高中一年级数学期末考试题

合集下载

高一年级数学期末测试试卷

高一年级数学期末测试试卷

高一年级数学期末测试试卷数学试题一、 单选题1.若集合{}2320A x ax x =-+=至多含有一个元素,则a 的取值范围是( ).A .(]9,0,8⎡⎫-∞⋃+∞⎪⎢⎣⎭B .{}90,8⎡⎫⋃+∞⎪⎢⎣⎭ C .90,8⎡⎤⎢⎥⎣⎦ D .90,8⎛⎤⎥⎝⎦2.①0∈∅,①{}∅∈∅,①{}0∅=,①满足{}1,2A ⊆ {}1,2,3,4的集合A 的个数是4个,以上叙述正确的个数为() A .1 B .2 C .3 D .43.已知a ∈R ,b ∈R ,若集合{}2,,1,,0b a a a b a ⎧⎫=-⎨⎬⎩⎭,则20192020a b +的值为( )A .-2B .-1C .1D .24.已知命题:R p x ∀∈,220x x a +->.则p 为假命题的充分不必要条件是( )A .1a >-B .1a <-C .1a ≥-D .1a ≤-5.已知正数x 、y 满足22933x y xy ++=,则3x y +的最大值为( )A .1 BC .2 D6.已知函数()2211,2,21x ax x f x a x x ⎧---≤⎪=⎨>⎪-⎩满足对任意12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围是()A .[]3,2--B .[)3,0-C .(],2-∞-D .(],0-∞7.若1sin cos 3x x +=,ππ,22x ⎛⎫∈- ⎪⎝⎭,则sin cos x x -的值为( )A .BC .D .138.已知()f x 为定义在R 上的偶函数,对于()12,0,x x ∀∈+∞且12x x ≠,有()()1221210x f x x f x x x ->-,()216f =,142f ⎛⎫=- ⎪⎝⎭,()00f =,则不等式()80f x x ->的解集为( )A .()(),22,∞∞--⋃+B .1,00,22⎛⎫-⋃ ⎪⎝⎭() C .()1,2,2⎛⎫-∞-⋃+∞ ⎪⎝⎭ D .()1,02,2⎛⎫-⋃+∞ ⎪⎝⎭ 二、多选题9.(多选){}260A x x x =+-=,{}10B x mx =+=,且A B A ⋃=,则m 的可能值为( ) A .13- B .13 C .0 D .12- 10.下列推理正确的是( )A .若a b >,则22a b >B .若0a b <<,则22a ab b >>C .若0a b <<,则11a b >D .若a b c >>,则a c b c a b a c-->-- 11.下列说法正确的是( )A .若函数()f x 的定义域为[]0,2,则函数()2f x 的定义域为[]0,4B .()12x f x x +=+图象关于点()2,1-成中心对称C .函数1y x =的单调递减区间是()(),00,∞-+∞D .幂函数()()23433m f x m m x -=-+在()0,∞+上为减函数,则m 的值为1 12.若函数244y x x =--的定义域为[]0,m ,值域为[]8,4--,则实数m 的值可能为( ).A .2B .3C .4D .5 三、填空题13.函数()221log 5428xy x x =+-+-的定义域_____ 14.已知π1cos 62α⎛⎫-= ⎪⎝⎭,则4πsin 3α⎛⎫+= ⎪⎝⎭___________. 15.若函数()()22log 3f x x ax a =-+在区间[)1,+∞上单调递增,则实数a 的取值范围是______.16.设函数()23y g x =-+是奇函数,函数()132x f x x -=+的图像与()g x 的图像有2022个交点,则这些交点的横,纵坐标之和等于_________ 四、解答题17.已知非空集合{|121}P x a x a =+≤≤+,{|25}Q x x =-≤≤.(1)若3a =,求R ()P Q ⋂;(2)若“x P ∈”是“x ∈Q ”的充分不必要条件,求实数a 的取值范围.18.若函数2()21(0)g x ax ax b a =-++>在区间[2,3]上有最大值4和最小值1,设()()g x f x x =. (1)求a 、b 的值;(2)若不等式()220x x f k -⋅≥在[1,1]x ∈-上有解,求实数k 的取值范围;19.已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过函数()33x f x a -=--(0a > 且1a ≠)的定点M .(1)求sin 2cos +tan ααα-的值;(2)求()()()()3πsin πcos 2tan 3πcos 2πsin ααααα⎛⎫++- ⎪⎝⎭-+-+-的值.20.某食品公司拟在下一年度开展系列促销活动,已知其产品年销量x 万件与年促销费用t 万元之间满足3x -与1t +成反比例,当年促销费用0=t 万元时,年销量是1万件.已知每一年产品的设备折旧、维修等固定费用为3万元,每生产1万件产品需再投入32万元的生产费用,若将每件产品售价定为:其生产成本的150%与“平均每件促销费的一半”之和,则当年生产的商品正好能销完.(1)求x 关于t 的函数;(2)将下一年的利润y (万元)表示为促销费t (万元)的函数;(3)该食品公司下一年的促销费投入多少万元时,年利润最大?(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)21.已知函数()222y ax a x =-++,a R ∈(1)32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同实根,求实数a 的取值.22.已知函数2()1|1|f x x k x =---,k ①R .(1)若()y f x =为偶函数,求k 的值;(2)若()y f x =有且仅有一个零点,求k 的取值范围;(3)求()y f x =在区间[0,2]上的最大值.。

2022-2023学年西藏拉萨市第二高一年级上册学期期末考试数学试题【含答案】

2022-2023学年西藏拉萨市第二高一年级上册学期期末考试数学试题【含答案】

★启用前秘密★拉萨市第二高级中学2022-2023学年度第一学期期末测试高 一 年级 数学 试卷命题人: 时间: 120 分钟 满分: 150分 得分:一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合M ={-1,1},N ={-2,1,0},则M ∩N =()A. {0,-1}B. {1}C. {0}D. {-1,1}【答案】B 【解析】【分析】利用集合之间的交集运算即得结果.【详解】因为集合M ={-1,1},N ={-2,1,0},所以M ∩N ={1}.故选:B.【点睛】本题考查了集合之间的交集运算,属于简单题.2. 命题的否定为( )2“R,10”x x x ∀∈++>A.B.2R,10x x x ∀∈++≤2R,10x x ∀∉++≤C.D.2000R,10x x x ∃∈++≤2000R,10x x x ∃∉++≤【答案】C 【解析】【分析】利用特称量词对全称命题进行否定.【详解】因为利用特称量词对全称命题进行否定,所以命题的否定为“2“R,10”x x x ∀∈++>”.2000R,10x x x ∃∈++≤故选:C 3. 函数)()f x =A. B. C.D.3,2⎡⎫+∞⎪⎢⎣⎭3,4⎛⎤-∞ ⎥⎝⎦()(),33,-∞+∞ ()3,+∞【答案】A 【解析】【分析】由,即可求得函数的定义域.230x -≥()f x 【详解】由,即,230x -≥32x ≥所以函数的定义域为.()f x 3,2⎡⎫+∞⎪⎢⎣⎭故选:A.4. 若,则下列不等式中不正确的是( )110a b <<A. B. C. D. a b ab +<2b aa b+>2ab b>22a b<【答案】C 【解析】【分析】,可得,则根据不等式的性质逐一分析选项,A :,,所以110a b <<0b a <<0a b +<0ab >成立;B :,则,根据基本不等式以及等号成立的条件则可判断;C :a b ab +<0b a <<0,0b aa b >>且,根据可乘性可知结果;D :,根据乘方性可判断结果.b a <0b <0b a <<【详解】A:由题意,不等式,可得,11a b <<0b a <<则,,所以成立,所以A 是正确的;0a b +<0ab >a b ab +<B :由,则,所以,因为,所以等号不成立,所以0b a <<0,0b aa b >>2b a a b +≥=a b ¹成立,所以B 是正确的;2b aa b +>C :由且,根据不等式的性质,可得,所以C 不正确;b a <0b <2ab b <D :由,可得,所以D 是正确的,0b a <<22a b <故选C.【点睛】本题考查不等式的性质,不等式等号成立的条件,熟记不等式的性质是解题的关键,属于基础题.5. 不等式的解集是( )2320x x --≥A.B.213x x ⎧⎫-≤≤⎨⎬⎩⎭213x x ⎧⎫-≤≤⎨⎬⎩⎭C. D. 213x x x ⎧⎫≤-≥⎨⎬⎩⎭或213x x x ⎧⎫≤-≥⎨⎬⎩⎭或【答案】C 【解析】【分析】利用一元二次不等式的解法求解即可.【详解】解:232(32)(1)0x x x x --=+-≥解得:.213x x ≤-≥或故选:C.6. 已知幂函数的图象经过点,则( )()(R,R)f x k x k αα=⋅∈∈(14,2k α+=A. B. C. D. 121322【答案】A 【解析】【分析】根据幂函数的概念求出,再代入点的坐标可求出,即可得解.1k =α【详解】因为函数为幂函数,所以,则,()f x 1k =()f x x α=又因为的图象经过点,所以,得,()f x (14,2142α=12α=-所以.11122k α+=-=故选:A 7. 函数的图象如图所示,则( )()f xA. 函数在上单调递增()f x []1,2-B. 函数在上单调递减()f x []1,2-C. 函数在上单调递减()f x []1,4-D. 函数在上单调递增()f x []2,4【答案】A 【解析】【分析】根据函数图像分析直接得解.【详解】由图像可知,图像在上从左到右是“上升”的,则函数在上是单调递增的;图像[]1,2-()f x []1,2-在上从左到右是“下降”的,则函数在上是单调递减的.[]2,4()f x []2,4故选:A.8. 函数的值域是( )2222x y x -=+A. , B. C. , D. (1-1](1,1)-[1-1](2,2)-【答案】A 【解析】【分析】把已知函数解析式变形,由 可得的范围,进一步求得函数值域.222x ≥+212x +【详解】因为,2222222422412x x y x x x --+==-=-++++,,222x +≥ 210221x +∴<≤则,24220x +<≤24121x -++∴-<≤1所以函数的值域是2222x y x -=+(]1,1-故选:A.9. 下列函数是奇函数且在上是减函数的是()[0,)+∞A.B. C. D.1()f x x=()||f x x =-3()f x x =-2()f x x =-【答案】C 【解析】【分析】根据基本初等函数的单调性与奇偶性判断即可;【详解】解:对于A :定义域为,故A 错误;1()f x x ={}|0x x ≠对于B :,所以,故为偶函数,故B 错误;()||f x x =-()||||()f x x x f x -=--=-=()||f x x =-对于C :为奇函数,且在上单调递减,故C 正确;3()f x x =-R 对于D :为偶函数,故D 错误;2()f x x =-故选:C10. 下列转化结果错误的是()A. 化成弧度是B. 化成弧度是60 π3150-76-C. 化成度是D. 化成度是10π3-600- π1215【答案】B 【解析】【分析】利用角度与弧度的互化逐项判断可得出合适的选项.【详解】,,,ππ60601803=⨯= π5π1501501806-=-⨯=- 10π1018060033-=-⨯=-.π1180151212=⨯= 故选:B.11. 化简的结果是( )()()sin 2cos 633sin cos 22παπααπαπ---⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭A. B. 1C. D. 21-2-【答案】B 【解析】【分析】利用三角函数的诱导公式化简求解即可.【详解】原式()()sin cos sin 2cos 222ααπππαπα-⋅-=⎡⎤⎡⎤⎛⎫⎛⎫--⋅-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin cos sin cos 22ααππαα-⋅=⎡⎤⎡⎤⎛⎫⎛⎫--⋅-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦.sin cos sin cos 1cos sin sin cos 22ααααππαααα-⋅-⋅===-⋅⎛⎫⎛⎫--⋅- ⎪ ⎪⎝⎭⎝⎭故选:B12. 若,,,则、、的大小关系为( )2log 3a =33b -=31log 2c =a b c A. B. C. D. b a c >>b c a>>a c b>>a b c>>【答案】D 【解析】【分析】利用对数函数的单调性结合中间值法判断可得出结论.【详解】因为,,,故.22log 3log 21a =>=31327b -==331log log 102c =<=a b c >>故选:D.二、填空题(本题共4小题,每小题5分,共20分.直接写出最简结果.)13. 设函数,则_____()34,00,0x x f x x ⎧+≥=⎨<⎩()()3f f -=【答案】5【解析】【分析】由函数的解析式由内到外可计算出的值.()f x ()()3ff -【详解】由题意可得.()()()030345f f f -==+=故答案为:.514. 化简________43251log 5log 88-⎛⎫-⋅=⎪⎝⎭【答案】13【解析】【分析】利用指数的运算性质以及换底公式化简可得结果.【详解】原式.()433ln 53ln 2216313ln 2ln 5--=-⋅=-=故答案为:.1315. 若一个扇形的圆心角是,面积为,则这个扇形的半径为________452π【答案】4【解析】【分析】将扇形的圆心角化为弧度,利用扇形的面积公式可求得该扇形的半径长.【详解】设该扇形的半径为,,该扇形的面积为,解得.r π454=21π2π24S r =⨯⨯=4r =故答案为:.416. 已知,都是正实数,且,则的最小值为___________.x y 2x y xy +=xy 【答案】8【解析】【分析】由,即可求解.2xy x y =+≥0≥【详解】由,都是正实数,且,x y 2x y xy +=可得,2xy x y =+≥0≥≥8xy ≥当且仅当时,即时,等号成立,2x y =4,2x y ==所以的最小值为.xy 8故答案为:.8三、解答题(本题共6小题,17题10分,其余每题12分,共70分.要求写出必要的计算或证明过程,按主要考查步骤给分.)17. 计算下列各式的值:(1);2013112726-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭(2).7log 2325log lg 25lg 47log 5log 4++-+⋅【答案】(1) 112(2)114【解析】【分析】(1)利用指数的运算性质计算可得所求代数式的值;(2)利用对数的运算性质以及换底公式计算可得出所求代数式的值.【小问1详解】解:原式.11134122=-+-=【小问2详解】解:原式.()343ln 52ln 2311log 3lg 2542222ln 2ln 544=+⨯-+⋅=+-+=18. 已知集合.{}1|4,|32212A x x B x a x a ⎧⎫=-<<=-<<+⎨⎬⎩⎭(1)当时,求;0a =A B ⋂(2)若,求的取值范围.A B ⋂=∅a 【答案】(1) 1|12x x ⎧⎫-<<⎨⎬⎩⎭(2)[)3,2,4⎛⎤-∞-+∞ ⎥⎝⎦ 【解析】【分析】(1)当时,,即可解决;(2)分,两种情况解决即可.0a ={}|21B x x =-<<B =∅B ≠∅【小问1详解】由题知,,{}1|4,|32212A x x B x a x a ⎧⎫=-<<=-<<+⎨⎬⎩⎭当时,,0a ={}|21B x x =-<<所以.1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭【小问2详解】由题知,{}1|4,|32212A x x B x a x a ⎧⎫=-<<=-<<+⎨⎬⎩⎭因为,A B ⋂=∅所以当时,解得,满足题意;B =∅3221,a a -≥+3a ≥当时,或,B ≠∅32211212a a a -<+⎧⎪⎨+≤-⎪⎩3221324a a a -<+⎧⎨-≥⎩解得,或,34a ≤-23a ≤<综上所述,的取值范围为,a [)3,2,4⎛⎤-∞-+∞ ⎥⎝⎦ 19. (1)已知,为第三象限角,求的值;3cos 5α=-αsin α(2)已知,计算的值.tan 3α=4sin 2cos 5cos 3sin αααα-+【答案】(1);(2).4sin 5α=-57【解析】【分析】(1)利用同角三角函数的平方关系可求得的值;sin α(2)利用弦化切可求得所求代数式的值.【详解】解:(1)因为为第三象限角,则;α4sin 5α==-(2).4sin 2cos 4tan 243255cos 3sin 53tan 5337αααααα--⨯-===+++⨯20. 已知为二次函数,且满足:对称轴为,.()y f x =1x =(2)3,(3)0f f =-=(1)求函数的解析式,并求图象的顶点坐标;()f x ()y f x =(2)在给出的平面直角坐标系中画出的图象,并写出函数的单调区间.|()|y f x =|()|yf x =【答案】(1),顶点坐标为. 2()23f x x x =--()1,4-(2)图象见解析,函数的增区间为:,函数的减区间为:.[][)1,1,3,-+∞(][],1,1,3-∞-【解析】【分析】(1)根据已知条件列出方程组即可求解;(2)作出函数图象可求解.【小问1详解】设函数为,2()f x ax bx c =++所以解得,所以,12423930b x a a b c a b c ⎧=-=⎪⎪++=-⎨⎪++=⎪⎩123a b c =⎧⎪=-⎨⎪=-⎩2()23f x x x =--所以,所以顶点坐标为.(1)4f =-()1,4-【小问2详解】图象如图所示,函数的增区间为:,函数的减区间为:.[][)1,1,3,-+∞(][],1,1,3-∞-21. 已知函数f (x )=log a (1-x )+log a (x +3),其中0<a <1.(1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-4,求a 的值.【答案】(1)()3,1-(2【解析】【分析】(1)根据对数函数真数大于0求解定义域;(2)根据函数单调性求最小值,列出方程,求出a 的值.【小问1详解】要使函数有意义,则有,解得:,所以函数的定义域为.1030x x ->⎧⎨+>⎩31x -<<()3,1-【小问2详解】函数可化为,因为,所()()()()()22log 13log 23log 14a a a f x x x x x x ⎡⎤=-+=--+=-++⎣⎦()3,1x ∈-以.()20144x <-++≤因为,所以,01a <<()2log 14log 4a a x ⎡⎤-++≥⎣⎦即,由,得,所以.()min log 4a f x =log 44a =-44a -=144a -==22. 已知函数,其中为非零实数, ,.()bf x ax x =-,a b 1122f ⎛⎫=- ⎪⎝⎭()724f =(1)判断函数的奇偶性,并求的值;,a b (2)用定义证明在上是增函数.()f x ()0,∞+【答案】(1);(2)证明见解析.11,2a b ==【解析】【分析】(1)由奇函数的定义可得函数为奇函数,由已知条件列方程组可解得答案;(2)利用取值,作差,变形,判号,下结论五个步骤可证在上是增函数.()f x ()0,∞+【详解】(1)函数定义域为,关于原点对称, ()(),00,-∞⋃+∞由,()()()b b f x a x ax f x x x ⎛⎫-=--=--=- ⎪-⎝⎭ 得函数为奇函数,由,()117,2224f f ⎛⎫=-= ⎪⎝⎭得,11172,22224a b a b -=--=解得;11,2a b ==(2).由(1)得,任取,且,则()12f x x x =-()12,0,x x ∈+∞12x x <()()()()1212121212122112111122222x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫--=---=-+-=-+ ⎪ ⎪⎝⎭⎝⎭,12121()12x x x x ⎛⎫=-+ ⎪⎝⎭因为,且,()12,0,x x ∈+∞12x x <所以,所以,即,121102x x ⎛⎫+> ⎪⎝⎭()()120f x f x -<()()12f x f x <所以在上是增函数.()f x ()0,∞+【点睛】本题考查了函数的奇偶性,考查了用定义证明函数的单调性,掌握函数奇偶性和单调性的定义是解题关键.属于基础题.。

2022-2023学年湖北省襄阳市襄州第一高一年级上册学期期末考试数学试卷【含答案】

2022-2023学年湖北省襄阳市襄州第一高一年级上册学期期末考试数学试卷【含答案】

襄州第一高级中学2022-2023学年高一上学期期末考试数学解析版一,单选题1.如图所示的时钟显示的时刻为,此时时针与分针的夹角为则4:30()0ααπ<≤( )α=A.B. C. D. 2π4π8π16π答案B 解:由图可知,. 故选B .1284παπ=⨯=2.已知,若,则的化简结果是( )()f x =,2παπ⎛⎫∈ ⎪⎝⎭()()sin sin f f x α--A. B. C. D.2tan α-2tan α2cos α-2cos α答案A .解:,若,()f x =,2παπ⎛⎫∈ ⎪⎝⎭则.()()cos cos sin sin 2tan 1sin 1sin f f x αααααα---==+=--+3.已知函数,在上恰有3条对称轴,3个对称中心,()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭(),0π-则的取值范围是( )A. B. C. D. 1710,63⎛⎤ ⎥⎝⎦1710,63⎡⎫⎪⎢⎣⎭71,36⎡⎫⎪⎢⎣⎭71,36⎛⎤ ⎥⎝⎦答案A 解:函数,当时,所以()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭(),0x π∈- ,因为在上恰有3条对称轴,3个对称中心,333x πππωπω-+<+<()f x (),0π-所以. 故选A.5171033263πππωπω-≤-+<-⇒<≤4.若函数的定义域为( )()f x =+()21f x -A.B. C. D. ()0,2[)(]2,00,2-⋃[]2,2-[]0,2答案C 解:由,解得,则()f x =+3010x x -≥⎧⎨+≥⎩13x -≤≤中,令 , 解得 , 则函数的定义域为()21f x -2113x -≤-≤22x -≤≤()21f x -,故选C.[]2,2-5.若函数在上有最小值(为常数)()(32log 1f x ax b x =++(),0-∞5-,a b 则函数在上( )()f x ()0,+∞A.有最大值4 B.有最大值7 C.有最大值5 D.有最小值5答案B 解:考虑函数,定义域为R,()(32log gx ax b x =++()(32log g x ax bx -=-+-,(()3322log log ax b ax b x g x =-+=--+=-所以是奇函数,()(32log g x ax b x=++函数在上有最小值-5,()(32log 1f x ax b x =+++(),0-∞则在上有最小值,()(32log g x ax b x =++(),0-∞根据奇函数的性质得:在上有最大值6,()(32log g x ax b x =++()0,+∞所以在上有最大值7.故选:B.()(32log 1f x ax b x =+++()0,+∞6.定义:正割,余割.已知为正实数,且1sec cos αα=1csc sin αα=m 对任意的实数均成立,则的最小值为22csc tan 15m x x ⋅+≥,2x x k k Z ππ⎛⎫≠+∈ ⎪⎝⎭m A.1 B.4C.8D.9答案D 解:由已知得,即.因为222sin 15sin cos m x x x +≥422sin 15sin cos x m x x ≥-,所以,则,2x k k Zππ≠+∈(]2cos 0,1x ∈()()224242222221cos sin 12cos cos 15sin 151cos 1515cos cos cos cos x x x x x x x x x x--+-=--=--422221cos 11515cos 21716cos 179cos cos x x x x x +⎛⎫=-+-=-+≤-= ⎪⎝⎭,当且仅当时等号成立,故m≥9.故选:D .21cos 4x =7.1626年,阿贝尔特格洛德最早推出简写的三角符号:、、(正割),1675年,sin tan sec 英国人奥屈特最早推出余下的简写三角符号:、、(余割),但直到1748年,cos cot csc 经过数学家欧拉的引用后,才逐渐通用起来,其中,若1sec cos αα=1csc sin αα=,且,则( )()0,απ∈111sec csc 5αα+=tan α=A.B.A.B. C.或 D.不存在34-43-34-43-答案B 解:由,得,又,111sec csc 5αα+=1sin cos 5αα+=22sin cos 1αα+=,()0,απ∈联立解得(舍)或,∴.故选B .3sin 54cos 5αα⎧=-⎪⎪⎨⎪=⎪⎩4sin 53cos 5αα⎧=⎪⎪⎨⎪=-⎪⎩sin 4tan cos 3ααα==-8.已知关于的方程在区间内有实根,则实数的取值范围是x 20x x m ++=()1,2m A.B. C. D. []6,2--()6,2--(][),62,-∞-⋃-+∞()(),62,-∞-⋃-+∞答案B 解:因为在上单调递增,且的图象是连续不断的, 要使关于()f x ()1,2()f x 的方程在区间内有实根必有f (1)=1+1+m <0且f (2)x 20x x m ++=()1,2=4+2+m >0,解得-6<m <-2.故选:B .9.已知函数的定义域为,若为奇函数,为偶函数.设()f x R ()1f x -()1f x -,则()()21f -=()2f =A.-D.-B.1C.2D.-2答案A 解:因为为奇函数,所以=,所以的图象关于点(1,0)对()1f x -()1f x -()1f x --()f x 称. 因为为偶函数,所以f(-x-1)=f(x-1),即f(-1-x)=f(-1+x), 所以f(x)的图象()1f x -关于直线x=-1对称. 则有f(-2)=f(0)=-f(2)=1,即f(2)=-1. 故选A. 10.定义在上的函数满足,,且当R ()f x ()()4f x f x =-()()0f x f x +-=时,,则方程所有的根之和为( )[]0,2x ∈()3538f x x x =+()240f x x -+=A.44 B.40C.36D.32 答案A 解:因为,①所以的对称轴为x=2,因为()()4f x f x =-()f x ,②所以为奇函数,由②可得f (x )=-f (-x ),由①可得-f (-()()0f x f x +-=()f x x )=f (4-x ),令t=-x, 所以-f (t )=f (4+t ),所以f (8+t )=-f (4+t )=-[-f (t )]=f (t ),所以函数的周期为T=8,又当x∈[0,2]时,,作出()f x ()3538f x x x =+的函数图象如下:()f x方程所有的根为方的根,函数与函数()240f x x -+=()()142f x x =-()f x 都过点(4,0),且关于(4,0)对称,所以方程所有的()122y x =-()240f x x -+=根的和为5×8+4=44,故选:A .根据题意可得f (x )的对称轴为x=2,为奇函数,()f x 进而可得的周期,作出函数的图像,方程所有的根为方程()f x ()f x ()240f x x -+=的根,函数与函数都过点(4,0),且关于(4,0)()()142f x x =-()f x ()122y x =-对称,由对称性,即可得出答案.11.已知函数,则实数根的个数为( )ln ,0()1,0xx x f x e x -⎧>⎪=⎨+≤⎪⎩()()22f x f x += A. B. C. D.答案A 解:作出f(x)的图象:若,则f(x)=-2或f(x)=1,由图象可知y=f(x)与y=-2没有交点,()()22f x f x +=y=f(x)与y=1有2个交点,故实数根的个数为2,故选A.()()22f x f x +=二,多选题12(多选).已知正实数,满足,则( ),x y 450x y xy ++-=A. 的最大值为1 B. 的最小值为4xy 4x y +C. 的最小值为1 D.的最x y +()()2241x y +++小值为18答案AB 解:因为,,可得450x y xy ++-=4x y xy xy ++≥+,所以,解得,当且仅当250+-≤)510+≤01xy <≤时取等号,即的最大值为1,故A 正确;4x y =xy 因为,所以()211445444442x y x y xy x y x y x y +⎛⎫++==++⋅≤++ ⎪⎝⎭,解得, 当且仅当x=4y 时,取等号,即x+4y()()24164800x y x y +++-≥44x y +≥的最小值为4,故B 正确;由可解得,所以450x y xy ++-=941x y =-+,当且仅当取等号,即915511x y y y +=++-≥-=+911y y =++,故C 错误;,2,1y x ==-()()()()222299411211811x y y y y y ⎛⎫+++=++≥⋅+= ⎪++⎝⎭当且仅当,取等号,即故D 错误;故选:AB .911y y =++2,1y x ==-13(多选).下列命题正确的是( )A.第一象限的角都是锐角B.小于的角是锐角2πC. 是第三象限的角D.钝角是第二象限角2019o答案CD 解:A .当α=390°时,位于第一象限,但α=390°不是锐角,故A 错误,B .,但不是锐角,故B 错误, C.2019°=5×360°+219°,∵219°是第62ππα=-<α三象限角,∴2019°是第三象限的角,故C 正确, D .因为钝角大于90°小于180°,即钝角是第二象限角,故D 正确.14(多选).以下式子符号为正号的有()A.B.()tan 485sin 447oo-5411sincos tan 456πππC.D.()tan188cos 55oo -2913costan 662sin3πππ⎛⎫- ⎪⎝⎭答案ACD 解:A.因为是第二象限角,故tan485°<0,485360125o o o=+A,因为是第四象限角,故sin (-447°) <0,所以tan485°447720273o-=-+ sin (-447°)>0,故A 正确;B,因为是第三象限角,所以,因为是第二象限角,所以;因54π5sin 04π<45π4cos 05π<为是第四象限角所以,所以,故B 错误;116π11tan 06π<5sin 4π4cos 5π11tan 06π<C.因为是第三象限角,故,因为是第四象限角,故,188otan1880o>55o-()cos 550o ->故,故C 正确; D.因为是第二象限角,所以()tan1880cos 55oo>-295466πππ=+,因为是第四象限角,所以,因为是第29cos 06π<13266πππ-=--13tan 06π-<23π二象限角,所以,所以,故正确. 故选ACD.2sin03π>2913costan 6602sin3πππ⎛⎫- ⎪⎝⎭>15.(多选)已知,,则( )()0,θπ∈1sin cos 5θθ+=A.B.C.D. ,2πθπ⎛⎫∈ ⎪⎝⎭3cos 5θ=-3tan 4θ=-7sin cos 5θθ-=答案:ABD解:∵,∴两边平方得:,,1sin cos 5θθ+=112sin cos 25θθ+⋅=12sin cos 25θθ∴=-与异号,又∵,∴θ∈,∴,∴sin θ∴cos θ()0,θπ∈,2ππ⎛⎫⎪⎝⎭sin cos θθ>,∴,又∵,∴()249sin cos 12sin cos 25θθθθ-=-=7sin cos 5θθ-=1sin cos 5θθ+=,,故选ABD.4sin 5θ=3cos 5θ=-4tan 3θ=-16.在平面直角坐标系中,点,,xoy ()1cos ,sin P αα2cos ,sin 33P ππαα⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则下列说法正确的是( )3cos ,sin 66P ππαα⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A.线段与的长均为1 B.线段的长为11OP 3OP 23P PC.当时,点关于轴对称 D.当时,点关于轴对称3πα=12,PP y 1312πα=13,PP x 答案ACD解:由题意可得,同理可得,21OP ==31OP =故A 正确;由题意得,由勾股定理得,故B 错误;当23362P OP πππ∠=+=23P P =时,即,即,点3πα=1cos ,sin 33P ππ⎛⎫⎪⎝⎭112P ⎛ ⎝222cos ,sin 33P ππ⎛⎫⎪⎝⎭112P ⎛- ⎝关于轴对称,故C 正确;当时,,12,P P y 1312πα=31313cos ,sin 126126P ππππ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即,即3cos ,sin 1212P ππ⎛⎫- ⎪⎝⎭11313cos ,sin 1212P ππ⎛⎫ ⎪⎝⎭1cos ,sin 1212P ππ⎛⎫-- ⎪⎝⎭,故点关于轴对称,故D 正确. 故选:ACD.13,P P x 17.函数的图象可能是( )()()af x x a R x =-∈A. B. C. D.答案ACD 解:①当a=0时,,选项A 符合;()f x x=当时0a ≠(),0,0a x x xf x a x x x ⎧+>⎪⎪=⎨⎪-+<⎪⎩②当a>0时,当x>0时,为对勾函数的一部分,()af x x x =+当x<0时,单调递减,选项B 不符合,选项D 符合,故D 有可能;()af x x x =-+③当a<0时,当x>0时单调递增, 当x<0时,()a f x x x =+()a a f x x x x x -⎛⎫=-+=-+ ⎪⎝⎭其中(x <0)为对勾函数第三象限的一部分,()af x x x -=+则x <0时的图象位于第二象限, 选项C 符合;可知选项B 中图象不是()a f x x x -⎛⎫=-+ ⎪⎝⎭函数f(x)的图象.18(多选).给出下列四个命题,其中正确的命题有()A.函数的图象关于点对称tan y x =(),02k k Z π⎛⎫∈ ⎪⎝⎭B.函数是最小正周期为的周期函数sin y x=πC. 为第二象限的角,且,则.θcos tan θθ>sin cos θθ>D.函数的最小值为2cos sin y x x =+1-答案AD 解:对于A :函数的图象关于点对称,故A 正确;tan y x =(),02k k Z π⎛⎫∈⎪⎝⎭对于B :函数=,图象关于y 轴对称,不是周期函数,故B 错误;sin y x =sin ,0sin ,0x x x x ≥⎧⎨-<⎩对于C :由为第二象限的角,得,由,得,故tan sin θθ>cos tan θθ>sin cos θθ<C 错误;对于D :函数当时,22215cos sin sin sin 1sin ,24y x x x x x ⎛⎫=+=-++=--+ ⎪⎝⎭sin 1x =-函数的最小值为-1,故D 正确.故选:AD .19(多选).一般地,若函数的定义域为,值域为,则称为的“倍()f x [],a b [],ka kb k 跟随区间”;若函数的定义域为,值域也为,则称为的“跟随区间”[],a b [],a b [],a b ()f x 下列结论正确的是( )A.若为的“跟随区间”,则[]1,b ()222f x x x =-+2b =B.函数存在“跟随区间”()11f x x =+C.若函数“跟随区间”,则()f x m =1,04m ⎡⎤∈-⎢⎥⎣⎦D.二次函数存在“3倍跟随区间”()212f x x x=-+答案AD 解:对于A ,若为的跟随区间,[]1,b ()222f x x x =-+因为在区间上单调递增, 故函数在区间的值域为()222f x x x =-+[]1,b ()f x []1,b .根据题意有,解得,因为,故21,22b b ⎡⎤-+⎣⎦222b b b -+=12b b ==或12b b >=或A 正确;对于B ,由题意,因为函数在区间上均单调递减,()11f x x =+()(),0,0,-∞+∞故若存在跟随区间,则或,()11f x x =+[],a b 0a b <<0a b <<则有,即,得,与或矛盾,1111a b b a ⎧=+⎪⎪⎨⎪=+⎪⎩11ab b ab a =+⎧⎨=+⎩a b =0a b <<0a b <<故函数不存在跟随区间,B 不正确;()11f x x =+对于C ,若函数存在跟随区间,因为为减函数,()f x m =-[],a b()f x m =故由跟随区间的定义可知 ,,b m a b a m ⎧=-⎪⇒-=⎨=-⎪⎩a b <即,()()()11a b a b a b-=+-+=-因为,易得,ab <1=01≤<≤所以,(1a m m =-=-即,同理可得,10am +-=10b m +-=转化为方程在区间上有两个不相等的实数根,20t t m --=[]0,1故,解得,故C 不正确;1400m m +>⎧⎨-≥⎩1,04m ⎛⎤∈- ⎥⎝⎦对于D ,若存在“3倍跟随区间”, 则可设定义域为,值域为()212f x x x =-+[],a b, 当时,易得在区间上单调递增,[]3,3a b 1a b <≤()212f x x x =-+[],a b 此时易得a,b 为方程的两根,解得x=0或x=-4,2132x x x-+=故存在定义域[-4,0],使得的值域为[-12,0],故D 正确. 故选AD.()212f x x x=-+三,填空题20.已知,且,则____.答案:()1sin 533o α-=27090o o α-<<-()sin 37oα+=解:,又,所以()()()sin 37sin 9053cos 53o oo ααα⎡⎤+=--=-⎣⎦27090α-<<-,又,所以,所以14353323o α<-< ()1sin 5303o α-=>14353180o α<-< 为负值,所以。

