计算机科学与技术专业《线性代数》课程教学大纲.
线性代数课程大纲
线性代数课程大纲一、课程介绍线性代数是一门重要的基础数学课程,它研究的是向量空间、线性变换等概念及其代数表达与计算方法。
本课程旨在帮助学生掌握线性代数的基本理论和方法,培养学生的抽象思维和解决实际问题的能力。
二、教学目标1. 了解线性代数的基本概念和性质,包括向量、矩阵、线性方程组等;2. 掌握线性代数的基本运算法则和矩阵的性质;3. 熟练运用线性代数方法解决实际问题;4. 培养学生的抽象思维和逻辑推理能力;5. 培养学生的团队合作和沟通能力。
三、课程内容1. 向量空间1.1 向量的定义及其运算法则1.2 向量空间的概念与性质1.3 线性相关与线性无关1.4 基与维数2. 矩阵与矩阵运算2.1 矩阵的定义及其运算法则2.2 线性方程组与矩阵的关系2.3 矩阵的行列式和逆矩阵3. 线性变换与特征值特征向量3.1 线性变换的定义与性质3.2 特征值和特征向量的概念与计算3.3 相似矩阵和对角化4. 线性空间的正交性与最小二乘法4.1 正交基与正交投影4.2 最小二乘法的概念与应用4.3 欧氏空间与内积的性质5. 特殊矩阵与特殊线性方程组5.1 对称矩阵与二次型5.2 线性方程组的矩阵形式与解法5.3 基本概念与重要性质四、教学方法1. 理论讲授:从基本概念出发,逐步引入相关性质和运算法则的讲解;2. 示例演练:通过实例分析和计算练习,巩固学生的理论掌握能力;3. 互动讨论:鼓励学生积极参与课堂讨论,促进思维和交流;4. 编程实践:借助计算机编程软件,进行线性代数相关问题的编程实验。
五、考核方式1. 平时表现:包括课堂参与、作业完成情况等,占总评成绩的20%;2. 期中考试:对课程前半部分的理论知识进行考核,占总评成绩的30%;3. 期末考试:对整个课程内容进行综合考核,占总评成绩的50%;六、参考教材1. 《线性代数及其应用》,David C. Lay著;2. 《线性代数导论》,Sebastian Gross, Jay Hill, Isaac Lavendel著;3. 《线性代数与其应用》,朱杰民,胡文苑,徐伟治著。
《线性代数》课程教学大纲
《线性代数》课程教学大纲课程编号:课程类别:学分数:学时数:适用专业:应修基础课程:一、本课程的地位和作用《线性代数》在高等学校的教学计划中是一门必修的基础理论课,是计算机专业的重要基础课之一,它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,特别是在计算机日益普及的今天,使求解大型线性方程组成为可能,因此本课程所介绍的方法,广泛地应用与各个学科。
所以该课程的地位与作用也更为重要。
通过该课程的学习,使学生掌握该课程的理论与方法,可以培养和提高学生的抽象思维能力、创新能力和解决实际问题的能力,并为为后续课程的学习及进一步扩大数学知识面奠定必要的数学基础。
二、本课程的教学目标通过该课程的学习,要求学生把握线性代数的基本内容。
如:行列式、矩阵、线性方程组、线性空间等。
把握线性代数的体系结构。
从知识的扩充层面上,发展自身的创新思维。
并且要求学生掌握线性代数的基本计算方法,较好地理解线性代数这门课的抽象理论,具有严谨逻辑推理能力,空间想象能力,运算能力和综合运用所学的知识分析问题和解决问题的能力。
三、课程内容和基本要求按教学顺序提出课程各部分教学内容,并具体到知识点,用“*”明确难点内容,用“Δ”明确重点。
“*”或“Δ”一律写在课程内容的前面。
“*”与“Δ”可以并用,表明此内容既是重点又是难点。
在各部分课程内容的前面,首先写明该部分内容须要了解、理解、熟练掌握、应用等层次的教学基本要求。
其格式为:第一章预备知识1、教学基本要求(1)了解集合与映射的基本概念及有理系数多项系的有理根的求法(2)理解数域的概念及排列与对换2、教学内容(1)集合与映射(2)数域(3)Δ排列与对换(4)*有理系数多项系的有理根第二章n阶行列式1、教学基本要求(1)了解全排列、行列式、代数余子式概念(2)理解n阶行列式的定义;(3)掌握行列式性质,会应用行列式的性质计算行列式;(4)理解行列式按行(列)展开定理并应用于行列式计算与证明;(5)掌握克莱姆法则。
