全等三角形导学案
新人教板第12章全等三角形用导学案(整理完善)
第十二章 全等三角形学习内容: 12.1全等三角形学习目标: 1.能说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。
2.能在全等三角形中正确地找出对应顶点、对应边、对应角。
3.能说出全等三角形的对应边、对应角相等的性质。
学习重点:探究全等三角形的性质学习难点: 掌握两个全等三角形的对应边、对应角 学习方法:小组讨论,合作探究一 课前预习:阅读课本P31-32,解决下列问题 (一)、全等形、全等三角形的概念阅读课本P31内容,回答课本思考问题,并完成下面填空: 1.能够完全重合的两个图形叫做 .全等图形的特征:全等图形的 和 都相同. 2.全等三角形.两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
(二)、全等三角形的对应元素及表示阅读课本P31第一个思考及下面两段内容,完成下面填空:1. 平移 翻折 旋转甲DCABFE 乙DCAB丙DCABE启示:一个图形经过平移、翻折、旋转后, 变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻全等的一种策略. 2.全等三角形的对应元素(说一说)(1)对应顶点(三个)——重合的(2)对应边(三条) ——重合的 (3)对应角(三个) ——重合的第(4)题图EBAE 第(1)题图E BFCB第(2)题图D C B 3.寻找对应元素的规律(1)有公共边的,公共边是 ;(2)有公共角的,公共角是 ; (3)有对顶角的,对顶角是 ;(4)在两个全等三角形中,最长边对应最长边,最短边对应最短边;最大角对应最大角,最小角对应最小角.简单记为:(1)大边对应大边,大角对应 ;(2) 公共边是对应边,公共角是 ,对顶角也是 ;4.“全等”用“ ”表示,读作“ ”如图甲记作:△ABC ≌△DEF 读作:△ABC 全等于△DEF 如图乙记作: 读作: 如图丙记作: 读作: 注意:两个三角形全等时,把表示对应顶点的字母写在对应的位置上.(三)、全等三角形的性质阅读课本P32第二个思考及下面内容,完成下面填空:课堂探究(小组讨论 合作交流)活动一:观察下列各组的两个全等三角形,并回答问题:(1) 如图(1)△ABC ≌△DEF ,BC 的对应边是 ,即可记为BC= 。
全等三角形的判定(ASA、AAS)导学案4
《全等三角形(ASA、AAS)》导学案一、学习目标1.掌握三角形全等的“角边角”,“角角边”条件。
2.经历探索三角形全等条件的过程,体会利用操作,归纳获得数学结论的过程。
3.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
二、学习重点:掌握三角形全等的“角边角”,“角角边”条件。
三、学习难点:正确运用“角边角”,“角角边”条件判定三角形全等,解决实际问题。
四、自主学习1、复习思考(1).到目前为止,可以作为判别两三角形全等的方法有种,是。
今天我们接着探究已知两角一边是否可以判断两三角形全等?2、课内探究现在,我们探究:如果两个三角形有两个角、一条边分别对应相等,那么这两个三角形能全等吗?这时同样应有两种不同的情况:如图所示,一种情况是两个角及这两角的夹边;另一种情况是两个角及其中一角的对边.探究一:两角和它们的夹边对应相等的两个三角形是否全等?1、动手试一试。
已知两个角和一条线段,以这两个角为内角,以这条线段为这两个角的夹边,画一个三角形.按下面步骤画出图形:(1)、画一线段AB,使它等于4cm;(2)、画∠MAB=60°、∠NBA=40°,MA与NB交于点C.△ABC即为所求.把你画的三角形与其他同学画的三角形进行比较,观察它们是不是全等?你能得出什么规律?由作图可知:2、归纳;由上面的画图和实验可以得出全等三角形判定(三):两角和它们的夹边对应相等的两个三角形(可以简写成“”或“”)3、用数学语言表述全等三角形判定(三:ASA)∵∴△_____ ≌△______探究二:两角和其中一角的对边对应相等的两三角形是否全等?(利用ASA定理推导得出AAS定理)1、如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?(能否用上面的ASA来证明右图的两个三角形全等?)分析: 因为三角形的内角和等于180°,因此有两个角分别对应相等,那么第三个角必对应相等,于是由“角边角”,便可证得这两个三角形全等.