二次函数专题训练(正方形的存在性问题)含答案

合集下载

中考数学压轴专练专题09 二次函数与矩形正方形存在型问题(学生版)

中考数学压轴专练专题09 二次函数与矩形正方形存在型问题(学生版)

【典例分析】例1 如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.例2如图,已知抛物线与轴分别交于原点和点,与对称轴交于点.矩形的边在轴正半轴上,且,边,与抛物线分别交于点,.当矩形沿轴正方向平移,点,位于对称轴的同侧时,连接,此时,四边形的面积记为;点,位于对称轴的两侧时,连接,,此时五边形的面积记为.将点与点重合的位置作为矩形平移的起点,设矩形平移的长度为.(1)求出这条抛物线的表达式;(2)当时,求的值;(3)当矩形沿着轴的正方向平移时,求关于的函数表达式,并求出为何值时,有最大值,最大值是多少?例3如图,抛物线2:7W y ax bx =+-的顶点为()3,2. (1)求抛物线W 的函数表达式.(2)若抛物线形W '与W 关于x 轴对称,求抛物线W '的函数表达式.(3)在(2)的基础上,设W 上的点M 、N 始终与W '上的点M '、N '分别关于x 轴对称,是否存在点M 、N (M 、N 分别位于抛物线对称轴两侧,且M 在N 的左侧),使四边形MM N N ''为正方形? 若存在,求出点M 的坐标;若不存在,说明理由.例4如图,正方形ABCD 的顶点A 、B 分别在y 轴和x 轴上,且A 点的坐标为(0,1),正方形的边长为.(1) 直接写出D 、C 两点的坐标;(2)求经过A 、D 、C 三点的抛物线的关系式; (3)若正方形以每秒个单位长度的速度匀速沿射线下滑,直至顶点落在轴上时停 止.设正方形落在轴下方部分的面积为S ,求S 关于滑行时间的函数关系式,并写出相应自变量的取值范围; (4)在(3)的条件下,抛物线与正方形一起平移,到顶点落在轴上时,求抛物线上两点间的抛物线弧所扫过的面积.例5如图,已知抛物线y=ax 2+bx ﹣3过点A (﹣1,0),B (3,0),点M 、N 为抛物线上的动点,过点M 作MD ∥y 轴,交直线BC 于点D ,交x 轴于点E .过点N 作NF ⊥x 轴,垂足为点F(1)求二次函数y=ax 2+bx ﹣3的表达式;(2)若M 点是抛物线上对称轴右侧的点,且四边形MNFE 为正方形,求该正方形的面积; (3)若M 点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN ,请直接写出点M 的横坐标.【变式训练】1.如图,为坐标原点,边长为的正方形的顶点在轴的正半轴上,将正方形OABC 绕顶点顺时针旋转,使点落在某抛物线的图象上,则该抛物线的解析式为( )A .B .C .D .2.如图,边长为1的正方形ABCD 顶点A (0,1),B (1,1);一抛物线y=ax 2+bx+c 过点M (﹣1,0)且顶点在正方形ABCD 内部(包括在正方形的边上),则a 的取值范围是( )A .﹣2≤a≤﹣1B .﹣2≤a≤﹣C .﹣1≤a≤﹣D .﹣1≤a≤﹣ 3.如图,在平面直角坐标系中,二次函数y =ax 2+c (a ≠0)的图象过面积为21的正方形ABOC 的三个顶点A 、B 、C ,则a 的值为 .4.如图,正方形的顶点,与正方形的顶点,同在一段抛物线上,且抛物线的顶点同时落在和轴上,正方形边与同时落在轴上,若正方形的边长为,则正方形的边长为________.5.如图4,已知抛物线y=ax2+bx+c(a>0)经过点A(2,0),B(6,0),交y轴于点C,且S△ABC=16.(1)求点C的坐标;(2)求抛物线的解析式及其对称轴;(3)若正方形DEFG内接于抛物线和x轴(边FG在x轴上,点D,E分别在抛物线上),求S正方形DEFG.6.如图1:矩形OABC的顶点A、B在抛物线上,OC在轴上,且.(1)求抛物线的解析式及抛物线的对称轴.(2)如图2,边长为的正方形ABCD的边CD在轴上,A、B两点在抛物线上,请用含的代数式表示点B的坐标,并求出正方形边长的值.7.如图,正方形OABC 的边长为4,对角线相交于点P ,顶点A 、C 分别在x 轴、y 轴的正半轴上,抛物线L 经过0、P 、A 三点,点E 是正方形内的抛物线上的动点.(1)点P 的坐标为______ (2)求抛物线L 的解析式.(3)求△OAE 与△OCE 的面积之和的最大值.8.如图1,在直角坐标系中,已知点A (0,2)、点B (-2,0),过点B 和线 段OA 的中点C 作直线BC ,以线段BC 为边向上作正方形BCDE. (1)填空:点D 的坐标为( ),点E 的坐标为( ).(2)若抛物线2y ax bx c(a 0)=++≠经过A 、D 、E 三点,求该抛物线的解析式.(3)若正方形和抛物线均以每秒5个单位长度的速度沿射线B C 同时向上平移,直至正方形的顶点E 落在y 轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y 轴右侧部分的面积为s ,求s 关于平移时间t (秒)的函数关系式, 并写出相应自变量t 的取值范围. ②运动停止时,求抛物线的顶点坐标.9.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点P是x轴上方抛物线上的动点,以PB为边作正方形PBFG,随着点P的运动,正方形的大小、位置也随着改变,当顶点F或G恰好落在y轴上时,请直接写出点P的横坐标.10.如图,已知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为.(1)请直接写出点的坐标;(2)求抛物线的解析式;(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在x轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积.11.如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.12.如图,四边形ABCO为矩形,点A在x轴上,点C在y轴上,且点B的坐标为(2,1),将此矩形绕点O逆时针旋转90°得矩形DEFO,抛物线y=-x2+bx+c过B、E两点.(1)求此抛物线的函数解析式.(2)将矩形DEFO向右平移,当点E的对应点E’在抛物线上时,求线段DF扫过的面积.(3)若将矩形ABCO向上平移d个单位长度后,能使此抛物线的顶点在此矩形的边上,求d的值.13.如图1,平面直角坐标系中,点,OC=8,若抛物线平移后经过C,D两点,得到图1中的抛物线W.(1)求抛物线W的表达式及抛物线W与轴另一个交点的坐标;(2)如图2,以OA,OC为边作矩形OABC,连结OB,若矩形OABC从O点出发沿射线OB方向匀速运动,速度为每秒1个单位得到矩形,求当点落在抛物线W上时矩形的运动时间;(3)在(2)的条件下,如图3,矩形从O点出发的同时,点P从出发沿矩形的边以每秒个单位的速度匀速运动,当点P到达时,矩形和点P同时停止运动,设运动时间为秒.①请用含的代数式表示点P的坐标;②已知:点P在边上运动时所经过的路径是一条线段,求点P在边上运动多少秒时,点D到CP的距离最大.14.如图,将矩形OABC置于平面直角坐标系xOy中,A(23,0),C(0,2).(1)抛物线y=-x2+bx+c经过点B、C,求该抛物线的解析式;(2)将矩形OABC绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标;(3)如图(2),将矩形OABC绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA′B′C′,设A′C′的中点为点E,连接CE,当θ=时,线段CE的长度最大,最大值为.15.如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.16.如图,抛物线与轴交于,两点(点在轴的正半轴上),与轴交于点,矩形的一条边在线段上,顶点,分别在线段,上.求点,,的坐标;若点的坐标为,矩形的面积为,求关于的函数表达式,并指出的取值范围;当矩形的面积取最大值时,①求直线的解析式;②在射线上取一点,使,若点恰好落在该抛物线上,则________.17.如图,在平面直角坐标系中,矩形OABC的顶点O为坐标原点,顶点A、C的坐标分别为(0,﹣)、(2,0),将矩形OABC绕点O顺时针旋转45°得到矩形OA′B′C′,边A′B′与y轴交于点D,经过坐标原点的抛物线y=ax2+bx同时经过点A′、C′.(1)求抛物线所对应的函数表达式;(2)写出点B′的坐标;(3)点P是边OC′上一点,过点P作PQ⊥OC′,交抛物线位于y轴右侧部分于点Q,连接OQ、DQ,设△ODQ 的面积为S,当直线PQ将矩形OA′B′C′的面积分为1:3的两部分时,求S的值;(4)保持矩形OA′B′C′不动,将矩形OABC沿射线CO方向以每秒1个单位长度的速度平移,设平移时间为t秒(t>0).当矩形OABC与矩形OA′B′C′重叠部分图形为轴对称多边形时,直接写出t的取值范围.18.在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.12(1)如图1,当点A的横坐标为时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=-x2,试判断抛物线y=-x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.19.如图,已知抛物线与直线交于点,.求抛物线的解析式.点是抛物线上、之间的一个动点,过点分别作轴、轴的平行线与直线交于点、,以、为边构造矩形,设点的坐标为,求,之间的关系式.将射线绕原点逆时针旋转后与抛物线交于点,求点的坐标.20.如图,在平面直角坐标系中,矩形OABC的顶点A(0,3)、C(-1,0).将矩形OABC绕原点O顺时针方向旋转90o,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线经过点C、M、N.解答下列问题:(1)求直线BB′的函数解析式;(2)求抛物线的解析式;(3)在抛物线上求出使S△PB′′ C′=S矩形OABC的所有点P的坐标.11。

完整word版二次函数专题训练正方形的存在性问题含答案

完整word版二次函数专题训练正方形的存在性问题含答案

二次函数专题训练(正方形的存在性)2+bx+c的图象经过点A(l,0),B(﹣3,0)1.如图,已知抛物线y=x,与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P在直线BD上,当PE=PC时,求点P的坐标.(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.1二次函数专题训练(正方形的存在性)2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(﹣2.如图,抛物线y=x6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q 在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.2二次函数专题训练(正方形的存在性)2+bx﹣3过点A(﹣1,0),B(.如图,已知抛物线3y=ax3,0),点M、N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E.过点N作NF⊥x轴,垂足为点F2+bx﹣3)求二次函数1y=ax的表达式;((2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积;(3)若M点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M的横坐标.3二次函数专题训练(正方形的存在性)2+bx+c与x轴交于A(﹣1,0),B4.(2015 贵州省毕节地区) 如图,抛物线y=x(3,0)两点,顶点M关于x轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.4二次函数专题训练(正方形的存在性)2+bx+cxAByCB5. (2016 ) y=x,点,与与﹣,点辽宁省铁岭市轴交于点.如图,抛物线轴交于点60C06DDxEBD.),点坐标为(轴的垂线,垂足为,是抛物线的顶点,过点),点,连接坐标为(,作1D 的坐标;()求抛物线的解析式及点2FFBA=BDEF 的坐标;是抛物线上的动点,当∠)点时,求点(∠3MMMNxNPxQ在平面内,在∥点轴与抛物线交于点点,(若点)轴上,是抛物线上的动点,过点作MNMPNQQ 的坐标.以线段,请直接写出点为对角线作正方形5二次函数专题训练(正方形的存在性)2+bx+cA10B306. (2016 ) y=xy轴交于经过(﹣(广东省茂名市.如图,抛物线,﹣)两点,且与),,CDDExEBD .,点是抛物线的顶点,抛物线的对称轴轴于点交,连接点1ABC 三点的抛物线的函数表达式;(,)求经过,2PBDPE=PCP 的坐标;是线段)点时,求点(上一点,当32PPFxFGMxN 为直线作⊥为抛物线上一动点,轴于点为(,)在()的条件下,过点轴上一动点,PFFMGM 的坐标.上一动点,当以、为顶点的四边形是正方形时,请求出点、6二次函数专题训练(正方形的存在性)二次函数专题训练(正方形的存在性问题)参考答案2+bx+c的图象经过点A(l,0),B(﹣31.如图,已知抛物线y=x,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P在直线BD上,当PE=PC时,求点P的坐标.(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.2+bx+c的图象经过点A(1,0),)∵抛物线y=xB(﹣3,0),【解答】解:(12+2x﹣3;,∴,∴抛物线的解析式为y=x ∴2+2x﹣3;1)知,抛物线的解析式为y=x (2)由(∴C(0,﹣3),抛物线的顶点D(﹣1,﹣4),∴E(﹣1,0),设直线BD的解析式为y=mx+n,∴,∴,∴直线BD的解析式为y=﹣2x﹣6,),2a﹣6设点P(a,﹣),1,0,﹣3),E(﹣C∵(0222 6)),+(﹣2aPE根据勾股定理得,﹣=(a+1222 6+3),+(﹣2aPC﹣=a ,∵PC=PE2222),+(﹣2a+(﹣2a﹣6)﹣=a6+3∴(a+1)2,2(﹣)﹣6=﹣∴a=﹣2,∴y=﹣2×),(﹣2,﹣2∴P F,⊥x轴于(3)如图,作PF ,,0)F ∴(﹣2M(d,0设),22+2d﹣3d),(﹣+2d﹣3),N2,dG∴(d,∵以点F,N,G,M四点为顶点的四边形为正方形,必有FM=MG,2+2d﹣3|,|d+2|=|d∴∴d=或d=,,0),(,0),(,0),(,0).∴点M的坐标为(7二次函数专题训练(正方形的存在性)2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐2.如图,抛物线y=﹣x标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.(1)把B、C两点坐标代入抛物线解析式可得,解得【解答】解:,2 +2x+6x,∴抛物线解析式为y=﹣22);,∴+8D(2,∵y=﹣x8+2x+6=﹣(x﹣2)G,,过F作FG⊥x轴于点(2)如图122,则FG=|﹣x,设F(x+2x+6|,﹣x+2x+6),∠BDE,∠FGB=∠BED=90°∵∠FBA=2,8),,=,∵B(60),D(∽△∴△FBGBDE,∴=,﹣,∴BG=6),BE=4x,DE=8,∴,OB=6E∴(2,0);点的坐标为(﹣1,1或x=6(舍去),此时F﹣当点F在x轴上方时,有=,解得x=,此时(舍去)或x=6,解得轴下方时,有=﹣x=﹣3当点F在x);,﹣F点坐标为(﹣3;,﹣,)或(﹣3)综上可知F点的坐标为(﹣1 ,PQ交于点O′,设对角线(3)如图2MN、关于抛物线对称轴对称,且四边形MPNQ为正方形,∵点M、N Q在抛物线的对称轴上,∴点P为抛物线对称轴与x轴的交点,点,)nM,则坐标为(2﹣,n),(设Q22n2+2x+6的图象上,xM∵点在抛物线y=﹣8二次函数专题训练(正方形的存在性)2﹣1+或n=﹣1﹣n)+6,解得n=∴n=﹣(2﹣n),+2(2 ﹣2+2)或(2,﹣2﹣有两个,其坐标分别为(Q2,﹣2).∴满足条件的点2+bx﹣3过点A(﹣1,0),B(3.如图,已知抛物线y=ax3,0),点M、N为抛物线上的动点,过点M作MD∥y 轴,交直线BC于点D,交x轴于点E.过点N作NF⊥x轴,垂足为点F2+bx﹣3的表达式;y=ax(1)求二次函数(2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积;(3)若M点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M的横坐标.2+bx﹣3,3,0)代入y=ax1()把A(﹣1,0),B(【解答】解:2﹣2x﹣3;得:,解得,故该抛物线解析式为:y=x22﹣4,(x﹣12)由(1)知,抛物线解析式为:y=x)﹣2x﹣3=(∴该抛物线的对称轴是x=1,顶点坐标为(1,﹣4).2﹣2m﹣3),其中m>如图,设点M坐标为(m,m1,2+2m+3|,m ∴ME=|﹣∵M、N关于x=1对称,且点M在对称轴右侧,∴点N的横坐标为2﹣m,∴MN=2m﹣2,∵四边形MNFE为正方形,∴ME=MN,2+2m+3|=2m﹣2﹣m,∴|分两种情况:2=、m=﹣(不符合题意,舍去)+2m+3=2m﹣2时,解得:m①当﹣m,212=24﹣8;m=时,正方形的面积为(2﹣2)当2=2+,m=2﹣时,解得:m(不符合题意,舍去),②当﹣m ﹣+2m+3=22m432=24+8;2] [2(2+)﹣当m=2+时,正方形的面积为综上所述,正方形的面积为24+8或24﹣8.(3)设BC所在直线解析式为y=px+q,把点B(3,0)、C(0,﹣3)代入表达式,得:,解得:,∴直线BC的函数表达式为y=x﹣3,2﹣2t﹣3),其中t<1,t设点M的坐标为(,t2﹣2t﹣3),点D(t,t,t﹣3),tN则点(2﹣22﹣3t|.t+3|=|t﹣2t﹣3﹣,﹣∴MN=2﹣tt=2﹣2tMD=|t2﹣3t|=2﹣|t2t,,∴∵MD=MN分两种情况:2﹣3t=2﹣2t时,解得t=﹣1t①当,t=2(不符合题意,舍去).219二次函数专题训练(正方形的存在性)2=2﹣2t时,解得t=,t②当=3t﹣t(不符合题意,舍去).23.综上所述,点M的横坐标为﹣1或2+bx+c与x轴交于A(﹣1,0),B(3,04.(2015 贵州省毕节地区) 如图,抛物线y=x)两点,顶点M关于x轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.分析:(1)根据待定系数法,可得函数解析式;(2)根据轴对称,可得M′的坐标,根据待定系数法,可得AM′的解析式,根据解方程组,可得B点坐标,根据三角形的面积公式,可得答案;(3)根据正方形的性质,可得P、Q点坐标,根据待定系数法,可得函数解析式.解答:解:(1)将A、B点坐标代入函数解析式,得,解得,2 3y=x;﹣2x﹣抛物线的解析式2 1),﹣4(2)将抛物线的解析式化为顶点式,得y=(x﹣,1,4)1M点的坐标为(,﹣4),M′点的坐标为(AM′设的解析式为y=kx+b,的解析式为y=2x+2,,解得将A、M′点的坐标代入,得,AM′联立AM′与抛物线,得,,解得=×4×12=24;S).5,12点坐标为(C ABC△(3)存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形,由ABPQ是正方形,A(﹣1,0)B(3,0),得P(1,﹣2),Q(1,2),或P(1,2),Q(1,﹣2),2﹣2,1xy=a21P①当顶点(,﹣)时,设抛物线的解析式为(﹣)10二次函数专题训练(正方形的存在性)2﹣2=0,解得a=,a(﹣1﹣1)将A点坐标代入函数解析式,得2﹣2,1)抛物线的解析式为y=(x﹣2+2,将1)2)时,设抛物线的解析式为y=a(x﹣②当P(1,2+2=0,1)A点坐标代入函数解析式,得a(﹣1﹣2+2,1)y=﹣(x﹣解得a=﹣,抛物线的解析式为22+2,使得四边形APBQ为正方形.x﹣1)x﹣1)(﹣2或y=﹣综上所述:y=(2BCBxy+bx+cxA5. (2016 ) y=,点,与,点与.如图,抛物线﹣轴交于点轴交于点辽宁省铁岭市BDEDxC06D 60.坐标为(作,,连接),点坐标为(轴的垂线,垂足为,是抛物线的顶点,过点),点D1的坐标;()求抛物线的解析式及点BDEFF2∠FBA=∠的坐标;是抛物线上的动点,当)点时,求点(QPxMN∥xN3MM在平面内,在点轴与抛物线交于点轴上,(,)若点是抛物线上的动点,过点点作MPNQQMN的坐标.为对角线作正方形以线段,请直接写出点CB1的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变)由点分析(、形成顶点式即可得出结论;F′0F′F′m2BFy,由相似三角形的判定及性质可得出点,设点的坐标为((轴交点为点)设线段)与,BFBF′BF和抛物线的解析式成、的解析式,联立直线的坐标,根据点的坐标利用待定系数法可求出直线F的坐标;方程组,解方程组即可求出点QO′2P3MNPQ、,如图(交于点)设对角线所示.根据抛物线的对称性结合正方形的性质可得出点、MnnQ22nM2在抛物的坐标为(,,﹣),由正方形的性质可得出点.由点的坐标为()的位置,设出点nQn的坐标即可得出结论.值,代入点的一元二次方程,解方程可求出线图象上,即可得出关于2 xy=+bx+c1B60C06中,(解答解:()将点)代入(,,、)﹣2 +2x+6∴y=x.得:,解得:抛物线的解析式为﹣,22∵y=xx+2x+6=2+8,﹣﹣﹣()∴D28.,点的坐标为()10F′BF2yF′m 所示.)设线段与,如图轴交点为点,设点)的坐标为((,∠BDEF′BO=∵∠∠FBA=∠∠F′OB=BED=90°,,BDE∴∴△F′BO∽△.,82D∵B60,,,点点(,)()11二次函数专题训练(正方形的存在性)BE=64=4DE=80=8OB=6∴OF′=?OB=3∴F′∴E200303 .,,点,﹣(,,,))或(,点﹣,)﹣(30=6k+30=6k3k=k= BFy=kx±的解析式为﹣,则有或或﹣设直线,解得:,∴BFy=x+3y=x3 .或直线﹣的解析式为﹣BF①②,联立直线或与抛物线的解析式得:①∴F1 ;点,解方程组的坐标为(﹣得:或(舍去),)②∴F3,﹣)点解方程组.得:或的坐标为(﹣(舍去),F13 .,﹣,综上可知:点)或(﹣的坐标为(﹣)3MNPQO′2 所示.(交于点)设对角线,如图、∵MNMPNQ 为正方形,、关于抛物线对称轴对称,且四边形点∴PxQ 在抛物线对称轴上,为抛物线对称轴与点轴的交点,点Q22nM2nn .,则点,的坐标为(设点)的坐标为(﹣,)2+2x+6 My=x∵的图象上,在抛物线点﹣2+2n16=0n n=+22n+6∴,﹣)(﹣﹣,即n=1n=1 .,解得:﹣﹣﹣21∴Q2121 .)点,﹣的坐标为(﹣,﹣)或(2+bx+cA10B36. (2016 ) y=x0y轴交广东省茂名市,】.如图,抛物线,﹣),)两点,且与经过((﹣CDDExEBD .交是抛物线的顶点,抛物线的对称轴于点,连接,点轴于点1ABC 三点的抛物线的函数表达式;,)求经过,(2PBDPE=PCP 的坐标;(上一点,当)点时,求点是线段32PPF⊥xFGMxN为直线)在()的条件下,过点为抛物线上一动点,作(轴上一动点,为轴于点,PFFMGM 的坐标.上一动点,当以、为顶点的四边形是正方形时,请求出点、1ABC 三点的抛物线的函数表达式;分析()利用待定系数法求出过,,12二次函数专题训练(正方形的存在性)2PCPEDBDP的坐)连接的坐标,利用待定系数法求出直线、的解析式,设出点(,利用公式求出顶点22x2x+6PCPEx的值,计算求出),利用勾股定理表示出,﹣,根据题意列出方程,解方程求出标为(和P 的坐标;点3Ma0G 的坐标,根据正方形的性质列出方程,解方程即可.的坐标为()设点),表示出点(,2+bx+cA10B30 x1∵y=)两点,),经过,﹣(﹣解答解:((),抛物线2+2x+3xy= ∴ABC∴;经过﹣,,解得,,三点的抛物线的函数表达式为,21PCPEx===1 ,)如图﹣,连接(,、﹣x=1y=4∴D14 ),当的坐标为(时,点,,BDy=mx+n,设直线的解析式为:y=2x+6∴BD,则,解得,,的解析式为直线﹣x2x+6P),的坐标为(设点,﹣222222+PE2x+6=xPC=x1+3+2x6,,)﹣()则﹣()(﹣2222 +=x12x+6∵PC=PE∴x+3+2x6,)((﹣﹣,﹣))(2×y= x=22+6=2﹣解得,,,则22P∴);,的坐标为(点2 +2a+30Gaa3Ma),的坐标为(的坐标为(,﹣(,)设点),则点MG∵F为顶点的四边形是正方形,、以、2 a|=|a+2a+3|∴FM=MG|2,,即﹣﹣223a1=0a=+2a+3 aa2a=,﹣﹣﹣﹣时,整理得,,解得,当2 2a=a+2a+3)时,﹣﹣(﹣当2 a5=0a,﹣整理得,﹣a=,解得,∴F00MGM的坐标为点当以、(、(,,),(),,为顶点的四边形是正方形时,00 ).),(,13。