计算机系软件工程《线性代数》课程教学大纲
《线性代数》课程教学大纲一、课程性质与目标(一)课程性质线性代数是全校各专业本科学生必修的一门重要基础理论课,它是处理和解决工程技术中一些实际问题不可缺少的有力工具,也是学习后续课程的重要基础。
(二)课程目标通过本课程的学习,使学员对线性代数的基本概念、基本理论和基本方法有较深入的理解,在此基础上具备初步应用线性代数的能力,为后续课程的学习奠定必要的基础。
同时通过线性代数中基本概念的建立,基本理论的证明,基本方法的运用,培养学员的抽象思维能力、逻辑推理能力。
二、课程内容与教学(一)课程内容1、课程内容选编的基本原则(1)、把握理论、技能相结合的基本原则。
(2)、注意教学内容与其他相关课程的联系和渗透。
(3)、结合中学数学课程教学实际,充实教学内容。
2、课程基本内容(1)行列式(2)矩阵(3)向量与线性空间(4)矩阵的特征值与特征向量(5)二次型(二)课程教学1、注重数学思想与数学素养的培养,阐述所讲内容在整个理论体系中的作用和地位。
2、加强建立数学模型的思想和训练,提高学生的数学素养和创新能力。
3、在传授基础理论和基本技能的同时,加强学生分析实际问题和解决实际问题的能力。
4、注重课堂讲授、习题课、习题批改等环节。
三、课程实施与评价(一)学时、学分本课程总学时为48学时。
建议在第一学期开设本课程。
(二)教学基本条件1、教师教师应具有良好的师德和较高的专业素质与教学水平,一般应具备讲师以上职称或本专业硕士以上学位。
2、教学设备(1)配备多媒体教学设备。
(2)配置与教学内容相关的图书、期刊、音像资料等。
(三)课程评价1、对学生能力的评价(1)基本运算能力,包括运算速度及准确性。
(2)逻辑推理能力,包括逻辑思维的合理性和严密性。
2、采取教师评价为主的评价方法。
3、课程学习成绩由期末考试成绩(70%)和平时成绩(30%)构成。
学期课程结束时评出阶段成绩,课程总成绩为两个学期阶段成绩相加之和,成绩评定可分为优、良、中、及格和不及格五个等级,也可采用百分制。
(完整word版)《线性代数》教学大纲
《线性代数》教学大纲一、课程概述1. 课程研究对象和研究内容《线性代数》是数学中的一个重要分支,是高等工科院校的重要基础理论课。
其不仅在数学、力学、物理学和技术学科中有各种重要应用,而且在计算机图形学、计算机辅助设计、密码学、虚拟现实等技术中无不是理论和算法的基础内容。
本课程教学内容主要有:行列式;矩阵;n维向量空间;线性方程组;特征值与特征向量;二次型。
通过本课程的学习,能够培养学生对研究对象进行有序化、代数化、可解化的处理方法,并且为其他后续课程打好基础。
因此,本课程对学生今后专业的发展具有非常重要的意义。
2. 课程在整个课程体系中的地位《线性代数》是计算机专业的基础课。
《线性代数》的后续课是《离散数学》,《计算方法》等。
二、课程目标1.知道《线性代数》这门学科的理论和方法及其在专业教育体系中的位置;2.理解这门学科的基本概念、基本定理和基本方法;3.熟练掌握行列式、矩阵的运算;会用行列式与矩阵的方法求解齐次线性方程组、非齐次线性方程组的解;学会矩阵的特征值、特征向量及二次型的相关应用;4.突出计算能力的培养,引导学生进行归纳、对比和思考,培养学生的创造性能力;5.学会用线性代数的方法处理离散对象;6.培养运用本学科的基本知识与基本技能分析问题、解决问题的能力;逐步培养学生抽象思维和逻辑推理的能力;7.通过本课程的学习,协助学生逐步树立辩证唯物主义的观点。
三、课程内容和要求这门学科的知识与技能要求分为知道、理解、掌握、学会四个层次。
这四个层次的一般涵义表述如下:知道———是指对这门学科和教学现象的认知。
理解———是指对这门学科涉及到的概念、原理、策略与技术的说明和解释,能提示所涉及到的教学现象演变过程的特征、形成原因以及教学要素之间的相互关系。
掌握———是指运用已理解的教学概念和原理说明、解释、类推同类教学事件和现象。
学会———是指能模仿或在教师指导下独立地完成某些教学知识和技能的操作任务,或能识别操作中的一般差错。
