材料科学基础知识点总结

合集下载

材料科学基础考研知识点总结

材料科学基础考研知识点总结

材料科学基础考研知识点总结第一章原子结构和键合1.原子键合●金属键●离子键●共价键●氢键●范德华力:静电力诱导力色散力第二章固体结构1.晶体学基础●空间点阵和晶胞●七个晶系14种点阵2.金属的晶体结构●晶体结构和空间点阵的区别3.合金的相结构●晶相指数和晶面指数●晶向指数●晶面指数●六方晶系指数●晶带●晶面间距●晶体的对称性●宏观对称元素●极射投影●金属的晶体结构●三种典型的金属的晶体结构●多晶型性●置换固溶体●间隙固溶体●固溶体的围观不均匀性●影响固溶度的主要因素●固溶体的性质●中间相●正常价化合物●电子化合物●与原子尺寸因素相关的化合物●超结构(有序固溶体)4.常见离子晶体结构●离子晶体配位规则(鲍林规则)●负离子配位多面体规则(引入临界离子半径比值)●电价规则(整体不显电性)●负离子多面体共顶,棱和面规则(由于共用顶,棱和面间距下降,导致库仑力上升,稳定性下降)●不同种类正离子配位多面体规则(能量越高区域越分散)●节约规则(【俄罗斯方块原理】)●典型离子晶体结构●AB型化合物【CsCl结构 NaCl结构 ZnS型结构】●AB2型化合物结构【CaF2 萤石 TiO2金红石型结构】●硅酸盐的晶体结构●孤岛状硅酸盐●组群状硅酸盐●链状硅酸盐●层状硅酸盐●架状硅酸盐5.共价晶体结构第三章晶体中的缺陷1.点缺陷●点缺陷形成●点缺陷的平衡浓度2.位错●刃型位错●螺型位错●混合位错●伯氏矢量●位错运动●位错弹性性质(认识)●位错生成与增值●实际位错中伯氏矢量3.面缺陷●外表面与内表面(了解)●晶界和亚晶界●晶界的特性●孪晶界●相界第四章固体中的扩散1.扩散的表象理论●菲克第一定律●菲克第二定律●扩散方程●置换固溶体扩散(柯肯达尔效应)2.扩散热力学●扩散的热力学分析(上坡扩散)3.扩散的微观理论与机制●扩散机制●晶界扩散及表面扩散●扩散系数4.扩散激活能5.影响扩散的因素●温度●晶体结构●晶体缺陷●化学成分●应力作用6.反应扩散7.离子晶体中的扩散第五章材料的变形1.弹性变形●弹性的不完整性●包申格效应●弹性后效●弹性滞后2.黏弹性变形3.塑性变形●单晶体塑性变形●滑移●孪生●扭折●多晶体的塑性变形●晶粒取向的影响●晶界的影响●合金的塑性变形●单相固溶体塑性变形●影响因素●曲服现象●应变实效●多相合金的塑性变形●弥散分布型合金的塑性变形●塑性变形对组织性能影响●显微组织变化●亚结构变化●性能变化●形变织构●残余应力4.回复与再结晶●冷变形金属在加热时组织与性能的变化●回复●再结晶●晶粒的长大5.热加工●动态回复●动态再结晶●蠕变●超塑性第六章凝固1.相平衡和相率●吉布斯相律2.纯晶体的凝固●液态结构●晶体凝固的热力学条件●形核●晶粒长大●结晶动力学及凝固组织●凝固理论应用3.合金的凝固●正常凝固●区域熔炼●合金成分过冷4.铸锭组织与凝固技术●铸锭的宏观组织●铸锭的缺陷第七章相图1.二元相图基础●2.二元相图●匀晶相图●共晶相图●包晶相图●铁碳相图3.三元相图基●基本特点●表示方法●杠杠定律及重心定律第八章材料的亚稳态1.纳米材料2.准晶3.非晶态4.固态相变形成亚稳相●固体相变形成的亚稳相●固溶体脱溶分解产物●脱熔转变●连续脱溶●不连续脱溶●脱溶过程亚稳相●脱溶分解对性能影响●马氏体转变●特征●形态●贝氏体转变●钢中贝氏体转变特征●贝氏体转变的基本特征。