证明:2、归纳;由上面的证明可以得出全等三角形判定(四):两个角和其中一角的对边对应相等的两个三角形(可以简写成“”或“”)3、如图,用数学语言表述全等三角形判定(四:AAS)∵∴△______ ≌△_______五、课堂检测1. 如图所示,点C、F在BE上,∠1=∠2,BC=EF,①根据 ASA ,请补充条件:_______,可判定△ABC≌△DEF;②根据AAS ,请补充条件:_______,可判定△ABC≌△DEFC'B'A'CBAC'B'A'CBADCAB FE21(9)F EDCBA⎧⎨⎨⎩⎧⎩2.如图,AB ⊥BC ,AD ⊥DC ,∠BAC =∠CAD .求证:AB=AD .六、小结提升:这节课我们学习了哪些内容?七. 课后作业1:如图,OP 是∠MON 的角平分线,C 是OP 上一点,CA ⊥OM ,CB ⊥ON ,垂足分别为A 、B ,△AOC ≌△BOC 吗?为什么?3、如下图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C .求证:△ADC ≌ △AEBMNPBAO C D CABE。
8.2 《全等三角形》导学案
8.2 《全等三角形》导学案辛兴初中八年级数学组主备人:臧运建一、学习目标:1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。
2.掌握全等三角形的对应边相等,对应角相等的性质,并运用这一性质解决有关的问题。
3.会用符号表示全等三角形及他们的对应元素,培养学生的符号意识、空间观念和几何直观。
二、教材分析:1、本节在学生了解全等形的基础上,研究在图形与几何领域中,最常见,最基本也是最简单的一类全等图形,即全等三角形。
本节的主要内容是全等三角形的概念及性质、全等三角形的对应元素、全等三角形的符号表示。
2、本书中所说的对应顶点、对应边、对应角的概念是在三角形全等的前提下提出的,其内涵是两个三角形完全重合时,相互重合的三角形的元素,它们是成对出现的。
3、全等三角形的对应边相等、对应角相等,这是今后研究边相等、角相等的重要依据,所以教科书先让学生观察图8—4,并提出两个问题,让学生思考,然后设计了两个小伙伴的对话。
在此基础上,教科书由具体到抽象,由特殊到一般,归纳出“全等三角形的对应边相等、对应角相等”的性质。
4、例1、例2都是在具体问题中,识别全等三角形的对应边和对应角。
这两个例子的图形都是涉及到公共边,习题8.2中3(1)题涉及到公共角。
发现公共边(角)是学生学习的一个难点。
三、教学过程:(一)自主预习课本25——27页内容,独立完成课后练习1,2后,与小组同学交流(课前完成)。
(二)通过预习课本25——27页内容,回答下列问题,并在小组内交流:1、把一张纸对折以后随意剪出一个图案,然后展开,比较得到的两个图形在形状、大小方面的关系是。
按同样的办法剪出一个三角形图案,然后展开,比较得到的两个三角形在形状、大小方面的关系是。
2、归纳:①能够完全重合的两个图形叫全等形。
同理:②能够完全重合的两个三角形叫。
③能够的两个四边形叫。
④能够的两个叫全等五边形,等等。
3、全等三角形的表示:三角形全等用符号“≌”表示,如△ABC与△DEF全等,记作:△ABC≌△DEF,读作:三角形ABC全等于三角形DEF,“≌”读作“全等于”.4、把两个全等的三角形重合到一起,相互重合的顶点叫对应顶点,相互重合的边叫,相互重合的角叫①已知,△ABC≌△DEF,则顶点A与顶点D是对应顶点,顶点B与顶点是对应顶点,顶点F与顶点是对应顶点.②∠A与是对应角, ∠E与是对应角, ∠F与是对应角.③AB与是对应边,DF与是对应边,FE与是对应边注意:相互重合的顶点的字母一定要写在相互对应的位置上。
11.3三角形全等的判定导学案(SAS)
11.全等三角形导案(SAS)一、导学目标1.知道三角形全等“边角边”的内容.2.会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.二、导学重难点1. 难点:对全等三角形的识别的理解和运用2.重点:三SAS三、导学准备:三角尺、圆规四、导学流程:1、复习全等三角形的判定12、探索三角形全等的条件(SAS)3、用“SAS”判定的运用4、题型训练11.全等三角形学案(SAS)一、学习目标1.知道三角形全等“边角边”的内容.2.会运用“S AS ”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 二、学习重难点1. 难点:对全等三角形的识别的理解和运用2.重点:三角SAS三、知识储备全等三角形的性质和全等三角形的判定1----SSS四、教学流程 (一)知识回顾1. 