2022-2023学年江苏省南京市高淳中学高一年级上册学期期末考试数学试题【含答案】

2022-2023学年江苏省南京市高淳中学高一年级上册学期期末考试数学试题【含答案】

高淳中学2022-2023学年高一上学期期末考试数学试题第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合,则( ){}{}1,2,3,2A B x N x ==∈≤∣A B ⋃=A. B. C. D.{}2,3{}0,1,2,3{}1,2{}1,2,32.命题“”的否定是( )0,,sin 2x x x π⎛⎫∀∈≤ ⎪⎝⎭A. B.0,,sin 2x x x π⎛⎫∀∈≥ ⎪⎝⎭0,,sin 2x x x π⎛⎫∀∈> ⎪⎝⎭C. D.0,,sin 2x x x π⎛⎫∃∈≤ ⎪⎝⎭0,,sin 2x x x π⎛⎫∃∈> ⎪⎝⎭3.已知弧长为的弧所对的圆心角为,则该弧所在的扇形面积为()3π6πB. C. D.13π23π43π4.,不等式恒成立,则的取值范围为()x R ∀∈2410ax x +-<a A.B.或4a <-4a <-0a =C.D.4a ≤-40a -<<5.已知,则( )0.50.5e ,ln5,log e a b c -===A.B.c a b <<c b a <<C.D.b a c <<a b c <<6.已知函数是定义在上的奇函数,,且,则()f x R ()()4f x f x =+()11f -=-()()()20202021f f +=A. B.0 C.1D.21-7.已知函数的零点分别为,则的大小顺序为(()()()e ,ln ,sin x f x x g x x x h x x x =+=+=+,,a b c ,,a b c )A.B.c b a <<b a c <<C.D.a c b <<c a b <<8.已知函数的图象的一部分如图1所示,则图2中的函数图象对应的函数解析式为( ()()sin f x A x ωϕ=+)A.B.122y f x ⎛⎫=+ ⎪⎝⎭()21y f x =+C.D.122x y f ⎛⎫=+ ⎪⎝⎭12x y f ⎛⎫=+ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列函数中,既是偶函数又在区间上是增函数的是( )()0,∞+A. B.21y x =+3y x =C. D.23y x =3xy -=10.若,则下列不等式正确的是( )110a b <<A. B.a b <a b<C. D.a b ab +<2b a a b +>11.若函数,则下列选项正确的是( )()tan 23f x x π⎛⎫=+ ⎪⎝⎭A.最小正周期是πB.图象关于点对称,03π⎛⎫ ⎪⎝⎭C.在区间上单调递增7,1212ππ⎛⎫ ⎪⎝⎭D.图象关于直线对称12x π=12.设,用表示不超过的最大整数,则称为高斯函数,也叫取整函数.令x ∈R []x x []y x =,以下结论正确的是( )()[]22f x x x =-A.()1.10.8f -=B.为偶函数()f x C.最小正周期为()f x 12D.的值域为()f x []0,1第II 卷(非选择题共90分)三、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)5log 25+=14.请写出一个同时满足下列两个条件的函数:__________.(1),若则12,x x R ∀∈12x x >()()12f x f x >(2)()()()121212,,x x R f x x f x f x ∀∈+=15.在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆相交于,两xOy Ox ,αβP Q 点,的纵坐标分别为.则的终边与单位圆交点的纵坐标为__________.,P Q 34,55αβ+16.已知函数,使方程有4个不同的解:,则()2log ,04,2cos ,482x x f x t R x x π⎧<<⎪=∃∈⎨≤≤⎪⎩()f x t =1234,,,x x x x 的取值范围是__________;的取值范围是__________.1234x x x x 1234x x x x +++四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题10.0分)求值:(1)22log 33582lg2lg22+--(2)251013sincos tan 634πππ⎛⎫-+- ⎪⎝⎭18.(本小题12.0分)已知全集,集合,集合.U R ={}2120A x x x =--≤∣{}11B x m x m =-≤≤+∣(1)当时,求;4m =()U A B ⋃ (2)若,求实数的取值范围.()U B A ⊆ m 19.已知函数的部分图象如图.()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭(1)求函数的解析式;()f x (2)将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将所得图象向左平移个单位,()f x 6π得到函数的图象,当时,求值域.()g x ,6x ππ⎡⎤∈-⎢⎥⎣⎦()g x 20.(本小题12.0分)已知函数()()()()()sin cos sin cos 2cos tan sin 2f πααπαπααπααα-+-=+-⎛⎫- ⎪⎝⎭(1)化简;()f α(2)若,求的值.()1,052f παα=-<<sin cos ,sin cos αααα⋅-21.(本小题12.0分)某市近郊有一块大约的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要500m 500m ⨯建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.S(1)分别用表示和的函数关系式,并给出定义域;x y S (2)怎样设计能使取得最大值,并求出最大值.S 22.(本小题12.0分)已知函数.()1ln1x f x x -=+(1)求证:是奇函数;()f x (2)若对于任意都有成立,求的取值范围;[]3,5x ∈()3f x t >-(3)若存在,且,使得函数在区间上的值域为(),1,αβ∞∈+αβ<()f x [],αβ,求实数的取值范围.ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦m 高淳中学2022-2023学年高一上学期期末考试数学试题参考答案)第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.【答案】B【解析】【分析】先求出集合,再求.B A B ⋃【详解】因为,所以.{}{}1,2,3,0,1,2A B =={}0,1,2,3A B ⋃=故选:B2.【答案】D【解析】【分析】直接利用全称命题的否定为特称命题进行求解.【详解】命题“”为全称命题,0,,sin 2x x x π⎛⎫∀∈≤ ⎪⎝⎭按照改量词否结论的法则,所以否定为:,0,,sin 2x x x π⎛⎫∃∈> ⎪⎝⎭故选:D3.【答案】B【解析】【分析】先求得扇形的半径,由此求得扇形面积.【详解】依题意,扇形的半径为,所以扇形面积为.326ππ=12233ππ⋅⋅=故选:B4.【答案】A【解析】【分析】先讨论系数为0的情况,再结合二次函数的图像特征列不等式即可.【详解】,不等式恒成立,x R ∀∈2410ax x +-<当时,显然不恒成立,0a =所以,解得:.0Δ1640a a <⎧⎨=+<⎩4a <-故选:A.5.【答案】A【解析】【分析】借助指对函数的单调性,利用中间量0或1比较即可.【详解】因为,0.500.50.50e e 1,ln5lne <1,log e log 10a b c -<===>==<=所以,c a b <<故选:A.6.【答案】C【解析】【分析】由得函数的周期性,由周期性变形自变量的值,最后由奇函数性质求得值.()()4f x f x =+【详解】是奇函数,,()f x ()()()00,111f f f ∴==--=又是周期函数,周期为4.()()()4,f x f x f x =+∴.()()()()2020202101011f f f f ∴+=+=+=故选:C.7.【答案】C【解析】【分析】利用数形结合,画出函数的图象,判断函数的零点的大小即可.【详解】函数的零点转化为与()()()e ,ln ,sin x f x x g x x x h x x x =+=+=+e ,ln ,sin x y y x y x ===的图象的交点的横坐标,因为零点分别为,y x =-,,a b c 在坐标系中画出与的图象如图:e ,ln ,sin x y y x y x ===y x =-可知,0,0,0a b c <>=满足.a cb <<故选:C.8.【答案】B【解析】【分析】利用三角函数的图象变换规律可求得结果.【详解】观察图象可知,右方图象是由左方图象向左移动一个长度单位后得到的图象,再把()1y f x =+的图象上所有点的横坐标缩小为原来的(纵坐标不变)得到的,()1y f x =-12所以如图的图象所对应的解析式为.()21y f x =+故选:B 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.【答案】AC【解析】【分析】利用函数的奇偶性和单调性的概念进行判断.【详解】对于A :22()11y x x =-+=+函数是偶函数,在上是增函数,故A 正确;∴21y x =+()0,∞+对于:B 33()y x x =-=- 函数是奇函数,故错误;∴3y x =B 对于:C 2233()y x x=-= 是偶函数,在上是增函数,故C 正确;23y x ∴=()0,∞+对于:D 33x x y ---== 是偶函数,在上是减函数,故错误.3xy -∴=()0,∞+D 故选:AC10.【答案】BCD【解析】【分析】利用不等式的基本性质求解即可【详解】由于,则,故错误;110a b <<0b a <<a b <正确;正确;,正确0a b ab +<<a b <2222,2a b a b ab b a b a ab ab a b ++=>=∴+>故选:BC D.11.【答案】BC【解析】【分析】利用正切函数的周期,对称中心,函数的单调性,判断选项即可.【详解】函数,函数的最小正周期为:错误;tan 23y x π⎛⎫=+ ⎪⎝⎭,A 2π令,2,3246k k x x k Z ππππ+=⇒=-∈当时,,所以图象关于点对称,正确;2k =3x π=,03π⎛⎫ ⎪⎝⎭B 因为,解得,当时,,所2,232k x k k Z πππππ-<+<+∈5,212212k k x ππππ⎛⎫∈-+ ⎪⎝⎭1k =7,1212x ππ⎛⎫∈ ⎪⎝⎭以在区间上单调递增,C 正确;又正切函数不具有对称轴,所以D 错误7,1212ππ⎛⎫ ⎪⎝⎭故选:B C.12.【答案】AC【解析】【分析】根据高斯函数的定义逐项检验即可,对于,直接求解即可,对于,取,检验可得反A B 1.1x =-例,对于,直接求解即可;对于,要求的值域,只需求时的C ()12f x f x ⎛⎫+= ⎪⎝⎭D ()f x 102x ≤<()f x 值域即可.【详解】对于A ,,故A 正确.()[]1.1 2.2 2.2 2.230.8f -=---=-+=对于,取,则,而,B 1.1x =-()1.10.8f -=()[]1.1 2.2 2.2 2.220.2f =-=-=故,所以函数不偶函数,故B 错误.()()1.1 1.1f f -≠-()f x 对于,则,故C 正确.C [][]()1212121212f x x x x x f x ⎛⎫+=+-+=+--= ⎪⎝⎭对于,由的判断可知,为周期函数,且周期为,D C ()f x 12要求的值域,只需求时的值域即可.()f x 102x ≤<()f x 当时,则,0x =()[]0000f =-=当时,,102x <<()[]()222020,1f x x x x x =-=-=∈故当时,则有,故函数的值域为,故错误.102x ≤<()01f x ≤<()f x [)0,1D 故选:A C.第II卷(非选择题共90分)三、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)13.【答案】6【解析】【分析】利用根式性质与对数运算进行化简.,5log 25426+=+=故答案为:614.【解析】【分析】由条件(1),若则.可知函数为上增函数;12,x x R ∀∈12x x >()()12f x f x >()f x R 由条件(2).可知函数可能为指数型函数.()()()121212,,x x R f x x f x f x ∀∈+=()f x 【详解】令,()2x f x =则为上增函数,满足条件(1).()2x f x =R 又()()()12121212122,222x x x x x x f x x f x f x +++==⨯=故()()()1212f x x f x f x +=即成立.()()()121212,,x x R f x x f x f x ∀∈+=故答案为:等均满足题意()()()(2,3,4x x x f x f x f x ===)15.【答案】1【解析】【分析】根据任意角三角函数的定义可得,再由展开3443sin ,cos ,sin ,cos 5555ααββ====()sin αβ+求解即可.【详解】以轴为始边作两个锐角,它们的终边分别与单位圆相交于两点,的纵坐标分别Ox ,αβ,P Q ,P Q 为34,55所以是锐角,可得,3sin ,5αα=4cos 5α=因为锐角的终边与单位圆相交于点,且纵坐标为,βQ 45所以是锐角,可得,4sin ,5ββ=3cos 5β=所以,()3344sin sin cos cos sin 15555αβαβαβ+=+=⨯+⨯=所以的终边与单位圆交点的纵坐标为1.αβ+故答案为:1.16.【答案】①.②.()32,354⎝⎭【解析】【分析】先画出分段函数的图像,依据图像得到之间的关系式以及之间的关系式,分别把()f x 12,x x 34,x x 和转化成只有一个自变量的代数式,再去求取值范围即可.1234x x x x +++1234x x x x 【详解】做出函数的图像如下:()2log ,042cos ,482x x f x x x π⎧<<⎪=⎨≤≤⎪⎩在单调递减:最小值在单调递增:最小值0,最大值2;()f x (]0,1()0;f x []1,4在上是部分余弦型曲线:最小值,最大值2.()f x []4,82-若方程有4个不同的解:,则()f x t =1234,,,x x x x 02t <<不妨设四个解依次增大,则12341145,784x x x x <<<<<<<<是方程的解,则,即;12,x x 2log (04)x t x =<<2122log log x x =-121x x =是方程的解,则由余弦型函数的对称性可知.34,x x ()2cos 482x t x π=≤≤3412x x +=故,()()212343433312636x x x x x x x x x ==-=--+由得即345x <<()233263635x <--+<12343235x x x x <<1234121111212x x x x x x x x +++=++=++当时,单调递减,1114x <<()112m x x x =++则1116514124x x <++<故答案为:①;②()32,354⎝⎭四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(1)解:;()()22log 33582lg 2lg243lg5lg22lg27lg5lg27162+--=+---=-+=-=(2)解:251013sincos tan 634πππ⎛⎫-+- ⎪⎝⎭sin 4cos 3tan 3634ππππππ⎛⎫⎛⎫⎛⎫=+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.11sin cos tan 1063422πππ=+-=+-=18.解:(1)集合,{}34A x x =-≤≤∣当时,或,4m ={}35,{3U B x x B x x =≤≤=<∣∣ 5}x >所以或;(){4U A B x x ⋃=≤∣ 5}x >(2)由题可知或,{3U A x x =<-∣ 4}x >由可得或,U B A ⊆ 13m +<-14m ->解得或,4m <-5m >故的取值范围为或.m {4mm <-∣5}m >19.(1)由图象可知,的最大值为2,最小值为,又,故,()f x 2-0A >2A =周期,则,452,,03123T πππππωω⎡⎤⎛⎫=--=∴=> ⎪⎢⎥⎝⎭⎣⎦2ω=从而,代入点,得,()()2sin 2f x x ϕ=+5,212π⎛⎫ ⎪⎝⎭5sin 16πϕ⎛⎫+= ⎪⎝⎭则,即,52,Z 62k k ππϕπ+=+∈2,Z 3k k πϕπ=-+∈又,则.2πϕ<3πϕ=-.()2sin 23f x x π⎛⎫∴=- ⎪⎝⎭(2)将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,()f x 故可得;2sin 3y x π⎛⎫=- ⎪⎝⎭再将所得图象向左平移个单位,得到函数的图象6π()g x 故可得;()2sin 6g x x π⎛⎫=- ⎪⎝⎭,5,,,sin 66366x x x ππππππ⎡⎤⎡⎤⎡⎤⎛⎫∈-∴-∈--∈⎢⎥ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭⎣⎦ 的值域为.()2sin 2,6x g x π⎛⎫⎡⎤-∈∴ ⎪⎣⎦⎝⎭2⎡⎤⎣⎦20.解(1)()()()()()sin cos sin cos 2cos tan sin 2f πααπαπααπααα-+-=+-⎛⎫- ⎪⎝⎭()sin cos sin cos cos cos tan ααααααα-=+⋅-,sin cos αα=+故;()sin cos f ααα=+(2)由,()1sin cos 5f ααα=+=平方可得,221sin 2sin cos cos 25αααα++=即.242sin cos 25αα⋅=-所以,12sin cos 25αα⋅=-因为,249(sin cos )12sin cos 25αααα-=-=又,所以,2πα-<<sin 0,cos 0αα<>所以,sin cos 0αα-<所以.7sin cos 5αα-=-21.解:(1)由已知,其定义域是.30003000,xy y x =∴=()6,500,()()()46210S x a x a x a=-+-=-,150026,332y a y a x +=∴=-=- ,其定义域是.()150015000210330306S x x x x ⎛⎫⎛⎫∴=-⋅-=-+ ⎪ ⎪⎝⎭⎝⎭()6,500(2),15000303063030303023002430S x x ⎛⎫=-+≤-=-⨯= ⎪⎝⎭当且仅当,即时,上述不等式等号成立,150006x x =()506,500x =∈此时,.max 50,60,2430x y S ===答:设计时,运动场地面积最大,最大值为2430平方米.50m,60m x y ==22.(1)证明:由函数,可得,()1lg 1x f x x -⎛⎫= ⎪+⎝⎭101x x ->+即,解得,故函数的定义域为,关于原点对称.101x x -<+11x -<<()1,1-再根据,可得是奇函数.()()11lg lg 11x x f x f x x x +-⎛⎫⎛⎫-==-=- ⎪ ⎪-+⎝⎭⎝⎭()f x (2)由(1)知,其定义域为.()1ln 1x f x x -=+()(),11,∞∞--⋃+.因为在上为增函数,()2ln 11f x x ⎛⎫=- ⎪+⎝⎭()211u x x =-+()1,∞+在上为增函数,当,时,()f x ()1,∞+[]3,5x ∈()ln2ln2ln3f x -≤≤-对任意都有成立,,即,[]3,5x ∈()3f x t >-ln23t ->-3ln2t <-的取值范围是.t (),3ln2∞--(3)由(2)知在上为增函数,()f x ()1,∞+又因为函数在上的值域为.()f x [],αβ11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以,且,0m >1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩所以1,121,12m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩则是方程的两实根,,αβ112x m mx x -=-+问题等价于放程在上有两个不等实根,211022m m mx x ⎛⎫--+-= ⎪⎝⎭()1,∞+令,对称轴()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭1124x m =-则,即解得.()2011124Δ14102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩0,20,522,9m m m m ⎧⎪>⎪⎪<<⎨⎪⎪><⎪⎩或209m <<。

高一年级数学试卷期末带参考答案

高一年级数学试卷期末带参考答案

高一年级数学试卷期末带参考答案作为知识分子,不应该也不会排斥团队协作和团队精神,但他在团队里,是有一个独立之人格,自由之思想的人。

下面给大家分享一些关于高一年级数学试卷期末带答案,希望对大家有所帮助。

一、选择题:(本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.)1.若直线x=1的倾斜角为α,则α=()A.0°B.45°C.90°D.不存在2.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台3.过点P(a,5)作圆(x+2)2+(y-1)2=4的切线,切线长为,则a等于()A.-1B.-2C.-3D.04.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.B.C.D.5.若直线与圆有公共点,则()A.B.C.D.6.若直线l1:ax+(1-a)y=3,与l2:(a-1)x+(2a+3)y=2互相垂直,则a的值为()A.-3B.1C.0或-D.1或-37.已知满足,则直线定点()A.B.C.D.8.各顶点都在一个球面上的正四棱柱(底面是正方形,侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A.32B.24C.20D.169.过点且在两坐标轴上截距的绝对值相等的直线有()A.1条B.2条C.3条D.4条10.直角梯形的一个内角为45°,下底长为上底长的,此梯形绕下底所在直线旋转一周所成的旋转体表面积为(5+)?,则旋转体的体积为()A.2?B.?C.?D.?11.将一张画有直角坐标系的图纸折叠一次,使得点与点B(4,0)重合.若此时点与点重合,则的值为()A.B.C.D.12.如图,动点在正方体的对角线上,过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是()选择题答题卡题号123456789101112答案二、填空题:(本大题共4小题,每小题4分,共16分。