二次函数的存在性问题(Word版解析+答案)

二次函数的存在性问题(Word版解析+答案)

中考压轴题解析二次函数的存在性问题【典例分析】【考点 1】二次函数与相似三角形问题例1】已知抛物线y ax2 bx 3与 x轴分别交于A( 3,0),B(1,0)两点,与 y轴交于点 C.2)点 F 是线段 AD 上一个动点.1AD .2ABC 相似?若相似,求出点 F 的坐标;若不相似,请说明理由.变式1-1】如图,抛物线y ax2 2x c经过A( 1,0),B两点,且与y轴交于点C(0,3) ,抛物线与直线y x 1交于A,E 两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q,使得AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,说明理由.(3)P点在x轴上且位于点B 的左侧,若以P,B,C为顶点的三角形与ABE相似,求点P的坐AF①如图 1,设k ,当 k 为何值时,CFAD1)求抛物线的表达式及顶点 D 的坐标;标.1【变式1-2】如图,已知抛物线y m(x 2)(x m)(m > 0)与 x 轴相交于点 A,B,与 y轴相交于点 C,且点 A 在点 B 的左侧 .( 1)若抛物线过点( 2, 2),求抛物线的解析式;(2)在( 1)的条件下,抛物线的对称轴上是否存在一点H ,使 AH+CH 的值最小,若存在,求出点 H 的坐标;若不存在,请说明理由;(3)在第四象限内,抛物线上是否存在点M ,使得以点 A,B,M 为顶点的三角形与△ACB 相似?若存在,求出 m 的值;若不存在,请说明理由 .考点 2】二次函数与直角三角形问题BC交于点D,连接AC 、AD ,求VACD的面积;3 点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F ,问是否存在点E使VDEF 为直角三角形?若存在,求出点E 坐标,若不存在,请说明理由.例2】如图,抛物线y ax2bx c a 0的顶点坐标为2, 1 ,图象与y 轴交于点C 0,3 ,与x轴2 设抛物线对称轴与直线【变式2-1】如图,经过x 轴上A( 1,0), B(3,0)两点的抛物线y m(x 1)2 4m (m 0)交y 轴于点C ,设抛物线的顶点为D ,若以DB 为直径的⊙ G 经过点C ,求解下列问题:1)用含m的代数式表示出C,D 的坐标;2)求抛物线的解析式;3)能否在抛物线上找到一点Q,使△BDQ 为直角三角形?如能,求出Q点的坐标,若不能,请说明理由。

专题8二次函数与矩形正方形存在性问题(原卷版)

专题8二次函数与矩形正方形存在性问题(原卷版)

2021新版中考数学压轴题之学霸秘笈大揭秘专题8二次函数与矩形正方形存在性问题【例1】(2020•吉林)如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+32.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.【例2】(2020•锦州)在平面直角坐标系中,抛物线y=−13x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式;(2)如图,直线y=34x+94与抛物线交于A,D两点,与直线BC交于点E.若M(m,0)是线段AB上的动点,过点M作x轴的垂线,交抛物线于点F,交直线AD于点G,交直线BC于点H.①当点F在直线AD上方的抛物线上,且S△EFG=59S△OEG时,求m的值;②在平面内是否在点P,使四边形EFHP为正方形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【例3】(2020•兰州)如图,二次函数y=14x2+bx+c的图象过点A(4,﹣4),B(﹣2,m),交y轴于点C(0,﹣4).直线BO与抛物线相交于另一点D,连接AB,AD,点E是线段AB上的一动点,过点E作EF∥BD交AD于点F.(1)求二次函数y=14x2+bx+c的表达式;(2)判断△ABD的形状,并说明理由;(3)在点E的运动过程中,直线BD上存在一点G,使得四边形AFGE为矩形,请判断此时AG与BD 的数量关系,并求出点E的坐标;(4)点H是抛物线的顶点,在(3)的条件下,点P是平面内使得∠EPF=90°的点,在抛物线的对称轴上,是否存在点Q,使得△HPQ是以∠PQH为直角的等腰直角三角形,若存在,直接写出符合条件的所有点Q的坐标;若不存在,请说明理由.【例4】(2020•烟台二模)已知抛物线y=x2+bx+c经过点A(2,﹣3).(1)如图,过点A分别向x轴,y轴作垂线,垂足分别为B,C,得到矩形ABOC,且抛物线经过点C.①求抛物线的解析式.②将抛物线向左平移m(m>0)个单位,分别交线段OB,AC于D,E两点.若直线DE刚好平分矩形ABOC的面积,求m的值.(2)将抛物线平移,使点A的对应点为A1(2﹣n,3b),其中n≥1.若平移后的抛物线仍然经过点A,求平移后的抛物线顶点所能达到最高点时的坐标.【例5】(2020•碑林区校级四模)如图所示,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣6经过点A(﹣3,0)和点(﹣1,0),顶点为D.(1)求抛物线C1的函数表达式及点D的坐标;(2)将抛物线C1绕坐标轴上一点P旋转180°得到抛物线C2,点A、D的对应点分别为A'、D',是否存在以AD为边,且以A、D、A'、D'为顶点的四边形是矩形?若存在,请求出抛物线C2的函数表达式,若不存在,请说明理由.【题组一】1.(2020•雁塔区校级模拟)已知二次函数y=−13x2+bx+c的图象L经过原点,与x轴的另一个交点为(8,0).(1)求该二次函数的解析式;(2)作x轴的平行线,交L于A,B两点(点A在点B的左边),过A,B两点作x轴的垂线,垂足分别为点D,C.当以A,B,C,D为顶点的四边形是正方形时,求点A的坐标.2.(2020•钟楼区校级模拟)将抛物线C1:y=﹣x2+3沿x轴翻折,得抛物线C2.(1)请求出抛物线C2的表达式;(2)现将抛物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D、E.在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.3.(2020•历下区模拟)如图,在平面直角坐标系中,抛物线L:y=ax2+c与x轴相交于A、B两点,顶点C (0,2).AB=2√2.点M(m,0)是x轴正半轴上一点,抛物线L关于点M对称的抛物线为L'.(1)求抛物线L的函数表达式;(2)点P是第一象限抛物线L上一点,点P到两坐标轴的距离相等,点P在抛物线L'上的对应点为P'.设E是抛物线L上的动点,E'是点E在抛物线L'上的对应点,试探究四边形PEP'E′能否成为正方形.若能,求出m的值;若不能,请说明理由.4.(2020•武侯区模拟)已知抛物线y=−14x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.(1)求抛物线的函数表达式和顶点B的坐标;(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC上的动点(点E不与A,C两点重合);(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;(ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.【题组二】5.(2020•犍为县二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=PM DM,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.6.(2019•南充)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB=OC.(1)求抛物线的解析式;(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.①求DE的最大值;②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.7.(2019•常德)如图,已知二次函数图象的顶点坐标为A(1,4),与坐标轴交于B、C、D三点,且B点的坐标为(﹣1,0).(1)求二次函数的解析式;(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)当矩形MNHG的周长最大时,能否在二次函数图象上找到一点P,使△PNC的面积是矩形MNHG面积的916?若存在,求出该点的横坐标;若不存在,请说明理由.8.(2019•铜仁市)如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由.(3)已知点P是直线y=12x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.【题组三】9.(2018秋•镇原县期末)如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2√2DQ,求点F的坐标.10.(2018•辽阳)如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=14x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.11.(2018•铁岭)如图,抛物线y=﹣x2+bx+c交x轴于点A,B,交y轴于点C.点B的坐标为(3,0),点C的坐标为(0,3),点C与点D关于抛物线的对称轴对称.(1)求抛物线的解析式;(2)若点P为抛物线对称轴上一点,连接BD,以PD,PB为边作平行四边形PDNB,是否存在这样的点P,使得▱PDNB是矩形?若存在,请求出tan∠BDN的值;若不存在,请说明理由;(3)点Q在y轴右侧抛物线上运动,当△ACQ的面积与△ABQ的面积相等时,请直接写出点Q的坐标.12.(2018•抚顺)如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C.(1)求抛物线的解析式;(2)点P从点A出发,以每秒√2个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.【题组四】13.(2018•曲靖)如图:在平面直角坐标系中,直线l:y=13x−43与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=3 2.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PF=3PE.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.14.(2019•湘西州)如图,抛物线y =ax 2+bx (a >0)过点E (8,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左侧),点C 、D 在抛物线上,∠BAD 的平分线AM 交BC 于点M ,点N 是CD 的中点,已知OA =2,且OA :AD =1:3.(1)求抛物线的解析式;(2)F 、G 分别为x 轴,y 轴上的动点,顺次连接M 、N 、G 、F 构成四边形MNGF ,求四边形MNGF 周长的最小值;(3)在x 轴下方且在抛物线上是否存在点P ,使△ODP 中OD 边上的高为6√105?若存在,求出点P 的坐标;若不存在,请说明理由;(4)矩形ABCD 不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K 、L ,且直线KL 平分矩形的面积时,求抛物线平移的距离.15.(2019•宝安区二模)如图,在平面直角坐标系中,抛物线与矩形AOBC 的边AC 、BC 分别交于点E ,F ,E (3,4),且F (8,32)为抛物线的顶点,将△CEF 沿着EF 翻折,点C 恰好落在边OB 上的点D 处. (1)求该抛物线的解析式;(2)点P 为线段ED 上一动点,连接PF ,当PF 平分∠EFD 时,求PD 的长度;(3)四边形AODE 以1个单位/秒的速度沿着x 轴向右运动,当点E 与点C 重合时停止运动,设运动时间为t 秒,运动后的四边形A ′O ′D ′E ′与△DEF 重合部分的面积为S ,请直接写出S 与t 的函数关系式.16.(2018春•开福区校级期末)如图1,在平面直角坐标系中,矩形OABC 如图所示放置,点A 在x 轴上,点B 的坐标为(n ,1)(n >0),将此矩形绕O 点逆时针旋转90°得到矩形OA ′B ′C ′,抛物线y =ax 2+bx +c (a ≠0)经过A 、A ′、C ′三点.(1)求此抛物线的解析式(a 、b 、c 可用含n 的式子表示);(2)若抛物线对称轴是x =1的一条直线,直线y =kx +2(k ≠0)与抛物线相交于两点D (x 1,y 1)、E (x 2、y 2)(x 1<x 2),当|x 1﹣x 2|最小时,求抛物线与直线的交点D 和E 的坐标;(3)若抛物线对称轴是x =1的一条直线,如图2,点M 是抛物线的顶点,点P 是y 轴上一动点,点Q 是坐标平面内一点,四边形APQM 是以PM 为对角线的平行四边形,点Q ′与点Q 关于直线CM 对称,连接MQ ′、PQ ′,当△PMQ ′与平行四边形APQM 重合部分的面积是平行四边形的面积的14时,求平行四边形APQM 的面积.【题组五】17.(2019•鼓楼区模拟)如图1,在直角坐标系中,已知点A (0,2)、点B (﹣2,0),过点B 和线段OA 的中点C 作直线BC ,以线段BC 为边向上作正方形BCDE .(1)填空:点D 的坐标为 ,点E 的坐标为 .(2)若抛物线y =ax 2+bx +c (a ≠0)经过A 、D 、E 三点,求该抛物线的解析式.(3)若正方形和抛物线均以每秒√5个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E 落在y轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围.②运动停止时,求抛物线的顶点坐标.18.(2019•临朐县一模)如图,已知直线y=−12x+1交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.(1)求点C、D的坐标(2)求抛物线的解析式(3)若抛物线与正方形沿射线AB下滑,直至点C落在x轴上时停止,求抛物线上C、E两点间的抛物线所扫过的面积.19.(2019•宽城区一模)如图,在平面直角坐标系中,直线y=﹣x+3与抛物线y=−12x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为−13.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.(1)求b、c的值.(2)当点N落在直线AB上时,直接写出m的取值范围.(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN的周长为C,求C与m之间的函数关系式,并写出C随m增大而增大时m的取值范围.(4)当△PQM与坐标轴有2个公共点时,直接写出m的取值范围.20.(2019•吴兴区一模)如图所示,动点A、B同时从原点O出发,运动的速度都是每秒1个单位,动点A 沿x轴正方向运动,动点B沿y轴正方向运动,以OA、OB为邻边建立正方形OACB,抛物线y=﹣x2+bx+c 经过B、C两点,假设A、B两点运动的时间为t秒:(1)直接写出直线OC的解析式;(2)当t=3秒时,求此时抛物线的解析式;此时抛物线上是否存在一点D,使得S△BCD=6?若存在,求出点D的坐标;若不存在,说明理由;(3)在(2)的条件下,有一条平行于y轴的动直线l,交抛物线于点E,交直线OC于点F,若以O、B、E、F四个点构成的四边形是平行四边形,求点F的坐标;(4)在动点A、B运动的过程中,若正方形OACB内部有一个点P,且满足OP=√2,CP=2,∠OP A =135°,直接写出此时AP的长度.。