《线性代数》课程教学大纲
《线性代数》课程教学大纲课程编号:课程类别:学分数:学时数:适用专业:应修基础课程:一、本课程的地位和作用《线性代数》在高等学校的教学计划中是一门必修的基础理论课,是计算机专业的重要基础课之一,它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,特别是在计算机日益普及的今天,使求解大型线性方程组成为可能,因此本课程所介绍的方法,广泛地应用与各个学科。
所以该课程的地位与作用也更为重要。
通过该课程的学习,使学生掌握该课程的理论与方法,可以培养和提高学生的抽象思维能力、创新能力和解决实际问题的能力,并为为后续课程的学习及进一步扩大数学知识面奠定必要的数学基础。
二、本课程的教学目标通过该课程的学习,要求学生把握线性代数的基本内容。
如:行列式、矩阵、线性方程组、线性空间等。
把握线性代数的体系结构。
从知识的扩充层面上,发展自身的创新思维。
并且要求学生掌握线性代数的基本计算方法,较好地理解线性代数这门课的抽象理论,具有严谨逻辑推理能力,空间想象能力,运算能力和综合运用所学的知识分析问题和解决问题的能力。
三、课程内容和基本要求按教学顺序提出课程各部分教学内容,并具体到知识点,用“*”明确难点内容,用“Δ”明确重点。
“*”或“Δ”一律写在课程内容的前面。
“*”与“Δ”可以并用,表明此内容既是重点又是难点。
在各部分课程内容的前面,首先写明该部分内容须要了解、理解、熟练掌握、应用等层次的教学基本要求。
其格式为:第一章预备知识1、教学基本要求(1)了解集合与映射的基本概念及有理系数多项系的有理根的求法(2)理解数域的概念及排列与对换2、教学内容(1)集合与映射(2)数域(3)Δ排列与对换(4)*有理系数多项系的有理根第二章n阶行列式1、教学基本要求(1)了解全排列、行列式、代数余子式概念(2)理解n阶行列式的定义;(3)掌握行列式性质,会应用行列式的性质计算行列式;(4)理解行列式按行(列)展开定理并应用于行列式计算与证明;(5)掌握克莱姆法则。
线性代数》课程教学大纲
线性代数》课程教学大纲本章主要介绍行列式的概念、性质、计算方法及其应用。
包括行列式的定义、性质、初等变换及其对行列式的影响、行列式按行(列)展开式、克拉默法则和行列式在几何中的应用等内容。
第二章矩阵与向量(8学时)教学内容:本章主要介绍矩阵、向量及其基本运算,包括矩阵的定义、矩阵的运算、矩阵的转置、矩阵的乘法、矩阵的逆、向量的定义、向量的运算、向量的线性相关与线性无关、向量组的秩等内容。
第三章线性方程组(8学时)教学内容:本章主要介绍线性方程组及其解法,包括线性方程组的基本概念、线性方程组的解法、齐次线性方程组、非齐次线性方程组、矩阵方程等内容。
第四章矩阵的特征值和特征向量(6学时)教学内容:本章主要介绍矩阵的特征值和特征向量及其应用,包括特征值和特征向量的定义、性质、计算方法、相似矩阵、对角化、二次型及其标准型等内容。
二)学时分配第一章行列式(6学时)第二章矩阵与向量(8学时)第三章线性方程组(8学时)第四章矩阵的特征值和特征向量(6学时)三、考核方式考核方式包括平时成绩和期末考试成绩两部分。
平时成绩包括课堂表现、作业和小测验等,占总成绩的30%;期末考试为闭卷笔试,占总成绩的70%。
考试内容覆盖全部课程内容,注重考查学生的基本概念、基本理论和基本方法的掌握,以及应用能力的培养。
本章主要介绍矩阵的特征值与特征向量、相似矩阵、二次型与对称矩阵等内容。
其中,重点包括矩阵的特征值与特征向量的概念、性质与求法,实对称矩阵对角化的方法,以及用正交变换法和配方法化二次型为标准形。
难点则在于n阶矩阵与对角矩阵相似的条件和利用正交矩阵化实对称矩阵为对角矩阵。
本课程的教学时数为56学时,其中,课内学时32分配如下表所示。
重点内容的理论课时较多,需要学生认真听讲和思考,同时也需要大量的题课时进行练和巩固。
在行列式方面,学生需要掌握行列式的定义和性质,熟练运用行列式的计算方法,并能够用克拉默法则求解线性方程组。
在矩阵方面,学生需要理解矩阵的概念,掌握矩阵的基本运算和性质,熟练求解逆矩阵和利用分块矩阵讨论线性代数问题。