材料科学基础知识

材料科学基础知识

材料科学基础知识一、概述材料科学是一门涉及材料的结构、性能、制备和应用的学科。

在现代科学技术发展中,材料科学起着重要的作用。

材料科学的发展涉及多个学科领域,如物理学、化学、工程学等。

本文将介绍材料科学的基础知识,包括材料分类、结构与性能关系、制备方法等。

二、材料分类根据材料的组成和性质,可以将材料分为金属材料、陶瓷材料、聚合物材料和复合材料四大类。

1. 金属材料:金属材料具有良好的导电性和导热性,常见的金属材料有铁、铝、铜等。

金属材料的特点是强度高、可塑性好。

2. 陶瓷材料:陶瓷材料具有较高的熔点和硬度,常见的陶瓷材料有瓷器、玻璃等。

陶瓷材料的特点是脆性大、电绝缘性好。

3. 聚合物材料:聚合物材料是由高分子化合物组成的,常见的聚合物材料有塑料、橡胶等。

聚合物材料的特点是具有良好的可塑性和耐腐蚀性。

4. 复合材料:复合材料是由两种或多种不同种类材料组合而成的材料,常见的复合材料有纤维增强复合材料、金属基复合材料等。

复合材料的特点是综合性能优良。

三、结构与性能关系材料的结构对其性能有着重要的影响。

以下是常见的结构与性能关系。

1. 晶体结构:晶体是由离子、原子或分子按照一定规律排列而成的有序结构。

晶体的结构确定了材料的硬度、导电性等性能。

2. 硬度与强度:材料的硬度和强度与其原子、分子的排列有关。

晶体结构和材料的晶粒大小会影响材料的硬度和强度。

3. 导电性与绝缘性:材料的导电性与其电子的运动有关。

金属材料具有良好的导电性,而陶瓷材料则具有较好的绝缘性。

4. 磁性与非磁性:材料的磁性与其原子或分子的磁矩有关。

铁、镍等金属具有磁性,而大部分非金属材料则是非磁性的。

四、材料制备方法材料的制备方法经过了长期的发展和探索,现在已经有许多成熟的制备方法。

以下是常见的材料制备方法。

1. 熔融法:熔融法是通过加热材料使其熔化,然后再进行浇铸、凝固等操作来制备材料。

熔融法广泛应用于金属和玻璃等材料的制备过程。

2. 沉积法:沉积法利用化学反应、物理吸附等方法,将原料分子沉积到基材上,形成所需的材料。

材料科学基础复习资料

材料科学基础复习资料

材料科学基础复习资料材料科学基础是各个工程领域的基本学科,是各个领域的基础。

材料科学基础涵盖了材料的结构、物理与化学性质、制备工艺等方面内容,是材料科学领域学习过程中必须掌握的知识。

因此,为帮助有需要的人顺利复习材料科学基础知识,本文整理了一些相关的复习资料。

一、材料基础知识1. 基本的物理性质:包括化学成分、密度、电导率、热导率等基本参数,通常在每种材料的材料数据表中都可查到。

2. 结构相关:晶体结构:晶体结构指材料中原子、离子、分子排布的类型和规律,常用的晶体结构有:立方晶系、四方晶系、六方晶系、等轴晶系、正交晶系、单斜晶系、三斜晶系等。

非晶态:非晶态作为一种新兴的材料类型,其分子呈无序排列,在某些情况下可能拥有更好的性能。

3. 材料特性:热膨胀系数:在温度变化时,材料线膨胀的速度大小,通常用公式ΔL/L0 = αΔT 表示,其中α为热膨胀系数。

韧性:材料在受到剪切力或拉伸力时的弹性变形程度,是一种考量材料性能的指标,通常可以通过材料变形曲线进行查看。

4. 金属与合金相关:金属材料通常具有良好的导电、导热等特性,同时在高温、高压等环境下具有较强的稳定性。

合金则通常是由多个金属或者非金属元素组成的混合物,其性质与材料组分、配比等有关。

二、材料治理、工艺及应用1. 材料的处理:常用材料的处理包括固化、焊接、框架处理、表面处理以及高压工艺等,其中固化的过程包括了煅烧、烧结等过程。

2. 材料配方:通常材料的配方根据材料的成分、目的等进行确定,其中分子键长、键能以及分子排列等指标都可能用来确定最终配方。

3. 材料的加工工序:通常材料加工工序包括切削、钣金、打压成形等过程,每个工序都会影响材料的性质和特性。

三、材料的主要分类1. 材料的物理分类:主要涉及到材料的形态、密度以及各种物理性质,通常有固体、液体、气体以及等离子体等分类方式。

2. 材料的化学分类:不同的元素应用于不同的方案分类,这种分类通常依据材料的化学成分。

材料科学基础基础知识点总结

材料科学基础基础知识点总结

材料科学基础基础知识点总结Revised as of 23 November 2020第一章材料中的原子排列第一节原子的结合方式2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5 特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷; b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