如图,四边形ABCD 中,AD =BC ,A B =DC . 求证:△ABC ≌△CDA .2.如图,A B D C =,A CD B=,△ABC ≌△DCB 全等吗?为什么(二)、探索新知 活动一 探索三角形全等的条件DCBA1.如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?(1)在上面的例子中我们已知哪些条件(从三角形的边、角关系作答),得到什么结论?(2)由(1)中的回答,你能得到什么猜想?2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.1cm,AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?(三)、知识点小结总结得出:相等的两个三角形全等(简称“边角边”或“SAS”)活动二全等三角形判定的简单应用阅读课本第9页例2后,完成下列问题:1.如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.(提示:要证明两个三角形全等,已具有两个条件,一是AD=CB(已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)证明:2.思考:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”画一画:三角形的两条边分别为4cm和3cm,长度为3cm的边所对的角为30度,画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?把你的发现和同伴交流。
12.1全等三角形导学案
DCABODC ABE C 1B 1CABA1第一课时 12.1 全等三角形【学习目标】1、知道什么是全等形,什么是全等三角形,能够找出全等三角形的对应元素。
2、会正确表示两个全等三角形,掌握全等三角形的性质。
【学习重点】全等三角形的性质。
【学习难点】正确寻找全等三角形的对应元素 一、学前准备1、三角形的定义:____________________________________2、三角形按边分类: 三角形按角分类:二、探索思考(一)阅读书P31-32,完成下列问题(1) 的两个图形叫做全等形; 叫做全等三角形。
请举出一个生活中全等形的实例 平移、翻折、旋转前后的两个图形 改变了, 、 没变,即它们 (2)全等三角形的对应元素:两个全等的三角形重合到一起,重合的顶点叫 ;重合的边叫 ;重合的角叫如图:两个三角形全等,点C 和点B ,点A和点D是对应顶点, 则△ACO 与△BOD 全等记作 对应边: 和 、 和 、 和 对应角: 和 、 和 、 和 (3)全等三角形的性质:全等三角形的 , 全等三角形的 符号语言:∵△ABC ≌△A 1B 1C 1,∴练习11、将△ABC 沿BC 翻折180°得到△DBC ,则△ABC ≌ ,对应顶点: 和 、 和 、 和 对应边: 和 、 和 、 和 ; 对应角: 和 、 和 、 和2、将△ABC 旋转180°得△AED ,△ABC ≌ .对应顶点: 和 、 和 、 和 对应边: 和 、 和 、 和 ; 对应角: 和 、 和 、 和3、如图,已知△ABE ≌△ACD ,则对应顶点: 和 、 和 、 和 ∠ADE= ,∠B= ,∠BAE= ;AB= ,BE= ,AD=4、已知如图,△ABC ≌△ADE ,,则对应顶点: 和 、 和 、 和 ∠A= ,∠B= ,∠ACB= ;AB= ,BC= ,AC=三、典例分析1、 将△ABC 沿直线BC 平移,得到△DEF (如图)(1) 线段AB 、DE 是对应线段,有什么关系?线段AC 和DF 呢? (2)线段BE 和CF 有什么关系?为什么?(3)若∠A=50º,∠ABC=30º,求∠D 、∠DEF 、∠DFE 的度数四、当堂反馈1、如图△ BCE ≌ △ CBF ,若BE=3cm ,BF=5cm ,∠CBE=80°, ∠BEC=60, 则∠FBC= ,∠FCB= ,BE= , CE= .2、△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点,如果AB =8cm ,BD =•6cm ,AD =5cm ,则BC =________cm .3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C4、如图:△ABC ≌△DEF, △ ABC 的周是32cm,DE=9cm,EF=12cm ,求AC.5、如图,△ABC ≌△DEC ,CA 和CD ,CB 和CE 是对应边,∠ACD 和∠BCE 相等吗?为什么?6、如图,△AEC ≌△ADB ,点E 和点D 是对应顶点,若∠A=50°,∠ABD=35°,且∠1=∠2,求∠1的度数。