2022-2023学年广东省深圳市(集团)高一年级上册学期期末考试数学试题【含答案】

2022-2023学年广东省深圳市(集团)高一年级上册学期期末考试数学试题【含答案】

2022-2023学年广东省深圳市(集团)高一上学期期末考试数学试题一、单选题1.命题:“,”的否定是( )0x ∀>2ln 20xx +>A .,B .,0x ∀>2ln 20xx +<0x ∀>2ln 20xx +≤C .,D .,0x ∃>2ln 20xx +≤0x ∃>2ln 20xx +<【答案】C【分析】根据含有一个量词的命题的否定形式,全称命题的否定是特称命题,可得答案.【详解】命题:“,”是全称命题,0x ∀>2ln 20xx +>它的否定是特称命题:,,0x ∃>2ln 20xx +≤故选:C2.已知集合,则( ){}121log ,,2,02x A y y x x B y y x ⎧⎫==>==<⎨⎬⎩⎭∣∣A B = A .B .102y y ⎧⎫<<⎨⎬⎩⎭∣{01}<<∣yy C .D .112yy ⎧⎫<<⎨⎬⎩⎭∣∅【答案】B【分析】根据指数函数、对数函数的单调性和值域求解.【详解】因为,所以,所以,12x >11221log log 12y x =<={}1A y y =<∣因为所以,且,0x <0221x y =<=20x>所以,{}1B y y =<<∣0所以.A B = {01}<<∣yy 故选:B.3.函数的图象大致是( )()()233ln x x f x x -=+A.B .C.D.【答案】C【分析】由题可得函数为偶函数,再利用,即得.102f ⎛⎫< ⎪⎝⎭【详解】∵,定义域为,()()233ln x x f x x -=+()(),00,∞-+∞ 又,()()()()()2233ln 33ln x x x x f x x x f x ---=+-==+∴函数为偶函数,故AD 错误;()()233ln x x f x x -=+又,故B 错误.211221133ln 220f -⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭<⎝故选:C.4.针对“台独”分裂势力和外部势力勾结的情况,为捍卫国家主权和领土完整,维护中华民族整体利益和两岸同胞切身利益,解放军组织多种战机巡航台湾.已知海面上的大气压强是,大760mmHg 气压强(单位:)和高度(单位:)之间的关系为(为自然对数的底数,P mmHg h m 760ehkP -=e 是常数),根据实验知高空处的大气压强是,则当歼20战机巡航高度为,k 500m 700mmHg 1000m 歼战机的巡航高度为时,歼20战机所受的大气压强是歼16D 战机所受的大气压强的16D 1500m ( )倍.A .B .C .D .0.670.921.091.5【答案】C【分析】根据题意分别列出指数等式即可求解.【详解】由题可知,,,10001760e k P -=15002760e kP -=则有,50012e kP P =又因为,所以,500700760e k-=500760e 1.09700k =≈故选:C.5.享有“数学王子”称号的德国数学家高斯,是近代数学奠基者之一,被称为“高斯函数”,[]y x =其中表示不超过的最大整数,例如:,设为函数[]R,x x ∈x ][][2.12,33, 1.52⎡⎤==-=-⎣⎦0x 的零点,则( )()lg 5f x x x =+-[]0x =A .3B .4C .5D .6【答案】B【分析】先根据零点存在定理确定出零点的位置,进而根据高斯函数的定义求得答案.【详解】因为函数在上单调递增,且,,()lg 5f x x x =+-()0,∞+()4lg 410f =-<()5lg 50f =>则存在唯一零点,使得,由高斯函数的定义可知,.()04,5x ∈()00f x =[]04x =故选:B.6.已知,则( )1sin 65πα⎛⎫-=⎪⎝⎭sin 26πα⎛⎫+= ⎪⎝⎭A .B .C .D .2325-2325725-725【答案】B【分析】利用换元法可得,结合诱导公式和二倍角的余弦公式计算即可.sin 2sin 262t ππα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭【详解】令,故,,6t πα=-1sin 5t =6tπα=-故.223sin 2sin 2cos 212sin 6225t t t ππα⎛⎫⎛⎫+=-==-=⎪ ⎪⎝⎭⎝⎭故选:B7.函数的部分图象如图所示.若,且()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭()12,0,2πx x ∈,则的值为( )()()12(0)f x f x a a ==<12x x +A .B .C .D .π32π34π38π3【答案】D【分析】根据函数的图象求出该函数的解析式,结合图象可知,点、()y f x =11ππ,66x f x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭关于直线对称,进而得出.22ππ,66x f x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭3π2x =12x x +【详解】由图象可知, ,即,则,311ππ3π4632T =-=2πT =2π1T ω==此时,,()()2sin f x x ϕ=+由于,,,ππ2sin 233f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭||2ϕπ<ππ32ϕ+=所以,即.π6ϕ=()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭,且,12,(0,2π)x x ∈()()12(0)f x f x a a ==<由图像可知,,12323662x x +++=⨯=ππππ则.128π3x x +=故选:D.8.已知定义在上的偶函数满足,当时,单调递增,则R ()f x ()()2f x f x -=-+20x -≤≤()f x ( )A .()37π1tan 2023log 242f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()37π1tan log 2023242f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()317πlog 2023tan 224f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()317πlog tan 2023224f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【答案】A【分析】由题意求出函数的周期,然后根据偶函数的性质判断出函数在[0,2]上的单调性,进而将自变量的取值转化到区间[0,2]上,利用放缩法判断出它们的大小关系,最后根据单调性求得答案.【详解】因为为偶函数,所以,()f x ()()f x f x -=又,所以,()(2)f x f x -=-+()(2)f x f x =-+所以,即是周期为4的函数,()()4f x f x =+()f x 则.(2023)(50641)(1)(1)f f f f =⨯-=-=因为,π7ππ4243<<所以,.7π1tan24<<()()3331log log 2log 22f f f ⎛⎫=-= ⎪⎝⎭30log 21<<因为为偶函数,且当时,单调递增,()f x 20x -≤≤()f x 所以当时,单调递减,故.02x ≤≤()f x 37π1tan (2023)log 242f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭故选:A.二、多选题9.下列函数中是偶函数,且在上为增函数的有( )()0,∞+A .B .C .D .cos y x =3y x=24y x =+2log y x=【答案】CD【分析】根据函数奇偶性和单调性的性质分别进行判断即可.【详解】解:对于A ,函数为偶函数,在上不单调,故A 错误;cos y x =()0,∞+对于B ,函数为奇函数,不正确;3y x =对于C ,是偶函数,且在上为增函数,正确;24y x =+()0,∞+对于D ,函数的定义域为,,函数为偶函数,当时,{|0}x x ≠()()22log log f x x x f x -=-==0x >为增函数,满足条件,2log y x=故选:CD .10.(多选)要得到函数的图象,只要将函数的图象( )sin(23y x π=+sin y x =A .每一点的横坐标扩大到原来的倍(纵坐标不变),再将所得图象向左平移个单位长度23πB .每一点的横坐标缩短到原来的 (纵坐标不变),再将所得图象向左平移个单位长度126πC .向左平移个单位长度,再将所得图象每一点的横坐标缩短到原来的 (纵坐标不变)3π12D .向左平移个单位长度,再将所得图象每一点的横坐标缩短到原来的 (纵坐标不变)6π12【答案】BC【分析】分别分析先伸缩后平移和先平移后伸缩两种情况下图像的变换.【详解】(1)先伸缩后平移时:每一点的横坐标缩短到原来的 (纵坐标不变),再将所得图象向左12平移个单位长度,所以A 选项错误,B 选项正确.6π(2)先平移后伸缩时:向左平移个单位长度,再将所得图象每一点的横坐标缩短到原来的 (纵3π12坐标不变),所以C 选项正确,D 选项错误.故选:BC.11.已知为锐角,角的终边上有一点,x 轴的正半轴和以坐标原点O 为圆心的θα()sin ,cos M θθ-单位圆的交点为N ,则( )A .若,则()0,2a π∈2παθ=+B .劣弧的长度为MN 2πθ+C .劣弧所对的扇形的面积为是MN OMN 2αD .sin sin 1αθ+>【答案】ABD【分析】根据题意,结合诱导公式化简整理,可判断A 的正误;根据弧长公式,可判断B 的正误;根据扇形面积公式,可判断C 的正误,根据同角三角函数的关系,可判断D 的正误,即可得答案.【详解】A :()sin ,cos cos ,sin cos ,sin 2222ππππθθθθπθπθ⎛⎫⎛⎫⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=---=---- ⎪⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎝⎭,故,故A 正确;cos ,sin 22ππθθ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2παθ=+B :劣弧的长度为,故B 正确;MN 1=22ππθθ⎛⎫+⨯+ ⎪⎝⎭C :只有当时,扇形的面积为,故C 不正确;02απ<<OMN 1122S αα=⨯⨯=D :,sin sin sin sin sin cos 2παθθθθθ⎛⎫+=++=+ ⎪⎝⎭∵为锐角,故.故D 正确.θ()222sin cos sin cos 2sin cos 1sin cos 1θθθθθθθθ+=++>⇒+>故选:ABD12.已知,则下列不等关系一定正确的是( )10a b >>>A .B .()log 2b ab <111a a +>+C .D .11a b b a->-3ln28b a ab>-【答案】ABD【分析】对,结合对数的运算性质和对数函数的单调性进行判断;A 对,根据基本不等式即可判断;B 对,取,代入计算即可判断.C 11,42b a ==对,原不等式等价于,进而构造函数,然后根据函数的单调性得D 32ln 32ln a ba b +>+2ln x y x =+到答案.【详解】对,因为,且,则,所以A log ()log log log 1b b b b ab a b a =+=+10a b >>>log log 1b b a b <=,故选项正确;log ()log 12b b ab a =+<A对,由题意,(此处等号不能成立),故选项正B 11111111a a a a +=++->-=++B 确;对,取,则,故选项错误;C 11,42b a ==1171174,22244a b b a -=-=--=-=-C 对,问题等价于,易知函数在上是D 33ln 3ln 222ln 32ln b a a b a b a b ->-⇔+>+2ln x y x =+()0,∞+增函数,而,则成立,故选项正确.30a b >>32ln 32ln a ba b +>+D 故选:.ABD 三、填空题13.__________.ln 224216log log e 39-+=【答案】1【分析】由对数换底公式以及对数恒等式、对数运算法则进行计算求得结果.【详解】.ln 224222221624231log log e log log 2log 2log 21213933342⎛⎫⎪-+=-+=⨯+=+=-+⎝=⎭故答案为:1.14.函数的图象恒过定点P ,P 在幂函数的图象上,则___________.()log 238a y x =-+()f x ()4f =【答案】64【分析】由题意可求得点,求出幂函数的解析式,从而求得.()2,8P ()f x ()4f 【详解】令,则,故点;2x =8y =()2,8P 设幂函数,()bf x x =则,28b=则;3b =故;()464f =故答案为:64.15__________.1cos80-=【答案】4-【分析】先用诱导公式转化,再对已知分式进行通分,分子化成一个三角函数,再cos8010sin =使用二倍角公式即可得到结果.【详解】.()sin sin sin 210301122041cos801010cos1sin s 22in 00--====-=故答案为:.4-四、双空题16.已知函数,则的最小正周期为__________,不等式的()()1cos cos 2f x x x =+()f x ()()12f f x >解集为__________.【答案】 2πR【分析】根据题意作出函数图象,根据函数图象即可求解.【详解】由题意可知:当时,函数;cos 0x ≥()cos f x x =当时,函数,作出函数图象,如图所示:cos 0x <()0f x=结合图形可知:函数的最小正周期为;()f x 2π令,所以,(),[0,1]f x t t =∈()()[]1cos cos cos cos1,12f t t t t =+=∈因为函数在上单调递减,所以,()f t π[0,3π1()cos1cos 32f t ≥>=则不等式的解集为,()()12f f x >R 故答案为:;.2πR 五、解答题17.已知.()()()πcos sin 2tan πf θθθθ⎛⎫+⋅- ⎪⎝⎭=+(1)化简,并求的值;()f θπ3f ⎛⎫ ⎪⎝⎭(2)若,且,求的值.()0,πθ∈()1225f θ=-cos sin θθ-【答案】(1)()sin cos f θθθ=(2)75-【分析】(1)先根据诱导公对进行化简,再将代入进算出结果即可;()f θπ3(2)将代入可求,根据的正负及,可判断正负,从而判断θsin cos θθsin cos θθ()0,πθ∈sin ,cos θθ正负,对平方再开方,代入即可得所求.cos sin θθ-cos sin θθ-sin cos θθ【详解】(1)解:由题知()()()πcos sin 2tan πf θθθθ⎛⎫+⋅- ⎪⎝⎭=+()sin sin tan θθθ-⋅-=,sin cos θθ=;πππsin cos 333f ⎛⎫∴=⋅=⎪⎝⎭(2),,()1225f θ=-()0,πθ∈,且,12sin cos 25θθ∴=-sin 0,cos 0θθ><cos sin 0θθ∴-<cos sin θθ∴-===,75=-故.7cos sin 5θθ-=-18.在①,②,③这三个条件中任选一个,补充到下面的问题中,()A B A=R A B ⋂=∅A B A = 并求解下列问题:已知集合,若__________,求实数的取值范围.{}11123,14A x a x a B x x ⎧⎫=-≤≤+=<-⎨⎬-⎩⎭∣∣a 【答案】答案见解析【分析】根据所选的条件,①可以推出是的子集;②,两个集合没有()A B A=R A B R A B ⋂=∅公共元素;③可以推出.利用集合的交集、补集、并集的定义,对a 进行分类讨论,A B A = A B ⊆分别求解即可.【详解】解:由解得,所以,.1114x <--74x -<<()7,4B =-若选择①:,则是的子集,,()A B A=R A B R {}123A x a x a =-≤≤+∣,][(),74,B =-∞-⋃+∞R 当,即时,,满足题意;123a a ->+4a <-A =∅当时,或,解得,4a ≥-4237a a ≥-⎧⎨+≤-⎩414a a ≥-⎧⎨-≥⎩5a ≥综上可得,实数的取值范围是.a ()[),45,∞∞--⋃+若选择②:,A B ⋂=∅当时,即,即时,满足题意;A =∅123a a ->+4a <-当时,或,解得.4a ≥-4237a a ≥-⎧⎨+≤-⎩414a a ≥-⎧⎨-≥⎩5a ≥综上可知,实数的取值范围是.a ()[),45,∞∞--⋃+若选择③:,则,A B A = A B ⊆当,即时,,满足题意;123a a ->+4a <-A =∅当时,,解得;4a ≥-17234a a ->-⎧⎨+<⎩142a -≤<综上可知,实数的取值范围是.a 1,2⎛⎫-∞ ⎪⎝⎭19.已知函数(且).()()()log log a a f x x a a x =++-0a >1a ≠(1)判断函的奇偶性,并说明理由;()f x (2)若,且,求的取值范围.3a =()()1f x f x >-x 【答案】(1)偶函数,理由见解析(2)12,2⎛⎫- ⎪⎝⎭【分析】(1)利用奇偶性的定义直接判断;(2)先判断出函数在上的单调性,利用单调性解不等式即可.()f x [)0,3【详解】(1)函数的定义域为.()()()log log a a f x x a a x =++-(),a a -因为,所以,()()()log log a a f x x a a x -=-+++()()f x f x -=所以函数为偶函数.()f x (2)当时,定义域为,所以有:.①.3a =()()()log 3log 3a a f x x x =++-()3,3-33x -<<⋯⋯②.313x -<-<⋯⋯由①知函数为偶函数,所以可化为:.()f x ()()1f x f x >-()()1f x f x >-()()()()2333log 3log 3log 9f x x x x =++-=-因为为增函数,在上递减,3log y t =29t x =-[)0,3所以函数在上递减,所以.③.()f x [)0,31x x <-⋯由①②③解得:的取值范围为.x 12,2⎛⎫- ⎪⎝⎭20.设函数(ω>0),且图象的一个对称中心到最近2()sin cos f x x x x ωωω-()y f x =的对称轴的距离为.4π(1)求在上的单调区间;()f x [,0]2π-(2)若,且,求sin2x 0的值.03()5f x =0[0,]3x π∈【答案】(1)单调增区间为,单调减区间为;[,212ππ--[,0]12π-.【分析】(1)化简得到,结合条件求出,再利用余弦函数的性质即得;()f x ()πcos 26f x x ω⎛⎫=+ ⎪⎝⎭ω(2)由题可得,,再利用差角公式即求.0π3cos 265x ⎛⎫+= ⎪⎝⎭0π4sin 265x ⎛⎫+= ⎪⎝⎭【详解】(1)∵()2sin cos f x x x x ωωω=-1cos 21sin 222x x ωω-=-,1π2sin 2cos 226x x x ωωω⎛⎫=-=+ ⎪⎝⎭因为图象的一个对称中心到最近的对称轴的距离为,π4又,所以,因此,0ω>2ππ424ω=⨯1ω=∴,()πcos 26f x x ⎛⎫=+ ⎪⎝⎭当时,,[,0]2x π∈-π5π2[,]666x π+∈-∴由,得,函数单调递增,52[,0]66x ππ+∈-[,]212x ππ∈--由,得,函数单调递减,2[0,]66x ππ+∈[,0]12x π∈-所以函数单调增区间为,单调减区间为.()f x [,]212ππ--[,0]12π-(2)∵,且, 03()5f x =0[0,]3x π∈∴,0π3cos 265x ⎛⎫+= ⎪⎝⎭又,0ππ5π2,666x ⎡⎤+∈⎢⎥⎣⎦∴,0π4sin 265x ⎛⎫+= ⎪⎝⎭∴00001sin 2sin 22cos 266626x x x x ππππ⎛⎫⎛⎫⎛⎫=+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.413525=-⨯=21.目前全球新冠疫情严重,核酸检测结果成为是否感染新型冠状病毒的重要依据,某核酸检测机构,为了快速及时地进行核酸检测,花费36万元购进核酸检测设备.若该设备预计从第1个月到第个月的检测费用和设备维护费用总计为万元,该设备每月检测收入为20万元.n ()*n ∈N ()25n n +(1)该设备投入使用后,从第几个月开始盈利?(即总收入减去成本及所有支出费用之差为正值);(2)若该设备使用若干月后,处理方案有两种:①月平均盈利达到最大值时,以20万元的价格卖出;②盈利总额达到最大值时,以16万元的价格卖出.哪一种方案较为合算?请说明理由.【答案】(1)第4个月开始盈利(2)方案①较为合算,理由见解析【分析】(1)求出利润表达式然后解不等式可得答案;(2)分别计算出两种方案的利润比较可得答案.【详解】(1)由题意得,即,()2203650n n n --+>215360n n -+<解得,∴.312n <<()*3n n >∈N ∴该设备从第4个月开始盈利.(2)该设备若干月后,处理方案有两种:①当月平均盈利达到最大值时,以20万元的价格卖出,.()22036536153n n n n n n --+⎛⎫=-+≤ ⎪⎝⎭当且仅当时,取等号,月平均盈利达到最大,6n =∴方案①的利润为:(万元).()2063636302038⨯--++=②当盈利总额达到最大值时,以16万元的价格卖出.,()222158120365153624y n n n n n n ⎛⎫=--+=-+-=--+ ⎪⎝⎭∴或时,盈利总额最大,7n =8n =∴方案②的利润为20+16=36(万元),∵38>36,∴方案①较为合算.22.已知函数,,与互为反函数.()2x f x =()245h x x x m =-+()x ϕ()f x (1)求的解析式;()x ϕ(2)若函数在区间内有最小值,求实数m 的取值范围;()()y h x ϕ=()32,2m m -+(3)若函数,关于方程有三个不同的实数解,求实()()401x g x x x ϕ⎛⎫=> ⎪+⎝⎭()()230g x a g x a ⎡⎤+++=⎣⎦数a 的取值范围.【答案】(1)()()2log 0x x x ϕ=>(2)44,53m ⎛⎫∈ ⎪⎝⎭(3)73,3⎛⎤-- ⎥⎝⎦【分析】(1)根据指数函数的反函数为同底数的对数函数,即得;(2)根据题意,利用对数函数和二次函数的性质及复合函数的单调性即可得到函数关于的不等m 式组,求解即得;(3)先利用对数函数和分式函数的单调性知识,结合复合函数的单调性得到函数g (x )的单调性和零点及图象,进而得到的图象,将方程有三个不同的实数解,()y g x =()()230g x a g x a ⎡⎤+++=⎣⎦转化为则有两个根,且一个在上,一个根为0;或有两个根,230t at a +++=()0,2230t at a +++=且一个在上,一个在上.进而利用二次方程根的分布思想分析讨论确定实数a 的取值范()0,2[)2,+∞围.【详解】(1)指数函数的反函数为同底数的对数函数,∴.()2x f x =()()2log 0x x x ϕ=>(2)函数在区间内有最小值,()()()22log 45y h x x x m ϕ==-+()32,2m m -+∴在内先减后增,且,()245h x x x m =-+()32,2m m -+()min 0h x >∴,∴.4032223(2)54045m m m h m m ⎧<<⎪-<<+⎧⎪⇒⎨⎨-=->⎩⎪>⎪⎩44,53m ⎛⎫∈ ⎪⎝⎭(3)∵,∴,∴,0x >()4440,411x x x =-∈++()2g x <∵g (x )在时单调递增,且g =0,2441log x ⎛⎫=- ⎪+⎝⎭0x >13⎛⎫ ⎪⎝⎭∴的图象如下:()y g x =因为有三个不同的实数解,()()230g x a g x a +++=设,由的图象可得当或时对于一个确定的的值,对应一个的值,对()g x t =()y g x =0t =2t ≥t x 于的每一个确定的的值,对应两个不同的实数根.02t <<t x 则有两个根,且一个在上,一个根为0;230t at a +++=()0,2或有两个根,且一个在上,一个在上.230t at a +++=()0,2[)2,+∞①有两个根,且一个在上,一个根为0,230t at a +++=()0,2∴一个根为0,解得,此时,3a =-22330t at a t t +++=-=另一根,舍去;()30,2t =∉②有两个根,且一个在上,一个在上,230t at a +++=()0,2[)2,+∞令,()23k t t at a =+++(ⅰ)当一个根在上,一个在上,()0,2()2,+∞则∴∴.()()00,20.k k ⎧>⎪⎨<⎪⎩3,7,3a a >-⎧⎪⎨<-⎪⎩733a -<<-(ⅱ)当一个根在上,一个根为2,则,解得.()0,2()20k =73a =-此时的两根为,,满足题意.272033t t -+=()110,23t =∈22t =综上,a 的取值范围为.73,3⎛⎤-- ⎥⎝⎦【点睛】本题关键难点在于(3)中,结合的图象,将已知方程有三个实数根的条件转化()y g x =为二次方程的根的分布问题(利用数形结合思想求解),易错点是有两个根,且一230t at a +++=个在上,一个在上的情况,要注意分两种情况讨论.()0,2[)2,+∞。