(完整word版)二次函数专题训练(正方形的存在性问题)含答案

(完整word版)二次函数专题训练(正方形的存在性问题)含答案

二次函数专题训练(正方形的存在性)1.如图,已知抛物线y=x 2+bx+c 的图象经过点 A ( l , 0), B(﹣ 3,0),与 y 轴交于点C,抛物线的极点为 D ,对称轴与x 轴订交于点E,连结 BD .( 1)求抛物线的分析式.( 2)若点 P 在直线 BD 上,当 PE=PC 时,求点P 的坐标.( 3)在( 2)的条件下,作PF⊥ x 轴于 F,点 M 为 x 轴上一动点,N 为直线 PF 上一动点, G 为抛物线上一动点,当以点F, N ,G,M 四点为极点的四边形为正方形时,求点M 的坐标.2.如图,抛物线y= ﹣x2+bx+c 与 x 轴交于点 A 和点 B,与 y 轴交于点C,点 B 坐标为( 6,0),点 C 坐标为( 0, 6),点 D 是抛物线的极点,过点 D 作 x 轴的垂线,垂足为E,连结 BD .( 1)求抛物线的分析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠FBA= ∠ BDE 时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M 作 MN ∥x 轴与抛物线交于点N ,点 P 在 x 轴上,点 Q 在座标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.3.如图,已知抛物线y=ax2 +bx﹣ 3 过点 A (﹣ 1, 0), B( 3,0),点 M 、 N 为抛物线上的动点,过点M 作MD ∥ y 轴,交直线 BC 于点 D ,交 x 轴于点 E.过点 N 作 NF ⊥ x 轴,垂足为点 F( 1)求二次函数 y=ax2+bx ﹣ 3 的表达式;( 2)若 M 点是抛物线上对称轴右边的点,且四边形MNFE 为正方形,求该正方形的面积;( 3)若 M 点是抛物线上对称轴左边的点,且∠DMN=90°, MD=MN ,请直接写出点M 的横坐标.4.(2015 贵州省毕节地域) 如图,抛物线y=x 2+bx+c 与 x 轴交于 A (﹣ 1,0), B( 3, 0)两点,极点M 关于 x 轴的对称点是M′.( 1)求抛物线的分析式;( 2)若直线AM′与此抛物线的另一个交点为C,求△ CAB 的面积;( 3)能否存在过A, B 两点的抛物线,其极点P 对于 x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的分析式;若不存在,请说明原因.5. (2016 辽宁省铁岭市 ) .如图,抛物线y= ﹣x2+bx+c 与 x 轴交于点 A ,点 B,与 y 轴交于点C,点 B 坐标为( 6,0),点 C 坐标为( 0,6),点 D 是抛物线的极点,过点 D 作 x 轴的垂线,垂足为E,连结 BD .( 1)求抛物线的分析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠FBA= ∠ BDE 时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M作MN∥ x轴与抛物线交于点N ,点 P 在 x 轴上,点 Q 在平面内,以线段 MN 为对角线作正方形MPNQ ,请直接写出点Q 的坐标.二次函数专题训练(正方形的存在性)6.(2016 广东省茂名市 ) .如图,抛物线 y=﹣ x2+bx+c 经过 A (﹣ 1, 0), B(3,0)两点,且与 y 轴交于点 C,点 D 是抛物线的极点,抛物线的对称轴DE 交 x 轴于点 E,连结 BD .(1)求经过 A ,B ,C 三点的抛物线的函数表达式;(2)点 P 是线段 BD 上一点,当 PE=PC 时,求点 P 的坐标;( 3)在( 2)的条件下,过点P 作 PF⊥x 轴于点 F, G 为抛物线上一动点,M 为 x 轴上一动点, N 为直线PF 上一动点,当以F、 M 、 G 为极点的四边形是正方形时,恳求出点M 的坐标.二次函数专题训练(正方形的存在性问题)参照答案1.如图,已知抛物线 y=x 2+bx+c 的图象经过点 A ( l , 0), B(﹣ 3,0),与 y 轴交于点 C,抛物线的极点为D ,对称轴与 x 轴订交于点 E,连结 BD .( 1)求抛物线的分析式.( 2)若点 P 在直线 BD 上,当 PE=PC 时,求点P 的坐标.( 3)在( 2)的条件下,作PF⊥ x 轴于 F,点 M 为 x 轴上一动点,N 为直线 PF 上一动点, G 为抛物线上一动点,当以点F, N ,G,M 四点为极点的四边形为正方形时,求点M 的坐标.【解答】解:( 1)∵抛物线y=x2+bx+c 的图象经过点 A ( 1, 0), B(﹣ 3,0),∴,∴,∴抛物线的分析式为y=x2+2x ﹣ 3;( 2)由( 1)知,抛物线的分析式为y=x 2+2x ﹣ 3;∴C( 0,﹣ 3),抛物线的极点 D(﹣ 1,﹣ 4),∴E(﹣ 1, 0),设直线 BD 的分析式为y=mx+n ,∴,∴,∴直线BD 的分析式为y= ﹣ 2x ﹣6,设点 P( a,﹣ 2a﹣ 6),∵ C( 0,﹣ 3), E(﹣ 1, 0),依据勾股定理得,PE2=( a+1)2+(﹣ 2a﹣ 6)2,22 2PC =a +(﹣ 2a﹣ 6+3 ),∵PC=PE,∴( a+1)2+(﹣ 2a﹣ 6)2 =a2+(﹣ 2a﹣ 6+3 )2,∴a=﹣ 2,∴ y= ﹣ 2×(﹣ 2)﹣ 6=﹣ 2,∴P(﹣ 2,﹣ 2),(3)如图,作 PF⊥ x 轴于 F,∴ F(﹣ 2, 0),设 M ( d, 0),∴ G( d, d2+2d ﹣ 3), N(﹣ 2, d2+2d﹣ 3),∵以点 F, N ,G, M 四点为极点的四边形为正方形,必有FM=MG ,∴|d+2|=|d2+2d ﹣ 3|,∴ d= 或 d= ,∴点 M 的坐标为(, 0),(, 0),(, 0),(, 0).2.如图,抛物线y= ﹣x2+bx+c 与 x 轴交于点 A 和点 B,与 y 轴交于点C,点 B 坐标为( 6,0),点 C 坐标为( 0, 6),点 D 是抛物线的极点,过点 D 作 x 轴的垂线,垂足为E,连结 BD .( 1)求抛物线的分析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠FBA= ∠ BDE 时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M 作 MN ∥ x 轴与抛物线交于点N,点 P 在 x 轴上,点Q 在座标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.【解答】解:( 1)把 B 、C 两点坐标代入抛物线分析式可得,解得,∴抛物线分析式为y=﹣x2+2x+6 ,∵ y= ﹣x2+2x+6= ﹣(x﹣2)2+8,∴ D(2,8);( 2)如图 1,过 F 作 FG⊥ x 轴于点 G,设 F( x,﹣x2+2x+6 ),则 FG=|﹣x2+2x+6| ,∵∠ FBA= ∠BDE ,∠ FGB= ∠ BED=90°,∴△ FBG ∽△ BDE ,∴=,∵ B(6,0),D(2,8),∴ E( 2,0), BE=4 ,DE=8 , OB=6 ,∴ BG=6 ﹣ x,∴=,当点 F 在 x 轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点 F 在 x 轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F 点坐标为(﹣ 3,﹣);综上可知 F 点的坐标为(﹣1,)或(﹣3,﹣);( 3)如图 2,设对角线MN 、 PQ 交于点 O′,∵点 M 、 N 对于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点 P 为抛物线对称轴与x 轴的交点,点Q 在抛物线的对称轴上,设Q(2, 2n),则 M 坐标为( 2﹣ n,n),∵点 M 在抛物线 y= ﹣ x2+2x+6 的图象上,∴ n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴知足条件的点Q 有两个,其坐标分别为(2,﹣ 2+2)或(2,﹣2﹣2).3.如图,已知抛物线y=ax2 +bx﹣ 3 过点 A (﹣ 1, 0), B( 3,0),点 M 、 N 为抛物线上的动点,过点M 作MD ∥ y 轴,交直线 BC 于点 D ,交 x 轴于点 E.过点 N 作 NF ⊥ x 轴,垂足为点 F( 1)求二次函数 y=ax2+bx ﹣ 3 的表达式;( 2)若 M 点是抛物线上对称轴右边的点,且四边形MNFE 为正方形,求该正方形的面积;( 3)若 M 点是抛物线上对称轴左边的点,且∠DMN=90°, MD=MN ,请直接写出点M 的横坐标.【解答】解:( 1)把 A (﹣ 1, 0),B ( 3, 0)代入 y=ax 2+bx ﹣ 3,得:,解得,故该抛物线分析式为:y=x 2﹣2x﹣ 3;(2)由( 1)知,抛物线分析式为: y=x 2﹣2x﹣ 3=( x﹣ 1)2﹣ 4,∴该抛物线的对称轴是 x=1 ,极点坐标为( 1,﹣ 4).如图,设点 M 坐标为( m, m2﹣2m﹣ 3),此中 m> 1,∴ME=| ﹣ m2+2m+3|,∵M 、 N 对于 x=1 对称,且点 M 在对称轴右边,∴点 N 的横坐标为 2﹣ m,∴MN=2m ﹣ 2,∵四边形MNFE 为正方形,∴ME=MN ,∴|﹣ m2+2m+3|=2m ﹣ 2,分两种状况:①当﹣ m2+2m+3=2m ﹣ 2 时,解得: m1= 、 m2=﹣(不切合题意,舍去),当 m= 时,正方形的面积为( 2 ﹣2)2=24 ﹣ 8 ;②当﹣ m2 3 4=2﹣(不切合题意,舍去),+2m+3=2 ﹣ 2m 时,解得: m =2+ , m当 m=2+ 时,正方形的面积为[2 (2+ )﹣ 2]2=24+8 ;综上所述,正方形的面积为24+8 或 24﹣ 8 .( 3)设 BC 所在直线分析式为y=px+q ,把点 B (3, 0)、C( 0,﹣ 3)代入表达式,得:,解得:,∴直线 BC 的函数表达式为y=x﹣ 3,设点 M 的坐标为( t, t2﹣ 2t﹣ 3),此中 t <1,则点 N( 2﹣ t, t2﹣2t﹣ 3),点 D ( t, t﹣ 3),∴MN=2 ﹣ t﹣t=2 ﹣2t, MD=|t 2﹣ 2t﹣ 3﹣ t+3|=|t2﹣3t|.∵ MD=MN ,∴ |t2﹣ 3t|=2﹣ 2t,分两种状况:①当 t2﹣ 3t=2﹣ 2t 时,解得 t 1=﹣ 1, t2=2 (不切合题意,舍去).二次函数专题训练(正方形的存在性)②当 3t﹣ t2=2﹣ 2t 时,解得3 2(不切合题意,舍去).t = , t =综上所述,点 M 的横坐标为﹣ 1 或.4.(2015 贵州省毕节地域 ) 如图,抛物线 y=x 2+bx+c 与 x 轴交于 A (﹣ 1,0), B( 3, 0)两点,极点M 关于 x 轴的对称点是M′.( 1)求抛物线的分析式;( 2)若直线AM′与此抛物线的另一个交点为C,求△ CAB 的面积;( 3)能否存在过A, B 两点的抛物线,其极点P 对于 x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的分析式;若不存在,请说明原因.剖析:(1)依据待定系数法,可得函数分析式;( 2)依据轴对称,可得M′的坐标,依据待定系数法,可得AM′的分析式,依据解方程组,可得B点坐标,依据三角形的面积公式,可得答案;( 3)依据正方形的性质,可得P、 Q 点坐标,依据待定系数法,可得函数分析式.解答:解:( 1)将 A 、 B 点坐标代入函数分析式,得,解得,抛物线的分析式y=x 2﹣ 2x﹣ 3;( 2)将抛物线的分析式化为极点式,得 y= ( x﹣1)2﹣ 4, M点的坐标为( 1,﹣ 4), M′点的坐标为( 1, 4),设AM′的分析式为 y=kx+b ,将 A 、M′点的坐标代入,得,解得,AM′的分析式为y=2x+2 ,联立 AM′与抛物线,得,解得,C点坐标为( 5,12). S△ABC = ×4×12=24;( 3)存在过 A ,B 两点的抛物线,其极点P 对于 x 轴的对称点为Q,使得四边形APBQ 为正方形,由 ABPQ 是正方形, A (﹣ 1, 0) B ( 3, 0),得P( 1,﹣ 2), Q( 1, 2),或 P(1, 2), Q( 1,﹣ 2),将 A 点坐标代入函数分析式,得a(﹣ 1﹣ 1)2﹣ 2=0 ,解得 a=,抛物线的分析式为y=(x﹣1)2﹣2,②当 P( 1, 2)时,设抛物线的分析式为 y=a( x﹣ 1)2+2,将 A点坐标代入函数分析式,得 a(﹣ 1﹣ 1)2+2=0 ,解得 a=﹣,抛物线的分析式为y=﹣(x﹣1)2+2,综上所述: y=(x﹣1)2﹣2或y=﹣(x﹣1)2+2,使得四边形APBQ 为正方形.5. (2016 辽宁省铁岭市 ) .如图,抛物线y= ﹣x2+bx+c 与 x 轴交于点 A ,点 B,与 y 轴交于点C,点 B坐标为( 6,0),点 C 坐标为( 0,6),点 D 是抛物线的极点,过点 D 作 x 轴的垂线,垂足为E,连结 BD .( 1)求抛物线的分析式及点 D 的坐标;( 2)点 F 是抛物线上的动点,当∠ FBA=∠ BDE时,求点 F 的坐标;( 3)若点 M 是抛物线上的动点,过点M作MN∥ x轴与抛物线交于点N ,点 P 在 x 轴上,点 Q 在平面内,以线段 MN 为对角线作正方形MPNQ ,请直接写出点Q 的坐标.剖析( 1)由点 B 、C 的坐标利用待定系数法即可求出抛物线的分析式,再利用配方法将抛物线分析式变形成极点式即可得出结论;( 2)设线段 BF 与 y 轴交点为点 F′,设点 F′的坐标为( 0, m),由相像三角形的判断及性质可得出点F′的坐标,依据点B、F′的坐标利用待定系数法可求出直线BF 的分析式,联立直线BF 和抛物线的分析式成方程组,解方程组即可求出点 F 的坐标;( 3)设对角线 MN 、 PQ 交于点 O′,如图 2 所示.依据抛物线的对称性联合正方形的性质可得出点P、 Q 的地点,设出点Q 的坐标为( 2, 2n),由正方形的性质可得出点M 的坐标为(2﹣n, n).由点 M 在抛物线图象上,即可得出对于n 的一元二次方程,解方程可求出n 值,代入点Q 的坐标即可得出结论.解答解:( 1)将点 B ( 6,0)、 C( 0, 6)代入 y=﹣x2+bx+c 中,得:,解得:,∴ 抛物线的分析式为y= ﹣x2+2x+6 .∵ y= ﹣x2+2x+6= ﹣(x﹣2)2+8,∴点 D 的坐标为( 2, 8).(2)设线段 BF 与 y 轴交点为点 F′,设点 F′的坐标为( 0,m),如图 1 所示.∵∠ F′BO=∠ FBA= ∠ BDE ,∠ F′OB=∠ BED=90°,∴△ F′BO∽△ BDE ,∴.∵点 B (6, 0),点 D( 2, 8),11∴点 E( 2, 0),BE=6 ﹣ 4=4 , DE=8 ﹣ 0=8 ,OB=6 ,∴OF′=?OB=3,∴点 F′(0, 3)或( 0,﹣ 3).设直线 BF 的分析式为y=kx±3,则有 0=6k+3 或 0=6k﹣ 3,解得: k= ﹣或k=,∴直线 BF 的分析式为y=﹣x+3 或 y=x﹣ 3.联立直线 BF 与抛物线的分析式得:① 或② ,解方程组①得:或(舍去),∴ 点F的坐标为(﹣1,);解方程组②得:或(舍去),∴ 点F的坐标为(﹣3,﹣).综上可知:点 F 的坐标为(﹣ 1,)或(﹣ 3,﹣).( 3)设对角线 MN 、 PQ 交于点 O′,如图 2 所示.∵点 M 、 N 对于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点 P 为抛物线对称轴与x 轴的交点,点 Q 在抛物线对称轴上,设点 Q 的坐标为(2, 2n),则点 M 的坐标为( 2 ﹣ n, n).∵点 M 在抛物线 y= ﹣x2+2x+6 的图象上,∴ n=﹣+2( 2﹣ n) +6,即 n2+2n ﹣ 16=0,解得: n1= ﹣ 1 , n2 =﹣﹣1.∴点 Q 的坐标为(2,﹣ 1)或( 2,﹣﹣ 1).6. (2016 广东省茂名市 ) 】.如图,抛物线 y= ﹣ x2 +bx+c 经过 A (﹣ 1,0), B( 3,0)两点,且与 y 轴交于点 C,点 D 是抛物线的极点,抛物线的对称轴DE 交 x 轴于点 E,连结 BD .(1)求经过 A ,B ,C 三点的抛物线的函数表达式;(2)点 P 是线段 BD 上一点,当 PE=PC 时,求点 P 的坐标;( 3)在( 2)的条件下,过点P 作 PF⊥x 轴于点 F, G 为抛物线上一动点,M 为 x 轴上一动点, N 为直线PF 上一动点,当以F、 M 、 G 为极点的四边形是正方形时,恳求出点M 的坐标.剖析( 1)利用待定系数法求出过A, B,C 三点的抛物线的函数表达式;12( 2)连结 PC、PE,利用公式求出极点 D 的坐标,利用待定系数法求出直线BD 的分析式,设出点P 的坐标为( x,﹣ 2x+6 ),利用勾股定理表示出PC2和 PE2,依据题意列出方程,解方程求出x 的值,计算求出点 P 的坐标;(3)设点 M 的坐标为( a, 0),表示出点 G 的坐标,依据正方形的性质列出方程,解方程即可.解答解:( 1)∵抛物线 y= ﹣x2+bx+c 经过 A (﹣ 1, 0), B ( 3, 0)两点,∴,解得,,∴ 经过A,B,C三点的抛物线的函数表达式为y= ﹣ x2+2x+3 ;( 2)如图 1,连结 PC、PE, x= ﹣=﹣=1,当x=1 时, y=4 ,∴点 D 的坐标为( 1, 4),设直线 BD 的分析式为: y=mx+n ,则,解得,,∴ 直线BD的分析式为y= ﹣ 2x+6,设点 P 的坐标为( x,﹣ 2x+6),则PC2=x 2+(3+2x ﹣ 6)2,PE2=( x﹣ 1)2+(﹣ 2x+6 )2,∵PC=PE,∴x2+(3+2x ﹣6)2=(x﹣1)2+(﹣2x+6 )2,解得, x=2,则 y= ﹣2×2+6=2 ,∴点 P 的坐标为( 2, 2);(3)设点 M 的坐标为( a, 0),则点 G 的坐标为( a,﹣ a2 +2a+3),∵以 F、M 、 G 为极点的四边形是正方形,∴ FM=MG ,即 |2﹣ a|=|﹣ a2 +2a+3|,当 2﹣ a=﹣ a2+2a+3 时,整理得,a2﹣ 3a﹣1=0 ,解得, a=,当2﹣ a=﹣(﹣ a2+2a+3)时,整理得, a2﹣ a﹣5=0 ,解得, a= ,∴当以 F、M 、G 为极点的四边形是正方形时,点 M 的坐标为(,0),(,0),(,0),(, 0).13。

专题27 二次函数-存在性问题(全国通用)(解析版)

专题27 二次函数-存在性问题(全国通用)(解析版)

专题27 二次函数-存在性问题存在性问题是判断事物是否存在的问题,其知识点较广,综合性强,解题方法较灵活,对学生解决问题能力要求高,中考题中往往出现在压轴题中,其解题的一般思路是:假设存在--推理论证--得出结论---合理就存在在,反之不存在。