全等三角形教案(5篇)
全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。
3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。
(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。
至于D,由于AD 和BC是对应边,因此AD=BC。
C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
全等三角形导学案(共16课时)
课题: 11.1 全等三角形 第1课时 累计1课时编写人: 备课组长: 审查人 授课时间教学目标:1、知道什么是全等形、全等三角形及全等三角形的对应元素。
2、知道全等三角形的性质,能用符号正确地表示两个三角形全等3、能熟练找出两个全等三角形的对应角、对应边。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角。
教学过程:一、 创设情境,引入新课(课前检测) 二、课前预习1、 阅读教材2——3页2、填空(1) 叫做全等形(2) 叫做全等三角形(3)把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做重合的角叫做 。
(4)“全等”用 表示, 读作 。
(5)全等三角形的性质: , 。
3.思考(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角(2)将ABC ∆沿直线BC 平移,得到DEF ∆,说出你得到的结论,说明理由?(3)如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知:οο30,43=∠=∠B A ,求ADC ∠的大小。
三.合作探究D DBD BE BC例1.已知如图(1),ABC ∆≌DCB ∆,其中的对应边:____与____,____与____,____与____,对应角:______与_______,______与_______,______与_______. 例2.如图(2),若BOD ∆≌C B COE ∠=∠∆,.指出这两个全等三角形的对应边; 若ADO ∆≌AEO ∆,指出这两个三角形的对应角。
(图1) (图2) ( 图3)例3.如图(3), ABC ∆≌ADE ∆,BC 的延长线交DA 于F ,交DE 于G,ο105=∠=∠AED ACB ,οο25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数.三、疑难点拨1、如图,已知△ABE ≌△ACD , ∠ADE=∠AED,∠B=∠C,指出其它的对应边和对应角。
全等三角形教案【7篇】
全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。
那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。
数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。
教学难点正确寻找全等三角形的对应元素。
教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义象这样的图片,形状和大小都相同。
你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。
[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
《全等三角形》 导学案
《全等三角形》导学案一、学习目标1、理解全等三角形的概念,能识别全等三角形中的对应边、对应角。
2、掌握全等三角形的性质,能运用全等三角形的性质解决简单的几何问题。
3、掌握全等三角形的判定方法(SSS、SAS、ASA、AAS、HL),能运用判定方法证明两个三角形全等。
二、学习重点1、全等三角形的性质和判定方法。
2、运用全等三角形的性质和判定方法解决几何问题。
三、学习难点1、全等三角形判定方法的综合运用。
2、构造全等三角形解决几何问题。