2022-2023学年湖南省衡阳市雁峰区名校高一年级上册学期期末考试数学试卷【含答案】

2022-2023学年湖南省衡阳市雁峰区名校高一年级上册学期期末考试数学试卷【含答案】

衡阳市雁峰区名校2022-2023学年高一上学期期末考试数 学考试时间:120分钟 试卷满分:150分一、单选题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.与角终边相同的角是()20-︒A .B .C .D .300-︒280-︒320︒340︒2.不等式的解集是()2320x x --≥A .B .C .D .213x x ⎧⎫-≤≤⎨⎬⎩⎭213x x ⎧⎫-≤≤⎨⎬⎩⎭213x x x ⎧⎫≤-≥⎨⎬⎩⎭或213x x x ⎧⎫≤-≥⎨⎬⎩⎭或3.“”是“”的()1x >11x <A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数的零点所在的一个区间是()()152xf x x ⎛⎫=-- ⎪⎝⎭A .B .C .D .()3,2--()2,1--()1,0-()0,15.已知指数函数,将函数的图象上的每个点的横坐标不变,纵坐标扩大()xf x a =()f x 为原来的倍,得到函数的图象,再将的图象向右平移个单位长度,所得图象()g x ()g x 2恰好与函数的图象重合,则a 的值是()()f xA .B .CD .32236.函数(,)的部分图象如图所示,则 ()()()2sin f x x ωϕ=+0ω>2πϕ<()f π=A .B .CD 7.已知函数在上单调递减,则实数的取值范围1()ax f x x a -=-(2,)+∞a 是()A .,,B .(-∞1)(1-⋃)∞+(1,1)-C .,,D .,,(-∞1)(1-⋃2](-∞1)(1-⋃2)8.已知,,,则a ,b ,c 的大小关系为()2022a=2223b =c a b =A .B .C .D .c a b >>b a c >>a c b >>a b c>>二、多选题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得2分,有选错的得0分)9.下列说法中正确的是( )A .若a >b ,则B .若-2<a <3,1<b <2,则-3<a -b <12211a bc c >++C .若a >b >0,m >0,则D .若a >b ,c >d ,则ac >bd m m a b <10.下列各式中,值为的是( )12A .B .C .D5πsin62sin 45122-21011.已知函数,,则( )()1212xxf x -=+())lg g x x =-A .函数为偶函数B .函数为奇函数()f x ()g x C .函数在区间上的最大值与最小值之和为0()()()F x f x g x =+[]1,1-D .设,则的解集为()()()F x f x g x =+()()210F a F a +--<()1,+∞12.已知函数,则( )()sin 24f x x π⎛⎫=+ ⎪⎝⎭A .函数的最小正周期为|()|y f x =πB .直线是图象的一条对称轴58x π=()y f x =C.是图象的一个对称中心3(,0)8π()y f x =D .若时,在区间上单调,则的取值范围是或0ω>()f x ω,2ππ⎡⎤⎢⎥⎣⎦ω10,8⎛⎤⎥⎝⎦15,48⎡⎤⎢⎥⎣⎦3、填空题(本大题共4小题,每小题5分,共20分. 把答案填在答题卡中的横线上)13.若函数的最小正周期是,则的取值可以是______.(写()()tan()03f x x πωω=+≠2πω出一个即可).14.已知函数,若,则_____________.()sin 1f x a x bx =++()12f -=()1f =15. 已知:{} ,max , .a ab a b b a b ≥⎧=⎨<⎩设函数,若关于的方程有三个不相等的实数解,(){}1max 2,42x f x x -=--x ()f x t=则实数的取值范围是.16.设函数,若对于任意实数,在区间上()()()2sin 10f x x ωϕω=+->ϕ()f x 3,44ππ⎡⎤⎢⎥⎣⎦至少有2个零点,至多有3个零点,则的取值范围是ω四、解答题(本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知f (α)=.2sin ()cos(2)tan()sin()tan(3)παπαπαπααπ-⋅-⋅-+-+⋅-+(1)化简f (α);(2)若α=,求f (α)的值.313π-18.(本小题满分12分)已知集合A ={x ∈R |≥},集合B ={x ∈R |(x ﹣1)(x ﹣a )<0}.a ∈R 22log x 2log 2x ()(1)求集合A ;(2)若B ⊆∁R A ,求a 的取值范围.19.(本小题满分12分)已知函数,,且该函数的图象经过点,.()bf x ax x =+,a b R ∈()1,0-32,2⎛⎫ ⎪⎝⎭(1)求a ,b 的值;(2)已知直线与x 轴交于点T ,且与函数的图像只有一个公共点.求()1y kx m k =+≠()f x 的最大值.(其中O 为坐标原点)OT20.(本小题满分12分)比亚迪是我国乃至全世界新能源电动车的排头兵,新能源电动车汽车主要采用电能作为动力来源,目前比较常见的主要有两种:混合动力汽车、纯电动汽车.有关部门在国道上对比亚迪某型号纯电动汽车进行测试,国道限速.经数次测试,得到该纯电动汽车60km/h 每小时耗电量(单位:)与速度(单位:)的数据如下表所示:Q wh x km/hx0104060Q142044806720为了描述该纯电动汽车国道上行驶时每小时耗电量与速度的关系,现有以下三种函数Q x 模型供选择:①;②;.3211()250Q x x x cx =-+22()13xQ x ⎛⎫=- ⎪⎝⎭3()300log aQ x x b =+(1)当时,请选出你认为最符合表格中所列数据的函数模型(不需要说明理由),060x ≤≤并求出相应的函数表达式;(2)现有一辆同型号纯电动汽车从衡阳行驶到长沙,其中,国道上行驶,高速上行驶50km .假设该电动汽车在国道和高速上均做匀速运动,国道上每小时的耗电量与速度300km Q 的关系满足(1)中的函数表达式;高速路上车速(单位:)满足,x x km/h [80,120]x ∈且每小时耗电量(单位:)与速度(单位:)的关系满足N wh x km/h ).则当国道和高速上的车速分别为多少时,该车辆的2()210200(80120)N x x x x =-+≤≤总耗电量最少,最少总耗电量为多少?21.(本小题满分12分)已知,.sin cos x x t +=t ⎡∈⎣(1)当且是第四象限角时,求的值;12t =x 33sin cos x x -(2)若关于的方程有实数根,求的取值范围.(x ()sin cos sin cos 1x x a x x -++=a )()3322()a b a b a ab b -=-++22.(本小题满分12分)已知函数的定义域为,若存在实数,使得对于任意都存在满足()f x D a 1x D ∈2x D ∈,则称函数为“自均值函数”,其中称为的“自均值数”.()122x f x a +=()f x a ()f x (1)判断函数是否为“自均值函数”,并说明理由:()2x f x =(2)若函数,为“自均值函数”,求的取值范围;()sin()(0)6g x x πωω=+>[0,1]x ∈ω(3)若函数,有且仅有1个“自均值数”,求实数的值.2()23h x tx x =++[0,2]x ∈衡阳市雁峰区名校2022-2023学年高一上学期期末考试数 学参考答案:1.D【分析】由终边相同的角的性质即可求解.【详解】因为与角终边相同的角是,,20-︒20360k -︒+︒Z k ∈当时,这个角为,1k =340︒只有选项D 满足,其他选项不满足.Z k ∈故选:D.2.C【分析】利用一元二次不等式的解法求解即可.【详解】解:232(32)(1)0x x x x --=+-≥解得:.213x x ≤-≥或故选:C.3.A【分析】首先解分式不等式,再根据充分条件、必要条件的定义判断即可.【详解】解:因为,所以,,,11x <10xx -<(1)0x x ∴-<(1)0x x ∴->或,0x ∴<1x >当时,或一定成立,所以“”是“”的充分条件;1x >0x <1x >1x >11x <当或时,不一定成立,所以“”是“”的不必要条件.0x <1x >1x >1x >11x <所以“”是“”的充分不必要条件.1x >11x <故选:A 4.B【分析】由零点的存在性定理求解即可【详解】∵,,()360f -=>()210f -=>,,()120f -=-<()040f =-<根据零点的存在性定理知,函数的零点所在区间为.()f x ()2,1--故选:B 5.D【分析】根据函数图象变换求出变换后的函数解析式,结合已知条件可得出关于实数的a 等式,进而可求得实数的值.a 【详解】由题意可得,再将的图象向右平移个单位长度,得到函数()3xg x a =()g x 2,()23x f x a -=又因为,所以,,整理可得,()xf x a =23x x a a -=23a =因为且,解得0a >1a ≠a =故选:D.6.A【解析】由函数的部分图像得到函数的最小正周期,求出,代入求出()f x ()f x ω5,212π⎛⎫⎪⎝⎭值,则函数的解析式可求,取可得的值.ϕ()f x x π=()f π【详解】由图像可得函数的最小正周期为,则.()f x 521212T πππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦22T πω==又,则,5552sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5sin 16⎛⎫+= ⎪⎝⎭πϕ则,,则,,5262k ϕπ=π+π+Z k ∈23k πϕπ=-Z k ∈,则,,则,22ππϕ-<<0k =3πϕ=-()2sin 23f x x π⎛⎫=- ⎪⎝⎭()2sin 22sin 33f ππππ⎛⎫∴=-=-= ⎪⎝⎭故选:A.【点睛】方法点睛:根据三角函数的部分图像()()sin 0,0,2f x A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭求函数解析式的方法:(1)求、,;A ()()max min:2f x f x b A -=()()max min2f x f x b +=(2)求出函数的最小正周期,进而得出;T 2T πω=(3)取特殊点代入函数可求得的值.ϕ7.C【分析】先用分离常数法得到,由单调性列不等式组,求出实数的取值范21()a f x a x a -=+-a 围.【详解】解:根据题意,函数,221()11()ax a x a a a f x ax a x a x a --+--===+---若在区间上单调递减,必有,()f x (2,)+∞2102a a ⎧->⎨⎩ 解可得:或,即的取值范围为,,,1a <-12a < a (-∞1)(1-⋃2]故选:C .8.D【详解】分别对,,两边取对数,得,,2022a =2223b =c a b =20log 22a =22log 23b =.log a c b =.()22022lg 22lg 20lg 23lg 22lg 23log 22log 23lg 20lg 22lg 20lg 22a b -⋅-=-=-=⋅由基本不等式,得:,()222222lg 20lg 23lg 460lg 484lg 22lg 20lg 23lg 222222⎛⎫+⎛⎫⎛⎫⎛⎫⋅<=<==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以,()2lg 22lg 20lg 230-⋅>即,所以.0a b ->1a b >>又,所以.log log 1a a c b a =<=a b c >>故选:D .9.AC【分析】利用不等式的性质对各选项逐一分析并判断作答.【详解】对于A ,因c 2+1>0,于是有>0,而a >b ,由不等式性质得,A 211c +2211a bc c >++正确;对于B ,因为1<b <2,所以-2<-b <-1,同向不等式相加得-4<a -b <2,B 错误;对于C ,因为a >b >0,所以,又因为m >0,所以,C 正确;11a b <m m a b <对于D ,且,而,即ac >bd 不一定成立,D 错误.12->-23->-(1)(2)(2)(3)-⋅-<--故选:AC10.ABD【分析】利用诱导公式、指数幂的运算以及特殊角的三角函数值计算各选项中代数式的值,可得出合适的选项.【详解】对于A 选项,;5πππ1sinsin πsin 6662⎛⎫=-==⎪⎝⎭对于B 选项,;221sin 452==对于C 选项,122-==对于D.()121018030302=+=== 故选:ABD.11.BCD【分析】根据题意,利用奇偶性,单调性,依次分析选项是否正确,即可得到答案【详解】对于A :,定义域为,,()1212x x f x -=+R ()()12121212x xx xf x f x -----==-=-++则为奇函数,故A 错误;()f x 对于B :,定义域为,())lgg x x=R ,()()))()lglgg x x x g x -=-=-=-则为奇函数,故B 正确;()g x 对于C :,,都为奇函数,()()()F x f x g x =+()f x ()g x 则为奇函数,()()()F x f x g x =+在区间上的最大值与最小值互为相反数,()()()F x f x g x =+[]1,1-必有在区间上的最大值与最小值之和为0,故C 正确;()F x []1,1-对于D :,则在上为减函数,()1221221122121x x x x xf x ⎛⎫-+-==-=- ⎪+++⎝⎭()f x R在上为减函数,())lg g x x ==()g x R 则在上为减函数,()()()F x f x g x =+R 若即,()()210F a F a +--<()()21F a F a <+则必有,解得,21a a >+1a >即的解集为,故D 正确;()()210F a F a +--<()1,+∞故选:BCD 12.BCD【详解】因为函数的最小正周期为,()sin 24f x x π⎛⎫=+ ⎪⎝⎭22T ππ==而函数周期为,故A 错误;|()|y f x =2π当时,,58x π=553()sin 2sin(18842f ππππ⎛⎫=⨯+==- ⎪⎝⎭所以直线是图象的一条对称轴,故B 正确;58x π=()y f x =故C 正确38x π=33()sin 2sin()0884f ππππ⎛⎫=⨯+== ⎪⎝⎭时,在区间上单调,0ω>()sin(24f x x πωω=+,2ππ⎡⎤⎢⎥⎣⎦即,2,2444x πππωωπωπ⎡⎤+∈++⎢⎥⎣⎦所以或04242πωπππωπ⎧+>⎪⎪⎨⎪+≤⎪⎩423242ππωπππωπ⎧+≥⎪⎪⎨⎪+≤⎪⎩解得或,故D 正确.108ω<≤1548ω≤≤故选:BCD.【点睛】(1)应用公式时注意方程思想的应用,对于sinα+cosα,sinα-cosα,sinαcosα这三个式子,利用(sinα±cosα)2=1±2sinαcosα可以知一求二.(2)关于sinα,cosα的齐次式,往往化为关于tanα的式子.13.2或-2 (写一个即可)14. 015.24t <<【分析】根据函数新定义求出函数解析式,画出函数的图象,利用转化的思想将()f x ()f x 方程的根转化为函数图象的交点,根据数形结合的思想即可得出t 的范围.【详解】由题意知,令,解得,1242x x -=--20x x x ==,根据,得,{}max a a ba b b a b ≥⎧=⎨<⎩,,,121220()4202x x x f x x x x x x--⎧≤⎪=--<<⎨⎪≥⎩,,,作出函数的图象如图所示,()f x 由方程有3个不等的根,()0f x t -=得函数图象与直线有3个不同的交点,()y f x =y t =由图象可得,当时函数图象与直线有3个不同的交点,24t <<()y f x =y t =所以t 的取值范围为.24t <<故答案为:24t <<16.:.1643ω≤<【分析】,只需要研究的根的情况,借助于和的图像,根t x ωϕ=+1sin 2t =sin y t =12y =据交点情况,列不等式组,解出的取值范围.ω【详解】令,则()0f x =()1sin 2x ωϕ+=令,则t x ωϕ=+1sin 2t =则问题转化为在区间上至少有两个,至少有三个t ,使得,sin y t =3,44ππωϕωϕ⎡⎤++⎢⎥⎣⎦1sin 2t =求的取值范围.ω作出和的图像,观察交点个数,sin y t =12y =可知使得的最短区间长度为2π,最长长度为,1sin 2t =223ππ+由题意列不等式的:3222443πππωϕωϕππ⎛⎫⎛⎫≤+-+<+ ⎪ ⎪⎝⎭⎝⎭解得:.1643ω≤<【点睛】研究y =Asin (ωx +φ)+B 的性质通常用换元法(令),转化为研究t x ωϕ=+的图像和性质较为方便.sin y t =17、解:(1)f (a )===sin α•cos α…5分(2)∵α=﹣=﹣6×,∴f (﹣)=cos (﹣)sin (﹣)=cos (﹣6×)sin (﹣6×)=cossin==﹣…10分18、解:(1)根据题意,集合A ={x ∈R |2log 2x ≥log 2(2x )},即,则,得x ≥2,则集合A ={x ∈R |x ≥2},(2)∁R A ={x ∈R |x <2},又集合B ={x ∈R |(x ﹣1)(x ﹣a )<0},①当a =1时,(x ﹣1)2<0,则无解,故B =∅,满足B ⊆∁R A ,②当a >1时,由(x ﹣1)(x ﹣a )<0,得1<x <a ,若B ⊆∁R A ,则a ≤2,得1<a ≤2,③当a <1时,由(x ﹣1)(x ﹣a )<0,得a <x <1,显然满足B ⊆∁R A ,综上所述,a 的取值范围是(﹣∞,2].19.(Ⅰ); (Ⅱ)1.11a b =⎧⎨=-⎩【分析】(Ⅰ)根据已知点的坐标,利用函数的解析式,得到关于的方程组,求解即得;,a b (Ⅱ)设,则直线方程可以写成, 与函数(),0T t ()1y kx m k =+≠()y k x t =-联立,消去,利用判别式求得,利用二次函数的性质求得()1y f x x x ==-y 22114t k k ⎛⎫=- ⎪⎝⎭取得最大值1,进而得到的最大值.2t OT 【详解】(Ⅰ)由已知得,解得;03222a b b a --=⎧⎪⎨+=⎪⎩11a b =⎧⎨=-⎩(Ⅱ)设,则直线方程可以写成,与函数(),0T t ()1y kx m k =+≠()y k x t =-联立,消去,并整理得()1y f x x x ==-y ()2110k x ktx --+=由已知得判别式,()22410k t k --=22114,t k k ⎛⎫=- ⎪⎝⎭当时,取得最大值1,所以.112k =2t maxmax 1OT t ==20.【分析】(1)利用表格中数据进行排除即可得解;(2)在分段函数中分别利用均值不等式和二次函数求出最值即可得解.【详解】(1)解:对于③,当时,它无意义,故不符合题意,3()300log a Q x x b =+0x =对于②,当时,,又,22()13xQ x ⎛⎫=- ⎪⎝⎭10x =1022(10)13Q ⎛⎫=- ⎪⎝⎭100122033<⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝=⎭所以,故不符合题意,故选①,1022(10)113Q ⎛⎫=-< ⎪⎝⎭3211()250Q x x x cx=-+由表中的数据可得,,解得3211021010142050c ⨯-⨯+⨯=160c =∴.(不需要说明理由,写对解析式即可)321()216050Q x x x x =-+(2)解:高速上行驶,所用时间为,300km 300hx 则所耗电量为,()2300300100()()2102006003000f x N x x x x x x x ⎛⎫=⋅=⋅-+=+- ⎪⎝⎭由对勾函数的性质可知,在上单调递增,()f x [80,120]∴,min 100()(80)60080300045750wh80f x f ⎛⎫==⨯+-= ⎪⎝⎭国道上行驶,所用时间为,50km 50hx 则所耗电量为,32250501()()2160100800050g x Q x x x x x x x x ⎛⎫=⋅=⋅-+=-+ ⎪⎝⎭∵,∴当时,,060x ≤≤50x =min ()(50)5500wh g x g ==∴当这辆车在高速上的行驶速度为,在国道上的行驶速度为时,80km/h 50km/h 该车从衡阳行驶到长沙的总耗电量最少,最少为.45750550051250wh +=21.(1)(2)[)1,+∞【分析】(1)由同角三角函数的平方关系求出、的值,再结合立方差sin cos x x sin cos x x -公式可求得所求代数式的值;(2)由已知可得出,,分、211022t at -+-=t ⎡∈⎣0=t 0t <≤时直接验证即可,在时,由参变量分离法可得出,结合基本不0=t 0t <≤112a t t ⎛⎫=+ ⎪⎝⎭等式可求得实数的取值范围,综合可得结果.a 【详解】(1)解:因为,即,则,12t =1sin cos 2x x +=()21sin cos 12sin cos 4x x x x +=+=即,3sin cos 8x x =-所以.()27sin cos 12sin cos 4x x x x -=-=因为是第四象限角,则,,所以,所以x sin 0x <cos 0x >sin cos 0x x -<sin cos x x -=所以()()33223sin cos sin cos sin sin cos cos 18x x x x x x x x ⎛⎫-=-++=-= ⎪⎝⎭(2)解:由,可得,()2sin cos 12sin cos x x x x+=+()21sin cos 12x x t =-则方程可化为,.()sin cos sin cos 1x x a x x -++=211022t at -+-=t ⎡∈⎣①当时,,显然方程无解;0=t 12-≠②当时,方程等价于.0t ≠211022t at -+-=112at t ⎛⎫=+ ⎪⎝⎭当,当且仅当时,等号成立,0t <≤111122t t ⎛⎫+≥⨯= ⎪⎝⎭1t =又,10,t t t →+→+∞故,1112a t t ⎛⎫=+≥ ⎪⎝⎭所以要使得关于的方程有实数根,则.x sin cos (sin cos )1x x a x x -++=1a ≥故的取值范围是.a [)1,+∞22.(1)不是,理由见解析;(2);5[,)6π+∞(3).12-【分析】(1)假定函数是 “自均值函数”,由函数的值域与函数的值()2xf x =2()f x 12y a x =-域关系判断作答.(2)根据给定定义可得函数在上的值域包含函数在上的值域,由此2()g x [0,1]12y a x =-[0,1]推理计算作答.(3)根据给定定义可得函数在上的值域包含函数在上的值域,再借2()h x [0,2]12y a x =-[0,2]助a 值的唯一性即可推理计算作答.(1)假定函数是 “自均值函数”,显然定义域为R ,则存在,对于,()2x f x =()2xf x =R a ∈1x ∀∈R 存在,有,2R x ∈2122x x a+=即,依题意,函数在R 上的值域应包含函数在R 上的值2122x a x =-22()2x f x =12y a x =-域,而当时,值域是,当时,的值域是R ,显然不2R x ∈2()f x (0,)+∞1R x ∈12y a x =-(0,)+∞包含R ,所以函数不是 “自均值函数”.()2xf x =(2)依题意,存在,对于,存在,有,即R a ∈1[0,1]x ∀∈2[0,1]x ∈12()2x g x a +=,21sin()26x a x πω+=-当时,的值域是,因此在的值域1[0,1]x ∈12y a x =-[21,2]a a -22()sin(6g x x πω=+2[0,1]x ∈包含,[21,2]a a -当时,而,则,2[0,1]x ∈0ω>2666x πππωω≤+≤+若,则,,此时值域的区间长度不超过,而区间62ππω+≤2min 1()2g x =2()1g x ≤2()g x 12长度为1,不符合题意,[21,2]a a -于是得,,要在的值域包含,62ππω+>2max()1g x =22()sin()6g x x πω=+2[0,1]x ∈[21,2]a a -则在的最小值小于等于0,又时,递减,22()sin()6g x x πω=+2[0,1]x ∈23[,]622x πππω+∈2()g x 且,()0π=g 从而有,解得,此时,取,的值域是包含于在6πωπ+≥56πω≥12a =12y a x =-[0,1]2()g x 的值域,2[0,1]x ∈所以的取值范围是.ω5[,)6π+∞(3)依题意,存在,对于,存在,有,即R a ∈1[0,2]x ∀∈2[0,2]x ∈12()2x h x a +=,2221232tx x a x ++=-当时,的值域是,因此在的值域1[0,2]x ∈12y a x =-[22,2]a a -2222()23h x tx x =++2[0,2]x ∈包含,并且有唯一的a 值,[22,2]a a -当时,在单调递增,在的值域是,0t ≥2()h x [0,2]2()h x 2[0,2]x ∈[3,47]t +由得,解得,此时a 的值不唯一,不符合[22,2][3,47]a a t -⊆+223247a a t -≥⎧⎨≤+⎩57222a t ≤≤+要求,当时,函数的对称轴为,0t <2222()23h x tx x =++21x t =-当,即时,在单调递增,在的值域是,12t -≥102t -≤<2()h x [0,2]2()h x 2[0,2]x ∈[3,47]t +由得,解得,要a 的值唯一,当且仅当[22,2][3,47]a a t -⊆+223247a a t -≥⎧⎨≤+⎩57222a t ≤≤+,即,则,57222t =+15,22t a =-=12t =-当,即时,,,,102t <-<21t <-2max 11()()3h x h t t =-=-2min ()min{(0),(2)}h x h h =(0)3h =,(2)47h t =+由且得:,此时a 的值不唯一,不符合要求,1[22,2][3,3]a a t -⊆-112t -≤<-531222a t ≤≤-由且得,,要a 的值唯一,当且仅当1[22,2][47,3a a t t -⊆+-1t <-9312222t a t +≤≤-,此时;9312222t t +=-t =a =综上得:或,12t =-t =所以函数,有且仅有1个“自均值数”,实数的值是2()23h x tx x =++[0,2]x ∈12-【点睛】结论点睛:若,,有,则的值域是[]1,x a b ∀∈[]2,x c d ∃∈()()12f x g x =()f x 值域的子集.()g x。

2021-2022学年新疆生产建设兵团高一年级上册学期期末考试数学试题【含答案】

2021-2022学年新疆生产建设兵团高一年级上册学期期末考试数学试题【含答案】

2021-2022学年新疆生产建设兵团高一上学期期末考试数学试题一、单选题1.设集合,,则集合=( ){}2|430M x x x =-+≥{}2log 1N x x =≤M N ⋂A .B .C .D .(,1]-∞(]0,1[1,2](],0-∞【答案】B【分析】先根据一元二次不等式和对数不等式的求解方法求得集合M 、N ,再由集合的交集运算可得选项.【详解】解:由得,解得或,所以集合2430x x -+≥()()130x x --≥1x ≤3x ≥,{}(][)2|43013M x x x =-+≥=-∞+∞ ,,由得,解得,所以集合,2log 1x ≤22log log 2x ≤02x <≤{}(]2|log 10,2N x x =≤=所以,(]01M N = ,故选:B .2.下列函数中,在定义域内既是单调函数,又是奇函数的是( )A .B .13y x =5xy =C .D .2log y x=1y x-=【答案】A【分析】根据解析式可直接判断出单调性和奇偶性.【详解】对于A :为奇函数且在上单调递增,满足题意;13y x =R 对于B :为非奇非偶函数,不合题意;5xy =对于C :为非奇非偶函数,不合题意;2log y x =对于D :在整个定义域内不具有单调性,不合题意.1y x -=故选:A.3.已知则( )ln ,1(),1xx x f x e x ≥⎧⎪=⎨<⎪⎩((2))f f =A .B .2C .D .()l n ln22e ln2【答案】B【分析】根据分段函数解析式代入计算可得;【详解】解:因为,所以,所以ln ,1(),1xx x f x e x ≥⎧=⎨<⎩()2ln 21f =<()ln 2((2))ln 22f f f e ===故选:B 4.已知,,且,,则( )3cos()5αβ-=5sin 13β=-(0)2πα∈,(0)2πβ∈-,sin α=A .B .C .D .6365-3365-33656365【答案】C【分析】根据角的范围算出,,再根据展开计算即可.sin()αβ-cos βsin sin[()]ααββ=-+【详解】∵,,∴,(0)2πα∈,(0)2πβ∈-,(0)αβπ-∈,又,,3cos()5αβ-=5sin 13β=-∴,,4sin()5αβ-==12cos 13β==则.4123533sin sin[()]sin()cos cos()sin ()51351365ααββαββαββ=-+=-⋅+-⋅=⨯+⨯-=故选:C.5.“”是“为锐角”的( )cos 0A >A A .充分不必要条件B .必要不充分条件C .充分必要条件D .既非充分又非必要条件【答案】B【分析】根据充分条件与必要条件的定义判断即可.【详解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必A 0,2A π⎛⎫∈ ⎪⎝⎭cos 0A >cos 0A >A 要条件;反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条3,22A ππ⎛⎫∈ ⎪⎝⎭cos 0A >A cos 0A >A 件.故“”是“为锐角”必要不充分条件.cos 0A >A 故选:B.【点睛】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题.6.已知角是锐角,若与的终边相同,则的所有取值之和为( )α15αααA .B .C .D .3π74π75π76π7【答案】D【分析】根据题意,结合终边相同的角的关系,即可求解.【详解】由题意,知,,可得,,又由是锐角,可得或152πk αα-=k ∈Z π7k α=k ∈Z απ7α=或,则的所有取值之和为.2π73π7απ2π3π6π7777++=故选:D.7.已知角的顶点在原点,始边与轴正半轴重合,终边上有一点,,θx (4sin ,cos )P θθ3(,2πθπ∈则( )tan θ=AB .CD .1213【答案】B【分析】由三角函数定义列式,计算,再由所给条件判断得解.【详解】由题意知,故,又,2cos 11tan tan 4sin 4tan 4θθθθθ==⇒=1tan 2θ=±3(,)2πθπ∈∴.1tan 2θ=故选:B8.若,则( )1sin 221cos 2sin 2θθθ-=--tan θ=A .-3B .C .D .313-13【答案】B【解析】先利用二倍角公式化简,即可得到,进而求得.1sin 221cos 2sin 2θθθ-=--cos 3sin θθ=-tan θ【详解】解:,1sin 221cos 2sin 2θθθ-=-- 利用二倍角公式展开得:,222sin 2sin cos cos 22sin 2sin cos θθθθθθθ-+=-即,2(sin cos )22sin (sin cos )θθθθθ-=-即,sin cos 22sin θθθ-=即,3sin cos 0θθ+=即,cos 3sin θθ=-.sin sin 1tan cos 3sin 3θθθθθ∴===--故选:B.二、多选题9.以下说法正确的有( )A .B .C .D.tan 600︒=()sin 225-︒=cos135︒=tan 752︒=【答案】ACD【分析】根据诱导公式判断ABC ,根据两角和的正切公式判断D.【详解】对于A ,A 正确;()tan 600tan 603180tan 60︒=︒+⨯︒=︒=对于B ,,故B 错误;()()()sin 225sin 45180sin 45sin 45-︒=-︒-︒=--︒=︒=对于C ,C 正确;()cos135cos 18045cos 45︒=︒-︒=-︒=对于D ,,故D 正确;()tan 30tan 45tan 75tan 304521tan 30tan 45︒+︒︒=︒+︒====-︒⨯︒故选:ACD10.下列结论正确的是( )A .是第三象限角76π-B .角的终边在直线上,则=αy x =α()4k k Z ππ+∈C .若角的终边过点,则α()3,4P -3cos 5α=-D .若角为锐角,则角为钝角α2α【答案】BC【分析】利用象限角的定义可判断A 选项的正误;利用终边相同角的表示可判断B 选项的正误;利用三角函数的定义可判断C 选项的正误;利用特殊值法可判断D 选项的正误.【详解】对于A 选项,且为第二象限角,故为第二象限角,A 错;75266πππ-=- 56π76π-对于B 选项,根据终边相同角的表示可知角的终边在直线上,αy x =则=,B 对;α()4k k Z ππ+∈对于C 选项,由三角函数的定义可得,C 对;3cos 5α==-对于D 选项,取,则角为锐角,但,即角为锐角,D 错.6πα=α23πα=2α故选:BC.11.对于函数,x ∈R ,则( )()sin cos f x x x =A .f (x )的最大值为1B .直线为其对称轴34x π=-C .f (x )在上单调递增D .点为其对称中心[0,]2π(,0)2π【答案】BD【分析】利用二倍角的正弦公式化简函数,再逐一分析各选项中的条件判断作答.()f x 【详解】依题意,,的最大值为,A 错误;1()sin cos sin 22f x x x x ==()f x 12当时,,则直线为图象的对称轴,B 正确;34x π=-3131()sin()4222f ππ-=-=34x π=-()f x 当,即时,由得,即在上单调递增,02x π≤≤02x ≤≤π022x π≤≤04x π≤≤()f x [0,]4π由得,即在上单调递减,C 错误;22x ππ≤≤42ππx ≤≤[,42ππ因,则点为其对称中心,D 正确.()02f π=(,0)2π故选:BD12.下列各式中值为的是( )12A .B .212cos 75-sin135cos15cos45cos75-C D .tan20tan25tan20tan25++【答案】BC【分析】利用二倍角余弦公式以及诱导公式可判断A 选项;利用诱导公式以及两角差的正弦公式可判断B 选项;利用二倍角正弦公式以及辅助角公式可判断C 选项;利用两角和的正切公式可判断D 选项.【详解】对于A 选项,()212cos 75cos150cos 18030cos30-=-=--==对于B 选项,()()sin135cos15cos45cos75sin 18045cos15cos45cos 9015-=---;()1sin 45cos15cos 45sin15sin 4515sin 302=-=-== 对于C 选项,,()cos10cos 9080sin 80sin10=-=>=;sin 35cos3512sin 35cos352====对于D 选项,因为,()tan 20tan 25tan 45tan 202511tan 20tan 25+=+==-所以,.tan20tan25tan20tan251tan20tan25tan20tan251++=-+=故选:BC.三、填空题13.已知一个扇形的面积为,半径为,则其圆心角为___________.3π2【答案】6π【解析】结合扇形的面积公式即可求出圆心角的大小.【详解】解:设圆心角为,半径为,则,由题意知,,解得,αr 2r =2114322rπαα==⋅6πα=故答案为: 6π14.函数的定义域为______.2cos )y x =【答案】6π11π|2π2π,Z 6xk x k k ⎧⎫+<<+∈⎨⎬⎩⎭【分析】解余弦不等式.cos x <即2cos 0x >cos x <∴,1122,66k x k k ππππ+<<+∈Z ∴函数的定义域为。