材料科学基础知识点

材料科学基础知识点

材料科学基础知识点(总61页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--材料科学基础第零章材料概论该课程以金属材料、陶瓷材料、高分子材料及复合材料为对象,从材料的电子、原子尺度入手,介绍了材料科学理论及纳观、微观尺度组织、细观尺度断裂机制及宏观性能。

核心是介绍材料的成分、微观结构、制备工艺及性能之间的关系。

主要内容包括:材料的原子排列、晶体结构与缺陷、相结构和相图、晶体及非晶体的凝固、扩散与固态相变、塑性变形及强韧化、材料概论、复合材料及界面,并简要介绍材料科学理论新发展及高性能材料研究新成果。

材料是指:能够满足指定工作条件下使用要求的,就有一定形态和物理化学性状的物质。

按基本组成分为:金属、陶瓷、高分子、复合材料金属材料是由金属元素或以金属元素为主,通过冶炼方法制成的一类晶体材料,如Fe、Cu、Ni等。

原子之间的键合方式是金属键。

陶瓷材料是由非金属元素或金属元素与非金属元素组成的、经烧结或合成而制成的一类无机非金属材料。

它可以是晶体、非晶体或混合晶体。

原子之间的键合方式是离子键,共价键。

聚合物是用聚合工艺合成的、原子之间以共价键连接的、由长分子链组成的髙分子材料。

它主要是非晶体或晶体与非晶体的混合物。

原子的键合方式通常是共价键。

复合材料是由二种或二种以上不同的材料组成的、通过特殊加工工艺制成的一类面向应用的新材料。

其原子间的键合方式是混合键。

材料选择:密度弹性模量:材料抵抗变形的能力强度:是指零件承受载荷后抵抗发生破坏的能力。

韧性:表征材料阻止裂纹扩展的能力功能成本结构(Structure)性质(Properties)加工(Processing)使用性能(Performance)在四要素中,基本的是结构和性能的关系,而“材料科学”这门课的主要任务就是研究材料的结构、性能及二者之间的关系。

宏观结构←显微镜下的结构←晶体结构←原子、电子结构重点讨论材料中原子的排列方式(晶体结构)和显微镜下的微观结构(显微组织)的关系。

(完整版)材料科学基础基础知识点总结

(完整版)材料科学基础基础知识点总结

第一章材料中的原子排列第一节原子的结合方式2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

(完整版)材料科学基础笔记

(完整版)材料科学基础笔记

第一章材料中的原子排列第一节原子的结合方式1原子结构2原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a 原子的理想排列;b 有14 种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷; b 可有无限多种。

2晶胞图1-6 (1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状和大小有三个棱边的长度a,b,c 及其夹角α,β,γ 表示。

材料科学基础108个重要知识点

材料科学基础108个重要知识点

材料科学基础108个重要知识点1.晶体--原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

2.中间相--两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3.亚稳相--亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

4.配位数--晶体结构中任一原子周围最近邻且等距离的原子数。

5.再结晶--冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。

(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)6.伪共晶--非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。

7.交滑移--当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

8.过时效--铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,θ’,和θ。

在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ’,这时材料的硬度强度将下降,这种现象称为过时效。

9.形变强化--金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。

10.固溶强化--由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

11.弥散强化--许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。

12.不全位错--柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

13.扩展位错--通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。

全的大学材料科学基础复习要点

全的大学材料科学基础复习要点

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

(2)特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(3)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷; b 可有无限多种。

2 晶胞(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(4)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