四、知识梳理(一)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
(二)全等三角形的性质1、全等三角形的对应边相等。
2、全等三角形的对应角相等。
(三)全等三角形的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。
2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
(四)全等三角形的常见模型1、平移型:将一个三角形沿着某条直线平移,得到的新三角形与原三角形全等。
2、旋转型:将一个三角形绕着某一点旋转一定的角度,得到的新三角形与原三角形全等。
3、翻折型:将一个三角形沿着某条直线翻折,得到的新三角形与原三角形全等。
五、典型例题例 1:已知△ABC≌△DEF,∠A = 50°,∠B = 65°,DE = 18cm,求∠F 的度数和 AB 的长度。
解:因为△ABC≌△DEF,所以∠A =∠D = 50°,∠B =∠E =65°。
在△ABC 中,∠C = 180°∠A ∠B = 180° 50° 65°= 65°所以∠F =∠C = 65°因为△ABC≌△DEF,所以 AB = DE = 18cm例 2:如图,已知 AB = AC,AD = AE,求证:△ABE≌△ACD 证明:在△ABE 和△ACD 中AB = AC (已知)∠A =∠A (公共角)AD = AE (已知)所以△ABE≌△ACD(SAS)例 3:如图,在△ABC 中,∠C = 90°,AD 平分∠BAC,交 BC 于点 D,若 DC = 7,求点 D 到 AB 的距离。
全等三角形导学案
课题:19.1命题班级:姓名:小组:小组内评价:★学习目标:1、知识与技能:了解命题、定义的含义;对命题的概念有正确的理解。
会区分命题的条件和结论。
知道判断一个命题是假命题的方法。
2、过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。
3、情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值。
★重点:找出命题的条件(题设)和结论。
★难点:命题概念的理解。
课前预习案一、知识点:1、叫做命题。
2、每个命题都由________和_______两部分组成,已知的事项是________,由已知事项推断出的事项是________.命题可分为_______命题和_____命题,其中正确的命题称为______命题,错误的命题称为_______命题.二、预习自测:1、把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题。
(1)菱形的四条边都相等;(2)全等三角形的面积相等。
2.下列命题中是真命题的是()A.平行于同一条直线的两条直线平行;B.两直线平行,同旁内角相等C.两个角相等,这两个角一定是对顶角;D.相等的两个角是平行线所得的内错角3.下列语句中不是命题的是()A.延长线段ABB.自然数也是整数C.两个锐角的和一定是直角;D.同角的余角相等4.下列语句中是命题的是()A.这个问题B.这只笔是黑色的C.一定相等D.画一条线段5.下列命题是假命题的是()A.互补的两个角不能都是锐角;B.若a⊥b,a⊥c,则b⊥cC.乘积是1的两个数互为倒数;D.全等三角形的对应角相等三、我的疑惑:课内探究案探究点一:“对顶角相等”写成“如果.....,那么......”的形式,并说出它的条件和结论,探究点二:在四边形ABCD中,给出下列论断:①AB∥DC;②AD=BC;③∠A=∠C.•以其中两个作为条件,另外一个作为结论,用“如果……那么……”的形式,•写出一个你认为正确的命题.探究点三:如果a>b,b>c, 那么a=c;是真命题还是假命题。
全等三角形的判定(导学案)
全等三角形的判定(导学案)————边角边(SAS)学习目标1.探索三角形全等的“边角边”的条件,理解“边边角”两三角形不一定全等2.应用“边角边”证明两个三角形全等,进而证明线段或角相等.一、知识回顾1、全等三角形的概念:两个能完全重合的三角形叫做全等三角形。
全等三角形的特征:全等三角形的对应边相等,对应角相等。