2022-2023学年广东省深圳市第二外国语学校高一年级上册学期期末数学试题【含答案】

2022-2023学年广东省深圳市第二外国语学校高一年级上册学期期末数学试题【含答案】

2022—2023 学年度(高一年级)第一学期期末考试 数学 学科试题命题人:石雪峰审题人:廖金龙说明:1.全卷共4页,满分为150分,考试时间为120分钟.2.答卷前,考生必须按要求填写自己的姓名、学号、班级等信息.3.客观题、主观题答案均填写在答题卡上.一、单选题(本大题共8小题,每题5分,共40分)1. 已知集合,集合,则(){}2430A x Z x x =∈-+≤{}0,2,4B =A B ⋃=A. B. {}2{}0,1,3C.D.{}0,1,2,3{}0,1,2,3,4【答案】D 【解析】【分析】先根据基本不等式的解法求出集合,然后根据集合并集的运算法则求解.A 【详解】解:,{}{}24301,2,3A x Z x x =∈-+≤= {}0,2,4B =∴{}0,1,2,3,4A B = 故选:D .2. 已知命题:,,则命题的否定是( )p x ∃∈R 20x +≤p A. , B. ,x ∃∈R 20x +>x ∀∈R 20x +≤C. , D. ,x ∀∈R 20x +>x ∃∈R 20x +≥【答案】C 【解析】【分析】由特称命题的否定改写规则可得答案.【详解】因命题:,,则其否定为:.p x ∃∈R 20x +≤20R,x x ∀∈+>故选:C3. 设,,则,2παπ⎛⎫∈ ⎪⎝⎭3sin 5α=()tan -=p aA. B. C. D. 3434-4343-【答案】A 【解析】【分析】由平方关系得出,再结合诱导公式以及商数关系得出答案.cos α【详解】4cos 5α==-sin 353tan()tan cos 544απααα⎛⎫-=-=-=-⨯-= ⎪⎝⎭故选:A【点睛】本题主要考查了同角三角函数的基本关系以及诱导公式,属于中档题.4. 方程的解为,若,则3log 3x x +=0x 0(,1),x n n n N ∈+∈n =A. B. C. D. 0123【答案】C 【解析】【详解】令,()3log 3f x x x =+-∵,.()()311320,22log 20f f =-=-<=-+<()3 3log 310f ==>∴函数在区间上有零点.()f x ()2,3∴.选C .2n =5. 已知函数,,则的值为()533f x ax bx cx =-+-()37f -=()3f A .13B. C. 7D. 13-7-【答案】B 【解析】【详解】试题解析:设,函数为奇函数()53()3g x f x ax bx cx=+=-+∴()()()(3)(3)33330313g g f f f +-=++-+=⇒=-考点:本题考查函数性质点评:解决本题的关键是利用函数奇偶性解题6. 函数在单调递增,求a 的取值范围()()()2ln 3f x x ax =--()1,+∞A. B. C. D. 2a ≤2a <2a ≤-2a <-【答案】C 【解析】【分析】分析单调性和定义域可得,解不等式组即得解.11220a a ⎧≤⎪⎨⎪--≥⎩【详解】解:令,二次函数抛物线的对称轴方程为,()23t x x ax =--12x a =由复合函数的单调性可知,.112a ≤又在上恒成立,所以,即,230x ax -->()1,+∞130a --≥20a --≥所以,解可得,.11220a a ⎧≤⎪⎨⎪--≥⎩2a ≤-故选:C 7. 已知,,则的大小关系为( )50.56,2a log b log ==0.20.5c =,,a b c A. B. a c b <<a b c <<C. D. b<c<a c<a<b【答案】C 【解析】【分析】易知,,,根据的范围即可比较出结果.1a >0b <01c <<,,a b c 【详解】解:易知,,,所以.561a log =>0.520b log =<0.200.51c <=<b<c<a 故选C.【点睛】本题考查指数、对数大小的比较,找中间值是比较大小常用的一种方法,属于基础题.8. 如图所示的韦恩图中是非空集合,定义集合A*B 为阴影部分表示的集合.若,A B ,则A*B (){{},,|,3,0x x y R A x y B y y x ∈=====A. B. {}|02x x <<{}|12x x <≤C.D.{}|012x x x ≤≤≥或{}012x x x ≤≤或【答案】D 【解析】【详解】{{}|[0,2],|3,0(1,)x A x y B y y x =====>=+∞A*B ,选D.={}012x x x ≤≤或二、多选题(本大题共4小题,每题5分,共20分.有错误选项得0分,对而不全得2分)9. 下列函数中,满足的是( )(2)2()f x f x =A. B. ()|2|f x x =()f x x =C.D. ()f x =()||f x x x =-【答案】ABD 【解析】【分析】利用已知条件,代入选项函数的解析式,验证即可.【详解】解:对于A 选项,,,,所以A 正确;()2f x x=()24f x x=2()4f x x=对于B 选项,,满足,所以B 正确;()f x x =()22()f x f x =对于C 选项,,,,所以C 不正确;()f x =()2f x =2()f x =()22()f x f x =对于D 选项,,,,所以D 正确;()f x x x=-()222fx x x=-2()22f x x x=-故选:ABD .10. 下列计算正确的是()A. B.tan151tan151︒+=︒-44cos 22.5sin 22.5︒-︒=C.D. sin15sin 45sin 75︒︒︒=tan 37tan 2337tan 231︒+︒︒︒=【答案】ABC 【解析】【分析】根据两角和的正切公式、二倍角公式、诱导公式求得正确答案.【详解】因为A 正确;tan151tan15tan 45tan 60tan1511tan15tan 45︒+︒+︒=-=-︒=︒--︒︒B 正确;()()442222cos 22.5sin 22.5cos 22.5sin 22.5cos 22.5sin 22.5cos 45︒-︒=︒+︒︒-︒=︒=C 正确;1sin15sin 45sin 75sin15cos15sin 45sin 30sin 452︒︒︒=︒︒︒=︒︒=因为,()tan 37tan 23tan 60tan 37231tan 37tan 23︒+︒︒=︒+︒==-︒︒所以,故D 错误.tan 37tan 23tan 37tan 23︒+︒+︒︒=故选:ABC11. 设a >1,b >1且ab -(a +b )=1,那么( )A. a +b 有最小值2+B. a +b有最大值2+C. ab有最小值3+ D. ab有最大值1+【答案】AC 【解析】【分析】由基本不等式得ab =1+(a +b )≤,ab -1=a +ba +b >2、ab >1,应用一元二2()2a b +次不等式的解法,即可求a +b 、ab 的最值.【详解】ab =1+(a +b )≤(当且仅当a =b >1时取等号),即(a +b )2-4(a +b )-4≥0且a+b >2,解得2()2a b +a +b ≥2+,∴a +b 有最小值2+,知A 正确,B 错误;由ab -(a +b )=1,得ab -1=a +b(当且仅当a =b>1时取等号),即ab --1≥0且ab >1,解ab ≥3+,1≥∴ab 有最小值3+,知C 正确,D 错误.故选:AC.12. 若函数同时满足:(1)对于定义域内的任意,有;(2)对于定义域内的()f x x ()()0f x f x +-=任意,,当时,有,则称函数为“理想函数”.给出下列四个函数是1x 2x 12x x ≠()()12120f x f x x x -<-()f x “理想函数”的是( )A.B.()2f x x =()3f x x =-C.D.()1f x x x=-()22,0,0x x f x x x ⎧-≥=⎨<⎩【答案】BD 【解析】【分析】满足(1)可得,是奇函数,满足(2)可得,在定义域内是减函数,问题转化为判断以下函()f x ()f x 数是否满足这两个性质;根据选项,逐项判断函数奇偶性与单调性,即可得出结果.【详解】由(1)对于定义域内的任意,恒有,即,所以是奇x ()()0f x f x +-=()()f x f x -=-()f x 函数;由(2)对于定义域内的任意,,当时,恒有,所以或1x 2x 12x x ≠()()12120f x f x x x -<-()()1212x x f x f x <⎧⎨>⎩,则在定义域内是减函数;()()1212x x f x f x >⎧⎨<⎩()f x 对于A :由可得,所以是偶函数,故不是“理想函数”;()2f x x =()()()22f x x x f x -=-==()2f x x =对于B :由得,所以是奇函数,又在上()3f x x =-()()()33f x x x f x -=--==-()3f x x =-3y x =R 是增函数,所以在上是减函数,所以是“理想函数”;()3f x x =-R 对于C :由得,所以是奇函数;又()1f x x x =-()()11f x x x f x x x ⎛⎫-=-+=--=- ⎪⎝⎭()1f x x x =-在定义域上增函数,在和上是减函数,所以在和y x =1y x =(),0∞-()0,∞+()1f x x x =-(),0∞-上都是增函数,故不是“理想函数”;()0,∞+对于D :,,所以是奇函数;()22,0,0x x f x x x x x ⎧-≥==-⎨<⎩()||()f x x x f x -==-()22,0,0x x f x x x ⎧-≥=⎨<⎩根据二次函数的单调性,易知在和都是减函数,且在处连续,所以()f x (,0)-∞(0,)+∞0x =在上是减函数,所以是“理想函数”.()22,0,0x x f x x x ⎧-≥=⎨<⎩R 故选:BD.【点睛】思路点睛:求解函数新定义问题时,一般根据函数的新定义,结合函数基本性质(单调性、奇偶性、对称性等),确定新定义下的函数的性质,即可求解.三、填空题(本大题共4小题,每题5分,共20分)13.____________23log (log 9)=【答案】1.【解析】【分析】利用对数运算公式,化简求得所求表达式的值.【详解】依题意,原式.()2232log log 3log 21===故答案为:1【点睛】本小题主要考查对数运算,属于基础题.14. 函数(且)的图象必过定点,则定点坐标为_______.1()2x f x a +=+0a >1a ≠【答案】(1,3)-【解析】【分析】由可得当时,,可得答案.01a ==1x -11(1)21+2=3f a -+-=+=【详解】由有当时,.1a ==1x -011x aa +==所以当时,=1x -11(1)21+2=3f a -+-=+=所以恒有,即得图像必过点()f x (1)3f -=()f x ()13-,故答案为:()13-,【点睛】本题考查指数函数的图像性质,属于基础题.15. 已知,则______.sin cos 1sin cos 2αααα-=+tan α=【答案】3【解析】【分析】利用同角的三角函数关系,结合正余弦齐次式法求值,即得答案.【详解】由可得,sin cos 1sin cos 2αααα-=+cos 0α≠故,解得,sin cos tan 11sin cos tan 12αααααα--==++tan 3α=故答案为:316. 已知函数,若且,则的取值范围为___________.()lg f x x=0a b <<()()=f a f b 2+a b 【答案】()3,+∞【解析】【分析】作出函数的图象,可得出,利用双勾函数的单调性可求得的取值()f x ()101b a a =<<2+a b 范围.【详解】画出的图象如图:()lg f x x=∵,且,0a b <<()()=f a f b ∴且,,lg lg =a b01a <<1b >∴,即,∴,,lg lg a b -=1ab =22=+=+y a b a a ()0,1a ∈由图象得在上为减函数,2y a a =+()0,1∴,123>+=y ∴的取值范围是.2+a b ()3,+∞故答案为:.()3,+∞四、解答题(本大题共6小题,第17题10分,第18到22题每题12分,共70分.)17. 求值:(1)()()22sin 120cos180tan 45cos 330sin 210︒︒︒︒︒++--+-(2)13788⎛⎫-++ ⎪⎝⎭【答案】(1)12(2)π【解析】【分析】(1)利用诱导公式即可求解;(2)根据指数幂的性质即可求解.【小问1详解】()()22sin 120cos180tan 45cos 330sin 210︒︒︒︒︒++--+-22s 611sin 0cos 30in 30︒︒︒+-+-=221112=-+-+12=【小问2详解】13788⎛⎫-++ ⎪⎝⎭1331(2)3π=++-12π3=++-π=18. 已知,.{}|13A x x =-<≤{}|1B x m x m =<<+(1)当时,求;1m =A B ⋃(2)若,求实数m 的取值范围.R B A ⊆ 【答案】(1);(]1,3-(2)﹒(][),23,∞∞--⋃+【解析】【分析】(1)求出B 即可,求A 与B 并集即可;(2)求出,由列出关于m 的不等式组,解出m 即可﹒R A R B A ⊆ 【小问1详解】,;()1,2B =(]1,3A B ⋃=-【小问2详解】∵,∴.1m m +>B ≠∅(](),13,R A ∞∞=--⋃+ ∵,R B A ⊆ ∴或,故m 的取值范围为:﹒11m +≤-3m ≥(][),23,∞∞--⋃+19. 已知.1sin cos 5αα+=-(1)求的值.sin cos αα⋅(2)若,求的值.2απ<<π11sin cos αα-【答案】(1);(2).1225-3512【解析】【分析】(1)把平方即得解;1sin cos 5αα+=-(2)求出,即得解.cos sin αα-【详解】解:(1),21(sin cos )12sin cos 25αααα+==+∴.12sin cos 25αα=-(2),11cos sin sin cos sin cos αααααα--=∵,21249(cos sin )12sin cos 122525αααα⎛⎫-=-=-⋅-=⎪⎝⎭又∵,∴,,,,2παπ⎛⎫∈ ⎪⎝⎭cos 0α<sin 0α>cos sin 0αα-<∴,7cos sin 5αα-=-∴原式.7355121225-==-【点睛】关键点睛:解答本题的关键是判断的符号,要结合的范围判断.cos sin αα-α20.已知函数.2()cos 2cos 1f x x x x =+-(1)求在区间的最小值;()f x 0,2π⎡⎤⎢⎥⎣⎦(2)将的图象向左平移个单位后得到函数的图象,求的单调递减区间.()f x 6π()y g x =()g x 【答案】(1)-1;(2),.,2k k πππ⎡⎤+⎢⎥⎣⎦Z k ∈【解析】【分析】(1)根据正余弦的倍角公式、辅助角公式化简,确定它在内的最值,即可求得最小值;(2)根据()f x 0,2π⎡⎤⎢⎥⎣⎦图象的平移得到,由于为增函数,根据复合函数的单调性及余弦函数的性质有()2cos 2g x x =2y x =在上单调递减,即可求得递减区间()g x 222k x k πππ≤≤+【详解】(1)解:,()2cos 22sin 26f x x x x π⎛⎫=+=+ ⎪⎝⎭当时, ,有0,2x π⎡⎤∈⎢⎥⎣⎦72666x πππ≤+≤12sin 226x π⎛⎫-≤+≤ ⎪⎝⎭∴当时,在区间的最小值为-1.2x π=()f x 0,2π⎡⎤⎢⎥⎣⎦(2)由题意知:()6g x f x π⎛⎫=+ ⎪⎝⎭∴,()2sin 22sin 22cos 2662g x x x xπππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦由,解得,.222k x k πππ≤≤+Z k ∈2k x k πππ≤≤+Z k ∈因此,函数的单调递减区间为,()g x ,2k k πππ⎡⎤+⎢⎥⎣⎦Z k ∈【点睛】本题考查了三角函数,根据二倍角的正余弦公式、辅助角公式化简函数式,并求区间最值,由函数图象平移得到新函数解析式,结合复合函数的单调性求单调区间21. 某医药研究所研发一种新药,据监测,如果成人按规定的剂量服用该药,服药后每毫升血液中的含药量与服药后的时间之间近似满足如图所示的曲线.其中是线段,曲线段是函数(g)y μ(h)t OA AB (,k ,a 是常数)的图象,且.t y k a =⋅1,0t a ≥>(1,8),(7,1)A B(1)写出服药后每毫升血液中含药量y 关于时间t 的函数关系式;(2)据测定:每毫升血液中含药量不少于时治疗有效,假若某病人第一次服药为早上6:00,为保2(g)μ持疗效,第二次服药最迟是当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后再过,该病人每毫升血液中含药量为多3h 少?(精确到)g μ0.1g μ【答案】(1)()8,(01),1t t t y t ≤<⎧⎪=⎨≥⎪⎩(2)上午11:00服药 (3)4.7g μ【解析】【分析】(1)根据函数图象求解函数解析式;(2)根据题意列出不等式,求解出答案;(3)分别求解出第每毫升血液中含第一次和第二次服药后的剩余量,相加即为结果.【小问1详解】当时,;01t ≤<8y t =当时,把代入(,k ,a 是常数),得,解得,1t ≥(1,8)(7,1)A B 、ty k a =⋅1,0t a ≥>781ka ka =⎧⎨=⎩a k ⎧=⎪⎨⎪=⎩故()8,(01),1t t t y t ≤<⎧⎪=⎨≥⎪⎩【小问2详解】设第一次服药后最迟过t 小时服第二次药,则,解得:,即第一次服药后后服12tt ≥⎧⎪⎨=⎪⎩5t =5h 第二次药,也即上午11:00服药;【小问3详解】第二次服药后,每毫升血液中含第一次服药后的剩余量为:3h 81y g ==每毫升血液中含第二次服药后剩余量为:324y gμ==4 4.7g μ+≈故该病人每毫升血液中的含药量为4.7g μ22. 设函数;()()()lg f x x m m R =+∈(1)当时,解不等式;2m =11f x ⎛⎫> ⎪⎝⎭(2)若,且在闭区间上有实数解,求实数的范围;()01f =()xf x λ=+[]2,3λ(3)如果函数的图象过点,且不等式对任意均成立,求实数()f x ()98,2()cos 2lg 2nf x ⎡⎤<⎣⎦n N ∈的取值集合.x 【答案】(1) (2) (3),,1|08x x ⎧⎫<<⎨⎬⎩⎭1lg12,lg132⎡--⎢⎣32222,22n n k k ππππ⎛⎫++ ⎪ ⎪ ⎪⎝⎭N k ∈n N∈【解析】【分析】(1)根据对数的运算解不等式即可;(2)根据可得的解析式,由分离变量可得,()01f =()f x ()x f x λ=+()lg 10xx λ=+-令,它在闭区间上的值域即为的范围;()()lg 10xF x x =+-[]2,3λ(3)函数的图象过点,求的解析式,可得,则不等式()f x ()98,2()f x ()()lg 2f x x =+转化为,求解,又∵,即,,讨论()cos 2lg 2n f x ⎡⎤<⎣⎦()()lg 2cos 212nx g +<x 20x +>2x >-n N ∈的范围可得答案.k 【详解】解:函数;()()()lg f x x m m R =+∈(1)当时,,2m =()()lg 2f x x =+那么:不等式;即,11f x ⎛⎫> ⎪⎝⎭1lg 2lg10x ⎛⎫+> ⎪⎝⎭可得:,且,1210x +>120x +>解得:,108x <<∴不等式的解集为;1|08x x ⎧⎫<<⎨⎬⎩⎭(2)∵,可得,()01f =10m =∴,()()lg 10f x x =+,即在闭区间上有实数解,()xf x λ=+()lg 10xx λ+=+[]2,3可得,()lg 10xx λ=+-令,求在闭区间上的值域,()()lg 10x F x x =+-[]2,3根据指数和对数的性质可知:是增函数,()F x ∴在闭区间上的值域为,()Fx []2,31lg12,lg132⎡-⎢⎣故得实数的范围是;λ1lg12,lg132⎡-⎢⎣(3)∵函数的图象过点,()f x ()98,2则有:,()2lg 98m =+∴,2m =故,()()lg 2f x x =+那么:不等式转化为,()cos 2lg 2n f x ⎡⎤<⎣⎦()()lg 2cos 212nx g +<即,()()2cos 20cos 20n n x x ⎧+>⎪⎨<⎪⎩∴,,322222n x k k ππππ+<<+n N ∈解得:,,3222222nn k k x ππππ++<<n N ∈又∵,即,20x +>2x >-∴,,2222nk ππ+≥-n N ∈解得:,14k ≥-∵,Z k ∈∴,0k ≥故得任意均成立,实数的取值集合为,,.n N ∈x 32222,22n n k k ππππ⎛⎫++ ⎪ ⎪⎪⎝⎭N k ∈n N ∈【点睛】本题考查了对数的性质及其运算以及不等式恒成立的问题在对数与三角函数中的运用,考查推理能力与计算能力,属于难题.。

2022-2023学年甘肃省天水市秦安县高一年级上册学期期末考试数学试题【含答案】

2022-2023学年甘肃省天水市秦安县高一年级上册学期期末考试数学试题【含答案】

秦安县2022-2023学年高一上学期期末考试数学试卷一、单选题(每题5分,共60分)1.已知集合M ={x|﹣2<x <5},N ={x|﹣3≤x ≤3},则M ∪N =( )A .{﹣3,﹣2,﹣1,0,1,2,3,4} B .{﹣1,0,1,2,3} C .[﹣3,5) D .(﹣2,3]2已知集合A= {2,3,5,7} ,B={1,3,5,7,9},则A ∩B= ( )A.{1,2} B.{3,5,7} C.{1,3,5,7,9} D.{1,2,3,5,7,9 }3.若实数a ,b 满足a+b=1,则ab 的最大值为( )A.2B.1C.D.12144,已知a=b=,c=则的大小关系是( )ln 0.3,3.031⎪⎭⎫ ⎝⎛(12)0.3A. a<c<bB. b<a<cC. a<b<cD. b<c<a5,函数y=定义域为( )log 0.5xA.,B.C. D.[21)∞+]∞+ ⎝⎛,21[)∞+,1](10,6.若α是第二象限角,则180°+α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角7,下列角中,与角终边相同的角是()3πA. B. C.D.65-π35-π34π32π8.已知函数(x)=,则()=( )f x 3f a1A.0B.C.aB. C.a C.a D.3aa19设a ,b 是非零实数,若a <b ,则下列不等式成立的是( )A .<B .<C .< D .<2a 2b 2ab b a 221ab ba 21ab ba 10.下列函数是偶函数的是( )A.B. C. D.x y =33x y =xy 1=xy =11.不等式的解集是()82>x A. B. C. D.()2222-,)(()∞+⋃∞,,2222--()24,24-)(()∞+∞,,2424-- 12.某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[5,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的人数有( )A. 45B. 46C. 48D. 50二、填空题(本题共4道小题,共20分)13.若。

2022-2023学年辽宁省重点高中沈阳市郊联体高一年级上册学期期末考试数学试题【含答案】

2022-2023学年辽宁省重点高中沈阳市郊联体高一年级上册学期期末考试数学试题【含答案】

2022-2023学年辽宁省重点高中沈阳市郊联体高一上学期期末考试数学试题一、单选题1.设集合{}20A x x =-≥,{}2280B x x x =--<,全集U =R ,则U B A ⋃=ð()A .()4,+∞B .(),4-∞C .[)4,+∞D .(],4-∞-【答案】B【分析】解不等式可求得集合,A B ,由补集和并集定义可求得结果.【详解】由20x -≥得:2x ≥,则[)2,A =+∞,(),2U A ∴=-∞ð;由2280x x --<得:24-<<x ,则()2,4B =-,(),4U B A ∴=-∞ ð.故选:B.2.若a ,b 均为实数,则“ln ln a b >”是“e e a b >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】根据函数ln y x =与e x y =解不等式,即可判断.【详解】解:因为ln ln a b >,由函数ln y x =在()0,+∞上单调递增得:0a b >>又e e a b >,由于函数e x y =在R 上单调递增得:a b >由“0a b >>”是“a b >”的充分不必要条件可得“ln ln a b >”是“e e a b >”的充分不必要条件.故选:A.3.从高一某班(男、女生人数相同)抽三名学生参加数学竞赛,记事件A 为“三名学生都是女生”,事件B 为“三名学生都是男生”,事件C 为“三名学生至少有一名是男生”,事件D 为“三名学生不都是女生”,则以下错误的是()A .()18P A =B .()()PC PD ≠C .事件A 与事件B 互斥D .事件A 与事件C 对立【答案】B【分析】由独立乘法公式求()P A ,根据事件的描述,结合互斥、对立事件的概念判断B 、C 、D 即可.【详解】由所抽学生为女生的概率均为12,则311()28P A ⎛⎫== ⎪⎝⎭,A 正确;,A B 两事件不可能同时发生,为互斥事件,C 正确;C 事件包含:三名学生有一名男生、三名学生有两名男生、三名学生都是男生,其对立事件为A ,D 正确;D 事件包含:三名学生都是男生、三名学生有一名男生、三名学生有两名男生,与C 事件含义相同,故()()P C P D =,B 错误;故选:B.4.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方式估计该运动员三次投篮恰有两次命中的概率:先由计算机产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以三个随机数为一组,代表三次投篮结果,经随机模拟产生了如下12组随机数:137960197925271815952683829436730257,据此估计,该运动员三次投篮恰有两次命中的概率为()A .14B .38C .512D .58【答案】A【分析】明确随机数代表的含义,根据古典概型的概率公式即可求得答案.【详解】由题意可知经随机模拟产生的12组随机数中,137271,436,这三组表示三次投篮恰有两次命中,故该运动员三次投篮恰有两次命中的概率为31124P ==,故选:A5.如图,已知函数()13x f x -=,则它的反函数()1y f x -=的大致图像是()A .B .C .D .【答案】C【分析】直接利用反函数的性质写出解析式,得()13log 1y f x x -==+,再由解析式选择图像即可.【详解】由题意得,函数()13x f x -=的反函数是()13log 1y f x x -==+,这是一个在()0,∞+上的单调递增函数,且1311log 1033y f -⎛⎫==+= ⎪⎝⎭,所以只有选项C 的图像符合.故选:C.6.某科研小组研发一种水稻新品种,如果第1代得到1粒种子,以后各代每粒种子都可以得到下一代15粒种子,则种子数量首次超过1000万粒的是()(参考数据:lg 20.3,lg30.48≈≈)A .第5代种子B .第6代种子C .第7代种子D .第8代种子【答案】C【分析】设第x 代种子的数量为115x -,根据题意列出不等式,对不等式化简代入数值即可得到结果.【详解】设第x 代种子的数量为115x -,由题意得171510x -≥,得715log 101x ≥+.因为7715lg1077log 101111 6.9lg15lg3lg5lg31lg 2+=+=+=+≈++-,故种子数量首次超过1000万粒的是第7代种子.故选:C.7.已知2log 0.50.2a ba ==,则()A .a >b >1B .b >a >1C .b >1>aD .a >1>b【答案】D【分析】根据0.50>a 得出2log 0a >,从而得出122<<<a ,0.20.2>b 得出1b <可得答案.【详解】因为0a >,所以2log 00.5aa =>,可得1a >,0.50.5<a ,221log log 22<=a ,所以122<<<a ,20.50.50.2>>a ,0.20.2>b ,所以1b <,所以1a b >>.故选:D.8.设()11f x x =--,关于x 的方程()()210f x k f x +⋅+=⎡⎤⎣⎦,给出下列四个命题,其中假命题的个数是()①存在实数k ,使得方程恰有3个不同的实根;②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有6个不同的实根.A .0B .1C .2D .3【答案】C【解析】作出函数图象,令210x kx ++=,对根的判别式分类讨论即可得解.【详解】解:()11x f x =-- 可作函数图象如下所示:令210x kx ++=,24k ∴∆=-(1)当240k ∆=-=时,解得2k =或2k =-①当2k =-时,210x kx ++=解得1x =由图可知,存在3个不同的实数使得()1f x =,即方程()()210f x k f x +⋅+=⎡⎤⎣⎦有3个不同的实数根;②当2k =时,210x kx ++=解得=1x -由图可知,不存在实数使得()1f x =-,即方程()()210f x k f x +⋅+=⎡⎤⎣⎦无实数根;(2)当240k ∆=->时,解得2k >或2k <-,①当2k >时,方程210x kx ++=有两不相等的实数根,设为1x ,2x ,则120x x k +=-<,121=x x 1x ∴,2x 均为负数,由函数图象知()0f x ≥,故不存在实数使得()0f x <,即方程()()210f x k f x +⋅+=⎡⎤⎣⎦无实数根;②当2k <-时,方程210x kx ++=有两不相等的实数根,设为1x ,2x ,则120x x k +=->,121=x x 1x ∴,2x 均为正数且121x x =,设21x >则101x <<,由图可知,存在2个不同的实数使得()1f x >,存在4个不同的实数使得()01f x <<,即方程()()210f x k f x +⋅+=⎡⎤⎣⎦有6个不同的实数根;(3)当240k ∆=-<时,方程无解,则方程()()210f x k f x +⋅+=⎡⎤⎣⎦无实数根;综上可得正确的有①④,错误的有②③故选:C【点睛】本题考查了分段函数,以及函数与方程的思想,数形结合的思想,属于难题.二、多选题9.秋季开学前,某学校要求学生提供由当地社区医疗服务站或家长签字认可的返校前一周(7天)的体温测试记录,已知小明在一周内每天自测的体温(单位:C )依次为36.0,36.2,36.1,36.4,36.3,36.1,36.3,则该组数据的()A .极差为0.4CB .平均数为36.2C C .中位数为36.1CD .第75百分位数为36.3C【答案】ABD【分析】根据极差、平均数、中位数和百分位数的定义判断即可.【详解】体温从低到高依次为36.0,36.1,36.1,36.2,36.3,36.3,36.4,极差为36.436.00.4C -= ,故A 正确;平均数为3636.236.336.2C 7+++= ,故B 正确;中位数为36.2C ,故C 错误;因为775% 5.25⨯=,所以体温的第75百分位数为从小到大排列的第6个数,是36.3C ,故D 正确.故选:ABD.10.设a ,b是两个非零向量,则下列描述错误的有()A .若a b a b +=- ,则存在实数0λ>,使得a b λ=.B .若a b ⊥,则a b a b +=- .C .若a b a b +=+ ,则a ,b反向.D .若a b ∥,则a ,b一定同向【答案】ACD【分析】根据向量加法的意义判断选项A ,C ;根据平面向量加法的平行四边形法则可判断选项B ;根据平面向量平行的性质可判断选项D.【详解】对于选项A :当a b a b +=- ,由向量加法的意义知a ,b方向相反且a b ≥ ,则存在实数0λ<,使得a b λ=,故选项A 错误;对于选项B :当a b ⊥ ,则以a ,b为邻边的平行四边形为矩形,且a b + 和a b - 是这个矩形的两条对角线长,则a b a b +=-,故选项B 正确;对于选项C :当a b a b +=+ ,由向量加法的意义知a ,b 方向相同,故选项C 错误;对于选项D :当a b ∥时,则a ,b同向或反向,故选项D 错误;综上所述:选项ACD 错误,故选:ACD.11.下列命题正确的有()A .命题“1x ∀>,210x ->”的否定“1x ∀≤,210x ->”B .函数()212()log 62f x x x =+-单调递增区间是1,24⎡⎫⎪⎢⎣⎭C .函数()(),1322,1ax f x x a x x ⎧-≤-⎪=⎨⎪-+>-⎩是R 上的增函数,则实数a 的取值范围为31,2⎛⎫⎪⎝⎭D .函数23()log f x x x=-的零点所在区间为()2,3且函数()f x 只有一个零点【答案】BD【分析】对于A ,由全称命题的否定为特称命题即可;对于B ,先求函数的定义域,再利用换元法结合复合函数单调性进行判断即可;对于C ,由分段函数为增函数,则每一段上都为增函数,再考虑端点处的函数值,列出不等式求解即可;对于D ,先判断函数()f x 的单调性,再利用零点存在性定理判断即可.【详解】对于A ,命题“1x ∀>,210x ->”的否定“1x ∃>,210x -≤”,故A 选项错误;对于B ,由2620x x +->,得322x -<<,令262x t x +-=,则12log y t =,因为262x t x +-=在31,24⎛⎫- ⎪⎝⎭上单调递增,在1,24⎛⎫ ⎪⎝⎭上单调递减,又12log y t =在定义域内单调递减,所以()f x 在31,24⎛⎤- ⎥⎝⎦上单调递减,在1,24⎡⎫⎪⎢⎣⎭上单调递增,故B 选项正确;对于C ,因为函数()(),1322,1ax f x x a x x ⎧-≤-⎪=⎨⎪-+>-⎩是R 上的增函数,所以()()032032121a a aa ⎧⎪>⎪->⎨⎪⎪-⋅-+≥--⎩,解得:312a ≤<,故C 选项错误;对于D ,因为函数3y x=和函数2log y x =-在区间()2,3上单调递减,所以函数23()log f x x x=-在区间()2,3上单调递减,又因为()()()232311log 302f f ⎛⎫⋅=-⋅-< ⎪⎝⎭,所以函数()f x 在区间()2,3上只有一个零点,故D 选项正确.故选:BD.12.在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各项中,一定符合上述指标的是()A .平均数3x ≤B .标准差2s ≤C .平均数3x ≤且极差小于或等于2D .众数等于1且极差小于或等于4【答案】CD【解析】根据题目条件,只需满足连续7天每日新增比例数不超过5即可,仅通过平均数和标准差不能确保每天的新增病例数不超过5,可判断A ,B 错误;再根据平均数及极差综合判断C ,D 中数据的可能取值,分析是否符合条件.【详解】对于A 选项,若平均数3x ≤,不能保证每天新增病例数不超过5人,不符合题意;对于B 选项,标准差反映的是数据的波动大小,例如当每天感染的人数均为10,标准差是0,显然不符合题意;对于C 选项,若极差等于0或1,在3x ≤的条件下,显然符合指标;若极差等于2,假设最大值为6,最小值为4,则3x >,矛盾,故每天新增感染人数不超过5,符合条件,C 正确;对于D 选项,若众数等于1且极差小于或等于4,则最大值不超过5,符合指标.故选:CD.【点睛】本题考查统计的数据特征,解答本题时,一定要注意平均数、标准差等对数据的影响,其中C 、D 选项的判断是难点,可采用假设法判断.三、填空题13.当()0,x ∈+∞时,幂函数()22231mm y m m x--=--为减函数,则m =_________.【答案】2【分析】利用幂函数定义即可得到结果.【详解】 函数为幂函数,则211m m --=,解得1m =-或2m =,又因为函数在(0,)+∞上单调递减,可得2230m m --<,可得2m =,故答案为:214.已知函数()()e e 2,(0)x xf x a bx ab -=-++≠,若()2019f h =-,则()f h -=______.【答案】2023【分析】根据解析式可得()()4f x f x -+=,然后把()2019f h =-代入即可得答案.【详解】()()e e 2,(0)x xf x a bx ab -=-++≠ ,()()e e 2,(0)x x f x a bx ab -∴-=--+≠,()()4f x f x ∴-+=,即()()4()420192023f h f h -=-=--=.故答案为:2023.15.已知ABC 中,14AN NC = ,M 为线段BN 上的一个动点,若AM xAB y AC =+(x 、y 均大于0),则15x y+的最小值______.【答案】36【分析】首先转化向量表示5AM x AB y AN =+,再结合平面向量基本定理的推论得51x y +=,再利用基本不等式求最值.【详解】由条件可知5AC AN =,所以5AM x AB y AN =+ ,点,,M B N 三点共线,所以51x y +=,且0,0x y >>,()1515555552626236y x y x x y x y x y x y x y⎛⎫+=++=++≥+⋅= ⎪⎝⎭,当16x y ==时,等号成立.故答案为:3616.已知函数()22()ln f x x e =+(e 为自然常数, 2.718e ≈),2()21g x ax x a =+++,若1x ∀∈R ,总2[0,)x ∃∈+∞,使得()()12f x g x =成立,则实数a 的取值范围为_________.【答案】[0,1]【分析】设函数()f x 、()g x 的值域分别为集合A 、B ,易得,[)2A =+∞,再根据对任意的1R x ∈,总存在实数2[0,)x ∈+∞,使得()()12f x g x =成立,由A B ⊆,结合二次函数的值域求解.【详解】设函数()f x 、()g x 的值域分别为集合A 、B ,当x R ∈时,()[2,)∈+∞f x ,所以,[)2A =+∞,因为对任意的1R x ∈,总存在实数2[0,)x ∈+∞,使得()()12f x g x =成立,所以应有A B ⊆,故当a<0显然不合要求.当0a =时,在[0,)+∞上()21[1,)g x x =+∈+∞符合要求.当0a >时,211()1g x a x a a a ⎛⎫=+++- ⎪⎝⎭在[0,)+∞上递增,所以()[1,)g x a ∈++∞,故12a +≤,解得1a ≤,综上,[0,1]a ∈故答案为:[0,1]四、解答题17.计算下列各式的值.(1)62211332127(3)233π-⎛⎫⎛⎫+--+⨯ ⎪ ⎪⎝⎭⎝⎭;(2)()7log 2252log 8lg4lg25log 8log 57-+-⋅+.【答案】(1)125(2)0【分析】(1)按照指数运算进行计算即可;(2)按照对数运算进行计算即可;【详解】(1)()622211203233323127(3)23331239914271253π-⎛⎫⎛⎫+--+⨯=+-+⨯=+-+⨯= ⎪ ⎪⎝⎭⎝⎭;(2)()7log 22522l 03og 8lg4lg25log 8log 57lg100log 823232-+-⋅+=--+=--+=.18.设:24p x ≤<,q :实数x 满足()222300x ax a a --<>.(1)若1a =,且,p q 都为真命题,求x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.【答案】(1){}23x x ≤<;(2)4,3⎡⎫+∞⎪⎢⎣⎭.【分析】(1)求得q 命题对应的不等式解集,与p 命题对应的不等式取交集即可;(2)求得q 命题对应的不等式解集,根据集合之间的关系,列出不等式,即可求得结果.【详解】(1)当1a =时,可得22230x ax a --<,可化为2230x x --<,解得13x -<<,又由命题p 为真命题,则24x ≤<.所以p ,q 都为真命题时,则x 的取值范围是{}23x x ≤<(2)由22230,(0)x ax a a --<>,解得3a x a -<<,因为:24p x ≤<,且p 是q 的充分不必要条件,即集合{}24x x ≤<是{}3x a x a -<<的真子集,则满足2340a a a -<⎧⎪≥⎨⎪>⎩,解得43a ≥,所以实数a 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭.19.平面内给定三个向量()()()3,2,1,2,4,1a b c ==-= .()1求满足c ma nb =+的实数,m n ;()2设(),d x y = ,满足()()//d c a b -+ .且1d c -= ,求向量d .【答案】()19588m n ==-,()25254,155d ⎛⎫=++ ⎪ ⎪⎝⎭ 或5254,155d ⎛⎫=-- ⎪ ⎪⎝⎭.【解析】(1)根据c ma nb =+ 即可得出()()4,13,22m n m n =-+,从而得出34221m n m n -=⎧⎨+=⎩,解出m ,n 即可;(2)根据()()//d c a b -+ ,1d c -= ,得到方程组,解得.【详解】解:()1()()()3,2,1,,24,1a b c ==-= 且c ma nb=+ ()()4,13,22m n m n =-+∴34221m n m n -=⎧∴⎨+=⎩9858m n ⎧=⎪⎪∴⎨⎪=-⎪⎩()2()()4,1,2,4d c x y a b -=--+= 又()()//d c a b -+ ,1d c -= ,()()()()2244210411x y x y ⎧---=⎪∴⎨-+-=⎪⎩,解得5452515x y ⎧=+⎪⎪⎨⎪=+⎪⎩或5452515x y ⎧=-⎪⎪⎨⎪=-⎪⎩,所以5254,155d ⎛⎫=++ ⎪ ⎪⎝⎭ 或5254,155d ⎛⎫=-- ⎪ ⎪⎝⎭.【点睛】本题考查了向量坐标的加法和数乘运算,平行向量的坐标关系,根据向量的坐标求向量长度的方法,考查了计算能力,属于基础题.20.某校高二(5)班在一次数学测验中,全班N 名学生的数学成绩的频率分布直方图如下,已知分数在110~120分的学生数有14人.(1)求总人数N 和分数在120~125的人数n ;(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?(3)现在从分数在115~120分的学生(男女生比例为1:2)中任选2人,求其中至多含有1名男生的概率.【答案】(1)4;(2)众数和中位数分别是107.5,110;(3)14 15﹒【分析】(1)先求出分数在110120-内的学生的频率,由此能求出该班总人数,再求出分数在120125-内的学生的频率,由此能求出分数在120125-内的人数.(2)利用频率分布直方图,能估算该班学生数学成绩的众数和中位数.(3)由题意分数在115120-内有学生6名,其中男生有2名.设女生为1A ,2A ,3A ,4A ,男生为1B ,2B ,从6名学生中选出2名,利用列举法能求出其中至多含有1名男生的概率.【详解】(1)分数在110120-内的学生的频率为1(0.040.03)50.35P =+⨯=,∴该班总人数为14400.35N ==.分数在120125-内的学生的频率为:21(0.010.040.050.040.030.01)50.10P =-+++++⨯=,分数在120125-内的人数为400.104n =⨯=.(2)由频率直方图可知众数是最高的小矩形底边中点的横坐标,即为105110107.52+=.设中位数为a ,0.0150.0450.0550.50⨯+⨯+⨯= ,110a ∴=.∴众数和中位数分别是107.5,110.(3)由题意分数在115120-内有学生40(0.035)6⨯⨯=名,其中男生有2名.设女生为1A ,2A ,3A ,4A ,男生为1B ,2B ,从6名学生中选出2名的基本事件为:1(A ,2)A ,1(A ,3)A ,1(A ,4)A ,1(A ,1)B ,1(A ,2)B ,2(A ,3)A ,2(A ,4)A ,2(A ,1)B ,2(A ,2)B ,3(A ,4)A ,3(A ,1)B ,3(A ,2)B ,3(A ,1)B ,4(A ,1)B ,3(A ,1)B ,4(A ,2)B ,3(A ,1)B ,1(B ,2)B ,共15种,其中至多有1名男生的基本事件共14种,∴其中至多含有1名男生的概率为1415P =.21.某中学为了丰富学生的业余生活,开展了一系列文体活动,其中一项是同学们最感兴趣的3对3篮球对抗赛,现有甲乙两队进行比赛,甲队每场获胜的概率为25.且各场比赛互不影响.()1若采用三局两胜制进行比赛,求甲队获胜的概率;()2若采用五局三胜制进行比赛,求乙队在第四场比赛后即获得胜利的概率.【答案】()144 125()2162625【解析】(1)三局两胜制甲胜,则包括三个基本事件,甲胜前两场比赛,第一(二)场比赛甲输了,其他两场比赛赢了,根据相互独立事件的概率计算公式计算可得.(2)五局三胜制,乙队在第四场比赛后即获得胜利,即第四场比赛乙赢,前三场比赛乙赢了二场比赛,根据相互独立事件的概率公式计算可得.【详解】解:设()1,2,3,4,5i A i =表示甲队在第i 场比赛获胜()1所求概率为:()()()221212312323244 2555125P A A P A A A P A A A ⎛⎫⎛⎫++=+⨯⨯= ⎪ ⎪⎝⎭⎝⎭()2所求概率为:()()()312341234123423162355625P A A A A P A A A A P A A A A ⎛⎫++=⨯⨯= ⎪⎝⎭.【点睛】本题考查相互独立事件的概率计算问题,属于基础题.22.若函数()f x 对于定义域内的某个区间I 内的任意一个x ,满足()()f x f x -=-,则称函数()f x 为I 上的“局部奇函数”;满足()()f x f x -=,则称函数()f x 为I 上的“局部偶函数”.已知函数()22,x x f x k -=+⨯其中k 为常数.(1)若()f x 为[]3,3-上的“局部奇函数”,当[]3,3x ∈-时,求不等式3()2f x >的解集;(2)已知函数()f x 在区间[]1,1-上是“局部奇函数”,在区间[3,1)(1,3]--⋃上是“局部偶函数”,(),[1,1]()(),[3,1)(1,3]f x x F x f x x ∈-⎧=⎨∈--⋃⎩(i )求函数()F x 的值域;(ii )对于[3,3]-上的任意实数123,,,x x x 不等式123()()5()F x F x mF x ++>恒成立,求实数m 的取值范围.【答案】(1){}13x x <≤;(2)(i )33565[,][,]2228-⋃;(ii )416,365⎛⎫- ⎪⎝⎭.【解析】(1)根据局部奇函数性质得1k =-,进而2x t =,即23102t t -->,由于20x t =>,[3,3]x ∈-,故3()2f x >的解集为{}13x x <≤;(2)(i )由题得)22,[1,1]()22,[3,1(1,3]x x x x x F x x --⎧-∈-⎪=⎨+∈--⋃⎪⎩,故分别求各段的函数值域,求并集即可得函数()F x 的值域;(ii )根据题意分当0m >时,当0m =时,当0m <时三种情况讨论求解.【详解】解:(1)()()f x f x -=-对[3,3]x ∈-上成立,即2222,1x x x x k k k --+⨯=--⨯=-,所以()22x x f x -=-,故3()222x x f x -=->等价于132022x x -->,令2x t =,即23102t t -->,解得2t >或21t <-,又20x t =>,22x ∴>,1x ∴>,又[3,3]x ∈-3()2f x ∴>的解集为{}13x x <≤.(2)(i ))22,[1,1]()22,[3,1(1,3]x x x x x F x x --⎧-∈-⎪=⎨+∈--⋃⎪⎩①当[1,1]x ∈-时,令2x t =,1[,2]2t ∈,由反比例函数与一次函数的单调性得函数1y t t=-在[1,1]-上单调递增,所以33[,]22y ∈-;②当[3,1)(1,3]x ∈--⋃,令2x t =,1y t t =+为对勾函数,11[,)(2,8]82t ∈⋃,所以565[,]28y ∈.()F x ∴的值域为33565[,][,]2228-⋃(ii )①当0m >时,min max 2()5()F x mF x +>,3652()528m ⨯-+>⋅,16065m ∴<<②当0m =时,min 2()50F x +>,32()5202⨯-+=>成立,0m ∴=③当0m <时,min min 2()5()F x mF x +>,332()5()22m ⨯-+>-,403m ∴-<<综上,m 的取值范围是416,365⎛⎫- ⎪⎝⎭【点睛】本题考查函数的奇偶性,不等式恒成立问题,考查分类讨论思想,化归转化思想,数学运算求解能力,是中档题.其中本题第二问的第一个问题的解题的关键在于借助对勾函数的单调性求解值域,第二个问题在于分类讨论求解,即分当0m >时,当0m =时,当0m <时三种情况讨论求解.。