材料科学基础知识点

材料科学基础知识点

材料科学基础知识点
1. 结晶学:研究晶体的形成、结构和性质。

包括晶体生长、晶体结构分析、晶体缺陷等。

2. 材料力学:研究材料的力学性质,包括材料的强度、韧性、塑性、蠕变等。

3. 材料热学:研究材料的热传导、热膨胀、热稳定性等热学性质。

4. 材料电学:研究材料的电导率、介电性质、磁性等电学性质。

5. 材料化学:研究材料的化学成分、结构和化学反应。

包括材料的合成方法、表面改性、材料的腐蚀与防护等。

6. 材料物理学:研究材料的物理性质,包括光学性质、磁性、声学性质等。

7. 材料加工:研究材料的加工方法、工艺和性能改善。

包括材料的铸造、焊接、锻造、热处理等。

8. 材料性能测试:研究材料的各种性能指标的检测和测试方法。

9. 材料选择:根据工程要求和材料性能,选择最合适的材料。

10. 材料应用:研究材料在各种实际应用中的性能和适用范围,包括材料的耐久性、可靠性等。

材料科学基础知识点总结

材料科学基础知识点总结

一、基本知识点 1.结合键与晶体学基础(1)化学键包括离子键:静电吸引作用共价键金属键:金属正离子与自由电子之间的相互作用构成的金属原子间的结合力。

没有方向性和饱和性。

(理论包括自由电子模型和能带理论)物理键包括范德华键:包括3种,静电力、诱导力、色散力。

特点有:1、存在于分子或原子间的一种较弱的吸引力 2、作用能约为几十个kj/mol,比化学键小1-2数量级 3、一般没有方向性和饱和性。

氢键:存在于含氢的物质,与范德华健不同的是,氢键是有方向性和饱和性的较强的分子间力。

(2)晶体:是内部质点(原子、分子或离子)在三维空间以周期性重复方式作有规则的排列的固体,即晶体是具有格子构造的固体(1、有确定的熔点2、各向异性,即不同方向性能不同)。

非晶体:原子散乱分布或仅有局部区域的短程规则排列。

玻璃相:相:材料中均匀而具有物理特性的部分,并和体系的其他部分有明显界面的称为“相”(3)空间点阵:把由一系列在三维空间周期性排列的几何点阵成为一个空间点阵晶胞:组成各种晶体构造的最小体积单位晶面:在晶体结构内部中,由物质质点所组成的平面晶向:穿过物质的质点所组成的直线方向晶格:晶系:晶向族晶面族:在晶体中有些晶面上原子排列和分布规律是完全相同的,晶面间距相同,而晶面在空间的位向不同,这样一组等同晶面称为一个晶面族同素异构(4)八面体间隙四面体间隙配位数:指在晶体结构中,该原子或离子的周围与其直接相邻结合的原子个数或所有异号离子的个数致密度:一个晶胞中原子所占体积与晶胞体积的比值晶胞中的原子数 2、材料的结构固溶体:将外来组元引入晶体结构,占据主晶相质点位置一部分或间隙位置一部分,仍保持一个晶相,这种晶体称为固溶体(即溶质溶解在溶剂中形成固溶体)。

根据外来组元在主晶相中所处位置,可分为置换固溶体和间隙固溶体。

按外来组元在主晶相中的固溶度,可分为有限固溶体和无限固溶体。

置换固溶体:溶质取代了溶剂中原子或离子所形成的固溶体聚合度(等规度):在聚合物中的有规立构聚合的百分含量 3、晶体结构缺陷肖脱基缺陷:离位原子迁移到外表面或内界面处,这种空位称肖脱基空位弗兰克尔缺陷(空位):离位原子迁移到晶体点阵的间隙中,则称为弗兰克尔空位间隙原子:形成弗兰克尔空位的同时将形成等量的间隙原子,间隙原子可以是晶体本身固有的同类原子(称自间隙原子),也可以是外来的异类间隙原子。