《线性代数》课程教学大纲
《线性代数》课程教学大纲一、课程信息二、课程目标通过本课程的学习,学生应具备以下几方面的目标:1、使学生掌握与行列式、线性方程组和矩阵有关的基本概念、基本理论和基本方法,提高学生抽象思维和逻辑推理能力。
2、使学生获得一定的线性代数的基础知识,为进一步学习后继课程打下基础。
3、通过线性代数中基本概念的建立,基本理论的证明,基本方法的运用,提高学生分析问题和解决问题的能力。
4、掌握数学中的分析方法结合统计学、计量经济以及计算机信息技术等知识,具有对现实金融、贸易、管理、财务等问题进行数理分析的能力。
课程目标对毕业要求的支撑关系表三、教学内容与预期学习成效四、教学目标达成度评价(根据教学目标分项说明达成度考评方式)(1)教学目标1、2的达成度通过课后作业、单元测试和期末闭卷考试综合考评。
(2)教学目标3的达成度通过课后作业、课后拓展和期末闭卷考试综合考评。
(3)教学目标4的达成度通过课堂讨论与课后拓展进行考评。
五、成绩评定(具体说明课程成绩由几种考评方式组成与所占比例,以及每一种方式的具体考评要求)课程成绩包括4个部分,分别为出勤及课堂表现、课后作业和期末考试。
具体要求及成绩评定方法如下:(1)出勤及课堂表现(10%)设此考核项目,目的是控制无故缺课和课堂懒散无纪律情况,具体方案为:总分为100分,无故旷课一次扣5分;无故旷课超过3次数者,此项总分记0分;无故旷课超过学校规定次数者,按学校有关规定处理;上课睡觉、玩手机、吃零食者被老师发现一次扣5分。
(2)课后作业(10%)每章布置一次课后作业,作业包括课后思考题和计算题,评分以答题思路的规范性、整洁性、整体性、逻辑性、正确性为依据,每次满分为100分,最后取平均分。
作业缺少一次扣5分,总计缺少超过三分之一,作业成绩记0分。
(3)期末考试(80%)期末进行综合闭卷考试,总分为100分,期末考试卷面成绩未达总分50%者,该门课程成绩作不及格处理。
六、课程教材及主要参考书1. 建议教材[1] 陈伏兵.应用线性代数.北京:科学出版社,2011.2. 主要参考书[1] 同济大学数学教研室.线性代数. 北京:高等教育出版社,2004.[2] 张禾瑞.高等代数.北京:高等教育出版社. 2004.制订人:审核人:2020年12月8。
线性代数教学大纲和计划(专科)
《线性代数》课程教学大纲(专科)32学时2学分一.课程教学对象本课程是工科专业的公共基础课,以微电子二年级专科生为教学对象。
二.课程的地位、作用及任务本课程是理、工、经、管各专业必修的一门基础理论课程。
它以向量和矩阵为主要工具,讨论有限维空间的线性理论和方法。
由于线性问题广泛存在,非线性问题在一定条件可转化线性问题研究,而且无限维的问题也可通过离散化为有限维问题来处理,因此线性代数的理论与方法已经渗透到现代科技的各个领域。
随着科学技术数学化和计算机的广泛应用,线性代数在高等教育中的地位和作用愈显重要。
通过本课程的教学,学生应该掌握初等线性代数的基本理论和基本方法,培养用矩阵方法处理有关问题的能力,为学习后继课程和进一步扩大数学知识面奠定必要的基础。
三. 教学内容和基本要求第一章. 矩阵及其初等变换(7节)1.1矩阵及其运算(2节)1.2高斯消元法与矩阵的初等变换(2节)1.3逆矩阵(2节)1.4分块矩阵(1节)教学基本要求:理解矩阵的概念,掌握零矩阵单位阵、数量矩阵、对角阵、对称阵等性质;熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律;掌握高斯消元法,知道初等矩阵,了解初等矩阵的性质及与初等变换的关系,了解行阶梯阵和行最简形矩阵的特点。
理解逆矩阵的概念及其存在的充要条件,掌握用初等行变换求逆矩阵的方法;学会分块矩阵的运算。
重点:矩阵运算、矩阵求逆难点:矩阵的逆运算及分块运算第二章.行列式(6节)2.1 行列式的定义(2节)2.2行列式的性质(2)2.4克莱姆法则(1节)2,5矩阵的秩(1节)教学基本要求:掌握行列式的性质及按行(列)展开,了解行列式的乘法公式,掌握2~4阶数字行列式的计算,会计算较简单的n阶行列式。