2021-2022学年山东省蓬莱高一年级上册学期期末考试数学试题【含答案】

2021-2022学年山东省蓬莱高一年级上册学期期末考试数学试题【含答案】

2021-2022学年山东省蓬莱第一中学高一上学期期末考试数学试题一、单选题1.已知集合{}{}22|log (32),|4A x y x B x x ==-=>,则R A B ⋃=( )A .3|22x x ⎧⎫-<⎨⎬⎩⎭B .{|2}x x <C .3|22x x ⎧⎫-<<⎨⎬⎩⎭D .{|2}x x【答案】D【解析】根据对数型函数的定义域化简集合A 的表示,解一元二次不等式化简集合B 的表示,最后根据集合的补集和并集的定义,结合数轴进行求解即可.【详解】因为{}{242B x x x x ==>或}2x <-,所以R {|22}B x x =-又因为{}23|log (32){|320}|,2A x y x x x x x ⎧⎫==-=->=<⎨⎬⎩⎭所以R A B ⋃={|2}x x . 故选:D【点睛】本题考查集合的补集与并集的定义,考查了数学运算能力,属于基础题.2.函数()lg(2)f x x =-的定义域为( ) A .1,3⎡⎫+∞⎪⎢⎣⎭B .1,23⎡⎤⎢⎥⎣⎦C .1,23⎡⎫⎪⎢⎣⎭D .[)2,∞+【答案】C【分析】解不等式组310,20x x -≥⎧⎨->⎩即得解. 【详解】解:由题得3101,2203x x x -≥⎧∴≤<⎨->⎩. 所以函数的定义域为1,23⎡⎫⎪⎢⎣⎭.故选:C3.已知角α的顶点为坐标原点,始边为x 轴的非负半轴,若点(sin ,tan )P αα在第四象限,则角α的终边在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【分析】依据三角函数值的符号判断角α的终边所在象限即可解决. 【详解】由点(sin ,tan )P αα在第四象限,可知sin 0,tan 0αα><,则角α的终边在第二象限. 故选:B4.已知命题“[]3,3x ∀∈-,240x x a -++≤”为假命题,则实数a 的取值范围是( ) A .(4,)-+∞ B .()21,+∞ C .(),21-∞ D .()3,-+∞【答案】A【分析】由全称命题的否定转化为最值问题求解即可. 【详解】因为命题“[]3,3x ∀∈-,240x x a -++≤”为假命题,所以240x x a -++>在[3,3]x ∈-上有解,所以2max (4)0x x a -++>,而一元二次函数24x x a -++在422(1)x =-=⨯-时取最大值,即22420a -+⨯+>解得4a >-, 故选:A5.函数()13cos313xxf x x -=+的图象大致是( )A .B .C .D .【答案】A【解析】先判断奇偶性,可排除C ,D ,由特殊值()f π,可排除B ,即可得到答案.【详解】因为()()()1331cos 3cos31331x x x x f x x x f x -----=⋅-=⋅=-++,所以函数()f x 为奇函数,排除C ,D ;又()13cos3013f ππππ-=>+,排除B ,故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 6.若α,β的终边(均不在y 轴上)关于x 轴对称,则( ) A .sin sin 0αβ+= B .cos cos 0αβ+= C .22sin sin 1αβ+= D .tan tan 0αβ-=【答案】A【分析】因为α,β的终边(均不在y 轴上)关于x 轴对称,则2k αβπ+=,Z k ∈,然后利用诱导公式对应各个选项逐个判断即可求解.【详解】解:因为α,β的终边(均不在y 轴上)关于x 轴对称, 则2k αβπ+=,Z k ∈,选项A :sin sin sin sin(2)sin sin 0k αβαπααα+=+-=-=,故A 正确, 选项B :cos cos cos cos(2)2cos 0k αβαπαα+=+-=≠,故B 错误, 选项C :22222sin sin sin sin (2)2sin 0k αβαπαα+=+-=≠,故C 错误, 选项D :tan tan tan tan(2)tan tan 2tan 0k αβαπαααα-=--=+=≠,故D 错误, 故选:A .7.若31,2α⎛⎫∈ ⎪⎝⎭,记cos sin cos log ,log cos ,1log tan x y z αααααα===+,则,,x y z 的大小关系正确的是( )A .x y z <<B .z x y <<C .x z y <<D .y x z <<【答案】C【分析】由题意可得0cos sin 1,tan 1αααα<<<<>,然后利用对数函数的单调性比较大小 【详解】因为31,2α⎛⎫∈ ⎪⎝⎭,所以0cos sin 1,tan 1αααα<<<<>, 所以cos cos log log 10x ααα=<=, sin sin log cos log sin 1y αααα=>=,cos cos cos 1log tan log (cos tan )log sin z ααααααα=+==,因为0cos sin 1αα<<<,所以cos cos cos log cos log sin log 1ααααα>>, 所以cos 1log sin 0αα>>,即01z <<, 综上,x z y <<, 故选:C8.已知()f x 是定义在[]1,1-上的奇函数,且()11f -=-,当,1,1a b且0a b +≠时()()0f a f b a b+>+.已知,22ππθ⎛⎫∈- ⎪⎝⎭,若()243sin 2cos f x θθ<+-对[]1,1x ∀∈-恒成立,则θ的取值范围是( )A .,62ππ⎛⎫- ⎪⎝⎭B .,23ππ⎛⎫-- ⎪⎝⎭ C .,32ππ⎛⎫- ⎪⎝⎭ D .,26ππ⎛⎫- ⎪⎝⎭【答案】A【解析】由奇偶性分析条件可得()f x 在[]1,1-上单调递增,所以()max 1f x =,进而得2143sin 2cos θθ<+-,结合角的范围解不等式即可得解. 【详解】因为()f x 是定义在[]1,1-上的奇函数, 所以当,1,1a b且0a b +≠时()()()()00()f a f b f a f b a b a b +-->⇔>+--,根据,a b 的任意性,即,a b -的任意性可判断()f x 在[]1,1-上单调递增, 所以()max (1)(1)1f x f f ==--=,若()243sin 2cos f x θθ<+-对[]1,1x ∀∈-恒成立,则2143sin 2cos θθ<+-,整理得(sin 1)(2sin 1)0θθ++>,所以1sin 2θ>-,由,22ππθ⎛⎫∈- ⎪⎝⎭,可得,62ππθ⎛⎫∈- ⎪⎝⎭,故选:A.【点睛】关键点点睛,本题解题的关键是利用()()()()00()f a f b f a f b a b a b +-->⇔>+--,结合变量的任意性,可判断函数的单调性,属于中档题.二、多选题9.已知全集U =R ,集合M ,N 的关系如图所示,则( )A .NM M =B .()U M N ⋂=∅C .()()U U M N ⊇D .()()U U UM N N ⋂=【答案】AB【分析】根据韦恩图,结合集合的交并补运算逐个选项分析即可.【详解】由图可知()()()()(),,,U U U U UUN M M M N M N M N M ==∅⊆=.故选:AB10.幂函数21*()(22),N m f x m m x m --=+-∈,则下列结论正确的是( ) A .1m = B .函数()f x 是偶函数 C .(2)(3)f f -< D .函数()f x 的值域为(0,)+∞【答案】ABD【分析】根据幂函数定义可知2221m m +-=,即可解得m 的值,结合m 是正整数即可对选项做出判断.【详解】由幂函数定义可知,系数2221m m +-=,解得1m =或32m =-,又因为*N m ∈,所以1m =;故A 正确; 1m =时,221()f x xx -==,其定义域为(,0)(0,)-∞+∞,且满足2()()1f f x x x ==-,所以函数()f x 是偶函数,即B 正确; 由21()f x x=可知,函数()f x 在(0,)+∞为单调递减,所以(2)(2)(3)f f f -=>,所以C 错误; 函数21()f x x=的值域为(0,)+∞,即D 正确; 故选:ABD.11.已知函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则( )A .函数解析式()2sin 23f x x π⎛⎫=+ ⎪⎝⎭B .将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移4π个单位长度可得函数()f x 的图象C .直线1112x π=-是函数()f x 图象的一条对称轴 D .函数()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值为2【答案】ABC【分析】根据图像得到解析式,利用函数的性质进项判断即可. 【详解】由题图知:函数()f x 的最小正周期453612T πππ⎛⎫=⨯-=⎪⎝⎭,则22πωπ==,2A =,所以函数()()2sin 2f x x ϕ=+.将点,212π⎛⎫⎪⎝⎭代入解析式中可得22sin 6πϕ⎛⎫=+ ⎪⎝⎭,则()262k k Z ππϕπ+=+∈,得()23k k Z πϕπ=+∈, 因为2πϕ<,所以3πϕ=,因此()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,故A 正确.将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图像向左平移4π个单位长度可得函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图像,故B正确.()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,当1112x π=-时,()2f x =,故C 正确.当,02x π⎡⎤∈-⎢⎥⎣⎦时,23x π+∈2,33ππ⎡⎤-⎢⎥⎣⎦,所以()f x ⎡∈-⎣故D 错误. 故选:ABC .12.已知正实数x ,y ,z 满足236x y z ==,则( ) A .111x y z+=B .236x y z >>C .236x y z >> D .24xy z ≥【答案】ACD【分析】令236x y z t ===则1t >,可得:2log x t =,6log z t =,进而结合对数运算与换底公式判断各选项即可得答案.;【详解】解:令236x y z t ===,则1t >,可得:2log x t =, 3log y t =,6log z t =, 对于选项A :因为()231111lg 2lg 31lg 61lg 2lg 3log 6log log lg lg lg lg t x y t t t t t t z+=+=+=+===, 所以111x y z+=,故选项A 正确;对于选项B ,因为1t >,故lg 0t >,所以232lg 3lg 2log 3log lg 2lg323t t t x t y -=-=-()23lg lg3lg 2lg 2lg3t -=⋅9lg lg80lg 2lg3t =>⋅,即23x y >; ()3663lg lg3lg lg 62lg33lg 6lg 9363log 6log 0lg3lg 6lg3lg 6lg3lg 6t t t t y z t t ⋅--=-=-==<⋅⋅,即36y z <,故B 选项错误. 对于选项C :log lg lg a t t a a a =,因为02lg 23lg36lg 6<<<,所以1112lg 23lg 36lg 6>>, 因为lg 0t >,所以lg lg lg 2lg 23lg 36lg 6t t t >>,即362log log log 236t t t >>,即236x y z>>,故选项C 正确;对于选项D :()223lg lg lg log log lg 2lg3lg 2lg3t t txy t t =+=⋅=⨯, ()()()222262lg 444log 4lg lg 6lg 6t z t t ⎛⎫=== ⎪⎝⎭, 因为()22lg 6lg 2lg30lg 2lg324+⎛⎫<⨯<=⎪⎝⎭,因为lg 2lg3≠所以等号不成立, 所以()214lg 2lg3lg 6>⨯,即()()()222lg 4lg lg 2lg 3lg 6t t >⨯, 所以24xy z >,根据“或”命题的性质可知选项D 正确. 故选:ACD三、填空题13.如图所示,终边落在阴影部分(包括边界)的角α的集合是__________.【答案】{}90180120180,k k k Z αα+⋅≤≤+⋅∈ 【分析】写出终边落在边界上的角,即可求出.【详解】因为终边落在y 轴上的角为90180,k k Z ︒+⋅︒∈, 终边落在图中直线上的角为1203601202180,k k ︒︒+⋅︒=+⋅︒Z k ∈; 3003601201802180120(21)180,n n n n Z ︒︒︒+⋅︒=+︒+⋅︒=++⋅︒∈,即终边在直线上的角为120180k ︒+⋅︒,Z k ∈,所以终边落在阴影部分的角为90180120180,k k k Z α︒+⋅︒≤≤︒+⋅︒∈, 故答案为:{}90180120180,k k k Z αα︒+⋅︒≤≤︒+⋅︒∈14.已知正数x ,y 满足21x y +=,则12xx y +的最小值为__________.【答案】5【分析】根据基本不等式即可求解最值.【详解】()212121124y x x y x y x y-+=+=+-, 由于0,0x y >>,21x y +=,所以()12122222241125x y x y xx y x y x y x y x y ⎛⎫+=++-=++≥+⋅= ⎪⎝⎭, 当且仅当13x y == 时,取等号,故12x x y +最小值为5,故答案为:515.数学中处处存在着美,机械学家莱洛沷现的莱洛三角形就给人以对称的美感.莱洛三角形的画法:先画等边三角形ABC ,再分别以点A ,B ,C 为圆心,线段AB 长为半径画圆弧,便得到莱洛三角形.若线段AB 长为2,则莱洛三角形的面积是________.【答案】2π23-232π-【分析】由题意,可先求解出正三角形扇形面积,再利用莱洛三角形与扇形之间的关系转化即可求解.【详解】由已知得2π3AB BC AC ===, 则AB =BC =AC =2,故扇形的面积为2π3, 由已知可得,莱洛三角形的面积扇形面积的3倍减去三角形面积的2倍, ∴所求面积为22π33222π233⨯-=- 故答案为:2π23-32π-.四、双空题16.已知定义在R 上的奇函数12,(0)()(),(0)x x f x g x x ⎧-≥=⎨<⎩,则(1)f -=________;不等式(())7≤f f x 的解集为________.【答案】 1 (,2]-∞【解析】由奇函数关于原点对称的性质,即可求得(1)f -;不等式(())7≤f f x 的解集等价于()3f x ≥-的解集,即可求得答案.【详解】解:∵12,(0)()(),(0)x x f x g x x ⎧-≥=⎨<⎩是定义在R 上的奇函数,当0x <时,()()()()1221x xg x f x f x --==--=-=--,12,(0)()21,(0)x x x f x x -⎧-≥∴=⎨-<⎩,∴(1)211f -=-=;又12,(0)()21,(0)x x x f x x -⎧-≥=⎨-<⎩在()0,∞+和()0-∞,上都单调递减,而且函数又是连续性函数,图像没有断开,所以函数12,(0)()21,(0)x x x f x x -⎧-≥=⎨-<⎩在R 上单调递减,∵不等式(())7,(3)7f f x f ≤-=,()3f x ∴≥-,123xx ≥⎧∴⎨-≥-⎩或0213x x -<⎧⎨-≥-⎩, 解得:2x ≤,即不等式(())7≤f f x 的解集为(,2]-∞. 故答案为:1;(,2]-∞.【点睛】本题考查奇函数的性质以及求解方法,考查复合不等式的求解,属于中档题.五、解答题 17.(1)计算20.5231103522216274--⎛⎫⎛⎫⎛⎫-⨯-⨯÷ ⎪⎪⎪⎝⎭⎝⎭⎝⎭(2)计算31log 242766194log 3log 8log 82log 3--⋅+-【答案】(1)0;(2)3【分析】(1)利用有理数指数幂性质以及运算法则求解; (2)利用对数性质及运算法则求解.【详解】(1)20.5231103522216274--⎛⎫⎛⎫⎛⎫-⨯-⨯÷ ⎪⎪⎪⎝⎭⎝⎭⎝⎭12223816442216273-⎛⎫⎛⎫⎛⎫=-⨯-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22933220444⎛⎫⎛⎫=-⨯-⨯= ⎪ ⎪⎝⎭⎝⎭. (2)31log 242766194log 3log 8log 82log 33--⋅+-3212log 2323662134log 3log 2log 22log 33=-⨯++3log 42366134log 3log 2log 2log 32=-⨯⨯++()642log 23213=-+⨯=+=.18.如图,以Ox 为始边作角α与(0)ββαπ<<<,它们的终边分别与单位圆相交于P ,Q 两点,已知点P 的坐标为34,55⎛⎫- ⎪⎝⎭.(1)求sin 2cos 211tan ααα+++的值;(2)若cos cos sin sin 0αβαβ+=,求()sin αβ+的值. 【答案】(1)1825(2)725【分析】(1)由三角函数的定义首先求得sin ,cos αα的值,然后结合二倍角公式和同角三角函数基本关系化简求解三角函数式的值即可;(2)由题意首先求得,αβ的关系,然后结合诱导公式和两角和差正余弦公式即可求得三角函数式的值. 【详解】(1)由三角函数定义得3cos 5α=-,4sin 5α, ∴原式2222sin cos 2cos 2cos (sin cos )3182cos 2sin sin cos 5251cos cos αααααααααααα++⎛⎫====⨯-=⎪+⎝⎭+. (2)∵cos cos sin sin cos()0αβαβαβ+=-=,且0βαπ<<<, ∴2παβ-=,2πβα=-,∴3sin sin cos 25πβαα⎛⎫=-=-= ⎪⎝⎭,4cos cos sin 25πβαα⎛⎫=-== ⎪⎝⎭.∴44337sin()sin cos cos sin 555525αβαβαβ⎛⎫+=+=⨯+-⨯= ⎪⎝⎭.【点睛】本题主要考查三角函数的定义,二倍角公式及其应用,两角和差正余弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.19.已知函数π()2sin()(0)3f x x ωω=->图象的相邻两条对称轴间的距离为π.2(1)求函数()f x 的单调递增区间和其图象的对称轴方程; (2)先将函数()y f x =的图象各点的横坐标向左平移π12个单位长度,纵坐标不变得到曲线C ,再把C 上各点的横坐标保持不变,纵坐标变为原来的12,得到()g x 的图象,若1()2g x ≥,求x 的取值范围. 【答案】(1)单调递增区间为π5ππ,π(Z)1212k k k ⎡⎤-+∈⎢⎥⎣⎦,对称轴方程为π5π(Z)212k x k =+∈; (2)πππ,π(Z).62k k k ⎡⎤++∈⎢⎥⎣⎦【分析】(1)由条件可得函数()f x 的最小正周期,结合周期公式求ω,再由正弦函数性质求函数()f x 的单调递增区间和对称轴方程;(2)根据函数图象变换结论求函数()g x 的解析式,根据直线函数性质解不等式求x 的取值范围.【详解】(1)因为()f x 图象的相邻两条对称轴间的距离为π.2,所以()f x 的最小正周期为π,所以2ππω=,2ω=,所以π()2sin(2)3f x x =-, 由πππ2π22π232k x k -≤-≤+,可得π5πππ1212k x k -≤≤+,()k ∈Z , 所以函数()f x 的单调递增区间为π5ππ,π(Z)1212k k k ⎡⎤-+∈⎢⎥⎣⎦, 由()ππ2πZ 32x k k -=+∈得π5π(Z)212k x k =+∈,所以所求对称轴方程为π5π(Z)212k x k =+∈ (2)将函数()y f x =的图象向左平移π12个单位长度得到曲线π:2sin(2)6C y x =-,把C 上各点的横坐标保持不变,纵坐标变为原来的12得到π()sin(2)6g x x =-的图象, 由1()2g x ≥得π1sin(2)62x -≥,所以ππ5π2π22π666k x k +≤-≤+,Z k ∈,所以ππππ62k x k +≤≤+,Z k ∈,所以x 的取值范围为πππ,π(Z).62k k k ⎡⎤++∈⎢⎥⎣⎦20.已知函数()y f x =的定义域为R ,且对任意a ,b ∈R ,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立.(2)证明函数()y f x =是R 上的减函数; (3)若2(2)()0f x f x -+<,求x 的取值范围. 【答案】(1)证明见解析 (2)证明见解析 (3){1x x >或}2x <-【分析】(1)利用特殊值求出(0)0f =,从而证明()()f x f x -=-即可;(2)证明出[]121222()()()()f x f x f x x x f x ∴-=-+-12()f x x =-,再利用当0x >时,()0f x <恒成立即可得解;(3)利用函数的单调性和奇偶性进行证明即可得解. 【详解】(1)证明:由()()()f a b f a f b +=+, 令0a b 可得(0)(0)(0)f f f =+, 解得(0)0f =,令,==-a x b x 可得()()()f x x f x f x -=+-, 即()()(0)f x f x f +-=,而(0)0f =,()()f x f x ∴-=-,而函数()y f x =的定义域为R ,故函数()y f x =是奇函数.(2)证明:设12x x >,且1R x ∈,2x R ∈,则120x x ->, 而()()()f a b f a f b +=+[]121222()()()()f x f x f x x x f x ∴-=-+-1222()()()f x x f x f x =-+- 12()f x x =-,又当0x >时,()0f x <恒成立,即12()0f x x -<,12()()f x f x ∴<, ∴函数()y f x =是R 上的减函数;(3)(方法一)由2(2)()0f x f x -+<, 得2(2)()f x f x -<-, 又()y f x =是奇函数, 即2(2)()f x f x -<-,22x x ∴->-解得1x >或 2.x <-故x 的取值范围是{1x x >或}2x <-. (方法二)由2(2)()0f x f x -+<且(0)0f =,得2(2)(0)f x x f -+<, 又()y f x =在R 上是减函数, 220x x ∴-+>,解得1x >或 2.x <-故x 的取值范围是 {1x x >或}2x <-.21.已知函数()2f x x bx c =++,满足()()1f x f x =-,其一个零点为1-.(1)当0m ≥时,解关于x 的不等式()()21mf x x m ≥--; (2)设()()313f x x h x +-=,若对于任意的实数1x ,[]22,2x ∈-,都有()()12h x h x M -≤,求M 的最小值.【答案】(1)答案见解析 (2)242【分析】(1)根据条件求出,b c ,再分类讨论解不等式即可; (2)将问题转化为()()max min M h x h x ≥-,再通过换无求最值即可. 【详解】(1)因为()()1f x f x =-,则()()2211x bx c x b x c ++=-+-+,得1b又其一个零点为1-,则()1110f c -=++=,得2c =-,则函数的解析式为()22f x x x =--则()()2221m x x x m --≥--,即()()()222210mx m x mx x -++=--≥当0m =时,解得:1x ≤当0m >时,①2m =时,解集为R ②02m <<时,解得:1x ≤或2x m≥, ③m>2时,解得:2x m≤或1x ≥, 综上,当0m =时,不等式的解集为}{1x x ≤;当2m =时,解集为R ;当02m <<时,不等式的解集为{1x x ≤或2x m ⎫≥⎬⎭; 当m>2时,不等式的解集为2x x m ⎧≤⎨⎩或}1x ≥.(2)对于任意的1x ,[]22,2x ∈-,都有()()12h x h x M -≤, 即()()max min M h x h x ≥-令()222314t x x x =+-=+-,则()3th t =因为[]2,2x ∈-,则min 0t =,max 5t =可得()5max 3h t =,()0min 31h t ==则()()max min 2431242h x h x -=-=, 即242M ≥,即M 的最小值为242.22.某同学用“五点法”画函数()()cos 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请根据上表数据,求函数()f x 的解析式;(2)关于x 的方程()f x t =区间0,2π⎡⎤⎢⎥⎣⎦上有解,求t 的取值范围;(3)求满足不等式()()52043f x f f x f ππ⎡⎤⎡⎤⎛⎫⎛⎫-⋅--> ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦的最小正整数解. 【答案】(1)()2cos 26f x x π⎛⎫=- ⎪⎝⎭;(2)2⎡⎤⎣⎦; (3)2.【分析】(1)由表格中的数据可得出A 的值,根据表格中的数据可得出关于ω、ϕ的方程组,解出这两个量的值,可得出函数()f x 的解析式;(2)利用余弦型函数的基本性质求出函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域,即可得出实数t 的取值范围;(3)分析可得()0f x <或()1f x >,分别解这两个不等式,得解集,令0k =,得解集的一部分,由此可得出解集中的最小正整数解.【详解】(1)解:由表格数据知,2A =,由325362πωπϕπωπϕ⎧+=⎪⎪⎨⎪+=⎪⎩,解得26ωπϕ=⎧⎪⎨=-⎪⎩,所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭.(2)解:当2,0x π⎡⎤∈⎢⎥⎣⎦时,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,则cos 262x π⎡⎤⎛⎫-∈-⎢⎥ ⎪⎝⎭⎣⎦, 所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的值域为2⎡⎤⎣⎦, 因为方程()f x t =区间0,2π⎡⎤⎢⎥⎣⎦上有解,所以t的取值范围为2⎡⎤⎣⎦. (3)解:因为552cos 2sin 14266f ππππ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,2432cos 2cos 03362f ππππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以不等式即:()()10f x f x ⎡⎤-⋅>⎣⎦,解得()0f x <或()1f x >,由()0f x <得cos 206x π⎛⎫-< ⎪⎝⎭,所以()3222Z 262k x k k πππππ+<-<+∈, 所以5,36x k k ππππ⎛⎫∈++ ⎪⎝⎭,Z k ∈; 由()1f x >得1cos 262x π⎛⎫-> ⎪⎝⎭,所以()222Z 363k x k k πππππ-+<-<+∈,所以,124x k k ππππ⎛⎫∈-++ ⎪⎝⎭,Z k ∈.令0k =可得不等式解集的一部分为5,,12436ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,因此,解集中最小的正整数为2.。