已知△ABC≌△A'B'C',△ABC的周长为12cm,AB=5cm,BC=3cm,则:A'B'= cm,B'C'= cm ,A'C'= cm.2、能够的三角形是全等三角形.3、对于两个三角形来说,六个元素(三条边,三个角)中.若有一组元素分别对应相等(填“能”和“不能”)说明两个三角形一定全等;若是有两组元素分别对应相等(填“能”和“不能”)说明两个三角形一定全等.二、新知探索(一)讨论:1、若两个三角形有三组分别对应相等的元素,分为几种情况?2、两边一角有几种情况,是哪几种?(二)探究“边角边”如图,已知两条线段和一个角,以这两条线段为边,以这个角为这两条边的夹角,画一个三角形。
3cm4cm45°作图步骤:1画∠MAN=45°;2在射线AN上截取AB=4cm,在射线AM上截取AC=3cm3连结BC.△ABC即为所求.归纳结论:规范的几何语言:(三)及时巩固,强化理解例1、如图:AB=AD,∠BAC= ∠DAC,△ABC和△ADC全等吗?为什么?变式一、如图:AB=AC,AD=AE,△ABE和△ACD全等吗?请说明理由。
1、根据题目条件,判断下面的三角形是否全等.(1)AC=DF,∠C=∠F,BC=EF;(2)AB=DE,BC=EF, ∠C=∠F.注意:在用“两边一角”证明两个三角形全等时,这个“角”必须是“这两边”的“夹角”(四)应用变式,内化新知例2:在△ABC中,AB=AC,AD平分∠BAC,求证:△ABD≌△ACD.变式二、如图13-2-,CA=CE,∠1=∠2,BC=DC.求证:AB=DE.(2)学以致用:小红为了测出池塘两端A,B之间的距离,她在地面上选择了点C,D,E,CA=CD,CB=CE,且点A,C,D和点B,C,E都在一条直线上,小红测量出DE=18米,她就知道A,B之间的距离,你现在知道为什么吗?。
全等三角形导学案
《全等三角形》导学案编写人:张开和 审核人: 陈宗玉 编写时间:2013.9.10班级 组别 组名 姓名【学习目标】1.理解全等三角形的概念及表示方法,会寻找全等三角形的对应边、对应角和对应顶点。
2.掌握全等三角形的性质,并能进行简单的推理和计算,能解决一些实际问题。
【学习重点】全等三角形的性质及其应用【学习难点】正确地识别全等三角形的对应元素【学习过程】问题一:观察下列图片的特点:二面五星红旗 , 四张同一底的大小一样的邮票, 它们形状 相同 大小 相同 ,把它们放在一起能完全重合。
能够完全重合的图形叫做全等形。
下面两个图形是全等图形吗?如果是,那么这两个图形又叫全等点A 与点D 重合.点B 与点E 重合.我们把这样互相重合的一对点就叫做对应顶点;AB 边与DE 边重合,这样互相重合的边就叫做对应边;∠A 与∠D 重合,它们就是对应角.你能找出其他的对应点、对应边和对应角吗? 将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到△DBC ;将△ABC 旋转180°得△AED .它们全等吗?甲DCABFE 乙DCAB 丙DCABE问题二:下图中每两个三角形都是全等的(1)AD 的对应边是___________,∠E 的对应角是___________. (2)DE 的对应边是___________,∠DAE 的对应角是___________. (3)FE 的对应边是___________,∠D 的对应角是___________. (4)AD 的对应边是_________,CD 的对应边是_________,∠D 的对应角是___________.问题三:(1)全等三角形的对应边和对应角分别有什么关系?说说你的理由。
(2)△ABC 与△XYZ 全等,我们把它记作:“△ABC ≌△XYZ ”.读作“△ABC 全等于△XYZ ”那么问题二中的几组三角形全等可以分别记作(3)△ABC ≌△FDE .则∠A =∠ ,∠B =∠ ,∠C =∠ , =DF ,AC = ,BC =问题四:如图,△ABC ≌△DEF,∠C=25°,BC=6cm,AC=4cm ,你能得出△DEF 中哪些角的大小,哪些边的长度?【基础达标】AB C DEFA1、如图:△ABC ≌△AEC, ∠B=30°, ∠ACB=85°,求出△AEC 各内角的度数.A2、如图:两个三角形全等,可记作 ,写出其中相等的角B3,如图,△ABC ≌△DEF,你能说明AD=BE 吗?B4、如图,△ABC ≌△EBD,问∠1与∠2相等吗?若相等请证明,若不相等说出为什么?【课堂小结】:【当堂检测】A1、如图2所示,已知△ABC ≌△ADE ,∠C =∠E ,AB =AD ,则另外两组对应边为________,ABCDE【课后反思】: 我的收获:我的疑惑:AADCBO。
第十二章全等三角形全章导学案
课题(内容)12.1全等三角形 课时数 1 第 1 课时课型新授课 三维目标!知识与能力:1、了解全等形、全等三角形的概念,明确全等三角形对应边、对应角相等。
2、在列举生活中常见的的全等图形的过程中,学会判断对应边、对应角的方法。