掌握逆阵与伴随阵的关系,了解Cramer 法则,理解矩阵的秩的概念和性质;会用初等变换求矩阵的秩。
重点:求逆序数、行列式的计算难点:计算行列式习题课(2节)第四章.n维向量空间(7节)4.1 n维向量空间的概念(1节)4.2向量组的线性相关性(2节)4.3向量组的秩与最大无关组(2节)4.4线性方程组解的结构(2节)教学基本要求:理解n维向量与线性组合的概念;理解向量组线性相关、线性无关的定义,并了解有关重要结论;掌握向量组的线性相关性与无关性的判别;理解矩阵的秩、向量组的秩概念及它们的关系;会用初等变换求向量组的极大无关组。
2024版年度《线性代数A》教学大纲
《线性代数A》教学大纲contents •课程目标与要求•教学内容与计划•线性方程组•矩阵及其运算•向量空间与线性变换•特征值与特征向量•二次型与矩阵合同•课程复习与考试指导目录01课程目标与要求010204知识与技能目标掌握线性代数的基本概念、基本理论和基本方法。
熟练掌握矩阵的运算、行列式的计算以及线性方程组的解法。
理解向量空间、线性变换以及特征值和特征向量的概念。
能够运用所学知识解决一些实际问题,如线性规划、数据分析等。
03培养学生的抽象思维能力和逻辑推理能力。
提高学生分析问题和解决问题的能力。
培养学生的自主学习能力和团队协作精神。
教授学生如何将线性代数知识应用于其他学科和实际生活中。
01020304过程与方法目标02030401情感态度与价值观目标激发学生对线性代数学习的兴趣和热情。
培养学生的数学素养和严谨的科学态度。
帮助学生认识到线性代数在现代科技和社会发展中的重要作用。
培养学生的创新思维和实践精神。
学生需要按时完成作业和练习,积极参与课堂讨论。
平时成绩主要包括作业完成情况、课堂表现、小组讨论等。
考核方式包括平时成绩、期中考试和期末考试,其中平时成绩占总评的30%,期中考试占总评的30%,期末考试占总评的40%。
期中和期末考试主要考察学生对课程内容的掌握程度和应用能力。
课程要求与考核方式02教学内容与计划教学内容概述向量空间与线性变换特征值与特征向量线性方程组矩阵与行列式介绍向量空间的基本概念、线性变换及其性质,为后续的线性方程组、特征值与特征向量等内容打下基础。
讲解线性方程组的解法,包括高斯消元法、矩阵的秩与线性方程组解的关系等,培养学生解决实际问题的能力。
系统介绍矩阵的基本运算、矩阵的逆、转置以及行列式的定义和性质,为后续的线性代数知识提供必要的数学工具。
深入讲解特征值与特征向量的概念、性质以及计算方法,为理解线性变换的几何意义和应用奠定基础。
教学重点与难点教学重点向量空间的基本概念、线性变换及其性质、线性方程组的解法、矩阵的基本运算以及特征值与特征向量的概念和应用。
《线性代数》课程教学大纲
《线性代数》课程教学大纲第一篇:《线性代数》课程教学大纲《线性代数》课程教学大纲课程编码:414002(A)课程英文名称:Linear Algebra 先修课程:微积分适用专业:理科本科专业总学分:3.5 总学时:56讲课学时 56 实验学时 0实习学时 0一、课程性质、地位和任务课程名称:线性代数线性代数是我校计算机科学与技术专业的一门重要基础课。
它不但是其它后继专业课程的基础,而且是科技人员从事科学研究和工程设计必备的数学基础。
通过本课程的教学,使学生获得矩阵、行列式、向量、线性方程组、二次型等方面的基本知识,掌握处理离散问题常用的方法,增强学生“用”数学的意识,培养学生“用”数学的能力。
二、课程基本要求1.了解行列式的定义和性质,掌握利用行列式的性质及展开法则,掌握三、四阶行列式的计算法,会计算简单的n阶行列式;理解和掌握克拉默(Cramer)法则。
2.理解矩阵概念并掌握矩阵的线性运算、乘法、转置及其运算规律;理解逆矩阵的概念,掌握逆矩阵存在的条件,掌握求逆矩阵的方法;掌握对称矩阵的性质;了解分块矩阵及其运算。