高中数学高一年级上册期末测试01含答案解析

高中数学高一年级上册期末测试01含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!期末测试一、选择题(共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的) 1.下列函数中与函数2y x =相同的函数是( )A .22x y x=B.y =C.2y =D .2log 4x y =2.已知集合{}2,1,0,1,2A =--,{}240|5B x x x -=-<,则 A B =∩( ) A .{}2,1,0--B .{}1,0,1,2-C .{}1,0,1-D .{}0,1,23.()f x x x =,若()()2110f m f m ++->,则m 的取值范围( ) A .(),1-∞-B .(),2-∞-C .()1,-+∞D .()2,-+∞4.已知1x >,则函数11y x x =+-的最小值是( ) A .1B .2C .3D .45.不等式102x x +-≥的解集( ) A .{}1|2x x x -≤或≥ B .{}1|2x x x ≤-或> C .{}1|2x x -≤≤D .{}1|2x x -≤<6.已知函数()f x 为偶函数,且对于任意的1x ,()20,x ∈+∞,都有()()12120f x f x x x -->()12x x ≠,设()2a f =,()3log 7b f =,()0.12c f -=-则( )A .b a c <<B .c a b <<C .c b a <<D .a c b <<7.已知集合{}260A x x x =--<,集合{}10B x x =->,则()R A B = ( ) A .()1,3B .(]1,3C .[)3,+∞D .()3,+∞8.已知函数321,3,()21,3,3x x f x x x x -⎧+⎪=⎨+⎪-⎩≤>满足()3f a =,则a 的值是( )A .4B .8C .10D .4或10二、填空题(本大题共6小题,每小题5分,共30分)9.已知函数()y f x =是R 上的奇函数,且当0x <时,()1f x =-,则当0x >时,()f x =______. 10.已知()f x 是R 上的奇函数,当0x ≥时,()25f x x x =-,则()()1f x f x ->的解集为______.11.若函数()()log 12a f x x =++(0a >且1a ≠),图象恒过定点()P m n ,,则m n +=______;函数()2xnxg x e +=的单调递增区间为______.12.若2312a b ==,则21a b+=______. 13.已知函数()2-4xf x a =(0a >,1a ≠)的图象恒过定点A ,则A 的坐标为______.14.1tan 3α=-,则22sin 2sin cos 3cos αααα+-=______. 三、解答题(本大题共5个小题,共50分) 15.计算下列各式的值:(1)(11153524243--⎛⎫⎛⎫⨯-+- ⎪ ⎪⎝⎭⎝⎭;(2)57log 422log log 205log 5+--.16.已知602x A x x ⎧⎫-=⎨⎬-⎩⎭>,()(){}110B x x a x a =---+≤.(Ⅰ)当2a =时,求A B ;(Ⅱ)当0a >时,若A B B = ,求实数a 的取值范围.17.(1)求关于x 的不等式()210x a x a -++>的解集;(2)已知二次不等式20ax bx c ++<的解集为11|32x x x ⎧⎫⎨⎬⎩⎭<或>,求关于x 的不等式20cx bx a -+>的解集.18.已知函数()121xa f x =++为奇函数. (1)求a 的值,并证明()f x 是R 上的增函数;(2)若关于t 的不等式()()22220f t t f t k --+<的解集非空,求实数k 的取值范围.19.已知函数()222cos 1f x x x =+-. (1)求512f π⎛⎫⎪⎝⎭的值;(2)求()f x 的最小正周期及单调增区间.期末测试 答案解析一、 1.【答案】D【解析】A 项定义域0x ≠,定义域不同,A 错;B项2y x ==,对应关系不同,B 错;C项2y =定义域[)0,x ∈+∞,定义域不同,C 错;D 项222log 4log 22x x y x ===,定义域和对应关系都相同,D 对故选D【考点】相等函数的判断方法 2.【答案】D【解析】因为集合{}2,1,0,1,2A =--,()(){}{}|510|15B x x x x x =-+=-<<< ∴{}{}{}2,1,0,1,2|150,1,2A B x x =---<= <, 故选:D【考点】集合的交集运算 3.【答案】D【解析】当0x ≥时,()2f x x =,当0x <时,()2f x x =-,则()22x x f x xx ⎧=⎨-⎩≥<,画出函数图像,如图:函数为增函数,()f x x x =,()f x x x x x -=--=-,()()0f x f x +-=,故函数为奇函数,()()()()()21102111f m f m f m f m f m ++-=-⇔+-->>,即()()211f m f m +->,因为函数在R 上单调递增,所以2112m m m +-⇒->> 故选D【考点】根据函数的增减性和奇偶性解不等式 4.【答案】C【解析】由题可知:110,1111311x x y x x x x ⇒-=+=-++-->>≥当2x =时,取得最小值,故最小值为3 故选C【考点】基本不等式求最值的简单应用 5.【答案】B 【解析】不等式102x x +-等价于()()012x x +-≥且2x ≠,解得1x -≤或2x >, 故选:B【考点】分式不等式的解法 6.【答案】C 【解析】若()()()1212120f x f x x x x x -≠->,则函数在()0,+∞是单调递增函数,并且函数是偶函数满足()()f x f x -=, 即()()0.10.122f f ---=,0.1021-<<,31log 72<<∵()f x 在()0,+∞单调递增, ∴()()()0.132log 72f f f -<<, 即c b a << 故选C【考点】利用函数的奇偶性和函数的单调性比较函数值的大小 7.【答案】C【解析】因为260x x --<,所以()2,3x ∈-,即()2,3A =-,所以(][),23,R A =-∞-⋃+∞ ,又因为()1,B =+∞,所以()[)3,R A B =+∞ 故选C【考点】集合的补集与交集混合运算 8.【答案】C【解析】当3a ≤时,令32134a a -+=⇒=,不满足3a ≤; 当3a >时,令2132139103a a a a a +=⇒+=-⇒=-,满足3a >,所以10a = 故选C 二、91+【解析】∵()y f x =是R 上的奇函数,且0x <时,()1f x =-, ∴设0x >,0x -<,则:()()1f x f x -==-, ∴()1f x =+.1+. 【考点】奇函数的定义 10.【答案】{}23x x -<<【解析】当0x <时,0x ->,所以()()22()55f x x x x x -=--⨯-=+,又()f x 是R 上的奇函数,所以()()25f x f x x x =--=--,所以()225,05,0x x x f x x x x ⎧-=⎨--⎩≥<,所以()()()()()22151,11151,1x x x f x x x x ⎧---⎪-=⎨----⎪⎩≥<,即()2276,1134,1x x x f x x x x ⎧-+-=⎨--+⎩≥<, 做出()f x 和()1f x -的图像如下图所示,不等式()()1f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合, 由22576x x x x -=-+,得3x =,所以()3,6A -, 由22534x x x x --=--+得2x =-,所以()2,6B -, 所以不等式()()1f x f x ->的解集为{}23x x -<< 故答案为:{}23x x -<<【考点】根据函数的奇偶性求得对称区间上的解析式 11.【答案】2 ()1,-+∞【解析】由函数()()log 12a f x x =++(0a >且1a ≠)的解析式可知:当0x =时,2y =,因此有0m =,22n m n =⇒+=;因此()22222(1)1x xxxx g x e e e +++-===,由复合函数的单调性的性质可知:函数()2xnxg x e +=的单调递增区间为:()1,-+∞ 故答案为2;()1,-+∞【考点】对数型函数过定点问题 12.【答案】1【解析】由题意得2log 12a =,3log 12b =,则121log 2a =,121log 3b=, 所以()2121212212log 2log 3log 231a b+=+=⨯= 【考点】指数与对数互化,以及对数运算性质 13.【答案】()2,3-【解析】∵函数()24x f x a -=-,其中0a >,1a ≠, 令20x -=可得2x =,21x a -=, ∴()143f x =-=-, ∴点A 的坐标为()2,3-, 故答案为:()2,3-. 【考点】指数函数的图像性质14.【答案】165-【解析】因为sin 1tan cos 3a a a ==-,所以cos 3sin a a =-,代入22sin cos 1a a +=,则21sin 10a =,29cos 10a =,()23sin cos sin 3sin 3sin 10a a a a a =-=-=-,所以原式22sin 2sin cos 3cos αααα+-1627161010105=--=-,故答案为:165-【考点】同角三角函数的关系 三、15.【答案】(1) (2)0【解析】(1)原式11215533442255⎛⎫⎛⎫=+⨯- ⎪ ⎪⎝⎭⎝⎭(21332222=-=-=(2)原式3322217log 27log 32log 2log 5log 544=-++-- 3712044=-+-= 【考点】分数指数幂和对数的运算法则 16.【答案】(Ⅰ){}23A B x x = <≤ (Ⅱ)5a ≥ 【解析】(Ⅰ)由602xx -->,得到26x <<,则{}26A x x =<<; 当2a =时,由()()110x a x a ---+≤得()()310x x -+≤,则{}13B x x =-≤≤; 则{}23A B x x = <≤;(Ⅱ)若A B B ⋃=,则A B ⊆,而()(){}110B x x a x a =---+≤当0a >时,{}11B x a x a =-+≤≤ ,则1216a a -⎧⎨+⎩≤≥,得到5a ≥,所以5a ≥.【考点】集合的交集运算 17.【答案】(1)详见解析 (2)()3,2--【解析】(1)不等式()210x a x a -++>可化为()()10x x a -->, ①当1a =时,不等式的解集为()(),11,-∞+∞ ; ②当1a >时,不等式的解集为()(),1,a -∞+∞ ; ③当1a <时,不等式的解集为()(),1,a -∞+∞ ;(2)由不等式20ax bx c ++<的解集为11|32x x x ⎧⎫⎨⎬⎩⎭<或>可知0a <,且12和13是方程2=0ax bx c ++的两根,由韦达定理得5616b ac a ⎧-=⎪⎪⎨⎪=⎪⎩,解得56b a =-,16c a =,∴不等式20cx bx a -+>可化为215066ax ax a ++>,得2560x x ++<,所以,所求不等式的解集为()3,2--18.【答案】(1)2a =-,证明见解析(2)13k -> 【解析】(1)因为()f x 定义在R 上的奇函数,所以()00f =,得2a =-此时,()22112121x x x f x -=-=++,()()21122112x x x xf x f x -----===-++,所以()f x 是奇函数,所以2a =-.任取1x ,2x ∈R ,且12x x <,则1222x x <,因为()()1221122112221121212221212(22)0,(21)(21)x xx x x x x x f x f x ⎛⎫⎛⎫-=--- ⎪ ⎪++⎝⎭⎝⎭=-++-=<++ 所以()()12f x f x <, 所以()f x 是R 上的增函数.(2)因为()f x 为奇函数,()()222+20f t t f t k --<的解集非空, 所以()()2222f t t f k t --<的解集非空, 又()f x 在R 上单调递增, 所以2222t t k t --<的解集非空,即2320t t k --<在R 上有解,所以∆0>得13k -> 19.【答案】(1)0(2)最小正周期π,()f x 的单调增区间为()πππ,π+36k k k Z ⎡⎤-∈⎢⎣⎦【解析】(1)()222cos 1f x x x =+-255522cos 1121212f πππ⎛⎫⎛⎫⎛⎫=⨯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭552cos 21212ππ⎛⎫⎛⎫=⨯+⨯ ⎪ ⎪⎝⎭⎝⎭55cos =066ππ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭(2)()222cos 12c 2sin 2os26f x x x x x x π⎛⎫=+⎪⎝=+-⎭+高中数学 高一(上) 7 / 7 所以()f x 的最小正周期2ππ2T == 令ππ2π22π+262k x k π-+≤,解得()ππππ+36k x k k Z -∈≤ 所以()f x 的单调增区间为()πππ,π+36k k k Z ⎡⎤-∈⎢⎥⎣⎦。

