴影部分面积是()。
二、动手动脑题:(共 44 分) 1.小明要从学校出发去少年宫参加活动 小明要从学校出发去少年宫参加活动,下图是学校到少年宫的路线图,直线表示可通行的道路 直线表示可通行的道路。
如果小明要 尽快到达少年宫,他一共有多少条不同的最短路线可以走 他一共有多少条不同的最短路线可以走 ?(本题 10 分)2.甲、乙两个油桶中各装了 15 千克油。
奥数2012年中环杯四年级奥数决赛(含答案)
第十二届“中环杯”小学生思维能力训练活动 四年级决赛一:填空题: (每题 5 分,共 50 分) 1.计算: 43 ÷ 221×13 + 59 ÷ 17 = ( 【考点】整数计算 【分析】 原式 = 43 ÷ (221 ÷ 13) + 59 ÷ 17 = 43 ÷ (221 ÷ 13) + 59 ÷ 17 =43÷17+59÷17 =(43+59) ÷17 =102÷17 =6 )2. 2011 × 2011 的方格,画一条直线,最多可穿过( 【考点】数列规律 【分析】 如图所示:)个方格。
...... ...... ...... ...... 3×3 4×4 5×5 2011×2011 ......在 3 × 3 的方格中,画一条直线,最多可穿过 3 + 2 = 5 个方格。
在 4 × 4 的方格中, 画一条直线,最多可穿过 4 + 3 = 7 个方格。
在 5 × 5 的方格中,画一条直线,最多可 穿过 5 + 4 = 9 个方格。
以此类推,在 2011 × 2011 的方格中,画一条直线,最多可穿 过 2011 + 2010 = 4021 个 方 格 。
(在 n × n 的方格中,画一条直线,最多可穿过 n + (n − 1) = 2n − 1 个方格。
) 3.2012 个连续自然数从小到大排列, 取出其中第 2 个数,第 4 个数,第 6 个数……,第 2012 个数,把剩下的数相加,得到的结果是 1025114,则这 2012 个连续自然数的和为( ) 。
【考点】等差数列 【分析】 (法一) 奇数项, 偶数项各 2012 ÷ 2 = 1006 个数, 那么第 1 个数 + 第 2011 个数的和: 1025114 × 2 ÷ 1006 = 2038 , 第 2011 个数 − 第 1 个数的和: 2010 第 1 个数 = (2038 − 2010) ÷ 2 = 14 第 2011 个数是: 14 + 2010 = 2024 第 2012 个数是: 2024 + 1 = 2025 这 2012 个连续自然数的和为: (14 + 2025) × 2012 ÷ 2 = 2051234 (法二)奇数项,偶数项各 2012 ÷ 2 = 1006 个数 这 2012 个连续自然数奇数项的和为: 1025114 这 2012 个连续自然数偶数项的和为: 1025114 + 1006 = 1026120 这 2012 个连续自然数的和为: 1025114 + 1026120 = 2051234 4.火柴棒搭成的图案的一部分如图所示。
三年级下册数学讲义-竞赛专题:第三讲-间隔问题(含答案解析)人教版
知识概述植树问题:植树问题关键在于段数与棵树的相互转换。
段数=总距离÷棵距一、不封闭路线:(1)在一段距离中,两端都植树, 棵数=段数+1;(2)在一段距离中,两端都不植树, 棵数=段数-1;(3)在一段距离中,一端不植树, 棵数=段数.二、封闭路线:如环湖栽树、游泳池等在封闭曲线上植树,棵数=段数=周长÷棵距爬楼问题:爬楼层数=楼的层数-1(第一层楼不用爬)锯木头问题:锯木头的段数=锯的次数+1 (锯第一次得两段)间隔问题主要包括植物问题、锯木头问题、爬楼问题、敲钟问题等,是一类有多种实际背景的问题,问题的关键是一条线(封闭与不封闭)上分点数与点与点之间的间隔之间的关系,有时还涉及到总长度,间隔数及一个间隔的长度的计算。
植树问题是典型的间隔问题,掌握了植物问题其它类型也就迎刃而解了。
名师点题间隔问题植树节那天,三年级的小朋友打算在30米长的路一边栽树,从一端起,每隔5米栽一棵,(1)两端都要栽。