3.理解n维向量、向量组线性相关与线性无关的概念;了解有关向量组线性相关、线性无关的重要结论;理解向量组的最大线性无关组与向量组的秩的概念;了解n维向量空间、子空间、基底、维数、坐标等概念;掌握齐次线性方程组有非零解的充要条件及非齐次线性方程组有解的充要条件;会求齐次线性方程组的基础解系、通解;掌握非齐次线性方程组的解的结构,会求非齐次线性方程组的通解;了解向量的内积、正交和向量的长度等概念;会利用施密特(Schmidt)方法把线性无关的向量组正交规范化。
4.掌握Gauss消元法;掌握用Gauss消元法求线性方程组通解的方法;掌握用初等变换求齐次线性方程组和非齐次线性方程组解的方法。
5.掌握矩阵的特征值与特征向量的概念,会求矩阵的特征值与特征向量;理解相似矩阵的概念、性质及矩阵可相似对角化的充要条件。
《线性代数》课程教学大纲
《线性代数》课程教学大纲课程名称:线性代数课程代码:课程性质: 必修总学分:2 总学时: 32* 其中理论教学学时:32*适用专业和对象:理(非数学类专业)、工、经、管各专业**使用教材:注:(1)大部分高校开设本课程的教学学时数约为32—48学时,为兼顾少学时高校开展教学工作,本大纲以最低学时数32学时(约2学分)进行教学安排,有多余学时的学校或专业可对需要加强的内容适当拓展教学学时。
(2)对线性代数课程而言,理工类与经管类专业的教学基本要求几乎一致,所以这里所列教学内容及要求对这两类专业均适合。
一、课程简介《线性代数》是高等学校理(非数学类专业)、工、经、管各专业的一门公共基础课,其研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
该课程具有理论上的抽象性、逻辑推理的严密性和工程应用的广泛性。
主要内容是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法,使学生具有熟练的矩阵运算能力并能用矩阵方法解决一些实际问题。
通过本课程的学习,使学生理解和掌握行列式、矩阵的基本概念、主要性质和基本运算,理解向量空间的概念、向量的线性关系、线性变换、了解欧氏空间的线性结构,掌握线性方程组的求解方法和理论,掌握二次型的标准化和正定性判定。
线性代数的数学思想和数学方法深刻地体现辩证唯物主义的世界观和方法论,线性代数的发展历史也充分展示数学家们开拓创新、追求真理的科学精神,展现古今中外数学家们忠诚爱国、献身事业的高尚情怀。
思想政治教育元素融入线性代数的教学实践之中,可以培养学生用哲学思辨立场、观点和方法分析解决问题,能够提高学生的创新能力和应用意识,培养学生的爱国主义情怀、爱岗敬业精神和开拓创新精神,帮助学生在人生道路上形成良好的人格,树立正确的世界观、人生观、价值观。
线性代数理论不仅渗透到了数学的许多分支中,而且在物理、化学、生物、航天、经济、工程等领域中都有着广泛的应用。
同时,线性代数课程注重培养学生逻辑思维和抽象思维能力、空间直观和想象能力,提高学生分析问题解决问题的能力。
线性代数教学大纲
《线性代数》课程教学大纲(32学时)一、课程性质、目的与任务线性代数是代数学的一门基础课程,作为《工程数学》的主要组成部分,它也是高等学校工科各专业的一门重要的公共基础课。
随着现代科学技术,尤其是计算机科学的发展,线性代数这门课程的作用与地位显得格外重要。
通过教学,使学生掌握线性代数的基本理论与方法,培养学生正确运用数学知识来解决实际问题的能力,并为进一步学习后续课程及相关课程打好基础。
二、课程基本要求1.行列式了解n阶行列式的定义。
掌握用行列式的性质计算行列式。
掌握行列式按行按列展开的法则。
了解克拉默法则。
2.矩阵及其运算理解矩阵的概念、掌握矩阵的运算。
理解逆矩阵的概念、掌握逆矩阵的性质。
3.矩阵的初等变换与线性方程组掌握矩阵的初等变换,能用初等变换化矩阵为行阶梯形、行最简形和标准型。
理解矩阵的秩概念、掌握用初等变换求矩阵的秩。
了解初等方阵的概念,掌握用初等变换求逆矩阵的方法。
掌握用初等变换求解线性方程组。
4.向量组的线性相关性理解n维向量的概念、掌握向量的运算。
理解向量组的线性相关性、最大无关组、秩的概念,能判定向量组的线性相关性。
掌握用初等变换求向量组的最大无关组与向量组的秩。
了解线性方程组的解的结构。
5.相似矩阵及二次型理解向量内积的概念,了解Schmidt正交化方法。