存在性的问题有点、线段、图形的存在等等。

解题方法多以设参数--表示点坐标--表示线段长--表示面积---建立方程等方法解决问题。

1.如图,二次函数的图象交x 轴于点()()1,0,4,0A B -,交y 轴于点()0,4,C P -是直线BC 下方抛物线上一动点.(1)求这个二次函数的表达式;(2)连接,PB PC ,是否存在点P ,使PBC ∆面积最大,若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)234y x x =--;(2)存在点P ,使PBC ∆面积最大,点P 的坐标为()2, 6-. 【分析】(1)由A 、B 、C 三点的坐标,利用待定系数法可求得抛物线解析式;(2)过P 作PE ⊥x 轴,交x 轴于点E ,交直线BC 于点F ,用P 点坐标可表示出PF 的长,则可表示出△PBC 的面积,利用二次函数的性质可求得△PBC 面积的最大值及P 点的坐标.【详解】(1)∵二次函数的图象交y 轴于点()0,4C -,∴设二次函数表达式为24y ax bx =+-, 把A 、B 二点坐标代入可得4016440a b a b --=⎧⎨+-=⎩,解这个方程组,得13a b =⎧⎨=-⎩, ∴抛物线解析式为:234y x x =--;(2))∵点P 在抛物线上,∴设点P 的坐标为()2,34t t t --过P 作PE x ⊥轴于E ,交直线BC 于F设直线BC 的函数表达式y mx n =+,将B (4,0),C (0,-4)代入得404m n n +=⎧⎨=-⎩, 解这个方程组,得14m n =⎧⎨=-⎩, ∴直线BC 解析式为4y x =-,∴点F 的坐标为(),4t t -,()()224344PF t t t t t ∴=----=-+, ()2114422PBC S PF OB t t ∆∴==-+⨯ ()2228t =--+,∵20a =->,∴当2t =时,PBC S ∆最大,此时223423246y t t =--=-⨯-=-,所以存在点P ,使PBC ∆面积最大,点P 的坐标为()2, 6-.【点睛】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中用P 点坐标表示出△PBC 的面积是解题的关键.2.如图,二次函数 22y ax bx =++经过点()1,0A -和点()4,0B ,与y 轴交于点C . ()1求抛物线的解析式;()2D 为y 轴右侧抛物线上一点,是否存在点D ,使若存在2 3ABC ABD S S ∆∆=,请直接写出点D 的坐标;若不存在,请说明理由.【答案】(1) 213222y x x =-++;(2) 存在,D (1,3)或(2,3)或(5,-3) 【分析】 (1)利用待定系数法将点A 和点B 的坐标代入,求出a 和b 的值即可;(2)求出△ABC 的面积,根据23ABC ABD S S ∆∆=求出△ABD 的面积,得出△ABD 中AB 边上的高,从而分点D 在x 轴上方和x 轴下方分别求出点D 的坐标.【详解】解:(1)把点()1,0A -和点()4,0B 代入22y ax bx =++中,得0201642a b a b =-+⎧⎨=++⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为213222y x x =-++; (2)存在,()()()231,3,2,3,5,3D D D -,理由是:∵A (-1,0),B (4,0),C (0,2), ∴()141252ABC S ∆=⨯+⨯=, ∵23ABCABD S S ∆∆=, ∴315522ABD S ∆=⨯=, 在△ABD 中,∵AB=5,∴AB 边上的高,即点D 到x 轴的距离为3, ∵抛物线表达式为213222y x x =-++, 若点D 的纵坐标为3,令y=3,解得x=1或2,∴点D 的坐标为(1,3)或(2,3);若点D 的纵坐标为-3,令y=-3,解得x=5或-2(舍),∴点D 的坐标为(5,-3).综上:存在()()()231,3,2,3,5,3D D D -,使得23ABC ABD S S ∆∆=. 【点睛】本题考查了待定系数法求二次函数的解析式,二次函数上点的坐标,解题的关键是注意分类讨论思想的运用.3.如图,在平面直角坐标系中,己知二次函数283y ax x c =++的图像与y 轴交于点B (0, 4),与x 轴交于点A (-1,0)和点D .(1)求二次函数的解析式;(2)求抛物线的顶点和点D 的坐标;(3)在抛物线上是否存在点P ,使得△BOP 的面积等于52?如果存在,请求出点P 的坐标?如果不存在,请说明理由.【答案】(1)248433y x x =-++;(2)D 的坐标为(3,0),顶点坐标为(1,163);(3)满足条件的点P 有两个,坐标分别为P 1(54,214)、P 2(517,412--). 【分析】(1)利用待定系数法求出二次函数解析式即可;(2)根据二次函数的解析式得点D 的坐标,将解析式化为顶点式可得顶点的坐标;(3)设P 的坐标为P (x ,y ),到y 轴的距离为|x|,则S △BOP =12•BO •|x|,解出x=±54,进而得出P 点坐标.【详解】解:(1)把点A (-1,0)和点B (0, 4)代入二次函数283y ax x c =++中得: ()()280=1134a c c⎧-+⨯-+⎪⎨⎪=⎩ 解得:434a c ⎧=-⎪⎨⎪=⎩ 所以二次函数的解析式为:248433y x x =-++ ; (2)根据(1)得点D 的坐标为(3,0),248433y x x =-++=()()224416241333x x x --+=--+, ∴顶点坐标为(1,163); (3)存在这样的点P ,设P 的坐标为P (x ,y ),到y 轴的距离为∣x ∣∵ S △BOP =12•BO •∣x ∣ ∴52=12×4•∣x ∣ 解得:∣x ∣=54所以x =±54把x =54代入248433y x x =-++中得: 2458543434y ⎛⎫=-⨯+⨯+ ⎪⎝⎭ 即:y =214, 把x =-54代入248433y x x =-++中得: 2458543434y ⎛⎫⎛⎫=-⨯-+⨯-+ ⎪ ⎪⎝⎭⎝⎭即:y =-1712∴满足条件的点P 有两个,坐标分别为P 1(54,214)、P 2(517,412--). 【点睛】本题考查待定系数法求二次函数解析式、抛物线的顶点坐标以及三角形面积等知识,掌握二次函数的性质、灵活运用待定系数法是解题的关键.4.如图,已知二次函数2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知BAC ∆的面积是6.(1)求a 的值;(2)在抛物线上是否存在一点P ,使ABP ABC S S ∆∆=.存在请求出P 坐标,若不存在请说明理由.【答案】(1)3a =-;(2)存在,P 点的坐标为(2,3)-或(13)-+-或(13)---.【分析】(1)根据求出A,B,C 的坐标,再由BAC ∆的面积是6得到关于a 的方程即可求解;(2)根据ABP ABC S S ∆∆=得到P 点的纵坐标为±3,分别代入解析式即可求解.【详解】(1)∵2(1)y x a x a =-++-,令0x =,则y a =-,∴(0,)C a -,令0y =,即2(1)0x a x a -++-=解得1x a =,21x =由图象知:0a <∴(,0)A a ,(1,0)B∵6ABC S ∆= ∴1(1)()62a a --= 解得:3a =-,(4a =舍去);(2)∵3a =-,∴(0,3)C ,∵ABP ABC S S ∆∆=.∴P 点的纵坐标为±3,把3y =代入223y x x =--+得2233x x --+=,解得0x =或2x =-,把3y =-代入223y x x =--+得2233x x --+=-,解得1x =-+1x =--∴P 点的坐标为(2,3)-或(13)-+-或(13)--.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的应用.5.如图所示,二次函数2y ax bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB OC <)是方程210160x x -+=的两个根,且A 点坐标为(60)-,.(1)求此二次函数的表达式;(2)若点E 是线段AB 上的一个动点(与点A 、B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE . 设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(3)在(2)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.【答案】(1)228833y x x =--+;(2)2142S m m =-+(0<m<8);(3)当4m =时S 有最大值8,此时点E 的坐标为(20)-,,△BCE 为等腰三角形. 【分析】(1)通过解方程x 2−10x +16=0得到二次函数图象上的点B 、C 的坐标,再结合A 的坐标,利用待定系数法求出函数解析式;(2)用m 表述出AE 、BE 的长,得到△BEF ∽△BAC ,再利用相似三角形的性质得到比例式8108EF m -=,求出EF 的表达式,利用sin ∠FEG =sin ∠CAB =45得到45FG EF =,求出FG 的表达式,再根据S =S △BCE −S △BFE 求S 与m 之间的函数关系,m 的值不超过AB 的长.(3)将S =12-m 2+4配方为S =12-(m −4)2+8,求出S 的最大值,进而判断出此时△BCE 的形状.【详解】(1)方程210160x x -+=的两个根为2和8.由于OB OC <,所以2OB =,8OC =,故8c =,点B 坐标为(20),. 因为点A 坐标为(60)-,,所以22(6)(6)802280a b a b ⎧⨯-+⨯-+=⎨⨯+⨯+=⎩. 解得23a =-,83b =-. 故此二次函数的表达式为228833y x x =--+. (2)∵AB =8,OC =8,依题意,AE =m ,则BE =8−m ,∵OA =6,OC =8,∴AC =10.∵EF ∥AC ,∴△BEF ∽△BAC . ∴EF BE AC AB=. 即8108EF m -=. ∴EF =4054m -. 过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45. ∴45FG EF =. ∴FG =45•4054m -=8−m . ∴S =S △BCE −S △BFE =12(8−m )×8−12(8−m )(8−m ) =12(8−m )(8−8+m ) =12(8−m )m =2142m m -+,自变量m 的取值范围是0<m <8.(3)存在.理由如下:∵S =2142m m -+=−12(m −4)2+8,且−12<0, ∴当m =4时,S 有最大值,S 最大值=8.∵m =4,∴点E 的坐标为(−2,0).∴△BCE 为等腰三角形.【点睛】本题考查二次函数综合题,涉及函数和方程的关系、二次函数的性质、相似三角形的判定与性质、配方法求函数最大值等知识,是一道好题.6.关于x 的一元二次方程()222110k x k x --+=有两个实数根. ()1求k 的取值范围;()2是否存在实数k ,使方程的实数根互为相反数?若存在,求k ;若不存在,请说明理由.【答案】(1)14k ≤且0k ≠;(2)不存在 【分析】(1)由题意,方程需满足:根的判别式大于0且二次项系数不为0,求不等式的解即可;(2)根据互为相反数的两数和等于0得方程,求解并判断即可.【详解】解:()1有题意得()22202140k k k ⎧≠⎪⎨=--≥⎪⎩,解得,14k ≤且0k ≠ ()2设方程的两根为x1,x 2,依题意, 122210k x x k -+==, ∴12k =, 又∵14k ≤且0k ≠ 所以不存在【点睛】本题考查了一元二次方程根的判别式、根与系数的关系.7.如图,在平面直角坐标系xOy 中,二次函数22y x bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C .(1) 求此二次函数解析式;(2) 点D 为点C 关于x 轴的对称点,过点A 作直线l :33y x =+交BD 于点E ,过点B 作直线BK ∥AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.【答案】(1)2y x =-点P 与点E 重合时,即是满足题意的点,坐标为(2(3)8【解析】试题分析:(1) ∵点A 、B 的坐标分别为(-1,0)、(3,0),∴0,230.b c b c -+=++=解得{2b c ==-∴二次函数解析式为222y x =--(2)可求点C 的坐标为(1,-∴点D 的坐标为(1,.可求直线AD的解析式为y =+由题意可求直线BK的解析式为y =-.∵直线l的解析式为y x =+∴可求出点K 的坐标为(5,易求4AB BK KD DA ====.∴四边形ABKD 是菱形.∵菱形的中心到四边的距离相等,∴点P 与点E 重合时,即是满足题意的点,坐标为(2) .(3) ∵点D 、B 关于直线AK 对称,∴DN MN +的最小值是MB .过K 作KF ⊥x 轴于F 点. 过点K 作直线AD 的对称点P ,连接KP ,交直线AD 于点Q , ∴KP ⊥AD .∵AK 是∠DAB 的角平分线,∴KF KQ PQ ===∴MB MK +的最小值是BP .即BP 的长是DN NM MK ++的最小值.∵BK ∥AD ,∴90BKP ∠=︒.在Rt △BKP 中,由勾股定理得BP =8.∴DN NM MK ++的最小值为8.考点:二次函数点评:本题难度较大,主要考查学生对二次函数性质的掌握,本题难度较高在图像分析较复杂,需要学生有扎实基础来理清思路.一般为压轴题型,基础较好的同学要多加训练,培养解题感觉.8.如图是二次函数()2y x m k =++的图象,其顶点坐标为()1,4M -. (1)直接写出m 、k 的值;(2)求二次函数的图象与x 轴的交点A ,B 的坐标;(3)在二次函数的图象上是否存在点P ,使54PAB MAB S S =△△?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)1m =-,4k =-;(2)()1,0A -,()3,0B ;(3)存在点P ,坐标为()4,5或()2,5-【分析】(1)由顶点坐标确定m 、k 的值;(2)令y=0求得图象与x 轴的交点坐标;(3)设存在这样的P 点,由于底边相同,求出△PAB 中AB 边上的高P y ,然后得出P 点纵坐标代入二次函数表达式求得P 点坐标.【详解】解:(1)由顶点坐标为M (1,-4)可知二次函数解析式为()214y x =--.∴1m =-,4k =-;(2)在()214y x =--中,令0y =得()2140x --=,解得13x =,21x =-,∴()1,0A -,()3,0B .(3)∵PAB △与MAB △同底,且54PAB MAB S S =△△, ∴554544P M y y ==⨯=,即5P y =±. 又∵点P 在()214y x =--的图象上,∴4P y ≥-,∴5P y =,∴()2145x --=,解得14x =,22x =-,∴存在点P ,坐标为()4,5或()2,5-,使54PAB MAB SS =. 【点睛】本题考查了由二次函数顶点式的求法及抛物线与x 轴交点坐标的求法,以及给出面积关系求点的坐标,综合体现了数形结合的思想.9.如图,二次函数212y x bx c =++的图象交x 轴于,A D 两点,并经过B 点,已知A 点坐标是()2,0,B 点坐标是()8,6.(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D 点的坐标;(3)二次函数的对称轴上是否存在一点C ,使得CBD ∆的周长最小?若C 点存在,求出C 点的坐标,若C 点不存在,请说明理由.【答案】(1)21462y x x =-+ (2)(4,−2),(6,0)(3)存在,C(4,2)【分析】(1)只需运用待定系数法就可求出二次函数的解析式;(2)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D 的坐标;(3)连接CA ,由于BD 是定值,使得△CBD 的周长最小,只需CD+CB 最小,根据抛物线是轴对称图形可得CA=CD ,只需CA+CB 最小,根据“两点之间,线段最短”可得:当点A 、C 、B三点共线时,CA+CB 最小,只需用待定系数法求出直线AB 的解析式,就可得到点C 的坐标.【详解】(1)把A(2,0),B(8,6)代入212y x bx c =++,得 1402164862bx c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩ 解得46b c =-⎧⎨=⎩∴二次函数的解析式为21462y x x =-+ 故答案为:21462y x x =-+ (2)由221146(4)222y x x x =-+=--得二次函数图象的顶点坐标为(4,−2) 令y=0,得214602x x -+= 解得:x 1=2,x 2=6,∴D 点的坐标为(6,0).故答案为:(4,−2),(6,0)(3)二次函数的对称轴上存在一点C ,使得△CBD 的周长最小.连接CA ,如图,∵点C 在二次函数的对称轴x=4上,∴x C =4,CA=CD ,∴△CBD 的周长=CD+CB+BD=CA+CB+BD ,根据“两点之间,线段最短”,可得当点A 、C 、B 三点共线时,CA+CB 最小,此时,由于BD 是定值,因此△CBD 的周长最小.设直线AB 的解析式为y=mx+n ,把A(2,0)、B(8,6)代入y=mx+n ,得2+086m n m n =⎧⎨+=⎩解得12m n =⎧⎨=-⎩ ∴直线AB 的解析式为y=x −2当x=4时,y=4−2=2,∴当二次函数的对称轴上点C 的坐标为(4,2)时,△CBD 的周长最小.故答案为:存在,C(4,2)【点睛】本题考查了用待定系数法求二次函数的解析式,会将二次函数一般式化为顶点式,表示出顶点坐标,本题是抛物线动点问题的综合题型,在求线段和最短的时候,“两点之间,线段最短”是经常会被用到的知识点.10.如图是二次函数c bx x y ++=2的图象,其顶点坐标为M (1,-4).(1)求出图象与x 轴的交点A ,B 的坐标;(2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;【答案】(1) A (-1,0) B (3,0) (2)P 1(4,5) P 2(-2,5).【解析】试题分析:(1)将顶点M (1,-4)代入二次函数c bx x y ++=2,求出二次函数解析式,令y=0,解方程即可;(2)假设存在点P (x ,y )满足条件,用点P 坐标分别表示出两个三角形的面积,解方程确定点P 的坐标.试题解析::(1)因为M (1,-4) 是二次函数c bx x y ++=2的顶点坐标, 所以222(1)423y x bx c x x x =++=--=--,令解得 ∴A ,B 两点的坐标分别为A (-1,0),B (3,0).(2)在二次函数的图象上存在点P ,使设P (x ,y )则 又∴即y=±5 ∵二次函数的最小值为-4∴当时,或故P 点坐标为(-2,5)或(4,5).考点:1.二次函数的图像;2.一次函数的图像;3.二次函数的最值;4.轴对称 .11.如图,二次函数y =﹣14x 2+bx +c 的图象经过点A (4,0),B (﹣4,﹣4),且与y 轴交于点C .(1)求此二次函数的解析式;(2)证明:AO 平分∠BAC ;(3)在二次函数对称轴上是否存在一点P 使得AP =BP ?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)y =﹣14x 2+12x +2;(2)见解析;(3)存在.点P 的坐标为(1,﹣4); 【解析】【分析】 (1)将点A (4,0)与点B (−4,-4)代入函数解析式即可;(2)求出直线AB 的解析式,求出AB 与y 轴交点D (0,−2),可得OC =OD ,再由AO ⊥CD ,可证AO 平分∠BAC ;(3)二次函数的对称轴为直线x =1,设点P 的坐标为(1,m ),AP 2=(4−1)2+m 2,BP 2=(1+4)2+(m4)2,当AP =BP 时,求出m =−4即可;【详解】(1)∵点A (4,0)与点B (﹣4,-4)在二次函数的图象上, ∴044444b c b c =-++⎧⎨-=--+⎩, 解得122b c ⎧=⎪⎨⎪=⎩,∴二次函数的解析式为y =211242x x -++; (2)设直线AB 的解析式为y =ax +n则有4040a n a n +=⎧⎨-+=⎩, 解得122a b ⎧=⎪⎨⎪=-⎩,故直线AB的解析式为y=12x﹣2,设直线AB与y轴的交点为点D,x=0,则y=﹣2,故点D为(0,﹣2),由(1)可知点C为(0,2),∴OC=OD又∵AO⊥CD,∴AO平分∠BAC;(3)存在.∵y=﹣14x2+12x+2=﹣14(x﹣1)2+14+2,∴二次函数的对称轴为直线x=1,设点P的坐标为(1,m),AP2=(4﹣1)2+m2,BP2=(1+4)2+(m4)2,当AP=BP时,AP2=BP2,则有9+m2=25+m2+16+8m,解得m=﹣4,∴点P的坐标为(1,﹣4);【点睛】本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握待定系数法求函数解析式,利用勾股定理求边长是解题的关键.12.(本题满分10分)如图是二次函数的图象,其顶点坐标为M(1,-4).(1)求出图象与轴的交点A ,B 的坐标;(2)在二次函数的图象上是否存在点P ,使,若存在,求出P 点的坐标;若不存在,请说明理由;【答案】(1)A (-1,0) B (3,0);(2)存在,P (-2,5)或 P (4,5)【解析】试题分析:1)由已知得,抛物线解析式令y=0,解得 ∴A (-1,0) B (3,0)(2)84421=⨯⨯=∆MAB S ∴∵AB=4 ∴令y=5,解得∴P (-2,5)或 P (4,5)考点:1.抛物线的顶点式;2.抛物线的值13.如图,二次函数212y x bx c =-++的图象经过A(2,0),B(0,-6)两点. (1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求△ABC 的面积.(3)在x 轴上是否存在一点P ,使△ABP 为等腰三角形,若存在,求出P 的坐标,若不存在,说明理由.【答案】(1)y =-12x 2+4x -6;(2)S △ABC =6;(3)点P 坐标为(-2,0)或()2-或()2+或()80-, 【解析】试题分析:(1)把A 、B 两点的坐标代入y=-12x 2+bx+c 中得到关于b 、c 的方程组,然后解方程求出b 、c 即可得到抛物线解析式;(2)先确定抛物线的对称轴方程,则可得到C 点坐标,然后根据三角形面积公式求解.(3)分类讨论,进行求解即可.试题解析:(1)∵的图象经过A (2,0)、B (0,-6)两点, ∴2206b c c -++⎧⎨-⎩==, 解得b=4,c=-6,∴这个二次函数的解析式为y =−12x 2+4x −6 (2)令-12x 2+4x-6=0 ∴x 2-8x+12=0解得:x 1=2 x 2=6∴C (4,0)∴AC=2∴S △ABC =12×2×6=6 (3)点P 坐标为(-2,0)或()(()2-80+或或, 14.如图,二次函数2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于c 顶点,已知(1,0)A ,(0,3)C -.(1)求此二次函数的解析式及B 点坐标.(2)在抛物线上存在一点P 使ABP ∆的面积为10,不存在说明理由,如果存在,请求出P 的坐标.(3)根据图象直接写出33x -<<时,y 的取值范围.【答案】(1)二次函数解析式为223y x x =+-,B 点坐标为(3,0)-;(2)()4,5-,(2,5);(3)412y -<.【分析】(1)将已知的两点坐标代入抛物线中,即可求得抛物线的解析式;.(2)设()2,23P x x x +-,然后利用三角形的面积计算即可;(3)根据图象可得出y 的取值范围..【详解】解:(1)将(1,0)A ,(0,3)C -代入2y x bx c =++中, 得:103b c c ++=⎧⎨=-⎩, 解得23b c =⎧⎨=-⎩. 所以二次函数解析式为223y x x =+-.令0y =,即2230x x +-=,解得:11x =,23x =-.∴B 点坐标为(3,0)-.(2)设()2,23P x x x +-,∵ABP ∆的面积为10, ∴21423102x x ⨯⨯+-=, 解方程2235x x +-=得14x =-,22x =,此时P 点坐标为()4,5-,(2,5).方程2235x x +-=-没有实数解.综上所述,P 点坐标为()4,5-,(2,5).(3)如图所示,当33x -<<时,当1x =-时,y 有最小值,将1x =-代入223y x x =+-中,得4y =-. 当3x =时,y 有最大值.将3x =代入223y x x =+-中,得12y =. ∴y 的取值范围是412y -<.【点睛】本题考查了二次函数解析式的确定以及图形面积的求法,不规则图形的面积通常转化为规则图形的面积的和差.15.如图,已知二次函数223y x x =+-的图象与x 轴相交于C D 、两点(点C 在点D 的左边),与y 轴交于点B ,点A 在二次函数的图像上,且AB ∥x 轴.问线段BC 上是否存在点P ,使△POC 为等腰三角形;如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】存在,点33(,)22P --或(0,3)P -或(3,22P -+-.【分析】由抛物线解析式可得出C 、B 坐标,利用待定系数法可得直线BC 的解析式为y=-x-3,分三个情况讨论:当PC PO =时,点P 在OC 的垂直平分线上,根据O 、C 坐标可得OC 中点坐标,把OC 中点的横坐标代入BC 解析式即可得P 点坐标;当PO CO =时,设P (x ,-x-3),利用两点间距离公式即可得P 点坐标;当PC CO =时,利用利用两点间距离公式即可得P 点坐标.【详解】当0y =时,2230x x +-=,解得:123,1x x =-=,∵点C 在点D 的左边,∴(3,0)C -当x=0时,y=-3,∴B (0,-3),设直线BC 的函数解析式为y kx n =+∴0330k n n=-+⎧⎨-=+⎩, 解得13k n =-⎧⎨=-⎩, ∴直线BC 的解析式为y=-x-3,①当PC PO =时,点P 在OC 的垂直平分线上,∵点C (-3,0),O (0,0),∴OC 中点坐标为(32-,0), 把x=32-代入y=-x-3得:y=32-3=32-, ∴点33(,)22P -- ②当PO CO =时,设P (x ,-x-3),,解得:x 1=0,x 2=-3(舍去),∴-x-3=-3,∴点(0,3)P -,③当PC CO =时,设点(,3)P x x --,3=,解得13x =-+,232x =--(不合题意,舍去)∴(3P -+∴存在,点33(,)22P --或(0,3)P -或(3,)22P -+-. 【点睛】本题考查二次函数图象上的点的坐标特征、待定系数法求一次函数解析式及等腰三角形的判定,注意分类讨论思想的运用是解题关键.16.已知二次函数:2(21)2(0)y ax a x a =+++<.(1)求证:二次函数的图象与x 轴有两个交点;(2)当二次函数的图象与x 轴的两个交点的横坐标均为整数,且a 为负整数时,求a 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x 轴的两个交点A ,B (A 在B 的左侧),与y 轴的交点C 及其顶点D 这四点画出二次函数的大致图象,同时标出A ,B ,C ,D 的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P 使75PCA ︒∠=?如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】(1)见解析;(2)1a =-,22y x x =--+,函数图象如图所示见解析;(3)存在这样的点P ,点P 的坐标为35,33⎛⎫ ⎪ ⎪⎝⎭或1).【解析】【分析】(1)1)将解析式右边因式分解得抛物线与x 轴的交点为(−2,0)、(−1a,0),结合a <0即可得证;(2)根据题意求出1a =-,再求出函数与x 轴的交点,即可作图;(3)根据题意作出图像,根据题意分两种情况讨论:①当点P 在直线AC 上方时,记直线PC 与x 轴的交点为E ,根据75PCA ︒∠=求出30OEC ︒∠=,因此OC tan OEC OE ===∠E ,则可求出求得直线CE解析式为2y x =+,再联立两直线即可求出P 点坐标;②当点P 在直线AC 下方时, 同理求出P 的坐标.【详解】(1)∵2(21)2(2)(1)y ax a x x ax =+++=++,且0a <,∴抛物线与x 轴的交点为(2,0)-、1,0a ⎛⎫- ⎪⎝⎭, 则二次函数的图象与x 轴有两个交点;(2)∵两个交点的横坐标均为整数,且a 为负整数,∴1a =-,则抛物线与x 轴的交点A 的坐标为(2,0)-、B 的坐标为(1,0),∴抛物线解析式为(2)(1)y x x =+-+22x x =--+21924x ⎛⎫=-++ ⎪⎝⎭, 当0x =时,2y =,即(0,2)C ,函数图象如图1所示:(3)存在这样的点P ,∵2OA OC ==,∴45ACO ︒∠=,如图2,当点P 在直线AC 上方时,记直线PC 与x 轴的交点为E ,∵75PCA ︒∠=,∴120PCO ︒∠=,60OCE ︒∠=,则30OEC ︒∠=,∴OC tan OEC OE ===∠则E ,求得直线CE解析式为2y x =+,联立2232y x y x x ⎧=+⎪⎨⎪=--+⎩, 解得02x y =⎧⎨=⎩或53x y ⎧=⎪⎪⎨⎪=⎪⎩,∴P ⎝⎭; 如图3,当点P 在直线AC 下方时,记直线PC 与x 轴的交点为F ,∵75ACP ︒∠=,45ACO ︒∠=,∴30OCF ︒∠=,则tan 2OF OC OCF =∠==,∴F ⎫⎪⎪⎝⎭,求得直线PC解析式为2y =+,联立222y y x x ⎧=+⎪⎨=--+⎪⎩, 解得:02x y =⎧⎨=⎩或11x y ⎧=⎪⎨=⎪⎩,∴1)P ,综上,点P 的坐标为⎝⎭或1). 【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质,一次函数的图像与性质及三角函数的应用.17.如图,二次函数2y x bx c =-++的图象经过坐标原点,与x 轴的另一个交点为A (-2,0).(1)求二次函数的解析式(2)在抛物线上是否存在一点P ,使△AOP 的面积为3,若存在请求出点P 的坐标,若不存在,请说明理由.【答案】(1)y =-x 2-2x ;(2)(3,-3),(1,-3).【分析】(1)把点(0,0)和点A (-2,0)分别代入函数关系式来求b 、c 的值;(2)设点P 的坐标为(x ,-x 2-2x ),利用三角形的面积公式得到-x 2-2x =±3.通过解方程来求x 的值,则易求点P 的坐标.【详解】解:(1)∵二次函数y =-x 2+bx +c 的图象经过坐标原点(0,0)∴c =0.又∵二次函数y =-x 2+bx +c 的图象过点A (-2,0)∴-(-2)2-2b +0=0,∴b =-2.∴所求b 、c 值分别为-2,0;(2)存在一点P ,满足S △AOP =3.设点P 的坐标为(x ,-x 2-2x )∵S △AOP =3 ∴12×2×|-x 2-2x |=3 ∴-x 2-2x =±3. 当-x 2-2x =3时,此方程无解;当-x 2-2x =-3时,解得 x 1=-3,x 2=1.∴点P 的坐标为(-3,-3)或(1,-3).【点睛】本题考查了抛物线与x 轴的交点.解(1)题时,实际上利用待定系数法来求抛物线的解析式.18.二次函数y=ax 2+bx+c (a ≠0)的图象经过点A (3,0),B (2,﹣3),并且以x=1为对称轴.(1)求此函数的解析式;(2)作出二次函数的大致图象;(3)在对称轴x=1上是否存在一点P ,使△PAB 中PA=PB ?若存在,求出P 点的坐标;若不存在,说明理由.【答案】(1)解析式为y=x 2﹣2x ﹣3;(2)画图见解析;(3)存在,点P 的坐标为(1,﹣1).【解析】试题分析:(1)根据对称轴的公式x =2b a -和函数的解析式,将2b a-=1和A (3,0),B (2,﹣3)代入函数解析式,组成方程组解答即可;(2)求出图象与坐标轴的交点坐标,描点即可;(3)根据两点之间距离公式解答即可.试题解析:解:(1)根据题意得:12930423b a a b c a b c ⎧-=⎪⎪++=⎨⎪++=-⎪⎩,解得:123a b c =⎧⎪=-⎨⎪=-⎩,∴解析式为y =x 2﹣2x ﹣3;(2)二次函数图象如图:(3)存在.作AB 的垂直平分线交对称轴x =1于点P ,连接PA 、PB ,则PA =PB ,设P 点坐标为(1,m ).∵PA =PB ,∴22+m 2=(﹣3﹣m )2+1,解得:m =﹣1,∴点P 的坐标为(1,﹣1). 点睛:(1)所用方法被称为待定系数法;(2)考查了二次函数草图的画法;(3)会用距离公式d19.如图,已知二次函数21:43L y x x =-+与x 轴交于A B 、两点(点A 在点B 的左边),与y 轴交于点C .(1)写出A B 、两点的坐标;(2)二次函数()22:430L y kx kx k k =-+≠,顶点为P . ①直接写出二次函数2L 与二次函数1L 有关图象的两条相同的性质;②是否存在实数k ,使ABP ∆为等边三角形?如存在,请求出k 的值;如不存在,请说明理由;③若直线8y k =与抛物线2L 交于E F 、两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.【答案】(1)()()1,0,3,0A B ;(2)①对称轴都为直线2x =或顶点的横坐标为2;都经过()()1,0,3,0A B 两点;②存在实数k ,使ABP ∆为等边三角形,k =③线段EF 的长度不会发生变化,值为6.【分析】(1)令2430x x -+=,求出解集即可;(2)①根据二次函数2L 与1L 有关图象的两条相同的性质求解即可;②根据()22432y kx kx k k x k =-+=--,可得到结果;③根据已知条件列式2438kx kx k k -+=,求出定值即可证明.【详解】解:(1)令2430x x -+=,∴()()130x x --=,∴11x =,23x =,∵点A 在点B 的左边,∴()()1,0,3,0A B ;(2)①二次函数2L 与1L 有关图象的两条相同的性质:(I )对称轴都为直线2x =或顶点的横坐标为2;(II )都经过()()1,0,3,0A B 两点;②存在实数k ,使ABP ∆为等边三角形.∵()22432y kx kx k k x k =-+=--,∴顶点()2,P k -,∵()()1,0,3,0A B ,∴2AB =,要使ABP ∆为等边三角形,必满足k -=∴k =③线段EF 的长度不会发生变化.∵直线8y k =与抛物线2L 交于E F 、两点,∴2438kx kx k k -+=,∵0k ≠,∴2438x x -+=,∴11x =-,25x =,∴216EF x x =-=,∴线段EF 的长度不会发生变化.【点睛】本题主要考查了二次函数综合,结合一次函数、等边三角形的性质求解是关键.20.如图,已知二次函数y =x 2﹣2x +m 的图象与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图象的对称轴于点D ,若点C 为AD 的中点.(1)求m 的值;(2)若二次函数图象上有一点Q ,使得tan ∠ABQ =3,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图象上是否存在点P ,使得△QBP ∽△COA ?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)m=﹣3;(2)Q (﹣4,21)或(2,﹣3);(3)不存在,理由见解析【分析】(1)函数的对称轴为:x=1,点C 为AD 的中点,则点A (-1,0),即可求解;(2)tan ∠ABQ=3,点B (3,0),则AQ 所在的直线为:y=±3x (x-3),即可求解;(3)分点Q (2,-3)、点Q (-4,21)两种情况,分别求解即可.【详解】(1)设对称轴交x 轴于点E ,直线AC 交抛物线对称轴于点D ,函数的对称轴为:x=1,点C为AD的中点,则点A(﹣1,0),将点A的坐标代入抛物线表达式并解得:m=﹣3,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)tan∠ABQ=3,点B(3,0),则AQ所在的直线为:y=±3(x﹣3)…②,联立①②并解得:x=﹣4或3(舍去)或2,故点Q(﹣4,21)或(2,﹣3);(3)不存在,理由:△QBP∽△COA,则∠QBP=90°①当点Q(2,﹣3)时,则BP的表达式为:y=﹣13(x﹣3)…③,联立①③并解得:x=3(舍去)或﹣43,故点P(﹣41339,),此时BP:PQ≠OA:AC,故点P不存在;②当点Q(﹣4,21)时,同理可得:点P(﹣21139,),此时BP:PQ≠OA:OB,故点P不存在;综上,点P不存在.【点睛】此题考查二次函数综合运用,一次函数的性质、三角形相似、中点公式的运用等,解题关键在于要注意分类求解,避免遗漏.21.如图,二次函数y =12x 2+bx+c 的图象交x 轴于A 、D 两点,并经过B 点,已知A 点坐标是(2,0),B 点坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D 点的坐标;(3)二次函数的对称轴上是否存在一点C ,使得△CBD 的周长最小?若C 点存在,求出C 点的坐标;若C 点不存在,请说明理由.【答案】(1)y=12x 2﹣4x+6;(2)D 点的坐标为(6,0);(3)存在.当点C 的坐标为(4,2)时,△CBD 的周长最小【分析】(1)只需运用待定系数法就可求出二次函数的解析式;(2)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D 的坐标;(3)连接CA ,由于BD 是定值,使得△CBD 的周长最小,只需CD+CB 最小,根据抛物线是轴对称图形可得CA=CD ,只需CA+CB 最小,根据“两点之间,线段最短”可得:当点A 、C 、B 三点共线时,CA+CB 最小,只需用待定系数法求出直线AB 的解析式,就可得到点C 的坐标.【详解】(1)把A (2,0),B (8,6)代入212y x bx c =++,得 14202164862b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩ 解得:46b c =-⎧⎨=⎩∴二次函数的解析式为21462y x x =+﹣;(2)由2211464222y x x x =+=﹣(﹣)﹣,得二次函数图象的顶点坐标为(4,﹣2).令y=0,得214602x x +=﹣,解得:x 1=2,x 2=6,∴D 点的坐标为(6,0);(3)二次函数的对称轴上存在一点C ,使得CBD 的周长最小.连接CA ,如图,∵点C 在二次函数的对称轴x=4上,∴x C =4,CA=CD ,∴CBD 的周长=CD+CB+BD=CA+CB+BD ,根据“两点之间,线段最短”,可得当点A 、C 、B 三点共线时,CA+CB 最小,此时,由于BD 是定值,因此CBD 的周长最小.设直线AB 的解析式为y=mx+n ,把A (2,0)、B (8,6)代入y=mx+n ,得208m n m n +=⎧⎨+=⎩解得:12m n =⎧⎨=-⎩ ∴直线AB 的解析式为y=x ﹣2.当x=4时,y=4﹣2=2,∴当二次函数的对称轴上点C 的坐标为(4,2)时,CBD 的周长最小.【点睛】本题考查了(1)二次函数综合题;(2)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.22.已知:如图,二次函数y=x 2+bx+c 的图象过点A (1,0)和C (0,﹣3)(1)求这个二次函数的解析式;(2)如果这个二次函数的图象与x 轴的另一个交点为B ,求线段AB 的长.(3)在这条抛物线上是否存在一点P ,使△ABP 的面积为8?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)二次函数的解析式为223y x x =+- ;(2)=4AB ;(3)存在,点P 的坐标为1(1P -+或2(1P --或3(1,4)P --. 【分析】(1)利用待定系数法把A (1,0),C (0,-3)代入二次函数y=x 2+bx+c 中,即可算出b 、c 的值,进而得到函数解析式是y=x 2+2x-3;(2)首先求出A 、B 两点坐标,再算出AB 的长;(3)设P (m ,n ),根据△ABP 的面积为8可以计算出n 的值,然后再利用二次函数解析式计算出m 的值即可得到P 点坐标.【详解】 解:(1)依题意把()0A 1,,()03C -,代入2y x bx c =++得: 103b c c ++=⎧⎨=-⎩,解得:23b c =⎧⎨=-⎩ , ∴ 该二次函数的解析式为223y x x =+- ;(2)令0y =,则2230x x +-=,解之得:11x =,23x =- ,∴ 点B 坐标为(-3,0),。