小鸥说:“一共要栽6棵。
”小雅说:“一共要栽7棵。
”谁说得对呢?(2)如果两端都不栽树,一共要栽几棵?(3)如果一端栽树,另一端不栽树,一共要栽几棵?【解析】每隔5米栽一棵,那也就是说,30米里有几个5米就是栽了几棵树,所以用3056÷=(棵)。
看起来,小鸥的想法是对的,但是不符合实际。
我们画一条直线段表示30米长的路,然后在线段上按照要求画上小树苗,如图所示。
5米5米5米5米5米5米可以看到一共栽了7棵树。
那也就是说,用305÷求到的是有几个间隔,也就是这条路被分成几段,但是因为两端都栽了树,所以棵数应该比间隔数多1。
(1)11=+=÷+棵数段数总距离棵距=30517÷+=(棵)。
因此小雅说得对,一共要栽树7棵。
(2)两端都不栽树,段数-1=6-1=5棵(3)一端栽一端不栽,棵树=段数=6棵600米长的马路一侧装了一排路灯,起点和终点都装了,一共16盏,相邻两盏之间的距离相等,求相邻两盏路灯之间相距多少米?【解析】在马路的一侧装了16盏路灯,16盏路灯减去起点处的一盏,就有16115-=个间距。
2012第十二届中环杯三年级初赛题目
8. 沿直线剪三刀, 将长为 60 厘米, 宽为 30 厘米的长方形剪成若干个小长方形, 这些小长方形的周长之和最小是( )厘米。
二、 动手动脑题: (共 44 分)
1. 两个自然数的乘积是 36,当这两个自然数分别是多少时,它们的和最小,最 小的和是多少?(本题 10 分)
2. 用 6 张同样的正方形纸按下图方法重叠,每个正方形的顶点恰好位于另一个 正方形的中心,且边相互平行,每个正方形的边长为 10 厘米,求重叠后图 形的周长。 (本题 11 分)
3. 有 100 只乒乓球,把它们分别放到 14 个盒子中,每个盒子至少放一只,能 否使每个盒子放的乒乓球不一样多?如果能,请写出每个盒子中各应放多少 只乒乓球。如不能,请说明理由。 (本题 11 分)
4. 如图是一个立方体魔方,我们可以从图中看到它的右侧、上侧和前侧。如果 顺时针转动魔方右侧第一层 90 度,我们记作进行了一次 R 操作;如果逆时 针转动魔方右侧第一层 90 度,记作 R 。对于上侧和前侧分别进行相同的旋 转操作,分别记为 U 、U 、F 、F 。现在对魔方进行 3 次转动: U , F , R ,请你在图中依次画出每完成一次转动后,阴影面所在的位置。 (本题 12 分)
第十二届“中环杯”小学生思维能力训练活动 三年级选拔赛
一、 填空题(每题 7 分,共 56 分)
1. 计算:100-96+92-88+……+12-8+4=( )
2. 在下列各数字间的适当位置填入恰当的运算符号或括号,使等式成立。弱数 字间不填任何符号或括号,则视为一个数。例如“2 0+1+1”视为“20+1+1” 。 2 0 1 1 1 1 0 2 = 2011
【最新2018】中环杯决赛试题-优秀word范文 (4页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==中环杯决赛试题篇一:201X年第十三届中环杯决赛五年级试题和答案解析篇二:第十四届中环杯小学三年级决赛试题第十四届“中环杯”小学生思维能力训练活动三年级决赛一、填空题:(每小题5分,共50分,请将答案填写在题中横线处)1. 计算:201X-37×13-39×21=______2. 定义:a⊙b=a×b+(a-b),则(3⊙2)⊙4=_____3. 王老师有45颗糖,他决定每天都吃掉一些。
由于这些糖很好吃,所以从第二天开始,他每天吃的糖的数量都是比前一天多3颗,5天正好吃完所有的糖,那么,王老师第二天吃了_____颗糖。
4. 如图,每个小正方形的边长都是4厘米,则阴影部分的面积为______平方厘米。
5. 甲、乙两人比赛射箭,每一局,胜利的一方得7分,输掉的一方减2分,平局则两人各得2分。
比赛10局后,两人的分数之和为43分。
那么,比赛中有_____局平局。