3、积极投入,激情展示,做最佳自己。
过程与方法:学练结合、小组合作情感态度与价值观:培养学生良好的品德和学习数学的兴趣爱好 重难点1.重点:全等三角形的性质及寻找全等三角形的对应边、对应角。
2.难点:寻找全等三角形的对应边、对应角。
.?资源准备直尺、三角板、课件学案 导 案一、自主学习1、全等形。
回忆:举出现实生活中能够完全重合的图形的例子? 同一张底片洗出的同大小照片是能够完全重合的(如图);、能够完全重合的两个图形叫做 .(1) 一个图形经过平移,翻转,旋转后,位置变化了,但 和 都没有改变,即平移,翻转,旋转前后的图形 。
(2) 如果两个图形全等,它们的形状大小一定都相同吗?全等形的特征是 和 $2、全等三角形。
能够完全重合的两个三角形叫做 (如下图)。
C 1B 1CABA 1“全等”用符号“≌”来表示,读作“全等于”,如上图记作△ABC ≌△A1B1C1叫对应顶点,A ←→A1,B ←→B1,C ←→C1 叫对应边,AB ←→A1B1,AC ←→ , 叫对应角,∠A ←→∠A1,∠B ←→∠ ,∠C ←→∠注意:书写全等式时要求把对应顶点字母放在 的位置上。
一、教师导学 】?C 1B 1C A B A 1PA BD ?BD ACF3、全等三角形的性质。
全等三角形的 相等, 相等。
:用符号表示为∵△ABC ≌△A1B1C1 ∴ AB=A1B1, BC=B1C1, AC=A1C1 (全等三角形的 )∴ ∠ A= ∠ A1, ∠ B= ∠B1 , ∠ C= ∠C1(全等三角形的 )二、合作探究1、在找全等三角形的对应元素时一般有什么规律? |?有公共边的,公共边是对应边;有公共角的,公共角是对应角;有对顶角的,对顶角是对应角.一对最长的边是对应边,一对最短的边是对应边; 一对最大的角是对应角,一对最小的角是对应角。
八年级数学上册《第12章 全等三角形》导学案(新版)新人教版
八年级数学上册《第12章全等三角形》导学案(新版)新人教版【学习目标】知识与技能:掌握全等形、全等三角形及相关概念和全等三角形性质。
过程与方法:理解“平移、翻折、旋转”前后的图形全等,确定全等三角形的对应元素。
情感态度与价值观:培养学生对三角形的认识及推理论证能力。
【学习重点】掌握全等形、全等三角形及相关概念。
【学习难点】全等三角形性质。
【自学展示】自学课本P31-32页,完成下列要求:1、理解并背诵全等形及全等三角形的定义。
2、注意全等中对应点位置的书写。
3、理解并记忆全等三角形的性质。
4、自学后完成展示的内容,20分钟后,进行展示。
【合作学习】1、________相同的图形放在一起能够____。
这样的两个图形叫做____。
2、能够_____的两个三角形叫做全等三角形。
3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。
4、______叫做对应顶点。
_______叫做对应边。
_____叫做对应角。
5、全等三角形的对应边__。
____相等。
【质疑导学】1、课本P32练习1、22、如图1,若△ABC≌△EFC,且CF=3cm,∠EFC=64,则BC=_____cm,∠B=___、毛图1 图23、如图2,△ABC≌△DEF,求证:AD=BE、【学习检测】1、如图1,△ABC≌△DEF,对应顶点是____对应角是____________,对应边是__________2、如图2,△ABC≌△CDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角________________3、如图3,△ABN≌△ACM,∠B=∠C,AC=AB,则BN=____,∠BAN=______,_____=AN,_____= ∠AMC、图3 图44、如图4,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?【学后反思】板书设计:课题:12、2三角形全等的判定(1)【学习目标】知识与技能:掌握三角形全等的判定(SSS)过程与方法:初步体会尺规作图,掌握简单的证明格式情感态度与价值观:初步体会三角形全等的认识,从而提高对几何图形的推理论证能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案《全等三角形》
学习目标:知道什么是全等形、全等三角形及变换前后两个图形的全等关系;知道并能
找出两个全等三角形的对应顶点、对应边、对应角;会用符号表示两个三角形全等;掌握全等三角形的性质并会进行简单的应用.