2022-2023学年云南省保山市文山州高一年级上册学期期末考试数学试题【含答案】

2022-2023学年云南省保山市文山州高一年级上册学期期末考试数学试题【含答案】

2022-2023学年云南省保山市文山州高一上学期期末考试数学试题一、单选题1.已知集合,,则( ){}ln 1A x x =<{}1,0,1,2,3,4B =-A B = A .B .C .D .{}1,2{}0,1,2{}1,2,3{}1,2,3,4【答案】A【分析】解对数不等式化简集合,再由交集运算即可求解.A 【详解】由得,所以,所以,ln 1x <0e x <<{}0e A x x =<<{}1,2A B = 故选:A.2.命题“,”的否定是( )0x ∃>sin 1x x =A .,B .,0x ∃>sin 1x x ≠0x ∀>sin 1x x =C .,D .,0x ∀>sin 1x x ≠0x ∀≤sin 1x x ≠【答案】C【分析】特称命题的否定是全称命题,根据命题“,”的否定是“,”解决x M ∃∈()p x x M ∀∈()p x ⌝即可.【详解】由题知,命题“,”是特称命题,0x ∃>sin 1x x =于是其否定是“,”,0x ∀>sin 1x x ≠故选:C3.若,则“”是“”的( )0,0a b >>4a b +=4ab ≤A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据充分必要条件的概念验证题中的命题即可得出答案.【详解】,,根据基本不等式可得,0,0a b >>4a b +=,当且仅当 时取等号242a b ab +⎛⎫≤= ⎪⎝⎭2a b ==“”是“”充分条件;∴4a b +=4ab ≤时,显然不一定成立,4ab ≤4a b +=“”不是“”的必要条件.∴4a b +=4ab ≤“”是“”的充分不必要条件,选项A 正确.∴4a b +=4ab ≤故选:A.4.下列函数既是偶函数,又在上单调递增的是( )()0,∞+A .B .C .D .cos y x =2y x=-1y x=y x=【答案】D【分析】根据基本初等函数的单调性与奇偶性判断即可.【详解】对于A :为偶函数,但是在上不具有单调性,故A 错误;cos y x =()0,∞+对于B :为偶函数,但是在上单调递减,故B 错误;2y x =-()0,∞+对于C :为奇函数,故C 错误;1y x =对于D :,则,所以为偶函数,()y f x x==()()f x x f x -=-=y x=且当时,则函数在上单调递增,故D 正确;0x >y x =()0,∞+故选:D5.已知函数是上的减函数,则实数的取值范围是( )()()()1,2log 1,12a a x a x f x x x ⎧-+≥⎪=⎨-<<⎪⎩()1,+∞a A .B .C .D .21,52⎡⎫⎪⎢⎣⎭10,2⎛⎫⎪⎝⎭20,3⎛⎤ ⎥⎝⎦10,5⎛⎤ ⎥⎝⎦【答案】C【分析】根据分段函数的性质结合一次函数和对数函数的单调性,列出不等式组,即可求得实数的取值范围.a 【详解】由题意解得,10,01,log 122,a a a a a -<⎧⎪<<⎨⎪≥-+⎩203a <≤所以实数的取值范围是,a 20,3⎛⎤⎥⎝⎦故选:C.6.已知,,,则x ,y ,z 的大小关系是( )lg 9x =0.13y =1ln3z =A .B .y x z <<z x y <<C .D .y z x<<x y z<<【分析】由对数、指数得运算性质,分别将与比较大小,即可得到结果.,,x y z 0,1【详解】,即;0lg1lg 9lg101x =<=<=01x <<,即;00.1133y =<=1y >,即.1ln ln103z =<=0z <故.y x z >>故选:B.7.在中,若且则( )ABC tan tan tan B C B C ++=sin 2B =C =A .60°B .45°C .30°D .15°【答案】C【分析】根据利用两角和的正切公式可得,即可得tan tan tan B C B C +60B C +=,根据的范围可得,进而可求得.120A = sin 2B =B 30B = 30C =【详解】解:因为tan tan tan B C B C ++=所以,)tan tan 1tan tan B C B C +=-即()tan tan tan 1tan tan B CB C B C ++==-因为B ,C 为的内角,所以,即,ABC 60B C += 120A =所以,,因为所以,060B <<02120B <<sin 2B =260B = 即,所以.30B = 30C =故选:C8.重庆有一玻璃加工厂,当太阳通过该厂生产的某型防紫外线玻璃时,紫外线将被过滤为原来的,而太阳通过一块普通的玻璃时,紫外线只会损失10%,设太阳光原来的紫外线为,通13()0k k >过x 块这样的普通玻璃后紫外线为y ,则,那么要达到该厂生产的防紫外线玻璃()*0.9x y k x N =⋅∈同样的效果,至少通过这样的普通玻璃块数为( )(参考数据:)lg 30.477≈A .9B .10C .11D .12【解析】由题意得,化简得,两边同时取常用对数得,利用30.9(0)x k k k ⋅<>10.93x <110.913x g g<对数的运算性质可得选项.【详解】由题意得,化简得,两边同时取常用对数得,因为30.9(0)x k k k ⋅<>10.93x <110.913x g g<,所以,则至少通过11块玻璃.lg 0.90<11130.477310.37lg 0.92lg 310.046gg x -->=≈≈--故选:C.二、多选题9.下列说法正确的是( )A .若,则,a b ∈R 2ab ba+≥B .若,,则0a b >>0m n >>b b ma a n +<+C .若,则a b>22a b>D .若,,则a b >c d >22a c b d ->-【答案】BC【分析】当,异号时即可判断A ;利用作差法得,再根据题意判断a b ()b m b ma nba n a a n a+--=++的符号即可判断B ;根据,两边平方后不等式也成立即可判断C ;利用特殊值法ma nb -0a b >≥即可判断D .【详解】对于A ,,异号时,不等式不成立,故A 错误;a b 对于B ,由,()()()()b m a b a n b m b ma nba n a a n a a n a+-++--==+++又,,所以,即,故B 正确;0a b >>0m n >>0ma nb ->b b ma a n +<+对于C ,由,所以,故C 正确;a b >≥22a b >对于D ,,,,,则,,不满足,故D 错2a =1b =1c =0d =20a c -=21b d -=22a c b d ->-误.故选:BC .10.已知函数的部分图象如图所示,则下列说法正确的是()()sin f x A x =+ωϕπ0,0,2A ωϕ⎛⎫>>< ⎪⎝⎭( )A .,,2A =2ω=π3ϕ=B .函数的图象关于坐标原点对称π6f x ⎛⎫- ⎪⎝⎭C .函数的图象关于直线对称()f x 17π12x =-D .函数在上的值域为()f x ππ,124⎛⎤- ⎥⎝⎦(]1,2【答案】ABC【分析】最值求,周期求,特殊点求,观察图像找出特征值即可求出函数,后根据A ωϕ()f x 的性质可作出判断.()f x 【详解】A 选项:由图象知;2A =设的最小正周期为T ,,所以得,()f x 7ππ3π3T 12644⎛⎫--== ⎪⎝⎭2πT πω==2ω=当时,函数取得最小值,则,7π12x =()f x ()7ππ22π122k k ϕ⨯+=-∈Z 即,又,()52ππ3k k ϕ=-∈Z π2ϕ<则当时,符合题意.所以,,,所以A 正确.1k =π3ϕ=2A =2ω=π3ϕ=B 选项:为奇函数,所以B 正确.πππ2sin 22sin 2663f x x x⎡⎤⎛⎫⎛⎫-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦C 选项:令,解得,()ππ2π32x k k Z +=+∈()ππ212k x k Z =+∈所以函数图象的对称轴方程为,当时,,所以C 正确.()f x ()ππZ 212k x k =+∈3k =-17π12x =-D 选项:因为,,,ππ,124x ⎛⎤∈- ⎥⎝⎦ππ2,62x ⎛⎤∈- ⎥⎝⎦ππ5π2,366x ⎛⎤+∈ ⎥⎝⎦所以,所以,所以D 不正确.π1sin 2,132x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦()[]1,2f x ∈故选:ABC11.已知函数,下列说法正确的是( )2,1()2,1x x f x x x x ⎧+<⎪=⎨+≥⎪⎩A .((0))3f f =B .函数的值域为()y f x =[2,)+∞C .函数的单调递增区间为()y f x =[0,)+∞D .设,若关于x 的不等式在R 上恒成立,则a 的取值范围是a R ∈()2xf x a ≥+[2,2]-【答案】ABD【解析】作出函数的图象,先计算,然后计算,判断A ,根据图象判断BC ,而()f x (0)f ((0))f f利用参变分离可判断D .【详解】画出函数图象.如图,()f xA 项,,,(0)2f =((0))(2)3f f f ==B 项,由图象易知,值域为[2,)+∞C 项,有图象易知,区间内函数不单调[0,)+∞D 项,当时,恒成立,1x ≥22xx a x +≥+所以即在上恒成立,222x x a x x x --≤+≤+32222x x a x x --≤≤+[)1,+∞由基本不等式可得,当且仅当时等号成立,222x x +≥2x =,当且仅当时等号成立,322x x +≥x =所以.2a -≤≤当时,恒成立,所以在上恒成立,1x <22x x a +≥+222x x a x --≤+≤+(),1∞-即在上恒成立2222x xx a x ---≤≤+-(),1∞-令,()32,02222,012x x x g x x xx ⎧-+≤⎪⎪=+-=⎨⎪+<<⎪⎩当时,,当时,,故;0x ≤()2g x ≥01x <<()322g x <<()min 2g x =令,()12,022322,012x x x h x x xx ⎧-≤⎪⎪=---=⎨⎪--<<⎪⎩当时,,当时,,故;0x ≤()2h x ≤-01x <<()722h x -<<-()max 2h x =-所以.22a -≤≤故在R 上恒成立时,有.()2x f x a ≥+22a -≤≤故选:ABD .【点睛】关键点点睛:本题考查分段函数的性质,解题方法是数形结合思想,作出函数的图象,由图象观察得出函数的性质,绝对值不等式恒成立,可以去掉绝对值符号,再利用参变分离求参数的取值范围.12.设,用表示不超过的最大整数(例如:,,已知函数x ∈R []x x []2.83-=-[]2.52=,,下列结论中正确的是( )()sin sin f x x x =+()()x f x ϕ⎡⎤=⎣⎦A .函数是周期函数()x ϕB .函数的图象关于直线对称()x ϕπ2x =C .函数的值域是()x ϕ{}0,1,2D .函数只有一个零点()()π2g x x xϕ=-【答案】CD【分析】首先判断函数的性质,奇偶性和周期性,对的取值范围讨论,进而得出函数()f x x的解析式并且画出的图象,由的图象分别对选项ABC 进行判断,对于D()()x f x ϕ⎡⎤=⎣⎦()x ϕ()x ϕ选项,函数的零点个数可由与函数交点个数确定.()()π2g x x x ϕ=-2πy x=()y x ϕ=【详解】∵,,()sin sin f x x x=+x ∈R ∴,()()()sin sin sin sin f x x x x x f x -=-+-=+=∴函数为偶函数,()sin sin f x x x =+不是周期函数,是周期函数.sin y x =sin y x=对于,当,时,.0x ≥2π2ππk x k ≤≤+k ∈Z ()2sin f x x =当,时,,2ππ2π2πk x k +<<+k ∈Z ()0f x =∴当时,0x ≥()()π2,2π,Z 2π5π0,2π2π,2π2π2π,Z,66π5ππ1,2π2π,2π,Z 662x k k x f x k x k k x k k k x k x k k ϕ⎧=+∈⎪⎪⎪⎡⎤==≤<++<<+∈⎨⎣⎦⎪⎪+≤≤+≠+∈⎪⎩由函数为偶函数,可得的图象如图所示,()sin sin f x x x=+()x ϕ由图易知函数不是周期函数,所以A 错误;()x ϕ∵,,ππ222ϕϕ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭3π02ϕ⎛⎫=⎪⎝⎭∴函数的图象不关于直线对称,故B 错误;()x ϕπ2x =由上述可知函数的值域是,故C 正确;()x ϕ{}0,1,2由可得,()()π02g x x x ϕ=-=()2πx x ϕ=当时,,;20πx =0x =()00ϕ=当时,,;21πx =π2x =π22ϕ⎛⎫= ⎪⎝⎭当时,,,22πx =πx =()π0ϕ=故直线与的图象只有一个交点,即函数只有一个零点,故D 正确.2πy x =()y x ϕ=()()π2g x x x ϕ=-故选:CD.三、填空题13.已知角的顶点与原点重合,始边与x 轴正半轴重合,终边过点,则α()43P ,-______.sin cos 66ππαα⎛⎫⎛⎫+-=⎪ ⎪⎝⎭⎝⎭1225【分析】根据角终边过点,可求出角三角函数值,再利用正弦和余弦的和差角公式,α()43P ,-α以及同角三角函数的平方关系,即可求出结果.【详解】∵的终边过点,α()43P ,-∴,(三角函数的概念),3sin 5α=4cos 5=-α∴11sin cos cos sin 6622ππαααααα⎫⎛⎫⎛⎫+-=++⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎭,)2212sin cos sin cos 25αααα=++=-.122514.已知,则___________.tan 3α=sin cos 2sin cos αααα=-【答案】65-【分析】首先利用二倍角公式化简,再变形为的齐次分式形式,用表示,代入即可sin ,cos ααtan α求解.【详解】()()22sin cos sin sin cos 2sin cos sin sin cos sin cos αααααααααααα-==-+--.()222222sin cos sin tan tan 336sin cos tan 1315αααααααα+++=-=-=-=-+++故答案为:65-15.已知,,则______.lg5a =104b =22a ab b ++=【答案】2【分析】根据给定条件,利用指数式与对数式互化及对数运算法则计算作答.【详解】因,则,又,104b=lg42lg2b ==lg5a =所以.22(2)lg5(2lg52lg2)2lg22(lg5lg2)lg52lg2a ab b a a b b ++=++=⋅++=+⋅+2lg52lg22=+=故答案为:2四、双空题16.已知函数满足,则_________;若函数()f x ()()226412f x f x x x +-=-+()f x =,若对任意,恒成立,则实数的取值范围是_________.()2816g x x x m=+-[]3,3x ∈-()()f xg x ≥m 【答案】 2244x x ++[)86,+∞【分析】将原式中的代换成,再消去即可得到的解析式;若对任意,x x -()f x -()f x []3,3x ∈-恒成立,利用参变分离,得到,转化为,即可求()()f xg x ≥26124m x x ≥+-()2max 6124m x x ≥+-得实数的取值范围.m 【详解】由知,()()226412f x f x x x +-=-+将原式中的代换成得x x -()()226412f x f x x x -+=++,消去得;()()()()222641226412f x f x x x f x f x x x ⎧+-=-+⎪⎨-+=++⎪⎩()f x -()2244f x x x =++由,得,()()f xg x ≥22244816x x x x m ++≥+-即对任意,恒成立,26124m x x ≥+-[]3,3x ∈-∴,()2max6124m x x ≥+-当时,取得最大值86.3x =26124x x +-∴实数的取值范围为.m [)86,+∞故答案为:;2244x x ++[)86,+∞五、解答题17.已知集合,.()(){}110A x x a x a =-+--<{}1139x B x -=≤≤(1)若,求;1a =A B ⋃(2)若是的必要不充分条件,求实数的值.x B ∈x A ∈a 【答案】(1){}03A B x x ⋃=<≤(2)2【分析】(1)将代入集合,解不等式求出集合与集合,再求并集即可;1a =A A B (2)由是的必要不充分条件确定集合是集合的真子集,由此求实数的值即可.x B ∈x A ∈A B a 【详解】(1)∵不等式等价于,且函数在上单调递增,1139x -≤≤012333x -≤≤3xy =R ∴,即,∴,012x ≤-≤13x ≤≤{}{}113913x B x x x -=≤≤=≤≤若,则,1a =(){}{}2002A x x x x x =-<=<<∴.{}03A B x x ⋃=<≤(2)不等式即,()()110x a x a -+--<()()110x a x a ---+<⎡⎤⎡⎤⎣⎦⎣⎦∵,∴解得,11a a -<+11a x a -<<+∴,()(){}{}11011A x x a x a x a x a =-+--<=-<<+由(1)知,{}13B x x =≤≤若是的必要不充分条件,即,,x B ∈x A ∈x B ∈ x A ∈x A ∈⇒x B ∈∴集合是集合的真子集,A B ∴,即,1311a a +≤⎧⎨-≥⎩22a a ≤⎧⎨≥⎩∴.2a =18.已知函数.()222sin sin 63f x x x xππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭(1)求的单调递增区间;()f x(2)将函数的图象向右平移个单位长度,得到函数的图象,若关于的方程()f x 3π()y g x =x在上有四个根,从小到大依次为,求的()g x 7,66x ππ⎡⎤∈⎢⎥⎣⎦1234x x x x <<<123422x x x x +++值.【答案】(1)()5,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z (2).92π【分析】(1)根据三角函数的诱导公、二倍角公式以及差角公式,整理函数,利用辅助角公式,化简为单角三角函数,结合整体思想,建立不等式,可得答案;(2)根据函数变换,写出新函数解析式,利用其对称性,可得答案.【详解】(1)()222sin cos 623f x x x x πππ⎡⎤⎛⎫⎛⎫=---+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦))2sin cos cos 21sin 2cos 21663x x x x x πππ⎛⎫⎛⎫⎛⎫=--+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1sin 22sin 223x x x π⎛⎫==+ ⎪⎝⎭令,解得,()222232k x k k πππππ-+≤+≤+∈Z 51212k x k ππππ-+≤≤+所以的单调递增区间为.()f x ()5,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z(2)由题意知:∴,()sin 23g x x π⎛⎫=- ⎪⎝⎭()23y g x x π⎛⎫=- ⎪⎝⎭因为和是在上的对称轴,512x π=1112π=x sin 23y x π⎛⎫=- ⎪⎝⎭7,66x ππ⎡⎤∈⎢⎥⎣⎦由对称性可知:,,1256x x π+=34116x x π+=所以.12349222x x x x π+++=19.已知函数().()21log 3f x ax a x ⎛⎫=++- ⎪⎝⎭0a ≥(1)当时,解关于的不等式:;0a =x ()2f x >(2)若在时都有意义,求实数的取值范围.()f x 0x >a【答案】(1)107x x ⎧⎫<<⎨⎬⎩⎭(2).{}1a a >【分析】(1)由时得到,再根据结合对数函数的单调性得到0a =()21log 3f x x ⎛⎫=- ⎪⎝⎭()2f x >,即可求解.130134x x ⎧->⎪⎪⎨⎪->⎪⎩(2)根据对数函数的定义域,得到在时都有意义,转化为在时()f x 0x >()2310ax a x +-+>0x >恒成立,分离参数得到在时恒成立,构造函数令(),22313111x x x a x x x -->=++0x >()23111x x g x x -=+0x >则只需即可,利用换元法令,得到,结合基本()maxa g x >10t x =>()()2341511t t h t t t t -==-+-+++不等式即可求解.【详解】(1)当时,,0a =()21log 3f x x ⎛⎫=- ⎪⎝⎭因为在上单调递增,且,2log y x =()0,∞+2log 42=由得,解得:,()2f x >130134x x ⎧->⎪⎪⎨⎪->⎪⎩107x <<即不等式解集为.107x x ⎧⎫<<⎨⎬⎩⎭(2)在时都有意义,即在上恒成立,()f x 0x >130ax a x ++->0x >即在时恒成立,()2310ax a x +-+>0x >即在时恒成立,22313111x x x a x x x -->=++0x >令,,则只需即可,()23111x x g x x -=+0x >()max a g x >令,,10t x =>()()2341511t t h t t t t -==-+-+++∵,,0t >()4141t t ++≥=+当且仅当,,且,即时等号成立,411t t +=+0t >1t =∴,()()44151545111h t t t t t ⎛⎫=-+-+=-+++≤-+= ⎪++⎝⎭∴,即最大值为1,()1g x ≤()g x ∴,1a >∴的取值范围为.a {}1a a >20.已知函数,.()124212x x x a a f x +-⋅++=a ∈R (1)判断是否有零点,若有,求出该零点;若没有,请说明理由;()f x (2)若函数在上为单调递增函数,求实数的取值范围.()f x []1,3x ∈a 【答案】(1)没有,理由见解析(2)a ≤≤【分析】(1)将问题转化为是否有解,设,判断在124210x x a a +-⋅++=2xt =22210t at a -++=时是否有解即可;0t >(2)设,利用在上为单调递增函数得恒成立,常数分离后1213x x ≤<≤()f x []1,3x ∈12211022x x a +->得的取值范围.a 【详解】(1)设有零点,则方程有解,即有解,()f x ()0f x =124210x x a a +-⋅++=设,,得(*),2xt =0t >22210t at a -++=,(*)方程无正解,()224410a a ∆=-+<所以没有零点.()f x (2),()12242112222x x xx x a a a f x a+-⋅+++==++设,恒成立,1213x x ≤<≤()()210f x f x ->,()()()2121211222221111222212222x x x x x x x x a a a f x f x ⎛⎫+++-=+--=-- ⎪⎝⎭因为,所以恒成立,21220x x ->12211022x x a +->所以恒成立,112221222x x x x a +=+<又,12121326x x x x ≤<≤⇒<+<所以,214+≤a 所以的取值范围为.a a ≤≤21.已知函数是定义在上的奇函数,且当时,.()f x R 0x >()ln f x x x=+(1)求的解析式;()f x (2)若正数m ,n 满足,求的最大值.22ln ln m m n n +=+n m -【答案】(1)()()ln ,0,0,0,ln ,0.x x x f x x x x x ⎧+>⎪==⎨⎪--<⎩(2).14【分析】(1)根据函数的奇偶性即可求出函数解析式;(2)根据题意,由(1)得,利用函数的单调性得,则()()2f m f n =20m n =>,结合二次函数的性质即可求解.21124n m n ⎛⎫-=--+⎪⎝⎭【详解】(1)当时,则,,0x <0x ->()()ln f x x x -=-+-函数是定义在上的奇函数,,()f x R ()()f x f x =--所以,当时,当时,0x <()()ln f x x x =--0x =()0f x =.()ln ,00,0ln(),0x x x f x x x x x +>⎧⎪==⎨⎪--<⎩(2)因为,22ln ln m m n n +=+由都为正数,得,,m n ()()2f m f n =设,则,120x x <<1111212122()()ln ln ()lnx f x f x x x x x x x x -=-+-=-+因为,所以,11220,lnln10x x x x -<<=11()()0f x f x -<故为单调递增的函数,()ln f x x x=+所以,,20m n =>221124n m n n n ⎛⎫-=-=--+ ⎪⎝⎭当且仅当时,求得最大值.12n =n m -1422.已知定义在上的函数,满足,且当时,.()0,∞+()f x ()()m f f m f n n ⎛⎫=- ⎪⎝⎭1x >()0f x >(1)讨论函数的单调性,并说明理由;()f x (2)若,解不等式.()21f =()()333f x f x +->【答案】(1)在上单调递增,理由见解析()f x ()0,∞+(2)30,23⎛⎫ ⎪⎝⎭【分析】(1)取,利用单调性的定义,进行取值,作差,变形,定号,结论即可得出结果;21,m x n x ==(2)先根据,求得,再利用抽象函数的式子化为,根据(1)中的单调性结()21f =()83f =()383x f f x +⎛⎫> ⎪⎝⎭论,列出不等式,解出即可.【详解】(1)解:在上单调递增,理由如下:()f x ()0,∞+因为定义域为,()f x ()0,∞+不妨取任意,且,则,()12,0,x x ∈+∞12x x <211x x >由题意,即,()()22110x f f x f x x⎛⎫=-> ⎪⎝⎭()()21f x f x >所以在上单调递增.()f x ()0,∞+(2)因为,令,由可得:,0m n ≠mnm n =()()m f f m f n n ⎛⎫=- ⎪⎝⎭,()()()mn f m f f mn f n n ⎛⎫==- ⎪⎝⎭即,()()()f mn f m f n =+由,可得,()21f =()()()4222f f f =+=令,,4m =2n =则,()()()8423f f f =+=所以不等式,()()333f x f x +->即,即,()()()338f x f x f +->()383x f f x +⎛⎫> ⎪⎝⎭由(1)可知在定义域内单调递增,()f x 所以只需,解得,3030383x x x x ⎧⎪>⎪+>⎨⎪+⎪>⎩0323x <<所以不等式的解集为.()()333f x f x +->30,23⎛⎫⎪⎝⎭。

高中一年级数学期末试卷含答案

高中一年级数学期末试卷含答案

高一数学期末测试卷1卷一.选择题:本大题共10小题,每小题5分,共50分1.角的终边在第一象限和第三象限的平分线上的角的集合为 A .π5π44⎧⎫⎨⎬⎩⎭,B .{α|α=k π+π4,k ∈Z } C .{α|α=2k π+π4,k ∈Z }D.{α|α=k π±π4,k ∈Z }2.若函数y=sin2x+ϕ的图象经过点π12,0,则ϕ可以是 A .-π6B. π6 C .-π12D.π123.若A-1,-1、B1,3、Cx,5三点共线,则x= A .4B .3C .2D .14.若cos 2α=13π<α<3π2,则sin α的值为A.3B .-3C .3D .-35.cos 15°cos 75°=A .12B .2C .14D .46.平面内点A2,1,B0,2,C-2,1,O0,0. 给出下面的结论:①直线OC 与直线BA 平行;②AB +BC =CA ;③AC =OB -2OA ,其中正确结论的个数是A.0个B .1个C .2个D .3个7.使函数y=sin x递增且函数y=cos x递减的区间是A.π2π2πZ2k k k⎡⎤+∈⎢⎥⎣⎦,()B.π2π2ππZ2k k k⎡⎤++∈⎢⎥⎣⎦,()C.3π2ππ2πZ2k k k⎡⎤++∈⎢⎥⎣⎦,()D.π2π2πZ2k k k⎡⎤-∈⎢⎥⎣⎦,()8.a=3,b=2,a、b的夹角为60°,如果3a+5b⊥m a-b,那么m=A.3223B.2342C.4232D.29429.函数y=sin2x+α0<α<x是偶函数,则函数y=cos2x-α是A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数10.若O为平行四边形ABCD的中心,AB=41e,BC=62e,则32e-21e= A.AO B.BO C. CO D.DO 二.填空题:本大题共6小题,每小题4分,共24分11.sin 37°cos 7°-cos 37°cos 83°= .12.向量a=1,-2,b=3,-1,c=-1,2,若m=a+b-c,则m= .13.若tan α=-13π2<α<π,则sin 2α= .14.函数y=1gsin x的定义域是,值域是 .15.若a=2 sin 15°,b=4 cos 15°,若a与b的夹角为30°,则a-b= .16.函数cos 2x的图象为M,则①图象M关于直线x=1112π对称;②函数fx的最小正周期为2π;③由y=2 sin 2x的图象向右平移π3个单位长度可以得到图象M.以上三个论断中,正确的论断的序号是 .答题纸班级姓名成绩一.选择题本大题共10小题,每小题5分,共50分二.填空题本大题共6小题,每小题4分,共24分三.解答题本大题共3小题,共26分17.本小题满分8分已知:向量a=2,2,向量b=4,1,1若向量a+k b与向量c=-1,1平行,求:实数k的值;2求:向量a-2b与向量2a-b的夹角.18.本小题满分10分已知:函数fx=sin x-cos x1求:fx,2π2求:fx的单调减区间;3若fx=34,求:sin 2x的值.19.本小题满分8分已知:向量=a sin x,1,b=cos x,-1 2 ,1当a b时,求:x的值;2求:函数fx= a·a-b的最大值.2卷一.选择题:每小题4分,共12分1.函数y=cosx+π3图象的两条相邻对称轴间的距离为A.2π3B.π3C.πD.2π2.将函数y=3 sin x的图象按向量a=π6,-1平移后所得函数图象的解析式是A.y=3 sinx-π6-1 B.y=3 sinx+π6-1C.y=3 sinx-π6+1 D.y=3 sinx+π6+13.下列函数中既是奇函数,又在区间-1,1上单调递减的是A.fx=-|x+1|B.fx=-sin xC.fx=122x+2-x D.fx=ln22xx+-二.填空题:每小题4分,共12分4.向量a=1,2,b=-1,m,若a与b的夹角为锐角,则m的取值范围是 .5.定义在R上的函数,fx既是偶函数又是周期函数,若fx的最小正周期为π, 且当x∈0, π2 ,时,fx=sin x,则f 5π3的值为 .6.已知;函数fx= -x2+ ax + ba,b∈R对任意实数x都有f1+x=f1-x成立,若当x∈-1,1时fx>0恒成立,则b的取值范围 .三.解答题:本大题共3小题,共26分7.本小题满分8分已知:cos π4+x=35,求:2sin22sin1tanx xx--的值.8.本小题满分8分已知:向量a=cosα,sinα,b=cosβ,sinβ,-a b 1求:cosα-β的值;2若0<α<π2,-π2<β<0,且sinβ=-513,求:sinα的值.9.本小题满分10分已知:函数fx=log a 11mxx--a>0,a≠1,m≠1是奇函数,1求:实数m的值及函数fx的定义域D;2判断函数fx在1,+∞上的单调性;3当x∈n,a-2且n,a-2⊆D时,函数fx的值域是1,+∞, 求:实数a与n的值.参考答案 1卷BACDCCADAB11.12;12.13.-35;14.2k π,2k π+πk ∈Z,-∞,0;1516.①;17.解:1a +k b =2+4k,2+k,∵向量a +k b 与向量c =-1,1平行,∴2+4k=-2-k,∴k=-45; …………………4分 2a -2b =-6,0,2a -b =0,3,∵a -2b ·2a -b =0,∴向量a -2b 与向量2a -b 的夹角为π2. …………………8分18.解:sinx-π4…………………2分1值域:最小正周期:T=2π; …………………4分2单调减区间:2k π+3π4,2k π+7π4k ∈Z ; …………………7分3∵fxsin x-cos x=34,∴1-sin 2x=916,∴sin 2x=716. …………………10分19.解.1∵a ⊥b ,∴sin x cos x-12=0,∴sin 2x=1,∴2x=2k π+2π,∴x=k π+π4k ∈Z ; …………………4分2fx=a ·a -b =sin xsin x-cos x+32=sin 2 x-sin x cos x+32=1cos 213sin 2222x x --+=2224x π-++()∴fx max . …………………8分2卷CAB4.m >12; 5.2; 6.b >3;7.解:∵cos π4+x=35,∴2cos x-sin x=35,∴1-sin 2x=1825,即:sin 2x=725…………………4分2sin 22sin 1tan x x x --=22sin cos 2sin cos sin cos x x x x x x--=2 sin x cos x=sin 2x=725 …………………8分8.解:1a -b =cos α-cos β,sin α-sin β得-a b=即2-2 cos α-β=45 ∴cos α-β=35…………………4分2∵0<α<π2,-π2<β<0 ∴0<α-β<π由cos α-β=35,得sin α-β=45由sin β=-513 得cos β=1213∴sin α=sin α-β+β=sin α-βcos β+ cos α-βsin β=3365…………8分9.解:1由已知条件得:f-x+ fx=0对定义域中的x 均成立. ∴log a11mx x +--+ log a 11mx x --=0,即11mx x +--·11mxx --=1 ∴m 2x 2-1=x 2-1对定义域中的x 均成立. ∴m 2=1,即m =1舍或m=-l则fx=log a11xx +-,D=-∞,-11,+∞ …………………3分 2设t=11x x +-=121x x -+-=1+21x -,则:t=1+21x -在1,+∞上的单调递减,∴当a >1时,fx 在1,+∞上是减函数.当0<a <1时,fx 在1,+∞上是增函数. …………………6分 3∵函数fx 的定义域:D=-∞,-11,+∞,∴①n <a-2≤-1,∴0<a <1,∴fx 在n,a-2为增函数,要使值域为1,+∞,则有:1log1121nn a +⎧=⎪-⎨⎪-=-⎩,方程组无解;②1≤n <a-2, ∴a >3, ∴ fx 在n,a-2为减函数,要使fx的值域为1,+∞,则有:11log13anaa=⎧⎪-⎨=⎪-⎩,∴,n =1. …………10分。

高中一年级数学第二学期期末考试试卷.pdf

高中一年级数学第二学期期末考试试卷.pdf

0
A 、 240
0
B、 40
0
C 、 40
0
D 、 240
2、半径为 3 的圆中有一条弧的长度是
,则此弧所对的圆周角是 ( )
2
A 、 r300
B 、r 150
C、r 40r 0
D 、 200
3、若 a 2, 1 , b x, 3 , a // b ,则 x ( )
3
A、
2
2
B、
3
C、 6
4、下列函数中,周期为 1 的奇函数是 (
22.(本题满分 14 分 )
____________

0, ,函数 f x 的定义域为 0,1 ,且 f 0
2
有f x y 2
sin f x 1 sin
f y,
求:( 1) f 1 、 f 1 、 f 3 关于 的表达式;
2
4
4
( 2) 的值
( 3)函数 g x sin 2x 的单调递增区间。
0, f 1
_____________________ 级 班
题 答 得 不 内 线 封 密
_____________________________________________________________________________________________________________________________
r
r
r
① 可取 a 3, 0 ;② 可取 a 0, 9 ;③ 可取 a 3, 0 或 0, 9 ;④ 可取
r
无数个 a ;其中正确的是 ( )
A 、①
B 、① ②
C、① ② ③
D 、① ② ③ ④

高中一年级期末考试卷子

高中一年级期末考试卷子

高中一年级期末考试卷子科目:数学时间:120分钟总分:100分注意事项:考生务必将答案写在试卷指定区域,并保持试卷整洁。

一、选择题(每题2分,共40分)1. 下列哪个选项代表的是阿拉伯数字“7”?A. VIIB. ⅦC. 七D. 7答案:D2. 计算:25 ÷ 5 + 6 x 2A. 17B. 12C. 14D. 16答案:C3. 若一个三角形的两条边长分别为3cm和4cm,第三边长可能为:A. 5cmB. 6cmC. 7cmD. 8cm答案:A4. 以下哪个数是2的倍数?A. 39B. 24C. 17D. 13答案:B5. 如果一个正方形的周长为16cm,那么它的面积是:A. 16cm²B. 32cm²C. 64cm²D. 128cm²答案:C二、填空题(每题3分,共30分)6. 8 x 9 = ___答案:727. 三个角的和为___度答案:1808. 12 ÷ 3 = ___答案:49. 一个多边形的边数是6,那么它的顶点个数是____答案:610. 周长为20cm的矩形,如果宽为4cm,那么长是____cm答案:6三、简答题(共30分)11. 请用你自己的话简单解释一下“平行四边形”的定义。

答案:平行四边形是具有两组对边互相平行的四边形。

12. 若一架飞机起飞时速度为每小时300公里,它飞行6小时后,飞行的总距离是多少?答案:300 x 6 = 1800公里13. 请列举和解释三角形可能的三种分类方法。

答案:根据边长可以分为等边三角形、等腰三角形和普通三角形;根据角度可以分为直角三角形、锐角三角形和钝角三角形;根据角度和边长结合可以分为直角等腰三角形等。

四、综合题(共20分)14. 一个矩形的长是8cm,宽是5cm,计算它的周长和面积。

答案:周长=2 x (长 + 宽) = 2 x (8 + 5) = 2 x 13 = 26cm;面积=长 x 宽 = 8 x 5 = 40cm²15. 如果一根线段的两端分别在坐标轴上的点A(3, 2)和B(3, -4),求这根线段的长度。

高中的一年级期末考试卷

高中的一年级期末考试卷

高中的一年级期末考试卷数学试卷一、选择题(共20分,每题2分)1. 下列哪个不是素数?A. 2B. 3C. 5D. 8答案:D2. 若a = 3,b = 4,c = 5,则a² + b² = ?A. 6B. 20C. 25D. 40答案:C3. 如果一个正三角形的边长是6cm,那么它的面积是多少?A. 9√3B. 9D. 27答案:A4. 一个长方形的长和宽比为3:2,如果长为12cm,那么它的宽是多少?A. 5cmB. 6cmC. 8cmD. 9cm答案:B5. 若f(x) = 2x + 3,求f(5)的值是多少?A. 8B. 10C. 13D. 15答案:C6. 已知直角三角形的斜边长为10cm,一条直角边长为6cm,求另一条直角边的长度。

A. 6cmC. 10cmD. 12cm答案:B7. 某商品原价100元,现在打8折,打完折后的价格是多少?A. 80元B. 82元C. 88元D. 90元答案:A8. 已知a = 2,b = 3,c = 4,求a² + b² + c²的值。

A. 11B. 18C. 29D. 38答案:C9. 如果一辆汽车以每小时60km的速度行驶,那么它行驶1.5小时可以行驶多远?B. 100kmC. 110kmD. 120km答案:A10. 若一个角的补角是60度,那么这个角的度数是多少?A. 30度B. 60度C. 90度D. 120度答案:C二、填空题(共10分)11. 36的平方根是___。

答案:612. 直角三角形的两条直角边分别为3cm和4cm,斜边长为___cm。

答案:513. 一个矩形的长和宽比为3∶2,长为12cm,则它的宽为___cm。

答案:814. 如果x = 5,y = 3,那么x² - y²的值是___。

答案:2215. 如果一个正方形的周长为20cm,那么它的边长为___cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正阳职专2010-2011学年下期期末考试
11级数学试题
一,选择题(每题2分,共10题) 1,下列关系正确的是( )
A . 0=∅ B. 0⊂≠
∅ C .0∈∅ D.0∉∅
2,已知全集,{|24},U R A x x a ==<≤=,则a 与A 的关系是( ) A .a ∈A B. a ∉A C .a ⊆A D. a ⊂≠A 3,集合{(,)|00}M x y x y =<>且的意义是( ) A .第一象限内的点 B. 第二象限内的点 C .第三象限内的点 D. 第四象限内的点 4,下列判断正确的是( )
A .“班里高个子的同学”能构成一个集合 B. 无限集的子集一定是有限集 C.空集是任何一个集合的真子集 D.任何一个非空集合都至少有两个不同的子集
5,已知全集{|5},{1,2,3}U x N x A =∈<=,则U A C 等于( ) A .{1,2,3} B. {0,4} C . {0,1,2,3,4} D. ∅
6,已知集合{|||2},{|23}A x x B x x ===-<<,则A B 等于( ) A .{2,2}- B. {2} C . {1,0,1,2}- D. ∅
7,50x ->是20x ->的( )
A .充分条件 B. 必要条件 C . 充要条件 D. 既不充分又不必要条件
8,已知集合={2,1},={2,3}A m B --,,若B A ⊆,则实数m 等于( ) A .—2 B. 1 C . 3 D. 0
9,方程组4
2
x y x y +=⎧⎨-=⎩的解集是( )
A .(3,1) B. {3,1} C . {(3,1)} D. {(,)|31}x y x y ==或 10,已知全集{3,0,2},{4}U U a A C =-+=,则集合A 等于( ) A .{3,0,4}- B. {3,0,2}- C . {3,0}- D. {2}
二,填空题(每题2分,共10题)
1,由—1, 0,—1, 0, 2,—2构成的一个集合中元素的个数为 2,由平方为1的数组成的集合是 3,集合{5,7,9}M =的真子集的个数是 4,已知集合{1,1},{0,1}M N a =-=+若{1}M N =,则满足条件的所有实数a 构成的
集合是
5,设全集{1,3,5,7}U =,集合M 满足
{5,7}U
M C
=,则集合M 为
6,实数,a b 是偶数是a b +是偶数的 条件
7,已知集合{2},{|20}M N x ax ==-=,若M N =,则a = 8,设全集2{2,4,3},{2,4},{1},U U a A A a C =-==-=则 9,{(,)|3}
{(,)|3}x y x y x y x y -=+=-=
10,已知
22
{|150},{|50},{3},A x x px B x x x q A B p q =-+==-+==+=若则 三,判断题(每题1分,共10题)
1,空集是任何集合的子集 ( ) 2,x y =是22x y =的必要条件 ( ) 3,若A B φ=,则A B φφ==且 ( )
4,{3}{
1,2,3,4,}∈ ( ) 5,若A B A =则B A ⊆ ( ) 6,U
A
A C
φ= ( )
7,集合{|15}x x <<中有3个元素 ( ) 8,{3,1}-⊂≠{|0}x x < ( ) 9,若集合{|1},{|22}A x x B x x =>-=-<<,则{|1}A B x x =>( )
10,0ab >是
0a
b
>的充要条件 ( ) 四,解答题(1-5题每题6分,6-7题每题10分)
1,设全集{|}={1,2,3}={3,4,5,6}U x x M N =是小于9的正整数,,, 求,U M N M
N N C ,
2,若集合2
{|440}A x x x k =++=中只有一个元素,求k 的值
3,设集合2={131},={1,3}M m m N ---,2,,若={3}M N ,求m 的值
4,设全集{2,3,5},{2,|5|},{5}U
U A a A C
==-=,求a 的值
5,已知集合21
{1,1,},{1,,},2
A a
B b b =+-=且A B =,求a ,b 的值
6,已知集合2
{6,}{1,6,}a a ⊂≠,求a 的值
7,设方程
20x ax b --=的解集为A ,方程20x bx a +-=的解集为B ,若
{1}A
B =,求A B。

相关文档
最新文档