第11讲二次函数中矩形正方形的存在性问题专题探究(原卷版)

第11讲二次函数中矩形正方形的存在性问题专题探究(原卷版)

第11讲二次函数中矩形、正方形的存在性问题专题探究【知识总结】❖方法策略:抓矩形两大性质【内角=90°+对角线相等→转化为直角△存在性问题】正方形存在性问题转化为等腰直角三角形存在性问题【类题训练】1.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.2.综合与探究如图,抛物线y=﹣x2+bx+c的顶点为D(1,4),与x轴交于A和B两点,交y轴于点C.(1)求抛物线的函数表达式及点A,B、C的坐标;(2)如图1,点P是直线BC上方的抛物线上的动点,当△BCP面积最大时,求点P的横坐标;(3)如图2,若点M是坐标轴上一点,点N为平面内一点,是否存在这样的点,使以B、D、M、N为顶点的四边形是以BD为对角线的矩形?若存在,请直接写出点N的坐标,若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点P为抛物线上的动点.(1)求该抛物线的函数表达式;(2)点D为直线y=x上的动点,当点P在第四象限时,求四边形PBDC面积的最大值及此时点P的坐标;(3)已知点E为x轴上一动点,点Q为平面内任意一点,是否存在以点P,C,E,Q为顶点的四边形是以PC为对角线的正方形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.4.如图,已知抛物线y=﹣x2﹣x+2与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,过点B作直线BD∥AC交抛物线于点D.(1)求点D的坐标;(2)点P是直线AC上方的抛物线上一点,连接DP,交AC于点E,连接BE,BP,求△BPE面积的最大值及此时点P的坐标;(3)将抛物线沿射线CA方向平移单位得到新的抛物线y',点M是新抛物线y'对称轴上一点,点N 为平面直角坐标系内一点,直接写出所有以A,C,M,N为顶点的四边形为矩形的点N的坐标,并写出其中一个点N的坐标的求解过程.5.已知抛物线y=﹣x2+bx+c与x轴交于点A(3,0)和点B(﹣1,0),与y轴交于点C,点D在抛物线上运动(不与点A,B,C重合).(1)求抛物线的解析式;(2)如图1,当点D在第一象限抛物线上运动时,过点D作DF⊥x轴,垂足为点F,直线DF与直线AC交于点E,若DE=EA,求点D的坐标;(3)如图2,直线BD交直线AC于点H,点G在坐标平面内,在抛物线上是否存在点D,使以点A,D,H,G为顶点的四边形为矩形,若存在,请直接写出点D的坐标;若不存在,请说明理由.6.如图,抛物线的对称轴与x轴交于点A(1,0),与y轴交于点B(0,3),C为该抛物线图象上的一个动点.(1)求抛物线的解析式;(2)如图,当点C在第一象限,且∠BAC=90°,求tan∠ABC的值;(3)点D在抛物线上(点D在点C的左侧,不与点B重合),点P在坐标平面内,问是否存在正方形ACPD?若存在,请直接写出点P的坐标;若不存在,请说明理由.7.如图,二次函数y=﹣+bx+c的图象经过A(﹣2,0),B(0,4)两点.(1)求这个二次函数的解析式,并直接写出顶点D的坐标;(2)若该抛物线与x轴的另一个交点为C,点P为第一象限内抛物线上一点,求P点坐标为多少时,△BCP的面积最大,并求出这个最大面积.(3)在直线CD上有点E,作EF⊥x轴于点F,当以O、B、E、F为顶点的四边形是矩形时,直接写出E点坐标.8.若二次函数的图象经过点A(﹣2,0),其对称轴为直线x=1,与x轴的另一个交点为C,与y轴交于点B.(1)点C的坐标为;(2)求二次函数的解析式;(3)点M在线段AB上,过点M作MN⊥x轴于点N.①若MN:NC=2:5,求点M的坐标;②以MN为对角线作正方形MPNQ(点P在MN右侧),当点P在对称轴上时,直接写出点M的坐标.9.如图,抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,3),C(3,0).(1)求抛物线的表达式;(2)若点P为第一象限内抛物线上的一点,设△PBC的面积为S,求S的最大值及此时点P的坐标;(3)已知M是抛物线对称轴上一点,在平面内是否存在点N,使以B、C、M、N为顶点的四边形是矩形?若存在,直接写出N点坐标;若不存在,请说明理由.10.平面直角坐标系中,过一点分别作坐标轴的垂线,若两垂线与坐标轴围成矩形的周长数值是面积数值的2倍,则称这个点为“二倍点”.例如,点P(,3)是“二倍点”.(1)在点A(1,1),B(﹣3,),C(﹣6,3)中,是“二倍点”的有;(2)若点E为双曲线y=﹣(x>0)上任意一点.①请说明随着点E在图象上运动,为什么函数值y随自变量x的增大而增大?②若将点E向右平移一个单位,再向下平移一个单位得到点F.求证:点F为“二倍点”.(3)已知“二倍点”M在抛物线y=x2(x>0)的图象上,“二倍点”N在一次函数y=x(x>0)的图象上,点G在x轴上,坐标平面内有一点H,若以点M,N,G,H为顶点的四边形是矩形,请直接写出点H的坐标.11.已知,二次函数y=﹣x2+x+2图象与x轴交于A、B两点,与y轴交于点C,连接AC、BC.(1)如图1,请判断△ABC的形状,并说明理由;(2)如图2,D为线段AB上一动点,作DP∥AC交抛物线于点P,过P作PE⊥x轴,垂足为E,交BC 于点F,过F作FG⊥PE,交DP于G,连接CG,OG,求阴影部分面积S的最大值和D点坐标;(3)如图3,将抛物线沿射线AC方向移动个单位得到新的抛物线y'=ax2+bx+c(a≠0),是否在新抛物线对称轴上存在点M,在坐标平面内存在点N,使得以C、B、M、N为顶点的四边形是以CB为边的矩形?若存在,请直接写出N点坐标;若不存在,请说明理由.。

中考数学二次函数存在性问题 及参考答案

中考数学二次函数存在性问题 及参考答案

中考数学二次函数存在性问(Wen)题 及参考答案一、二次函数中相似三(San)角形的存在性问题 1.如图,把抛(Pao)物线向左(Zuo)平移(Yi)1个(Ge)单位,再向下平移(Yi)4个单位,得(De)到抛物线2y x =.所得抛物线与2y x =轴交于A ,B 两点(点A 在点B 的左边),与2y x =轴交于点C ,顶点为D.(1)写出2y x =的值;(2)判断△ACD 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使△AOM ∽△ABC ?若存在,求出点M 的坐标;若不存在,说明理由.2.如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C . (1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PM 2y x =x 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.二、二次函数中面积的存(Cun)在性问题3.如图,抛物(Wu)线2y x =与(Yu)双曲线2y x =相(Xiang)交于点(Dian)A ,B .已(Yi)知点(Dian)B 的坐标(Biao)为(-2,-2),点A 在第一象限内,且tan ∠AOX =4.过点A 作直线AC ∥2y x =轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积;(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.4.如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上, 其中A (-2,0),B (-1, -3).(1)求抛物线的解析式;(3分)(2)点(Dian)M 为(Wei)y 轴上(Shang)任意一点,当点M 到(Dao)A 、B 两点的距离之和为最小时(Shi),求此时点M 的(De)坐标;(2分(Fen))(3)在(Zai)第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.(4分)(4)在抛物线的BD 段上是否存在点Q 使三角形BDQ 的面积最大,若有,求出点Q 的坐标,若没有,请说明理由。

专题 二次函数压轴训练题(四)---菱形、正方形存在性问题(解析版)

专题   二次函数压轴训练题(四)---菱形、正方形存在性问题(解析版)