6. 如图,这是一个城市街道的分布图,从A点走到B点的最短路径有P条,从C点走到B点的最短路径有Q条,则P-2Q+201X=______7. 甲、乙、丙三人做游戏,甲心里想一个两位数,然后将这个两位数乘以100,乙心里想一个数,然后将这个一位数乘以10,丙心里想一个一位数,然后将这个数乘以7。
最后,将三个人的乘积全部加起来,得到的结果是2024。
那么,甲、乙、丙原先心里所想的数之和为________8. 将27个数字排成一排,这27个数字里有3个数字1,3个数字2,??3个数字9。
要求第一个1与第二个1之间有一个数字,第二个1与第三个1之间有1个数字;第一个2与第二个2之间有2个数字,第二个2个与第三个2之间有2个数字;??;第一个9与第二个9之间有9个数字,第二个9与第三个9之间有9个数字。
中环杯数学竞赛四年级试题
中环杯数学竞赛四年级试题中环杯数学竞赛是一项面向小学生的数学竞赛,旨在激发学生的数学兴趣,提高数学素养。
以下是一份模拟的四年级中环杯数学竞赛试题,供参考:一、选择题(每题2分,共10分)1. 下列哪个数是最小的两位数?A. 10B. 98C. 100D. 992. 如果一个数的3倍是45,那么这个数是多少?A. 15B. 50C. 40D. 303. 一个长方形的长是12厘米,宽是8厘米,它的周长是多少?A. 40厘米B. 44厘米C. 48厘米D. 56厘米4. 以下哪个分数是最大的?A. 1/2B. 2/3C. 3/4D. 4/55. 一个数加上8等于23,这个数是多少?A. 15B. 21C. 17D. 19二、填空题(每空1分,共10分)6. 一个数的5倍是30,这个数是_________。
7. 把一个数增加20,得到的结果比原数大_________。
8. 一个数的2/3等于18,这个数是_________。
9. 一个班级有40名学生,其中女生占2/5,女生有_________人。
10. 如果一个数的3倍是另一个数的2倍,那么这两个数的比是_________。
三、简答题(每题5分,共20分)11. 一个长方形的长是15厘米,宽是10厘米,求它的面积。
12. 一个班级有50名学生,其中1/4是男生,这个班级有多少名男生?13. 一个数的4倍是另一个数的2倍,如果这个数是12,求另一个数。
14. 一个数的1/5加上另一个数的1/4等于9,如果另一个数是36,求这个数。
四、应用题(每题10分,共20分)15. 小明有40张邮票,他给了小红一半,然后他又给了小红剩下的一半,最后小明还剩下多少张邮票?16. 一个水果店有苹果和橙子,苹果的数量是橙子的3倍,如果苹果和橙子一共是90个,问苹果和橙子各有多少个?五、附加题(10分)17. 一个数列的前三项是1,2,3,从第四项开始,每一项都是前三项的和。
5综合应用(学生)
一、 等量代换1. 等量代换是指一个量用与它相等的量去代替,它是数学中一种基本的思想方法,也是代数思想方法的基础。
等量代换思想用等式的性质来体现就是等式的传递性:如果a=b,b=c,那么a=c。
等量代换是比较系统、抽象的数学思想方法。
通过本讲内容学习等量代换中推理的方法,让学生能对较复杂的物体进行代换,把多种物体用同一种物体表示出来,在代换的过程中培养学生严密的逻辑思维能力。
2. 生活中有很多相等的量,如平衡的天平、平衡的跷跷板两边的重量相等。
根据这些相等的关系进行推理,进而可以等量代换,找到答案。
1) 两个相等的量可以相互代换(包括重量相等、价格相等)。
2) 将不同等式中相同种类的物品通过加、减、乘、除转化成相同个数,这样可以形成新的等式。
3) 将两个不同等式中,左边物品相加,右边物品相加。
这样可以形成新的等式。
4) 如果天平不平衡,先求出天平左、右两端的物品在重量上相差多少,然后得出使天平平衡的方法。
二、 时间计算1. 钟面上有时针、分针、秒针和12个数。
较短的针叫做时针,较长的针叫做分针,另有一个细长的针叫做秒针。
2. 钟面上把一圈平均分成12个大格,每个大格又分成相等的5个小格。
这样,钟面上一圈共有60个相等的小格。