材料科学基础总结

材料科学基础总结

材料科学基础总结1. 简介材料科学作为一门交叉学科,研究材料的组织结构、性能以及其应用。

它涵盖了多种材料类型,包括金属、陶瓷、高分子材料和复合材料等。

本文将对材料科学的基础知识进行总结,从材料的结构到性能以及应用方面进行讨论。

2. 材料的结构2.1 原子结构材料的基本组成单元是原子,不同材料的原子结构有所不同。

原子中包含了质子、中子和电子,其中质子和中子位于原子核中,电子绕核轨道运动。

不同元素的原子核中质子的个数不同,决定了元素的化学性质。

2.2 晶体结构晶体是指原子或分子按照一定的规律排列形成的具有周期性结构的物质。

晶体结构可以分为立方晶系、正交晶系、单斜晶系、菱面晶系等不同类型。

晶体的结构对材料的性能具有重要影响,例如晶体的密排度与材料的硬度、强度密切相关。

2.3 晶体缺陷晶体中存在各种缺陷,包括点缺陷、线缺陷和面缺陷。

点缺陷包括空位、插入原子和替代原子等,线缺陷包括位错和螺旋位错等,面缺陷包括晶格错配和晶界等。

晶体缺陷会影响材料的导电性、塑性和化学反应性。

3. 材料的性能3.1 机械性能材料的机械性能包括强度、硬度、韧性和塑性等指标。

强度是指材料抵抗外部加载时的能力,硬度是指材料抵抗划痕和压痕的能力,韧性是指材料抵抗断裂的能力,塑性是指材料在外力作用下的变形能力。

3.2 热性能材料的热性能包括热膨胀系数、热导率和熔点等指标。

热膨胀系数是指材料在温度变化时的尺寸变化程度,热导率是指材料传导热量的能力,熔点是指材料从固态到液态的温度。

3.3 电磁性能材料的电磁性能包括导电性、磁性和介电性等指标。

导电性是指材料导电的能力,磁性是指材料在外磁场作用下的磁性特性,介电性是指材料在电场中的电学特性。

4. 材料的应用4.1 金属材料金属材料具有优良的导电性和导热性,广泛应用于电子、航空航天和车辆制造等领域。

常见的金属材料有铁、铜、铝和钛等。

4.2 陶瓷材料陶瓷材料具有优良的耐热性和耐腐蚀性,广泛应用于建筑、化工和电子等领域。

材料科学基础知识点总结

材料科学基础知识点总结

一、金属的晶体结构重点内容: 面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。

基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。

晶体的特征、晶体中的空间点阵。

晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。

金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。

位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。

位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。

晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。

二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。

基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。

铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。

相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。

过冷度:理论结晶温度与实际结晶温度的差称为过冷度。

变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。

过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。

从热力学的角度上看,没有过冷度结晶就没有趋动力。

材料科学基础基础知识点总结

材料科学基础基础知识点总结

第一章材料中的原子排列第一节原子的结合方式2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性与饱与性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性与饱与性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性与饱与性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性与饱与性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键与氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它就是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷; b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱与角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状与大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

第三版胡赓祥材料科学基础的知识点总结及课后答案

第三版胡赓祥材料科学基础的知识点总结及课后答案

第三版胡赓祥材料科学基础的知识点总结及课后答案第一章材料科学基础概念知识点总结1. 材料的定义与分类:材料是制造各种结构和器件的物质基础,可分为金属材料、无机非金属材料、有机高分子材料和复合材料等。

2. 材料的性能:包括力学性能、热性能、电性能、磁性能等,是评价材料性能好坏的重要指标。

3. 晶体结构:晶体是由原子、离子或分子按照一定的空间点阵排列成的周期性结构,常见的晶体结构有金属晶体、离子晶体、共价晶体和分子晶体等。

4. 材料的制备方法:包括合成、加工、处理等,如熔炼、铸造、轧制、挤压、拉伸、热处理、腐蚀等。

5. 材料的设计与性能调控:根据材料的使用性能要求,进行结构、组成和制备工艺的设计,以实现性能的优化。

课后答案1. 材料是什么?请举例说明。

答案:材料是制造各种结构和器件的物质基础,如钢铁、水泥、塑料、玻璃等。

2. 材料的性能有哪些?它们对材料的用途有何影响?答案:材料的性能包括力学性能、热性能、电性能、磁性能等,不同的性能影响材料在不同领域的应用。

例如,塑料的具有良好的柔韧性和耐腐蚀性,广泛应用于包装、建筑等领域;金属材料具有良好的导电性和导热性,广泛应用于电子、能源等领域。

3. 晶体结构有哪些类型?请简要介绍。

答案:晶体结构有金属晶体、离子晶体、共价晶体和分子晶体等类型。

金属晶体是由金属原子按照一定的空间点阵排列成的结构,具有较高的强度和韧性;离子晶体是由正负离子按照一定的空间点阵排列成的结构,具有较高的熔点和硬度;共价晶体是由共价键连接的原子按照一定的空间点阵排列成的结构,具有较高的硬度和脆性;分子晶体是由分子按照一定的空间点阵排列成的结构,具有较低的熔点和脆性。