(苏科版)九年级下册数学《第5章二次函数》专题二次函数压轴训练题(四)------菱形、正方形存在性问题★★★方法指引:◎菱形的存在性问题(常为含60”角的菱形)通常有两大类:1、已知三人定点探究菱形时,分别以三个定点中的任意两人定点确定线段为要探究的券形的对角线画出所有菱形,结合题干要求找出满足条件的菱形:2、已知两个定点去探究菱形时,以两个定点连线所成的线段作为要探究菱形的对角线或边长画出符合题意的菱形,结合题干要求找出满足条件的菱形:3、计算:建立类似平行四边形的存在性问题来解◎正方形存在性问题正方形是菱形和矩形特征的集结,因此同时采取菱形或矩形存在性问题解决的方法去求点的坐标.【典例1】(2022春•盱眙县期中)如图,在平面直角坐标系中,抛物线y =x 2+bx +c 与x 轴交于点A (﹣1,0),B (3,0),与y 轴交于点C ,作直线BC ,点P 是抛物线在第四象限上一个动点(点P 不与点B ,C 重合),连结PB ,PC ,以PB ,PC 为边作▱CPBD ,点P 的横坐标为m .(1)求抛物线对应的函数表达式;(2)当▱CPBD 有两个顶点在x 轴上时,点P 的坐标为 ;(3)当▱CPBD 是菱形时,求m 的值.【分析】(1)利用交点式求抛物线的解析式;(2)先确定点D 在x 轴上,再利用平行四边形的性质可判断PC ∥x 轴,然后根据抛物线的对称性确定点P 的坐标;(3)根据菱形的性质得PB =PC ,利用勾股定理即可求解.【解答】解:(1)∵抛物线y =x 2+bx +c 与x 轴交于点A (﹣1,0),B (3,0),∴抛物线的解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)∵抛物线的解析式为y =x 2﹣2x ﹣3,令x =0,则y =﹣3,∴C (0,﹣3),∵▱CPBD 有两个顶点在x 轴上,∴点D 在x 轴上,而BD ∥PC ,∴点P 和点C 为抛物线上的对称点,而抛物线的对称轴为直线x =−−22×1=1,∴点P 的坐标为(2,﹣3),故答案为:(2,﹣3);(3)∵抛物线的解析式为y =x 2﹣2x ﹣3,点P 的横坐标为m .∴P (m ,m 2﹣2m ﹣3),∵▱CPBD 是菱形,∴PB =PC ,∴m 2+(m 2﹣2m ﹣3+3)2=(3﹣m )2+(m 2﹣2m ﹣3)2,整理得m 2﹣m ﹣3=0,解得m =∵点P 是抛物线在第四象限上一个动点,∴m >0,∴m 【点评】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征,二次函数的性质和平行四边形的性质,勾股定理,菱形的性质,会利用待定系数法求二次函数的解析式、理解坐标与图形的性质是解题的关键.【变式1-1】如图,已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,D 两点,与y 轴交于点C ,点B 为抛物线的顶点.(1)求抛物线的对称轴及点B 的坐标;(2)若抛物线上存在一点E ,使得S △EAB =S △CAD ,求点E 的坐标;(3)若平面直角坐标系内存在动点P ,抛物线上是否存在点Q ,使得以A ,C ,P ,Q 为顶点的四边形是以AC 为对角线的菱形?若存在,请求出点Q 的坐标;若不存在,请说明理由.【分析】(1)把抛物线y =x 2﹣2x ﹣3化为顶点式求解即可;(2)由题意知,△EAD 与△CAD 有公共底AD ,若想使两三角形面积相等,则高相等即可,设出点E 的坐标,由高相等,列方程求解即可;(3)根据AC 为菱形的对角线,由菱形对角线互相垂直且平分的性质,可知菱形对角线过点O ,可求出菱形另一条对角线所在的直线解析式,将其与抛物线解析式联立求解即可.【解答】解:(1)∵抛物线y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线的对称轴为直线x =1,点B 的坐标(1,﹣4);(2)如图,设E (x ,x 2﹣2x ﹣3),∵点C 为抛物线与y 轴的交点,∴C (0,﹣3),∵△EAD 与△CAD 有共同的底边AD ,且S △EAB =S △CAD ,∴点E 到x 轴的距离等于点C 到x 轴的距离,∴|x 2﹣2x ﹣3|=3,∴x 2﹣2x ﹣3=3或x 2﹣2x ﹣3=﹣3,解得x 1=2,x 2=0,x 3=1,x 4=+1,∴E 1(2,﹣3),E 2(0,﹣3),E 3+1,3),E 4(1,3),∴点E 的坐标为(2,﹣3)或(0,﹣3+1,3)或(1,3);(3)存在,理由:如图,∵四边形是以AC 为对角线的菱形,由菱形对角线互相垂直平分的性质,作AC 的垂直平分线交抛物线于点Q 1,Q 2,令x 2﹣2x ﹣3=0,解得:x 1=﹣1,x 2=3,∴A (3,0),∴OA =OC =3,∴AC 的垂直平分线过点O ,设AC 的中点为点F ,由C (0,﹣3),∴032=32,−302=−32,∴F (32,−32),∴直线Q 1Q 2的解析式为y =﹣x ,联立y =x 2−2x−3y =−x,解得:x =y =−x =y =,∴点Q【点评】本题考查了二次函数的性质,一次函数的性质,三角形的面积及菱形的判定与性质,正确作出辅助线是解题的关键.【变式1-2】(2022秋•代县月考)如图,抛物线y =12x 2−32x ﹣2与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,对称轴为直线l .(1)求点A ,B ,C 的坐标;(2)试探究抛物线上是否存在点E ,使OE =EC ,若存在,请求出点E 的坐标;若不存在,请说明理由;(3)设点F 在直线l 上运动,点G 在平面内运动,若以点B ,C ,F ,G 为顶点的四边形是菱形,且BC 为边,直接写出点F 的坐标.【分析】(1)令y =0,解方程即可求得点A 和点B 的坐标;令x =0,求得y 值,即可求得点C 的坐标;(2)由OE =EC 可得点E 在OC 的垂直平分线上,则点E 的纵坐标为﹣1,将y =﹣1代入抛物线y =12x 2−32x ﹣2,求出x 的值,即可求解;(3)分两种情况:①当BC 为边,BF 为对角线时;②当BC 为边,BF 为对角线时,根据菱形的性质即可求解.【解答】解:(1)当y =12x 2−32x ﹣2=0时,解得:x 1=﹣1,x 2=4,∴A (﹣1,0),B (4,0);当x =0时,y =12x 2−32x ﹣2=﹣2,∴C (0,﹣2);(2)∵OE =EC ,∴点E 在OC 的垂直平分线上,∵C (0,﹣2),∴点E 的纵坐标为﹣1,将y =﹣1代入抛物线y =12x 2−32x ﹣2得,12x 2−32x ﹣2=﹣1,解得x =∴点E 11);(3)∵y =12x 2−32x ﹣2与x 轴交于A (﹣1,0),B (4,0),∴y =12x 2−32x ﹣2的对称轴为直线x =−142=32,设点F 的坐标的坐标为(32,m ),①当BC 为边,BF 为对角线时,BC =CF ,∴BC 2=CF 2,∴42+22=(32)2+(m +2)2,解得m ,∴点F 的坐标为(32,2)或(32,2);②当BC 为边,CF 为对角线时,BC =BF ,∴BC 2=BF 2,∴42+22=(4−32)2+m 2,解得m∴点F 的坐标为(32,)或(32,综上所述,点F 的坐标为(32,2)或(32,2)或(32,)或(32,【点评】本题是二次函数综合题,考查了待定系数法求一次函数的解析式、二次函数与坐标轴的交点、线段垂直平分线的性质,勾股定理,菱形的性质等知识点,数形结合、熟练掌握相关性质及定理是解题的关键.【变式1-3】(2022•抚顺县二模)如图,抛物线y =ax 2+bx +6(a ≠0)与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式;(2)若在线段BC 上存在一点M ,使得∠BMO =45°,过点O 作OH ⊥OM 交BC 的延长线于点H ,求点M 的坐标;(3)点P 是y 轴上一动点,点Q 是在对称轴上一动点,是否存在点P ,Q ,使得以点P ,Q ,C ,D 为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.【分析】(1)把点A(﹣1,0),B(3,0)代入抛物线解析式得a−b+6=09a+3b+6=0,解得a=−2b=4,即可得出结论;(2)由待定系数法得直线BC的解析式为y=﹣2x+6,设点M的坐标为(m,﹣2m+6)(0<m<3),过点M作MN⊥y轴于点N,过点H作HK⊥y轴于点K,证△OMN≌△HOK(AAS),得MN=OK,ON =HK.则H(﹣2m+6,﹣m),再由点H(﹣2m+6,﹣m)在直线y=﹣2x+6上,得﹣2(﹣2m+6)+6=﹣m,解得m=65,即可解决问题;(3)分两种情况讨论,①当CD为菱形的边时,②当CD为菱形的对角线时,分别求出点Q的坐标即可.【解答】解:(1)∵抛物线y=ax2+bx+6经过点A(﹣1,0),B(3,0)两点,∴a−b+6=09a+3b+6=0,解得:a=−2 b=4,∴抛物线的解析式为y=﹣2x2+4x+6;(2)由(1)得,点C(0,6),设直线BC的解析式为y=kx+c,∵直线BC经过点B(3,0),C(0,6),∴3k+c=0 c=6,解得:k=−2 c=6∴直线BC的解析式为y=﹣2x+6,设点M的坐标为(m,﹣2m+6)(0<m<3),如图1,过点M作MN⊥y轴于点N,过点H作HK⊥y轴于点K,则∠MNO=∠OKH=90°,∵OH⊥OM,∴∠MOH=90°,∵∠OMB=45°,∴△MOH是等腰直角三角形,∴OM=OH.∵∠MON+∠KOH=90°,∠OHK+∠KOH=90°,∴∠MON=∠OHK,∴△OMN≌△HOK(AAS),∴MN=OK,ON=HK.∴H(﹣2m+6,﹣m),∵点H(﹣2m+6,﹣m)在直线y=﹣2x+6上,∴﹣2(﹣2m+6)+6=﹣m,解得:m=6 5,把m=65代入y=﹣2x+6得:y=185,∴当∠OMB=45°时,点M的坐标为(65,185);(3)存在,理由如下:∵抛物线的解析式为y=﹣2x2+4x+6=﹣2(x﹣1)2+8,顶点为D,∴点D的坐标为(1,8),分两种情况讨论:①当CD为菱形的边时,如图2,过C作CE⊥DQ于E∵C(0,6),D(1,8),∴CD=∴DQ=CD=∴Q点的坐标为(1,81,8②当CD为菱形的对角线时,如图3,设点Q(1,m),P(0,n),∵C(0,6),D(1,8),∴m+n=6+8=14,∴n=14﹣m,∴P(0,14﹣m),∴PC=14﹣m﹣6=8﹣m,∵CQ PC=CQ,∴8﹣m解得:m=27 4,∴点Q的坐标为(1,274);综上所述,点Q的坐标为(1,81,8+1,274).【点评】本题是二次函数综合题目,考查了待定系数法求抛物线和直线的解析式、坐标与图形性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、菱形的性质、两点间的距离、二次函数的图象、一次函数的性质等知识,本题综合性强,熟练掌握待定系数法菱形的性质,证明三角形全等和进行分类讨论是解题的关键,属于中考常考题型.【变式1-4】已知,如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4.(1)求经过A、B、C三点的抛物线的解析式及顶点坐标;(2)在抛物线上是否存在一点P,使△ACP的面积等于△ACB的面积?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在平面直角坐标系xOy中是否存在一点Q,使得以点A、B、C、Q为顶点的四边形为菱形?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式,根据配方法,可得答案;(2)根据等底等高的三角形面积相等,可得P点的纵坐标,根据自变量与函数值的对应关系,可得答案;(3)根据菱形的四边相等,可得QB的长,根据菱形的对边平行,可得Q点的纵坐标.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,∵OA=1,OB=3,OC=4.∴A(1,0)、B(0,3)、C(﹣4,0),将A,B,C代入函数解析式,得∴a+b+c=0c=316a−4b+c=0解得:a=−34,b=−94,c=3,∴经过A、B、C三点的抛物线的解析式为y=−34x2−94x+3;∵y=−34x2−94x+3=−34(x+32)2+7516∴抛物线的顶点坐标是(−32,7516),(2)在抛物线上存在一点P,使△ACP的面积等于△ACB的面积,理由为:设点P的坐标为P(m,n),∵S△ACB =12×5×3=152,S△ACP=12×5×|n|∴12×5×|n|=152,n=±3∴当n=3时,−34m2−94m+3=3,解得m1=0,x2=﹣3即P(﹣3,3)或(0,3)当n=﹣3时,−34m2−94m+3=﹣3,解得m1m2=P23),P33)综上所述:P的坐标为(﹣3,3)或(0,333)(3)在平面直角坐标系xOy中存在一点Q,使得以点A、B、C、Q为顶点的四边形为菱形,理由为:∵OB=3,OC=4,OA=1,∴BC=AC=5,当BQ平行且等于AC时,四边形ACBP为菱形,∴BQ=AC=BC=5,∵BQ∥AC,∴点Q到x轴的距离等于OB=3,∴点Q的坐标为(5,3),当点Q在第二、三象限时,以点A、B、C、Q为顶点的四边形只能是平行四边形,不是菱形,则当点Q的坐标为(5,3)时,以点A、B、C、Q为顶点的四边形为菱形.【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用等底等高的三角形面积相等得出P点的纵坐标,有利用自变量与函数值的对应关系;解(3)的关键是利用菱形的四边相等得出QB的长.【变式1-5】(2023•鹤山市模拟)如图,抛物线y=ax2+bx+c与x轴交于A,B(﹣1,0)两点,与y轴交于点C,直线AC的解析式为y=23x﹣2.(1)求抛物线的解析式;(2)已知k为正数,当0<x≤1+k时,y的最大值和最小值分别为m,n,且m+n=163,求k的值;(3)点P是平面内任意一点,在抛物线对称轴上是否存在点Q,使得以点A,C,P,Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)求出点A 和点C 坐标,从点A 和点B 坐标将抛物线的解析式设为交点式,将点C 坐标代入,进一步求得结果;(2)箱求出n 的值,进而求得m 的值,进而求得点k 的值;(3)只需满足三角形ACQ 为等腰三角形即可.设点Q 的坐标,进而表示出AQ ,CQ 及AC ,进而根据AQ =CQ ,AQ =AC 及CQ =AC ,进一步求得结果.【解答】解:(1)当x =0时,y =﹣2,∴点C (0,﹣2),当y =0时,23x−2=0,∴x =3,∴点A (3,0),∴设y =a (x +1)•(x ﹣3),将点C (0,﹣2)代入得,﹣3a =﹣2,∴a =23,∴y =23(x +1)•(x ﹣3)=23x 2−43x−2;(2)∵抛物线的对称轴为直线:x =1,∵k >0,∴k +1>1,∴当0<x <1+k 时,∴当x =1时,n =23(1+1)×(1﹣3)=−83,∵m +n =163,∴m =8,当m =8时,23x 2−43x ﹣2=8,∴x 1=5,x 2=﹣3(舍去),∴1+k =5,∴k =4;(3)设点Q (1,a ),∵A (3,0),C (0,﹣2),∴AQ 2=(3﹣1)2+a 2=a 2+4,AC 2=32+22=13,CQ 2=1+(a +2)2=a 2+4a +5,①当AQ =AC 时,a 2+4=13,∴a =±3,∴Q 1(1,3),Q 2(1,﹣3),当AQ =CQ 时,a 2+4a +5=a 2+4,∴a =−14,∴Q 3(1,−14),当AC =CQ 时,a 2+4a +5=13,∴a =﹣2±∴Q 4(1,﹣Q 5(1,﹣2﹣综上所述:Q (1,3)或(1.﹣3)或(1.−14)或(1,﹣1,﹣2﹣【点评】本题考查了二次函数及其图象性质,等腰三角形的判定和性质,点的坐标平移特征等知识,解决问题的关键是正确分类,准确计算.【变式1-6】(2022•朝阳)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,﹣3),连接BC.(1)求抛物线的解析式及点B的坐标.(2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.(3)动点P BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.【分析】(1)将A,C两点坐标代入抛物线的解析式求得a,c的值,进而得出解析式,当y=0时,求出方程的解,进而求得B点坐标;(2)由B,C两点求出BC的解析式,进而设出点P和点Q坐标,表示出PQ的长,进一步得出结果;(3)要使以点P,M,B,N为顶点的四边形是菱形,只需△PMB是等腰三角形,所以分为PM=BM,PM=PB和BP=BM,结合图象,进一步得出结果.【解答】解:(1)由题意得,c=−3a+2×1+c=0,∴c=−3 a=1,∴y=x2+2x﹣3,当y=0时,x2+2x﹣3=0,∴x1=1,x2=﹣3,∴B(﹣3,0);(2)设直线BC的解析式为:y=kx+b,∴b=−3−3k+b=0,∴k=−1 b=−3,∴y=﹣x﹣3,设点P(m,﹣m﹣3),Q(m,m2+2m﹣3),∴PQ=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+32)2+94,∴当m=−32时,PQ最大=94;(3)如图1,∵B(﹣3,0),C(0,﹣3),∴OB=OC=3,∴∠OCB=∠OBC=45°,作PD⊥y轴于D,∴CD=PD==t,当BM=PM时,∴∠MPB=∠OBC=45°,∵∠PMO=∠PDO=∠MOD=90°,∴四边形OMPD是矩形,∴OM=PD=t,由BM+OM=OB得,∴2t=3,∴t=3 2,∴P(−32,−32),∴N(﹣3,−32),如图2,当PM =PB 时,作PD ⊥y 轴于D ,作PE ⊥x 轴于E ,∴BM =2BE ,可得四边形PDOE 是矩形,∴OE =PD =t ,∴BE =3﹣t ,∴t =2(3﹣t ),∴t =2,∴P (﹣2,﹣1),∴N (﹣2,1),如图3,当PB =MB 时,=t ,∴t =6﹣∴P (,3﹣∴N (0,3﹣综上所述:N (﹣3,−32)或(﹣2,1)或(0,3﹣【点评】本题考查了二次函数及其图象的性质,用待定系数法求一次函数的解析式,等腰三角形的分类和等腰三角形的性质,菱形的性质等知识,解决问题的关键是正确分类,画出符合条件的图形.【变式1-7】如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A、C两点,与y轴交于点B,且OA=1,OC=4.(1)求抛物线解析式;(2)在该抛物线上是否存在一点P,使得以点A、B、C、P为顶点的四边形为菱形?若存在,请求出P 点坐标;若不存在,请说明理由;(3)已知点Q(5,3)和该抛物线上一动点M,试求当|QM﹣AM|的值最大时点M的坐标,并直接写出|QM﹣AM|的最大值.【分析】(1)设抛物线的解析式为y=ax2+bx+c,把A,B,C三点坐标代入求出a,b,c的值,即可确定出所求抛物线解析式;(2)在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:根据OA,OB,OC的长,利用勾股定理求出BC与AC的长相等,只有当BP与AC平行且相等时,四边形ACBP为菱形,可得出BP的长,由OB的长确定出P的纵坐标,确定出P坐标,当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形;(3)利用待定系数法确定出直线QA解析式,当点M与点Q、A不在同一直线上时,根据三角形的三边关系|QM﹣AM|<QA,当点M与点Q、A在同一直线上时,|QM﹣AM|=QA,当点M与点Q、A在同一直线上时,|QM﹣AM|的值最大,即点M为直线QA与抛物线的交点,联立直线QP与抛物线解析式,求出当|QM﹣AM|的最大值时M坐标,确定出|QM﹣AM|的最大值即可.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,∵A(1,0)、B(0,3)、C(﹣4,0),∴a+b+c=0c=316a−4b+c=0,解得:a=−34,b=−94,c=3,∴经过A、B、C三点的抛物线的解析式为y=−34x2−94x+3;(2)在该抛物线上是不存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:∵OB=3,OC=4,OA=1,∴BC=AC=5,当BP平行且等于AC时,四边形ACBP为菱形,∴BP=AC=5,且点P到x轴的距离等于OB,∴点P的坐标为(5,3),∵(5,3)不在抛物线上;当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形,在该抛物线上是不存在一点P,使得以点A、B、C、P为顶点的四边形为菱形;(3)如图,设直线QA的解析式为y=kx+b(k≠0),∵A(1,0),Q(5,3),∴5k+b=3 k+b=0,解得:k=34,b=−34,∴直线QA的解析式为y=34x−34,当点M与点Q、A不在同一直线上时,根据三角形的三边关系|QM﹣AM|<QA,当点M与点Q、A在同一直线上时,|QM﹣AM|=QA,∴当点M与点Q、A在同一直线上时,|QM﹣AM|的值最大,即点M为直线QA与抛物线的交点,解方程组y=34x−34y=−34x2−94x+3,得x1=1y1=0或x2=−5y2=−92,∴点M的坐标为(1,0)或(﹣5,−92)时,|QM﹣AM|的值最大,此时|QM﹣AM|的最大值为5.【点评】此题属于二次函数综合题,涉及的知识有:二次函数的性质,待定系数法确定抛物线解析式、一次函数解析式,菱形的判定,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.【变式1-8】如图,已知抛物线y=16x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点C,已知点B坐标为(6,0),点C坐标为(0,﹣2).(1)求抛物线的解析式;(2)如图1,点P是直线BC下方抛物线上一点,连接PB,PC,求△PBC面积的最大值;(3)如图2,将抛物线向右平移6个单位,向上平移2个单位,得到新的抛物线y',新抛物线y'的顶点为D,是否在新抛物线y'的对称轴上存在点M,在坐标平面内存在点N,使得以B,D,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标,若不存在,请说明理由.【分析】(1)将点A、B两点的坐标代入,进而求得结果;(2)作PE⊥AB于E,交BC于F,求BC的关系式,进而设和表示出点P和点F的坐标,求出PF的表达式,进而求得PF的最大值,进一步求得三角形PBC的最大值;(3)先求出点B、点D的坐标,求出BD的长,分为BD是边和对角线两种情形,当BD是边时,点M 可在D的上方和下方,利用平移或中点坐标公式求得结果.【解答】解:(1)由题意得,−2×62+6b+c=0,∴c =−2b =−23,∴y =16x 2−23x−2;(2)如图1,作PE ⊥AB 于E ,交BC 于F ,可得BC 的关系式是:y =13x−2,设点P (m ,16m 2−23m−2),F (m ,13m−2),∴PF =(13m−2)﹣(16m 2−23m−2)=−16m 2+m =−16(m ﹣3)2+32,∴当m =3时,PF 最大=32,∵S △PBC =12PF •(x B ﹣x C )=12×6⋅PF =3PF ,∴△PBC 的面积最大值是92;(3)∵原抛物线可化为y =16(x ﹣2)2−23,∴其顶点是(2,−23),∵2+6=8,−23+2=43,∴新抛物线的顶点是D ′(8,43),对称轴是直线x =8,∴BD 如图2,当BD为边时,点M在D的上方,∵M(8∴N(6如图3,点M在D点下方,N(6,如图4N(10,0),如图5,BD 为对角线时,设M (8,a ),由MB =MD 得,22+a 2=(43−a )2,∴a =−1518,∴M (8,−1518),∴N (6,8718),综上所述:N (66,8718)或(6,10,0).【点评】本题考查二次函数及其图象性质,菱形性质,菱形的分类(等腰三角形分类),平移与坐标之间的关系等知识,解决问题的关键是正确分类.【变式1-9】(2023•西藏)在平面直角坐标系中,抛物线y =﹣x 2+bx +c 与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)如图甲,在y 轴上找一点D ,使△ACD 为等腰三角形,请直接写出点D 的坐标;(3)如图乙,点P 为抛物线对称轴上一点,是否存在P 、Q 两点使以点A ,C ,P ,Q 为顶点的四边形是菱形?若存在,求出P 、Q 两点的坐标,若不存在,请说明理由.【分析】(1)将A(﹣3,0),B(1,0)代入y=﹣x2+bx+c,求出b、c,即可得出答案;(2)分别以点D为顶点、以点A为顶点、当以点C为顶点,计算即可;(3)抛物线y=﹣x2﹣2x+3的对称轴为x=﹣1,设P(﹣1,t),Q(m,n),求出AC2=18,AP2=t2+4,PC2=t2﹣6t+10,分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,【解答】解:(1)∵A(﹣3,0),B(1,0)两点在抛物线上,∴0=−(−3)2−3b+c 0=−12+b+c,解得:b=−2 c=3,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)令x=0,y=3,∴C(0,3),等腰△ACD,如图甲,当以点D为顶点时,DA=DC,点D与原点O重合,∴D(0,0);当以点A为顶点时,AC=AD,AO是等腰△ACD中线,∴OC=OD,∴D(0,﹣3);当以点C为顶点时,AC=CD==∴点D的纵坐标为3﹣+3,∴D(0,3﹣0,+3);综上所述,点D的坐标为(0,0)或(0,﹣3)或(0,3﹣0,+3);(3)存在,理由如下:抛物线y=﹣x2﹣2x+3的对称轴为:x=﹣1,设P(﹣1,t),Q(m,n),∵A(﹣3,0),C(0,3),则AC2=(﹣3)2+32=18,AP2=(﹣1+3)2+t2=t2+4,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,∵四边形ACPQ是菱形,∴分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,①当以AP为对角线时,则CP=CA,如图1,∴t2﹣6t+10=18,解得:t =3∴P 1(﹣1,3P 2(﹣1,3+∵四边形ACPQ 是菱形,∴AP 与CQ 互相垂直平分,即AP 与CQ 的中点重合,当P 1(﹣1,3∴m 02=−3−12,n 32解得:m =﹣4,n =∴Q 1(﹣4,当P 2(﹣1,3+∴m 02=−3−12,n 32解得:m =﹣4,n∴Q 2(﹣4②以AC 为对角线时,则PC =AP ,如图2,∴t 2﹣6t +10=t 2+4,解得:t =1,∴P 3(﹣1,1),∵四边形APCQ 是菱形,∴AC 与PQ 互相垂直平分,即AC 与CQ 中点重合,∴m−12=−302,n−12=032,解得:m =﹣2,n =2,∴Q 3(﹣2,2);③当以CP 为对角线时,则AP =AC ,如图3,∴t 2+4=18,解得:t∴P 4(﹣1P 5(﹣1,∵四边形ACQP 是菱形,∴AQ 与CP 互相垂直平分,即AQ 与CP 的中点重合,∴−3m 2=0−12,n 02解得:m =2,n =3∴Q 4(2,3+Q 5(2,3综上所述,符合条件的点P 、Q 的坐标为:P (﹣1,3Q (﹣4,P (﹣1,3+Q (﹣4P (﹣1,1),Q (﹣2,2)或P (﹣1Q (2,3P (﹣1,Q (2,3【点评】本题是二次函数综合题,考查了解析式的求法、等腰三角形的判定、菱形的性质、坐标与图形的性质、分类讨论等知识,熟练掌握菱形的性质和坐标与图形的性质是解题的关键.【变式1-10】如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(﹣2,9),抛物线与坐标轴分别交于A、B、C三点,且B的坐标为(0,5),连接DB、DC,作直线BC.(1)求抛物线的解析式;(2)P是x轴上的一点,过点P作x轴的垂线,与CD交于H,与CB交于G,若线段HG把△CBD的面积分成相等的两部分,求P点的坐标;(3)若点M在直线CB上,点N在平面上,直线CB上是否存在点M,使以点C、点D、点M、点N 为顶点的四边形为菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)抛物线y=ax2+bx+c的顶点D的坐标为(﹣2,9),可设y=a(x+2)2+9,再将点B(0,5)代入,解得a的值,则可得抛物线的解析式;(2)求得直线BC与直线CD的解析式,设点P的坐标为(x,0),则G(x,x+5),H(x,3x+15)根据S△CGH =12HG×CP,将S△CGH=用含x的式子表示出来,再由S△BCD=S△DKC+S△DKB,求得S△BCD;根据线段HG把△CBD的面积分成相等的两部分,得出关于x的方程,解方程并作出取舍,则可得P 点的坐标;(3)设点M的坐标为(m,m+5),求得CD的值,再分情况讨论:当CD与DM是菱形的两边时,则CD=DM;当DM'与CM'是菱形的两边时,则CM'=DM';当DM'与CM'是菱形的两边时,则CM'=DM'.分别得出关于m的等式,解得m的值,则可得点M的坐标.【解答】解:(1)∵抛物线y=ax2+bx+c的顶点D的坐标为(﹣2,9),∴可设y=a(x+2)2+9,又∵抛物线过点B(0,5),代入得:5=4a+9,∴a=﹣1,∴y=﹣(x+2)2+9=﹣x2﹣4x+5,∴抛物线的解析式为y=﹣x2﹣4x+5;(2)∵抛物线y=﹣x2﹣4x+5与坐标轴分别交于A、B、C三点,且B的坐标为(0,5),∴当y=0时,﹣x2﹣4x+5=0,解得x1=﹣5,x2=1,∴A(1,0),C(﹣5,0),又∵D(﹣2,9),∴直线BC的解析式为y=x+5;设直线CD的解析式为y=kx+b,将C(﹣5,0),D(﹣2,9)代入,得:0=−5k+b9=−2k+b,解得:k=3b=15,∴直线CD的解析式为y=3x+15.设点P的坐标为(x,0),则G(x,x+5),H(x,3x+15).∴S△CGH =12HG×CP=12(5+x)(3x+15﹣x﹣5)=12(5+x)(2x+10)=(5+x)(x+5)=(x+5)2,设抛物线的对称轴交直线BC于点K,如图:∵顶点D的坐标为(﹣2,9),∴对称轴为直线x=﹣2,∴K(﹣2,3),∴DK=9﹣3=6,∴S△BCD =S△DKC+S△DKB=12×6×3+12×6×2=15,∴若线段HG把△CBD的面积分成相等的两部分,则(x+5)2=12×15,解得:x1=x2=∴P0);(3)如图,设点M的坐标为(m,m+5),∵C(﹣5,0),D(﹣2,9),∴CD当CD与DM是菱形的两边时,则CD=DM,∴=解得m1=﹣5(不合题意,舍去),m2=7,∴点M(7,12);当CD与CM''是菱形的两边时,则CD=CM'',∴=解得m=±5,∴点M(5,M(﹣5,﹣当DM'与CM'是菱形的两边时,则CM'=DM',解得m=−5 4,∴点M(−54,154).综上所述,点M的坐标为(7,12)或(5,5,﹣−54,154).【点评】本题属于二次函数综合题,考查了待定系数法求一次函数和二次函数的解析式、一次函数和二次函数图象上的点的坐标特点、三角形的面积计算、一元二次方程及菱形的性质等知识点,数形结合、熟练掌握相关性质及定理是解题的关键.【典例2】如图,抛物线y =x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,其中点A 在y 轴的左侧,点C 在x 轴的下方,且OA =OC =5.(1)求抛物线对应的函数解析式;(2)点P 为抛物线对称轴上的一动点,当PB +PC 的值最小时,求点P 的坐标;(3)在(2)条件下,点E 为抛物线的对称轴上的动点,点F 为抛物线上的动点,以点P 、E 、F 为顶点作四边形PEFM ,当四边形PEFM 为正方形时,请直接写出坐标为整数的点M 的坐标.【分析】(1)由题意,可得A (﹣5,0),C (0,﹣5).把点A ,C 的坐标代入y =x 2+bx +c ,得到关于b 、c 的二元一次方程组,解方程组即可求出抛物线的函数解析式;(2)利用配方法求出抛物线的对称轴是直线x =﹣2.由抛物线y =x 2+4x ﹣5与x 轴交于点A ,B ,得出点A ,B 关于直线x =﹣2对称.连接AC ,交对称轴于点P ,根据两点之间线段最短可知此时PB +PC 的值最小.利用待定系数法求出直线AC 的解析式为y =﹣x ﹣5,把x =﹣2代入,求出y =﹣3,进而得出点P 的坐标;(3)在(2)条件下,点P 的坐标为(﹣2,﹣3).设F (x ,x 2+4x ﹣5),根据正方形的性质可得E (﹣2,x 2+4x ﹣5),M (x ,﹣3),PM =PE ,根据两点间的距离公式列出方程|x +2|=|x 2+4x ﹣5+3|,解方程即可求解.【解答】解:(1)由题意,可得A (﹣5,0),C (0,﹣5).∵抛物线y =x 2+bx +c 过点A ,点C ,∴25−5b +c =0c =−5,解得b =4c =−5,∴抛物线对应的函数解析式为y =x 2+4x ﹣5;(2)∵y=x2+4x﹣5=(x+2)2﹣9,∴对称轴是直线x=﹣2.∵抛物线y=x2+4x﹣5与x轴交于点A,B,∴点A,B关于直线x=﹣2对称.连接AC,交对称轴于点P,此时PB+PC的值最小.设直线AC的解析式为y=mx+n,则−5m+n=0n=−5,解得m=−1n=−5,∴直线AC的解析式为y=﹣x﹣5,当x=﹣2时,y=﹣3,∴点P的坐标为(﹣2,﹣3);(3)在(2)条件下,点P的坐标为(﹣2,﹣3).设F(x,x2+4x﹣5),∵四边形PEFM为正方形,∴E(﹣2,x2+4x﹣5),M(x,﹣3),PM=PE,∴|x+2|=|x2+4x﹣5+3|,∴x2+4x﹣2=x+2,或x2+4x﹣2=﹣x﹣2,整理得x2+3x﹣4=0,或x2+5x=0,解得x1=﹣4,x2=1,x3=0,x4=﹣5,∴M(﹣4,﹣3)或M(1,﹣3)或M(0,﹣3)或M(﹣5,﹣3).【点评】本题是二次函数综合题,其中涉及到利用待定系数法求抛物线与直线的解析式,二次函数的性质,轴对称的性质,正方形的性质,综合性较强,难度适中.利用数形结合与方程思想是解题的关键.【变式2-1】已知在平面直角坐标系xOy 中,二次函数y =x 2﹣2nx ﹣3n 2(n >0)与x 轴交于A 、B ,与y 轴交于点C .(1)求A 、B 及顶点的坐标(用含n 的代数式表示);(2)如图所示,当AB =4时,D 为(4,﹣1),在抛物线上是否存在点P 使得以线段PD 为直径的圆经过坐标原点O 若点P 存在,求出满足条件的点P 的坐标;若不存在,说明理由;已知E 在x 轴上,F 在抛物线上,G 为平面内一点,若以B 、E 、F ,G 为顶点的四边形是正方形,请直接写出E 点所有可能的坐标.【分析】(1)y =x 2﹣2nx ﹣3n 2=(x ﹣3n )(x +n ),即可求解;(2)设点P (x ,x 2﹣2x ﹣3),由中点公式得:点O ′(x 42,x 2−2x−42),则O ′O =O ′D ,即可得到关于x 的方程,解方程即可;分BE 为正方形的边、BE 为正方形的对角线两种情况,分别求解即可.【解答】解:(1)y =x 2﹣2nx ﹣3n 2=(x ﹣3n )(x +n ),当y =0时,x 1=﹣n ,x 2=3n ,故点A 、B 的坐标分别为:(﹣n ,0)、(3n ,0),顶点的坐标为(n ,﹣4n 2);(2)存在,理由:AB =4时,则4m =4,解得:m =1,故点A 、B 、C 的坐标分别为:(﹣1,0)、(3,0)、(0,﹣3),抛物线的表达式为:y =x 2﹣2x ﹣3,设点P (x ,x 2﹣2x ﹣3),由中点公式得:点O ′(x 42,x 2−2x−42),则O ′O =O ′D ,即(x 42)2+(x 2−2x−42)2=(x 42−4)2+(x 2−2x−42+1)2,整理得:x 2﹣6x ﹣3=0,解得:x =3±故点P 的坐标为:(3﹣12﹣设点E 的坐标为:(a ,0),①当BE 为正方形的边时,则点F (a ,a 2﹣2a ﹣3),则BE =FE ,即|a ﹣3|=|a 2﹣2a ﹣3|,解得:a =3或0或﹣2(舍去3),故点E 的坐标为:(0,0)或(﹣2,0);②当BE 为正方形的对角线时,则BE 和GF 相互垂直平分,即点F 在BE 的中垂线上,△FBE 为等腰直角三角形,即点F 到BE 的距离等于12BE ,而BE =a ﹣3,故F (a−32,|a−32|),将点F 的坐标代入抛物线表达式得:|a−32|=(a−32)2−2×a−32−3 解得:a =﹣3或3或﹣7(舍去3),故点E 的坐标为:(﹣3,0)或(﹣7,0);综上点E 的坐标为:(0,0)或(﹣2,0)或(﹣3,0)或(﹣7,0).【点评】本题是二次函数的综合运用,考查了待定系数法求二次函数的解析式,中点坐标公式,两点间的距离公式,正方形的性质等知识,熟练掌握坐标与图形的性质是解题的关键.【变2-2】(2022秋•越城区期中)如图,抛物线y =﹣x 2+bx +c 经过A (﹣1,0),B (3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连接BD .(1)求经过A ,B ,C 三点的抛物线的函数表达式;(2)点Q 在该抛物线的对称轴上,若△BCQ 是以BC 为直角边的直角三角形,求点Q 的坐标;(3)若P 为BD 的中点,过点P 作PF ⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F 、M 、N 、G 为顶点的四边形是正方形时,请求出点M 的坐标.【分析】(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)如图1,连接BC,CD.首先证明△OBC是等腰直角三角形,分两种情形分别求出点Q的坐标即可.(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴−1−b+c=0−9+3b+c=0,解得,b=2 c=3,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3.(2)如图1,连接BC,CD.由题意,C(0,3),B(3,0),∴OB=OC=3,∵∠BOC=90°,∴∠OBC=∠OCB=45°∵y=﹣(x﹣1)2+4,∴抛物线顶点D的坐标为(1,4),∵△BCQ是以BC为直角边的直角三角形,当∠Q′BC=90′时,∠ABQ′=45°,∴EB=EQ′=2,∴Q′(1,﹣2),当∠QCB=90°时,此时点Q与点D重合,Q(1,4),综上所述,满足条件的点Q的坐标为(1,4)或(1,﹣2).(3)如图2中,设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=∴当以F、M、N、G为顶点的四边形是正方形时,点M00),00).。