理解方阵的特征值与特征向量的概念、掌握特征值与特征向量的求法。
理解相似矩阵的概念和性质。
掌握用正交相似变换化实对称阵为对角阵及二次型化标准型的方法。
三、课程教学基本内容1.行列式n阶行列式定义,行列式的性质,行列式按行(列)展开,克拉默法则。
2.矩阵及其运算矩阵,矩阵的运算,逆矩阵。
3.矩阵的初等变换与线性方程组矩阵的初等变换,初等矩阵,矩阵的秩,线性方程组的解。
4.向量组的线性相关性向量组及其线性组合,向量组的线性相关性,向量组的秩,线性方程组的解的结构,向量空间。
5.相似矩阵及二次型向量的内积,方阵的特征值与特征向量,相似矩阵,对称矩阵的相似矩阵,二次型及其标准形。
《线性代数》(Linear Algebra)课程教学大纲
《线性代数》(Linear Algebra)课程教学大纲40学时 2.5学分一、课程的性质、目的及任务本课程是讨论数学中线性关系经典理论的课程,它具有较强的抽象性及逻辑性,是高等院校理工科、经济管理各专业的一门重要基础课。
由于线性问题广泛存在于科学技术的各个领域,且某些非线性问题在一定条件下可以转化为线性问题,因此本课程所介绍的方法广泛地应用于各个学科。
尤其在计算机日益普及的今天,本课程的地位与作用更显得重要。
通过教学,使学生掌握本课程的基本理论与方法,初步培养抽象思维与逻辑推理能力,了解数值计算方法,为学习相关课程及进一步扩大数学知识面奠定必要的数学基础。
对于非数学专业的大学生而言,学习《线性代数》其意义不仅仅是学习一种专业的工具,事实上,在提高大学生的学习能力、培养科学素质和创新能力等方面,《线性代数》都发挥着重要作用。
二、适应专业理工科各专业、经济管理各专业三、先修课程初等数学四、课程的基本要求(一)线性方程组1、理解矩阵的初等变换,熟练掌握利用矩阵的初等行变换将矩阵化为阶梯形矩阵、行最简阶梯形矩阵的方法;2、熟练掌握求解线性方程组的初等变换法。
(二)矩阵1. 掌握单位矩阵、对角矩阵、对称矩阵及其性质;2. 掌握矩阵的线性运算、乘法、转置运算及运算律;3. 理解逆矩阵的概念、掌握逆矩阵的性质及求逆矩阵的初等变换法;理解矩阵可逆的充分必要条件;4. 了解分块矩阵及其运算。
(三)行列式及其应用1、掌握行列式的递推定义;2、了解行列式的性质;3、掌握二,三阶及n阶行列式的基本计算方法:降阶法和化三角形法;4、掌握利用行列式判断矩阵的可逆性,掌握克莱姆(Gramer)法则及应用。
(四)向量空间1. 理解n元向量概念;2. 理解向量组的线性相关、线性无关的定义;3. 掌握向量组的极大无关组与向量组的秩的概念;4. 理解矩阵的秩的概念、并掌握矩阵求秩的方法;5. 了解n维向量空间R n、子空间、基底、维数、坐标等概念;6. 掌握齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充要条件;7. 理解齐次线性方程组的基础解系及通解概念;8. 理解非齐次线性方程组解的结构及通解概念;(五)特征值与特征向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数》课程教学大纲
一、课程性质与目标
(一)课程性质
线性代数是全校各专业本科学生必修的一门重要基础理论课,它是处理和解决工程技术中一些实际问题不可缺少的有力工具,也是学习后续课程的重要基础。
(二)课程目标
通过本课程的学习,使学员对线性代数的基本概念、基本理论和基本方法有较深入的理解,在此基础上具备初步应用线性代数的能力,为后续课程的学习奠定必要的基础。
同时通过线性代数中基本概念的建立,基本理论的证明,基本方法的运用,培养学员的抽象思维能力、逻辑推理能力。
二、课程内容与教学
(一)课程内容
1、课程内容选编的基本原则
(1)、把握理论、技能相结合的基本原则。
(2)、注意教学内容与其他相关课程的联系和渗透。
(3)、结合中学数学课程教学实际,充实教学内容。
2、课程基本内容
(1)行列式
(2)矩阵
(3)向量与线性空间
(4)矩阵的特征值与特征向量
(5)二次型
(二)课程教学
1、注重数学思想与数学素养的培养,阐述所讲内容在整个理论体系中的作用和地位。