4. 材料的制备方法有哪些?它们对材料性能有何影响?答案:材料的制备方法包括合成、加工、处理等,如熔炼、铸造、轧制、挤压、拉伸、热处理、腐蚀等。

不同的制备方法对材料的性能有不同的影响。

例如,熔炼法制备的金属材料具有较高的纯度和均匀性;热处理工艺可以改变金属材料的组织结构和性能,如提高硬度和强度等。

材料科学基础基础知识点总结

材料科学基础基础知识点总结

堇第一章材料中的原子排列第一节原子的结合方式2原子结合键(1) 离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2) 共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石) 、熔点高、脆性大、导电性差。

如高分子材料。

(3) 金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3) 分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y (氢键结合),有方向性,如O-H — O(4) 混合键。

如复合材料。

3结合键分类(1) 一次键(化学键):金属键、共价键、离子键。

(2) 二次键 (物理键):分子键和氢键。

4原子的排列方式(1) 晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2) ------------------------------------------- 非晶体:不规则排列。

长程无序,各向同性。

第二节原子的规则排列一■晶体学基础1空间点阵与晶体结构(1) 空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a原子的理想排列;b有14种。

其中:空间点阵中的点一阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2) 晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a可能存在局部缺陷;b可有无限多种。

2晶胞图1 — 6(1) ——构成空间点阵的最基本单元。

(2) 选取原则:a能够充分反映空间点阵的对称性;b相等的棱和角的数目最多;c具有尽可能多的直角;d体积最小。

材料科学基础知识点大全

材料科学基础知识点大全

1.晶体--原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

2.中间相--两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3.亚稳相--亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

4.配位数--晶体结构中任一原子周围最近邻且等距离的原子数。

5.再结晶--冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。

(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)6.伪共晶--非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。

7.交滑移--当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

8.过时效--铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,’ θ,和θ。

在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出’ θ,这时材料的硬度强度将下降,这种现象称为过时效。

9.形变强化--金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。

10.固溶强化--由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

11.弥散强化--许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。

12.不全位错--柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

13.扩展位错--通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。

材料科学基础基础知识点总结

材料科学基础基础知识点总结

精心整理第一章 材料中的原子排列第一节 原子的结合方式 2 原子结合键 (1)离子键与离子晶体 原子结合:电子转移,结合力大,无方向性和饱和性; 离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体 原子结合:电子共用,结合力大,有方向性和饱和性; 原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(1)――-:构成空间点阵的最基本单元。

(2)选取原则: a 能够充分反映空间点阵的对称性; b 相等的棱和角的数目最多; c 具有尽可能多的直角; d 体积最小。

(3) 形状和大小 有三个棱边的长度a,b,c 及其夹角α,β,γ表示。

(4) 晶胞中点的位置表示(坐标法)。

3 布拉菲点阵 图1-7 14种点阵分属7个晶系。

4 晶向指数与晶面指数 晶向:空间点阵中各阵点列的方向。

晶面:通过空间点阵中任意一组阵点的平面。

国际上通用米勒指数标定晶向和晶面。

(1) 晶向指数的标定 a 建立坐标系。

确定原点(阵点)、坐标轴和度量单位(棱边)。

b 求坐标。

u’,v’,w’。

c 化整数。

u,v,w. d 加[ ]。

[uvw]。

说明: a 指数意义:代表相互平行、方向一致的所有晶向。

b 负值:标于数字上方,表示同一晶向的相反方向。

b 性质:晶带用晶带轴的晶向指数表示;晶带面//晶带轴; hu+kv+lw=0c 晶带定律 凡满足上式的晶面都属于以[uvw]为晶带轴的晶带。

推论: (a) 由两晶面(h 1k 1l 1) (h 2k 2l 2)求其晶带轴[uvw]: u=k 1l 2-k 2l 1; v=l 1h 2-l 2h 1; w=h 1k 2-h 2k 1。

(b) 由两晶向[u 1v 1w 1][u 2v 2w 2]求其决定的晶面(hkl)。

H=v 1w 1-v 2w 2; k=w 1u 2-w 2u 1; l=u 1v 2-u 2v 1。

材料科学基础知识点整理

材料科学基础知识点整理

材料科学与基础第一章晶体结构第一节晶体学基础一、空间点阵晶体中原子或分子的空间规则排列,阵点周围环境相同,在空间的位置一定。

(一)晶胞点阵中取出的一个反映点阵对称性的代表性基本单元。

通过晶胞角上的某一阵点,沿其三个棱边作坐标轴X、Y、Z(称为晶轴),则此晶胞就可由其三个棱边的边长a、b、c(称为点阵常数)及晶轴之间的夹角α、β、γ六个参数表达出来。