时针走1大格的时间是l 小时;时针走1圈的时间是l2小时。
分针走l 小格的时间是l 分钟;分针走1圈的时间是60分钟,也就是l 小时。
秒针走l 小格的时间是l 秒;秒针走1圈的时间是60秒钟,也第五讲综合运用知识概述就是l 分钟。
通常我们把15分钟叫做一刻钟。
即: l 刻钟=15分。
3. 时间的加减法:时、分、秒对应相加减,从秒开始,不够向前借1做60,满60向前进1。
4. 时间的乘法:从秒开始乘,满60向前进1;5. 时间的除法:先将单位统一为最小单位然后再做除法,余数应小于60。
三、 重叠问题1. 重叠问题要用到数学的一个重要原理:包含和排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从他们的和中排除重复部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、下图中共有(
)个长方形。
上海学而思教材研发中心
1 /3
7、 如图所示, 一个正方形被 4 个相同的黑条分隔成 9 个相同的小正方形 (单位: 厘米) , 那么图中阴影部分的面积是( )平方厘米。
2 5
8、用一个杯子向空瓶中倒水。如果倒进 5 杯水,连瓶共重 470 克;如果倒进 8 杯水, 连瓶共重 680 克。那么倒进 6 杯水,连瓶共重( )克。
2012 年第十二届中环杯三年级(决赛)
一、填空题:(每题 5 分,共 50 分。)
1、计算: 25 77 55 14 15 77 ( )。
2、时钟下午二点敲两下,用了 2 秒钟,晚上九点敲(
)下,用了(
)秒钟。
3、在括号内填上适当的数,使竖式成立。
( 3 ( ( ( ( ) ( ) (
二、动手动脑筋:(请写出简要的解题过程,每题 10 分,共 50 分)
1、在一个四边形中,第一次取各边中点,连接成一个新四边形,第二次在新四边形中 各边取中点,再连接成一个四边形… … 直至第六次,共有几个四边形?几个三角形?
2、下表是一个未完成的奇数乘法表,除第一行和第一列外,表中的数字为所在行和列 的第一个数的乘积,如 1 =1× 1, 35=5× 7=7× 5 ,63=7× 9=9× 7 ,81=9× 9。求完成后 的奇数乘法表中所有数之和。
9、沿直线剪两刀,将长为 20 厘米,宽为 17 厘米的长方形剪成三个或四个小长方形, 那么被剪成的若干个小长方形的周长之和最大是( )厘米。
10、 在 3 棵树上共栖息着 18 只鹦鹉和 14 只杜鹃。 每棵树上至少有 4 只鹦鹉和 1 只杜鹃。 如果每棵树上的杜鹃都不会比鹦鹉多,那么一棵树上最多有( )只鸟。
5
4
3
上海学而思教材研发中心
3 /3
4、小明给四个同学写信,由于粗心,把信装错了信封,结果四个同学都没有收到写给 本人的信。请问:造成这 一情况的装信封的方法一共有多少种?
5、请你在卡纸上画 4 个如下图所示的直角三角形(单位:厘米),将它们剪下并拼成 一个中间有一个小正方形空洞的大正方形。 (1 )将拼成的图形粘贴在下面的答题区内。 (2 )请计算中间小正方形的面积。
上海学而思教材研发中心
2 /3
× 1 3 5 7 9 11 13 15 17 19
1 1 3
3 3 9
5
7
9
11
131517 Nhomakorabea1925 49 81 121 169 225 289 361
3、小聪和小明在做一道三位数加两位数的思维训练题。小聪计算出的结果是 136 ,小 明计算出的结果是 244.老师检查时发现小明做错了, 错误原因是小明把三位数百位上的 数字和两位数十位上的数字相加了, 而三位数十位上的数字与两位数个位上的数字相加 了。请问:这道题的两个加数各是多少?
) ) ( ) ( ) )
9 ) ) 2
4、将 1~ 7 这七个数字,分别填入下面空格内,使等式成立。(每个数字只能用一次)
5、餐厅有圆桌和方桌供客人落座用餐。每张圆桌最多可坐 10 人,每张方桌最多可坐 8 人。现有 54 位客人用餐,为了使空位尽量少,安排( )张圆桌( )张方桌最 合理。