2、加强建立数学模型的思想和训练,提高学生的数学素养和创新能力。
3、在传授基础理论和基本技能的同时,加强学生分析实际问题和解决实际问题的能力。
4、注重课堂讲授、习题课、习题批改等环节。
三、课程实施与评价
(一)学时、学分
本课程总学时为48学时。
建议在第一学期开设本课程。
(二)教学基本条件
1、教师
教师应具有良好的师德和较高的专业素质与教学水平,一般应具备讲师以上职称或本专业硕士以上学位。
2、教学设备
(1)配备多媒体教学设备。
(2)配置与教学内容相关的图书、期刊、音像资料等。
(三)课程评价
1、对学生能力的评价
(1)基本运算能力,包括运算速度及准确性。
(2)逻辑推理能力,包括逻辑思维的合理性和严密性。
2、采取教师评价为主的评价方法。
3、课程学习成绩由期末考试成绩(70%)和平时成绩(30%)构成。
学期课程结束时评出阶段成绩,课程总成绩为两个学期阶段成绩相加之和,成绩评定可分为优、良、中、及格和不及格五个等级,也可采用百分制。
四、课程基本要求
第一章行列式
内容和要求:掌握排列的逆序数的计算及奇偶性的判定,理解n阶行列式的定义,熟练掌握行列式的性质和计算行列式的两种基本方法:三角化法和降阶法,了解计算行列式的其他多种方法:定义法,升阶法,分块法,拆边法,递推法,归纳法等,掌握Cramer法则。
重点:行列式的性质,行列式的计算,Cramer法则
第二章矩阵
内容和要求:理解矩阵的概念,掌握矩阵的运算及性质,深刻理解矩阵的初等变换、初等矩阵的概念以及它们之间的相互联系,了解分块矩阵的概念及运算,掌握可逆矩阵的概念及其判定条件,熟练掌握用初等变换法和伴随矩阵法求可逆矩阵的逆,掌握矩阵秩的定义,会利用初等变换法求矩阵的秩,熟练掌握用初等变换法求解线性方程组。
重点:矩阵的运算及性质,可逆矩阵的概念及其判定,逆矩阵的求法,初等变换与初等矩阵之间的联系,矩阵的秩及其求法,用初等变换法求解线性方程组。
第三章向量与线性空间
内容和要求:理解线性相关与线性无关的概念及性质,理解极大线性无关组的概念,掌握极大线性无关组的性质与求解,理解向量组的秩与矩阵的秩的关系,理解向量空间、线性空间及线性变换的概念,掌握线性变换的矩阵表示、基变换与坐标变换公式,会求向量的坐标和子空间的维数,了解生成子空间的定义;掌握线性方程组有解的判定条件;掌握齐次线性方程组基础解系的求法,会用解的结构来表示线性方程组的一般解;掌握含参线性方程组的几种求解方法。
重点:线性相关与线性无关的判断,极大线性无关组的性质与求解,向量组的秩与矩阵的秩之间的关系,线性空间的概念,基变换与坐标变换公式,线性变换的矩阵表示,齐次方程组基础解系的求法,一般线性方程组的解法。
第四章矩阵的特征值与特征向量
内容和要求:理解方阵特征值与特征向量的概念,熟练掌握特征值与特征向量的求法,掌握特征向量的性质,理解方阵相似的概念,掌握方阵相似对角化的充要条件及方法,掌握实对称矩阵的性质及其相似对角化的方法。
重点:方阵的特征值、特征向量的求法,方阵可相似对角化的判断以及对角化过程的实施。
第五章二次型
内容和要求:理解二次型及其线性替换(变换)的矩阵表示和矩阵合同的概念,
熟练掌握用配方法、合同变换法以及正交变换法求二次型的标准形和变换矩阵,了解惯性定理,了解二次型的分类,熟练掌握判断二次型正定性的多种方法。
重点:二次型的标准形的三种求法,二次型正定性的多种判定方法。
五、学时分配:
章节名称讲授学时
第一章行列式8
第二章矩阵12
第三章向量与线性空间14
第四章矩阵的特征值与特征向量8
第五章二次型6
六、教材和主要参考书:
(一)教材:
《线性代数》,同济大学数学系《线性代数》编写组编,同济出版社,2010年8月(二)参考书
1、《线性代数习题全解及考研指导》,胡金、李擂编,北京理工大学出版社
2、《高等代数》(第三版),北京大学数学系几何与代数小组,高等教育出版社,
2003年
3、《线性代数》,郝志峰等主编,高等教育出版社,2008年10月
大纲编写时间:2013.09
教学大纲编写教师:樊彩虹
教学大纲审查教师:
教务处审查人:
分管教学校长:。