事实上,采用三个点阵矢量a、b、c来描述晶胞更方便。

(二)晶系(三)布拉菲点阵只能有14种空间点阵,归属于7个晶系。

(四)晶体结构与空间点阵最简单的空间格子,又叫原始格子,以P表示。

对称性高的为高级晶族。

二、晶向指数和晶面指数(一)晶向指数1.以晶胞的晶轴为坐标轴X、Y、Z,以晶胞边长作为坐标轴的长度单位。

2.从晶轴系的原点O沿所指方向的直线取最近一个阵点的坐标u、v、w。

3.将此数化为最小整数并加上方括号,即为晶向指数。

[100],[110],[111̅]晶向指数表示所有相互平行、方向一致的晶向。

晶体中因对称关系而等同的各组晶向可并为一个晶向族,用<uvw>表示。

(二)晶面指数1.对晶胞作晶轴X、Y、Z以晶胞的边长作为晶轴上的单位长度。

2.求出待定晶面在三个晶轴上的截距(如该晶面与某轴平行,则截距为∞)。

3.取这些截距数的倒数。

4.将上述倒数化为最小的简单整数,并加上圆括号,即表示该晶面的指数,记为(hkl )晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。

(化简相等)在晶体中,具有等同条件而只是空间位向不同的各组晶面,可归并为一个晶面族,用{hkl }表示。

在立方晶系中,具有相同指数的晶向和晶面必定是相垂直的。

即[hkl ]⊥{hkl} (三)六方晶系指数晶面指数以(hkil )四个指数来表示,有h +k +i =0; 晶向指数以[uvtw]表示,有u +v +t =0。

六方晶系按两种晶轴系所得的晶面指数和晶向指数可相互转换如下:对晶面指数来说,从(hkil )转换成(hkl )只需去掉i ;对晶向指数,[UVW]与[uvtw]的关系为:U =u −t; V =v −t; W =w 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属学与热处理总结
上坡扩散;溶质原子从低浓度向高浓度处扩散的过程称为上坡扩散。

表明扩散的驱动力是化学位梯度而非浓度梯度。

金属键:自由电子与原子核之间静电作用产生的键合力。

滑移系:晶体中一个滑移面及该面上一个滑移方向的组合称一个滑移系。

形核率:单位时间、单位体积液体中形成的晶核数量。

用N表示。

过冷度:液体材料的理论结晶温度(Tm) 与其实际温度之差
反应扩散:伴随有化学反应而形成新相的扩散称为反应扩散。

相:材料中结构相同、成分和性能均一的组成部分。

(如单相、两相、多相合金。

过冷度:理论结晶温度与实际结晶温度的差称为过冷度。

细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。

塑性变形的方式:以滑移和孪晶为主。

滑移:晶体的一部分沿着一定的晶面和晶向相对另一部分作相对的滑动。

滑移的本质是位错的移动。

体心结构的滑移系个数为12,滑移面:{110},方向<111>。

面心结构的滑移系个数为12,滑移面:{111},
方向<110>。

金属塑性变形后的组织与性能:显微组织出现纤维组织,杂质沿变形方向拉长为细带状或粉碎成链状,
光学显微镜分辨不清晶粒和杂质。

亚结构细化,出现形变织构。

性能:材料的强度、硬度升高,塑性、韧
性下降;比电阻增加,导电系数和电阻温度系数下降,抗腐蚀能力降低等。

七、金属及合金的回复与再结晶
影响再结晶的主要因素:①再结晶退火温度:退火温度越高(保温时间一定时),再结晶后的晶粒越粗
大;②冷变形量:一般冷变形量越大,完成再结晶的温度越低,变形量达到一定程度后,完成再结晶的温
度趋于恒定;③原始晶粒尺寸:原始晶粒越细,再结晶晶粒也越细;④微量溶质与杂质原子,一般均起细
化晶粒的作用;⑤第二相粒子,粗大的第二相粒子有利于再结晶,弥散分布的细小的第二相粒子不利于再
结晶;⑥形变温度,形变温度越高,再结晶温度越高,晶粒粗化;⑦加热速度,加热速度过快或过慢,都
可能使再结晶温度升高。