课 前 预 习 单
1.下列图片中有形状、大小相同的图形吗?
你能再举出一些例子吗?
2.把一块三角板按在纸板上,画下图形,照图形裁下来的纸板和三角板的形状、大小是完全一样吗?把三角板和裁得的纸板放在一起能够完全重合吗?
3.什么是全等形?什么是全等三角形?
什么是全等三角形的对应顶点?对应边?对应角?
你能找出上图中两个全等三角形的对应顶点、对应边、对应角吗?
4.你能用符号表示两个三角形全等吗?记全等时要注意什么?
用符号表示上图中的全等关系:
E D C B
A
D
C
A B
E 课 堂 活 动 单
活动一:小组白板展示预习单并交流
活动二:合作探究
在图11.1-1中,把△ABC 沿直线BC 平移,得到△DEF 。
在图11.1-2中,把△ABC 沿直线BC 翻折180°,得到△DBC 。
在图11.1-3中,把△ABC 旋转180°,得到△AED 。
各图中的两个三角形全等吗?
小结:
经过变换后两个三角形的对应顶点、对应边、对应角分别是什么?并在小组内说说。
即时反馈:(小组内先试着说说,再派代表汇报)
1.如右图所示,△OCA ≌△OBD ,
对应顶点有:点___和点___,点___和点___,点___和点__ _; 对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,_____和__ __,_____和_____。
2. 如下图,已知△ABE ≌△ACD ,指出对应顶点、对应边和对应角.
3.如上图△ABC ≌△ADE ,试找出对应边、对应角.
_
O
_
C
_ A
_
D
_
B
_D
_C _A _B
_E
D
C B
A
4.如右图△ABC ≌ △DEC ,试找出对应边、对应角。
5.如右图△ABC ≌△CDA ,试找出对应边及对应角。
小结:在两个全等三角形中找对应边及对应角的方法:
(1)公共边一定是________,公共角一定是________,对顶角一定是________; (2)一对最长(或短)的边是________,一对最大(或小)的角是________; (3)对应角所对的边是________,两个对应角所夹的边是________,
对应边所对的角是________,两条对应边所夹的角是________.
活动三:探究并运用全等三角形的性质
如上图13.1-1,△ABC ≌△DEF ,对应边有什么数量关系?对应角呢? 小组交流归纳全等三角形对应边、对应角的性质:
即时反馈:
如图,若△ABC ≌△DEF ,回答下列问题:
(1)若△ABC 的周长为17 cm ,EF=6 cm ,DE=5 cm ,则AC = cm (2)若∠A =50°,∠E=75°,则∠C= °
小结本课收获?
D
C
B
E
A
课堂检测
1.如图△EFG≌△NMH,∠F和∠M是对应角.在△EFG中,FG是最长边. 在△NMH中,MH是最长边.EF=
2.1
㎝,EH=1.1㎝,HN=3.3㎝.
(1)写出其他对应边及对应角.
(2)求线段MN及线段HG的长.
2.如图.已知△ABC≌△ADE。
试说明:∠1= ∠2
N
M
G
H
F
E。