专题09 二次函数与矩形正方形存在型问题-2019版突破中考数学压轴之学霸秘笈大揭秘(解析版)

专题09 二次函数与矩形正方形存在型问题-2019版突破中考数学压轴之学霸秘笈大揭秘(解析版)

【典例分析】例1 如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.思路点拨(1)设出抛物线顶点坐标,把C坐标代入求出即可;(2)由△BCQ与△BCP的面积相等,得到PQ与BC平行,①过P作作PQ∥BC,交抛物线于点Q,如图1所示;②设G(1,2),可得PG=GH=2,过H作直线Q2Q3∥BC,交x轴于点H,分别求出Q的坐标即可;(3)存在点M,N使四边形MNED为正方形,如图2所示,过M作MF∥y轴,过N作NF∥x轴,过N 作NH∥y轴,则有△MNF与△NEH都为等腰直角三角形,设M(x1,y1),N(x2,y2),设直线解析式为y=-x+b,与二次函数解析式联立,消去y得到关于x的一元二次方程,利用根与系数关系表示出NF2,由△MNF 为等腰直角三角形,得到MN2=2NF2,若四边形MNED为正方形,得到NE2=MN2,求出b的值,进而确定出MN的长,即为正方形边长.学#科网满分解答(1)设y=a(x﹣1)2+4(a≠0),把C(0,3)代入抛物线解析式得:a+4=3,即a=﹣1,则抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)由B(3,0),C(0,3),得到直线BC解析式为y=﹣x+3,∵S△OBC=S△QBC,∴PQ∥BC,①过P作PQ∥BC,交抛物线于点Q,如图1所示,(3)存在点M,N使四边形MNED为正方形,如图2所示,过M作MF∥y轴,过N作NF∥x轴,过N作NH∥y轴,则有△MNF与△NEH都为等腰直角三角形,设M(x1,y1),N(x2,y2),设直线MN解析式为y=﹣x+b,联立得:,例2如图,已知抛物线与轴分别交于原点和点,与对称轴交于点.矩形的边在轴正半轴上,且,边,与抛物线分别交于点,.当矩形沿轴正方向平移,点,位于对称轴的同侧时,连接,此时,四边形的面积记为;点,位于对称轴的两侧时,连接,,此时五边形的面积记为.将点与点重合的位置作为矩形平移的起点,设矩形平移的长度为.(1)求出这条抛物线的表达式;(2)当时,求的值;(3)当矩形沿着轴的正方向平移时,求关于的函数表达式,并求出为何值时,有最大值,最大值是多少?思路点拨(1)根据点E、F的坐标,利用待定系数法即可求出抛物线的表达式;(2)找出当t=0时,点B、N的坐标,进而可得出OB、BN的长度,再根据三角形的面积公式可求出S△OBN 的值;学&科网(3)分0<t≤4和4<t≤5两种情况考虑:①当0<t≤4时(图1),找出点A、B、M、N的坐标,进而可得出AM、BN的长度,利用梯形的面积公式即可找出S关于t的函数关系式,再利用二次函数的性质即可求出S的最大值;②当4<t≤5时,找出点A、B、M、N的坐标,进而可得出AM、BN的长度,将五边形分成两个梯形,利用梯形的面积公式即可找出S关于t的函数关系式,再利用二次函数的性质即可求出S的最大值.将①②中的S的最大值进行比较,即可得出结论.满分解答(1)将E(5,5)、F(10,0)代入y=ax2+bx,,解得:,∴抛物线的表达式为y=-x2+2x.(2)当t=0时,点B的坐标为(1,0),点N的坐标为(1,),∴BN=,OB=1,∴S△OBN=BN•OB=.(3)①当0<t≤4时(图1),点A的坐标为(t,0),点B的坐标为(t+1,0),∴点M的坐标为(t,-t2+2t),点N的坐标为(t+1,-(t+1)2+2(t+1)),∴AM=-t2+2t,BN=-(t+1)2+2(t+1),∴S=(AM+BN)•AB=×1×[-t2+2t-(t+1)2+2(t+1)],=-t2+t+,=-(t-)2+,∵-<0,学科#网∴当t=4时,S 取最大值,最大值为;② 当4<t≤5时(图2),点A 的坐标为(t ,0),点B 的坐标为(t+1,0),∵=<,∴当t=时,S 有最大值,最大值是.例3如图,抛物线2:7W y ax bx =+-的顶点为()3,2. (1)求抛物线W 的函数表达式.(2)若抛物线形W '与W 关于x 轴对称,求抛物线W '的函数表达式.(3)在(2)的基础上,设W 上的点M 、N 始终与W '上的点M '、N '分别关于x 轴对称,是否存在点M 、N (M 、N 分别位于抛物线对称轴两侧,且M 在N 的左侧),使四边形MM N N ''为正方形?若存在,求出点M 的坐标;若不存在,说明理由.思路点拨()1根据顶点坐标,求出,a b 的值,求抛物线W 的函数表达式.()2抛物线W '与W 关于x 轴对称,求出抛物线W '的顶点坐标和二次项系数,即可求得函数表达式. ()3根据正方形的边长相等, 2MMN MM y ='=.列出方程,求解即可.满分解答(1)抛物线2:7W y ax bx =+-的顶点为()3,2.()232{472,4b aa b a-=⨯--= 解得: 1{6.a b =-=()223267y x x x =---=-+-.(2)若抛物线W 的顶点坐标为()3,2. 1.a =- 若抛物线W '与W 关于x 轴对称,抛物线W '的顶点坐标为: ()3,2.- 1.a = 抛物线W '的函数表达式为:学科*网()223267y x x x =+-=-+.(3)存在.如图,要使四边形MNN M ''是正方形,∵////MM NN y ''轴,则要//MN x 轴, 且2M MN MM y ='=.设()2,67M m m m -+-, (3)m <,∵抛物线的对称轴为:直线3x =, ∴由抛物线的对称性可知()23MN m =-, ∴()223267m m m -=-+-.例4如图,正方形ABCD的顶点A、B分别在y轴和x轴上,且A点的坐标为(0,1),正方形的边长为.(1) 直接写出D、C两点的坐标;(2)求经过A、D、C三点的抛物线的关系式;(3)若正方形以每秒个单位长度的速度匀速沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为S,求S关于滑行时间的函数关系式,并写出相应自变量的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,到顶点落在轴上时,求抛物线上两点间的抛物线弧所扫过的面积.思路点拨(1)可先根据AB所在直线的解析式求出A,B两点的坐标,即可得出OA、OB的长.过D作DM⊥y轴于M,则△ADM≌△BAO,由此可得出MD、MA的长,也就能求出D的坐标,同理可求出C的坐标;(2)可根据A、C、D三点的坐标,用待定系数法求出抛物线的解析式;(3)要分三种情况进行讨论:①当F点在A′B′之间时,即当0<t≤1时,此时S为三角形FBG的面积,可用正方形的速度求出AB′的长,即可求出B′F的长,然后根据∠GFB′的正切值求出B′G的长,即可得出关于S、t的函数关系式.②当A′在x轴下方,但C′在x轴上方或x轴上时,即当1<t≤2时,S为梯形A′GB′H的面积,可参照①的方法求出A′G和B′H的长,那么梯形的上下底就可求出,梯形的高为A′B′即正方形的边长,可根据梯形的面积计算公式得出关于S、t的函数关系式.③当D′逐渐移动到x轴的过程中,即当2<t≤3时,此时S为五边形A′B′C′HG的面积,S=正方形A′B′C′D′的面积-三角形GHD′的面积.可据此来列关于S,t的函数关系式;(4)CE扫过的图形是个平行四边形,经过关系不难发现这个平行四边形的面积实际上就是矩形BCD′A′的面积.可通过求矩形的面积来求出CE扫过的面积.满分解答(1);学科#网(3)①当点A运动到点x轴时,当时,如图1,∵,∴∴∴;②当点运动到轴上时,,当时,如图2,∴∴,∵,∴;③当点运动到轴上时,,当时,如图3,∵,∴,∵,∽∴,∴,∴=.(4)∵,,∴==.例5如图,已知抛物线y=ax2+bx﹣3过点A(﹣1,0),B(3,0),点M、N为抛物线上的动点,过点M 作MD∥y轴,交直线BC于点D,交x轴于点E.过点N作NF⊥x轴,垂足为点F(1)求二次函数y=ax2+bx﹣3的表达式;(2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积;(3)若M点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M的横坐标.思路点拨(1)把A(﹣1,0),B(3,0)两点的坐标代入y=ax2+bx﹣3,利用待定系数法即可求得二次函数y=ax2+bx ﹣3的表达式;(2)设点M的坐标为(m,m2﹣2m﹣3),则m>1,分别表示出ME=|﹣m2+2m﹣3|、MN=2m ﹣2,由四边形MNFE为正方形知ME=MN,据此列出方程,分类讨论求解可得m的值,进而求出正方形的面积;(3)先利用待定系数法求出直线BC的解析式,设点M的坐标为(t,t2﹣2t﹣3),则t<1,则点N (2﹣t,t2﹣2t﹣3),点D(t,t﹣3),由MD=MN列出方程,根据点M的位置分类讨论求解可得.满分解答(1)把A(﹣1,0),B(3,0)代入y=ax2+bx﹣3,得:,解得,学&科网故该抛物线解析式为:y=x2﹣2x﹣3;②当﹣m2+2m+3=2﹣2m时,解得:m3=2+,m4=2﹣(不符合题意,舍去),当m=2+时,正方形的面积为[2(2+)﹣2]2=24+8;综上所述,正方形的面积为24+8或24﹣8.(3)设BC所在直线解析式为y=px+q,把点B(3,0)、C(0,﹣3)代入表达式,得:,解得:,∴直线BC的函数表达式为y=x﹣3,设点M的坐标为(t,t2﹣2t﹣3),其中t<1,则点N(2﹣t,t2﹣2t﹣3),点D(t,t﹣3),∴MN=2﹣t﹣t=2﹣2t,MD=|t2﹣2t﹣3﹣t+3|=|t2﹣3t|.∵MD=MN,∴|t2﹣3t|=2﹣2t,分两种情况:①当t2﹣3t=2﹣2t时,解得t1=﹣1,t2=2(不符合题意,舍去).②当3t﹣t2=2﹣2t时,解得t3=,t2=(不符合题意,舍去).综上所述,点M的横坐标为﹣1或.学科.网【变式训练】1.如图,为坐标原点,边长为的正方形的顶点在轴的正半轴上,将正方形OABC绕顶点顺时针旋转,使点落在某抛物线的图象上,则该抛物线的解析式为()A.B.C.D.【答案】B【解析】【分析】过点B向x轴引垂线,连接OB,可得OB的长度,进而得到点B的坐标,代入二次函数解析式即可求解.【详解】如图,作BE⊥x轴于点E,连接OB,【点睛】本题考查用待定系数法求函数解析式和勾股定理的运用,解题的关键是利用正方形的性质及相应的三角函数得到点B的坐标.2.如图,边长为1的正方形ABCD顶点A(0,1),B(1,1);一抛物线y=ax2+bx+c过点M(﹣1,0)且顶点在正方形ABCD内部(包括在正方形的边上),则a的取值范围是()A.﹣2≤a≤﹣1 B.﹣2≤a≤﹣C.﹣1≤a≤﹣D.﹣1≤a≤﹣【答案】C【解析】【分析】当顶点与A 点重合,可以知道顶点坐标为(0,1)且抛物线过(-1,0),由此可求出a ;当顶点与C 点重合,顶点坐标为(1,2)且抛物线过(-1,0),由此也可求a ,然后由此可判断a 的取值范围. 【详解】【点睛】本题主要考查了抛物线的解析式y=ax2+bx+c 中a 、b 、c 对抛物线的影响,在对于抛物线的顶点在所给图形内进行运动的判定,充分利用了利用形数结合的方法,展开讨论,加以解决.学#科网 3.如图,在平面直角坐标系中,二次函数y =ax 2+c (a ≠0)的图象过面积为21的正方形ABOC 的三个顶点A 、B 、C ,则a 的值为 .【答案】-2. 【解析】试题分析:作BD ⊥x 轴于点D ,∴∠BDO=90°,∵四边形ABOC 是面积为21正方形,∴AB=BO=CO=AC=22,∠AOB=45°,∴∠BOD=∠DBO=45°,∴BD=DO ,在Rt △ABO 和Rt △BDO 中由勾股定理得AO =1,BD=DO=21,∴A (0,1),B (−21,21),∴11142c a c =⎧⎪⎨+=⎪⎩,解得:21a c =-⎧⎨=⎩.∴故答案为-2.考点:二次函数综合题. 4.如图,正方形的顶点,与正方形的顶点,同在一段抛物线上,且抛物线的顶点同时落在和轴上,正方形边与同时落在轴上,若正方形的边长为,则正方形的边长为________.【答案】【解析】 【分析】根据题意得出抛物线解析式,进而表示出G 点坐标,再利用2OF=FG ,进而求出. 【详解】∵正方形ABCD 边长为4,∴顶点坐标为:(0,4),B (2,0), 设抛物线解析式为:y=ax 2+4, 将B 点代入得,0=4a+4, 解得a=-1,∴抛物线解析式为:y=-x 2+4, 设G 点坐标为:(m ,-m 2+4), 则2m=-m 2+4, 整理的:m 2+2m-4=0, 解得:m 1=-1+,m 2=-1-(不合题意舍去),∴正方形EFGH的边长FG=2m=2-2.故答案是:2-2.【点睛】考查了二次函数的综合应用以及一元二次方程的解法,解题关键是运用正方形的性质以及抛物线上点的坐标性质得出等式.5.如图4,已知抛物线y=ax2+bx+c(a>0)经过点A(2,0),B(6,0),交y轴于点C,且S△ABC=16.(1)求点C的坐标;(2)求抛物线的解析式及其对称轴;(3)若正方形DEFG内接于抛物线和x轴(边FG在x轴上,点D,E分别在抛物线上),求S正方形DEFG.【答案】(1)(0,8);(2)y=x2﹣x+8,其对称轴为直线x=4;(3)4【解析】【分析】(1)由S△ABC=×AB×OC求出OC的长度,进而确定C点坐标;(2)因为抛物线经过点A(2,0),B(6,0),故可以设二次函数的交点式,即y=a(x﹣2)(x﹣6),再将C点坐标代入即可求得解析式,进一步得到对称轴;(3)设正方形DEFG的边长为m,再根据题中的条件列出正确的D、E坐标,再将E点坐标代入二次函数求出边长m,进一步求得正方形DEFG的面积.【详解】(1)∵A(2,0),B(6,0),∴AB=6﹣2=4.∵S△ABC=16,∴×4•OC=16,∴OC=8,∴点C的坐标为(0,8);学*科网(2)∵抛物线y=ax2+bx+c(a>0)经过点A(2,0),B(6,0),∴可设抛物线的解析式为y=a(x﹣2)(x﹣6),将C(0,8)代入,得8=12a,解得a=,∴y=(x﹣2)(x﹣6)=x2﹣x+8,故抛物线的解析式为y=x2﹣x+8,其对称轴为直线x=4;【点睛】本题考查了三角形的面积、二次函数的性质、二次函数图像上点的坐标特征、正方形的性质,注意灵活运用知识点,另外利用面积求出点C坐标、根据二次函数与正方形的性质正确表示D、E的坐标是解答此题的关键.6.如图1:矩形OABC的顶点A、B在抛物线上,OC在轴上,且.(1)求抛物线的解析式及抛物线的对称轴.(2)如图2,边长为的正方形ABCD的边CD在轴上,A、B两点在抛物线上,请用含的代数式表示点B的坐标,并求出正方形边长的值.【答案】(1),对称轴:,(2),.【解析】试题分析:(1)根据矩形的性质,可得出点B的坐标,将点B的坐标代入抛物线y=x2+bx-3可得出b的值,继而得出抛物线的解析式及抛物线的对称轴;学科#网(2)由(1)中求得的解析式,可得出对称轴,从而可得OM=1,CM=a,BC=a,得出点B的坐标后代入抛物线解析式,可得a的值.(2)由(1)得OM=1,由抛物线的对称性,可得:CM=a,又∵BC=a,∴点B的坐标为(a+1,-a),把B点代入函数得:(a+1)2-2(a+1)-3=-a,解得:a1=-2-2<0(舍去),a2=2-2,故边长a=2-2.综上可得点B的坐标为(a+1,-a),正方形边长a=2-2.考点:二次函数综合题.7.如图,正方形OABC的边长为4,对角线相交于点P,顶点A、C分别在x轴、y轴的正半轴上,抛物线L 经过0、P 、A 三点,点E 是正方形内的抛物线上的动点.(1)点P 的坐标为______(2)求抛物线L 的解析式.(3)求△OAE 与△OCE 的面积之和的最大值. 【答案】(1)(2,2);(2)2122y x x =-+;(3)9. 【解析】试题分析:(1)根据正方形的边长结合正方形的性质即可得出点O P A 、、三点的坐标; (2)设抛物线L 的解析式为2.y ax bx c =++结合点O P A 、、的坐标利用待定系数法即可求出抛物线的解析式;(3)由点E 为正方形内的抛物线上的动点,设出点E 的坐标,结合三角形的面积公式找出OAEOCES S+关于m 的函数解析式,根据二次函数的性质即可得出结论.(2)设抛物线L 的解析式为2.y ax bx c =++ ∵抛物线L 经过O 、P 、A 三点,∴0{0164 242,c a b c a b c ==++=++ 解得:12{20a b c =-==,∴抛物线L 的解析式为212.2y x x =-+ (3)∵点E 是正方形内的抛物线上的动点,∴设点E 的坐标为21,2(04)2m m m m ⎛⎫-+<< ⎪⎝⎭, ∴()2211423922OAEOCEE E SSOA y OC x m m m m +=⋅+⋅=-++=--+,∴当m =3时,△OAE 与△OCE 面积之和最大,最大值为9.8.如图1,在直角坐标系中,已知点A (0,2)、点B (-2,0),过点B 和线 段OA 的中点C 作直线BC ,以线段BC 为边向上作正方形BCDE. (1)填空:点D 的坐标为( ),点E 的坐标为( ).(2)若抛物线2y ax bx c(a 0)=++≠经过A 、D 、E 三点,求该抛物线的解析式.(3)若正方形和抛物线均以每秒5个单位长度的速度沿射线B C 同时向上平移,直至正方形的顶点E 落在y 轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y 轴右侧部分的面积为s ,求s 关于平移时间t (秒)的函数关系式, 并写出相应自变量t 的取值范围. ②运动停止时,求抛物线的顶点坐标.【答案】解:(1)D (-1,3),E (-3,2)。