影响扩散的因素:
①温度:温度越高,扩散速度越大;
②晶体结构:体心结构的扩散系数大于面心结构的扩散系数;
③固溶体类型:间隙原子的扩散速度大于置换原子的扩散速度;
④晶体缺陷:晶体缺陷越多,原子的扩散速度越快;
⑤化学成分:有些元素可以加快原子的扩散速度,有些可以减慢扩散速度。

形变强化的实际意义(利与弊):形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可
以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,
使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高
零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。

另一方面形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进行再结晶退火,增加生产成本。

1.固溶强化
随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化。

细化晶粒的方法:
结晶过程中可以通过增加过冷度,变质处理,振动及搅拌的方法增加形核率细化晶粒。

对于冷变形的金属可以通过控制变形度、退火温度来细化晶粒。

可以通过正火、退火的热处理方法细化晶粒;在钢中加入强碳化物物形成元素。

二、改善塑性和韧性的机理
晶粒越细小,晶粒内部和晶界附近的应变度差越小,变形越均匀,因应力集中引起的开裂的机会也越小。

晶粒越细小,应力集中越小,不易产生裂纹;晶界越多,易使裂纹扩展方向发生变化,裂纹不易传播,所以韧性就好。

提高或改善金属材料韧性的途径:① 尽量减少钢中第二相的数量;② 提高基体组织的塑性;③ 提高组织的均匀性;④ 加入Ni 及细化晶粒的元素;⑤ 防止杂质在晶界偏聚及第二相沿晶界析出。

三、Fe —Fe 3C 相图,结晶过程分析及计算
1. 分析含碳0.53~0.77%的铁碳合金的结晶过程,并画出结晶示意图。

①点之上为液相L ;①点开始L →γ;②点结晶完毕;②~③点之间为单相γ;
③点开始γ→α转变;④点开始γ→ P 共析转变;室温下显微组织为α+ P 。

结晶示意图:
2.

算室
温下
亚共
析钢
(含碳量为x )的组织组成物的相对量。

组织组成物为α、P ,相对量为:
P P W x W -=⨯--=1 W , %1000218.077.00218
.0α或 %1000218.077.077.0⨯--=x
W α
3. 分析含碳0.77~2.11%的铁碳合金的结晶过程。

①点之上为液相L ;①点开始L →γ;①~②之间为L+γ;②点结晶完毕;②~③点之间为单相γ;③点开始γ→Fe 3C 转变;④点开始γ→ P 共析转变;室温下显微组织为P + Fe 3C 。

结晶过程示意图。

4. 计算室温下过共析钢(含碳量为x )的组织组成物的相对量。

组织组成物为P 、Fe 3C Ⅱ,相对量为:
P C Fe P W x W -=⨯--=
∏1 W , %10077.069.669.63或 %10077.069.677.03⨯--=x W C Fe 5. 分析共析钢的结晶过程,并画出结晶示意图。

①点之上为液相L ;①点开始L →γ;②点结晶完毕;②~③点之间为单相γ;③点γ→ P 共析转变;室温下显微组织为P 。

结晶示意图:
6.
计算含碳3.0%铁碳合金室温下组织组成物及相组成物的相对量。

含碳 3.0%的亚共晶白口铁室温下组织组成物为P 、Fe 3C Ⅱ,相对量为:
%4.13 W , %0.46%100W 77.069.611.269.6%4.591 W , %6.40%10011.23.411.20.3γ Fe γ γ 3=-==⨯⨯--==-==⨯--=
P C P Ld Ld W W W W W Ⅱ 相组成物为F 、Fe 3C ,相对量为:
7. 相图中共有几种渗碳体?说出各自的来源及形态。

相图中共有五种渗碳体: Fe 3C Ⅰ、Fe 3C Ⅱ 、Fe 3C Ⅲ 、Fe 3C 共析、Fe 3C 共晶 ;
Fe 3C Ⅰ:由液相析出,形态连续分布(基体); Fe 3C Ⅱ:由奥氏体中析出,形态网状分布; Fe 3C Ⅲ:由铁素体中析出,形态网状、短棒状、粒状分布在铁素体的晶界上;Fe 3C 共析:奥氏体共析转变得到,片状;Fe 3C 共晶:液相共晶转变得到,粗大的条状。

8. 计算室温下含碳量为x 合金相组成物的相对量。

相组成物为α、Fe 3C ,相对量为:
9. Fe 3C І的相对量:%1003
.469.63.43⨯--=I x W C Fe。

相关文档
最新文档