二次函数专题-含答案

二次函数专题-含答案

二次函数专题——线段最值问题方法总结:1、利用参数表示出两动点的坐标;2、再利用参数表示出线段的长度;3、最后利用二次函数的性质求出线段的最大值.4、特殊线段长度表示①平行(在坐标轴上)线段表示:竖直线段:12AB y y y y =-=-下上 水平线段:21AB x x x x =-=-右左 ②两点间距离公式:AB =抛物线与线段最值一,问题引入:问题1: “牵牛从点A 出发,到河边l 喝水,再到点B 处吃草,走哪条路径最短?” 即在l 上找一点P ,使得PA+PB 和最小。

(1)A ,B 两点在直线异侧时,连接AB 交l 于P ,则PA+PB 和最小。

(2)A ,B 两点在直线同侧时,作B 点关于l 的对称点B ′,连接AB′交l 于点P,即为所要找的P点,使PA+PB 和最小。

(3)变式讨论:在l 上找一P 点,使得△PAB 周长最小问题2:在l 上找一点P ,使得∣PA -P B ∣最大(1)A ,B 两点在直线同侧时,连接AB 并延长交l 于P ,则∣PA -P B ∣最大(2)A ,B 两点在直线异侧时,作B 点关于l 的对称点B ′,连接AB′并延长交l 于点P,即为所要找的P点,使∣PA -P B ∣最大。

问题3:(1)在直线1l 、2l 上分别求点M 、N 使PMN 周长最小.l A · B · l A · B ·l A · B · l B · A ·A · lB ·做法:分别作点P 关于直线1l ,2l 的对称点1P ,2P 连接1P ,2P 与1l ,2l 交点即为M ,N(2)变式:在直线1l 、2l 上分别求点M 、N 使四边形PMQN 周长最小.做法: 分别作点P ,Q 关于直线1l ,2l 的对称点//,Q P ,连接//,Q P ,与1l ,2l 交点即为M ,N问题4:点P 在锐角AOB ∠内部,在OB 边上求作一点D ,在OA 边上求作一点C ,使最小CD PD +做法:作点P 关于直线OB 的对称点/P ,过/P 向直线OA 作垂线与OB 的交点为所求点D ,垂足即为点C问题5:(1)直线21//l l ,并且1l 与2l 之间的距离为d ,点A 和点B 分别在直线1l 、2l 的两PQl 2l 1l 2侧,在直线1l 、2l 上分别求一点M 、N ,使AM 、MN 、NB 的和最小.作法: 将点A 向下平移d 个单位到1A ,连结B A 1交2l 于点N ,过N 作NM ⊥1l ,垂足为M ,连结AM ,则线段AM 、MN 、NB 的和最小,点M 、N 即为所求.(2)直线l 的同侧有两点A 、B ,在直线l 上求两点C 、D ,使得AC 、CD 、DB 的和最小,且CD 的长为定值a ,点D 在点C 的右侧.作法:将点A 向右平移a 个单位到1A ,作点B 关于直线l 的对称点1B ,连结1A ,1B 交直线l 于点D ,过点A 作AC ∥1A D 交直线l 于点C ,连结BD ,则线段AC 、CD 、DB 的和最小。

专题二次函数中的存在性问题-重难点题型(沪科版)

专题二次函数中的存在性问题-重难点题型(沪科版)

专题21.10 二次函数中的存在性问题-重难点题型【沪科版】【题型1 二次函数中直角三角形存在性问题】【例1】(2021•罗湖区校级模拟)如图,已知抛物线y=﹣x2+2x+3与x轴交于点A、B,与y轴交于点C,点P是抛物线上一动点,连接PB,PC.(1)点A的坐标为,点B的坐标为;(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求△PBC的面积;(3)抛物线上存在一点P,使△PBC是以BC为直角边的直角三角形,求点P的坐标.【变式1-1】(2021春•望城区校级月考)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x 轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),连接AC,点P为第二象限抛物线上的动点.(1)求a、b、c的值;(2)连接P A、PC、AC,求△P AC面积的最大值;(3)在抛物线的对称轴上是否存在一点Q,使得△QAC为直角三角形,若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理由.【变式1-2】(2021•长沙模拟)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.点P为线段MB上一个动点,过点P作PD⊥x轴于点D,若OD=m.(1)求二次函数解析式;(2)设△PCD的面积为S,试判断S有最大值或最小值?若有,求出其最值,若没有,请说明理由;(3)在MB上是否存在点P,使△PCD为直角三角形?若存在,请写出点P的坐标;若不存在,请说明理由.【变式1-3】(2021•长沙模拟)如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,是否存在以点C、M、N为顶点的三角形为等腰直角三角形?若存在,请直接写出此时点M的坐标,若不存在,请说明理由.【题型2 二次函数中等腰三角形存在性问题】【例2】(2020秋•曾都区期末)如图,抛物线y=ax2+4x+c经过A(﹣3,﹣4),B(0,﹣1)两点,点P 是y轴左侧且位于x轴下方抛物线上一动点,设其横坐标为m.(1)直接写出抛物线的解析式;(2)将线段AB绕点B顺时针旋转90°得线段BD(点D是点A的对应点),求点D的坐标,并判断点D是否在抛物线上;(3)过点P作PM⊥x轴交直线BD于点M,试探究是否存在点P,使△PBM是等腰三角形?若存在,求出点m的值;若不存在,说明理由.【变式2-1】(2020秋•云南期末)如图,直线y=−12x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(﹣1,0).(1)求B,C两点的坐标.(2)求该二次函数的解析式.(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD 为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由.【变式2-2】(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=5 2.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.【变式2-3】(2021•建华区二模)综合与探究如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A、C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)设该抛物线的顶点为点H,则S△BCH=;(3)若点M是线段BC上一动点,过点M的直线ED平行y轴交x轴于点D,交抛物线于点E,求ME 长的最大值及点M的坐标;(4)在(3)的条件下:当ME取得最大值时,在x轴上是否存在这样的点P,使得以点M、点B、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【题型3 二次函数中平行四边形存在性问题】【例3】(2020秋•元阳县期末)如图,直线y=−12x+c与x轴交于点A(﹣3,0),与y轴交于点C,抛物线y=12x2+bx+c经过点A,C,与x轴的另一个交点为B(1,0),连接BC.(1)求抛物线的函数解析式.(2)M为x轴的下方的抛物线上一动点,求△ABM的面积的最大值.(3)P为抛物线上一动点,Q为x轴上一动点,当以B,C,Q,P为顶点的四边形为平行四边形时,求点P的坐标.【变式3-1】(2020秋•泰山区期末)如图,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图.(1)求直线AB和抛物线的表达式;(2)在y轴上找一点Q,使得△AMQ的周长最小,在备用图中画出图形并求出点Q的坐标;(3)在坐标平面内是否存在点N,使以点A、O、C、N为顶点且AC为一边的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【变式3-2】(2021春•雨花区期末)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)求抛物线的解析式;(2)若点P从点B出发,沿着射线BC运动,速度每秒√2个单位长度,过点P作直线PM∥y轴,交抛物线于点M.设运动时间为t秒.①在运动过程中,当t为何值时,使(MA+MC)(MA﹣MC)的值最大?并求出此时点P的坐标.②若点N同时从点B出发,向x轴正方向运动,速度每秒v个单位长度,问:是否存在t使点B,C,M,N构成平行四边形?若存在,求出t,v的值;若不存在,说明理由.【变式3-3】(2021•北碚区校级模拟)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣6与x轴交于A,C(﹣6,0)两点(点A在点C右侧),交y轴于点B,连接BC,且AC=4.(1)求抛物线的解析式.(2)若P是BC上方抛物线上不同于点A的一动点,连接P A,PB,PC,求当S△PBC−12S△P AC有最大值时点P的坐标,并求出此时的最大值.(3)如图2,将原抛物线向右平移,使得点A刚好落在原点O,M是平移后的抛物线上一动点,Q是直线BC上一动点.当A,M,B,Q组成的四边形是平行四边形时,请直接写出此时点Q的坐标.【题型4 二次函数中菱形存在性问题】【例4】(2020秋•巴南区期末)如图,抛物线y=﹣x2+bx+c与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求b,c的值;(2)如图1,点P为直线BC上方抛物线上的一个动点,设点P的横坐标m.当m为何值时,△PBC的面积最大?并求出这个面积的最大值.(3)如图2,将该抛物线向左平移2个单位长度得到新的抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点D,点M为直线BC上的一点,点N是平面坐标系内一点,是否存在点M,N,使以点B,D,M,N为顶点的四边形为菱形,若存在,请直接写出点M的坐标;若不存在,请说明理由.【变式4-1】(2021•湘潭)如图,一次函数y=√33x−√3图象与坐标轴交于点A、B,二次函数y=√33x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP'C.是否存在点P,使四边形POP'C为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.交于点A(4,0)和B(﹣1,0),交y轴于点C.(1)求二次函数y=x2+bx+c的表达式;(2)将点C向右平移n个单位得到点D,点D在该二次函数图象上.点P是直线BD下方该二次函数图象上一点,求△PBD面积的最大值以及此时点P的坐标;(3)在(2)中,当△PBD面积取得最大值时,点E是过点P且垂直于x轴直线上的一点.在该直角坐标平面内,是否存在点Q,使得以点P,D,E,Q四点为顶点的四边形是菱形?若存在,直接写出满足条件的点Q的坐标;若不存在,请说明理由.【题型5 二次函数中矩形存在性问题】【例5】(2021春•九龙坡区校级期末)如图1,若二次函数y=﹣x2+3x+4的图象与x轴交于点A、B,与y 轴交于点C,连接AC、BC.(1)求三角形ABC的面积;(2)若点P是抛物线在一象限内BC上方一动点,连接PB、PC,是否存在点P,使四边形ABPC的面积为18,若存在,求出点P的坐标;若不存在,说明理由;(3)如图2,若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K为顶点,BC为边的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.【变式5-1】(2021•齐齐哈尔)综合与探究如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是2√2;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.【变式5-2】(2021春•杏花岭区校级月考)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)若点P为直线BC下方抛物线上一动点,当点P运动到某一位置时,△BCP的面积最大,求△BCP 的最大面积及此时点P的坐标;(3)点M为抛物线对称轴上一动点,点N为坐标平面内一点,若以点B,C,M,N为顶点的四边形是矩形,直接写出点M的坐标.【变式5-3】(2021•北碚区校级模拟)如图,已知抛物线y=ax2+bx﹣4与x轴交于A,B两点,与y轴交于点C,且点A的坐标为(﹣2,0),直线BC的解析式为y=12x﹣4.(1)求抛物线的解析式.(2)如图1,过点A作AD∥BC交抛物线于点D(异于点A),P是直线BC下方抛物线上一点,过点P作PQ∥y轴,交AD于点Q,过点Q作QR⊥BC于点R,连接PR.求△PQR面积的最大值及此时点P 的坐标.(3)如图2,点C关于x轴的对称点为点C′,将抛物线沿射线C′A的方向平移2√5个单位长度得到新的抛物线y′,新抛物线y′与原抛物线交于点M,原抛物线的对称轴上有一动点N,平面直角坐标系内是否存在一点K,使得以D,M,N,K为顶点的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.【题型6 二次函数中正方形存在性问题】【例6】(2021•渝中区校级二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+3与y轴交于点C,与x 轴交于A,B两点(点A在点B的左侧),其中A(﹣2,0),并且抛物线过点D(4,3).(1)求抛物线的解析式;(2)如图1,点P为直线CD上方抛物线上一点,过P作PE∥y轴交BC于点E,连接CP,PD,DE,求四边形CPDE面积的最值及点P的坐标;(3)如图2,将抛物线沿射线CB方向平移得新抛物线y=a1x2+b1x+c1(a1≠0),是否在新抛物线上存在点M,在平面内存在点N,使得以A,C,M,N为顶点的四边形为正方形?若在,直接写出此时新抛物线的顶点坐标,若不存在,请说明理由.【变式6-1】(2020秋•高明区期末)如图,抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y 轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求该抛物线的函数表达式;(2)点Q在该抛物线的对称轴上,若△ACQ是以AC为腰的等腰三角形,求点Q的坐标;(3)若P为BD的中点,过点P作PF⊥x轴于点F,G为抛物线上一动点,GM⊥x轴于点M,N为直线PF上一动点,当以F、M、G、N为顶点的四边形是正方形时,直接写出点M的坐标.【变式6-2】(2021•合川区校级模拟)如图,在平面直角坐标系.xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,过A,B两点的抛物线交x轴于另一点C(﹣2,0).(1)求抛物线解析式;(2)如图1,点F是直线AB下方抛物线上一动点,连接F A,FB,求出四边形F AOB面积最大值及此时点F的坐标.(3)如图2,在(2)问的条件下,点Q为平面内y轴右侧的一点,是否存在点Q及平面内任意一点M 使得以A,F,Q,M为顶点的四边形是正方形?若存在,直接写出点Q的坐标;若不存在,说明理由.【变式6-3】(2021•海南模拟)如图,平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A(﹣3,0),B (4,0),交y轴于点C(0,4).(1)求抛物线的函数表达式;(2)直线y=34x+94与抛物线交于A、D两点,与直线BC交于点E.若点M(m,0)是线段AB上的动点,过点M作x轴的垂线,交抛物线于点F,交直线AD于点G,交直线BC于点H.①当S EOG=12S△AOE时,求m的值;②在平面内是否存在点P,使四边形EFHP为正方形?若存在,请求出点P的坐标,若不存在,请说明理由.。

二次函数综合题存在性问题分类训练(9种类型)(学生版)--2023-2024学年九年级数学上册重难点

二次函数综合题存在性问题分类训练(9种类型)(学生版)--2023-2024学年九年级数学上册重难点

二次函数综合题存在性问题分类训练(9种类型)【类型一存在性之等腰三角形】1如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.2如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于A-1,0,B2,0两点,与y轴交于点C.(1)求抛物线的解析式及点C的坐标;(2)若F为抛物线上一点,连接BC,是否存在以BC为底的等腰△BCF?若存在,请求出点F的坐标;若不存在,请说明理由.3如图,已知抛物线y=-x2+bx+c经过B-3,0两点,与x轴的另一个交点为A.,C0,3(1)求抛物线的解析式;(2)在抛物线对称轴上找一点E,使得AE+CE的值最小,求出点E的坐标;(3)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.4如图,已知抛物线y=-x2+bx+c经过B(-3,0),C(0,3)两点,与x轴的另一个交点为A.(1)求抛物线的解析式;(2)若直线y=mx+n经过B,C两点,则m=;n=;(3)在抛物线对称轴上找一点E,使得AE+CE的值最小,直接写出点E的坐标;(4)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.【类型二存在性之直角三角形】5如图,在平面直角坐标系中,一次函数y=12x-2的图象分别交x轴、y轴于点A、B,抛物线y=x2+bx+c经过点A、B,E是线段OA的中点.(1)求抛物线的解析式;(2)点F是抛物线上的动点,当∠OEF=∠BAE时,求点F的横坐标;(3)在抛物线上是否存在点P,使得△ABP是以点A为直角顶点的直角三角形,若存在,请求出P点坐标,若不存在,请说明理由.(4)抛物线上(AB下方)是否存在点M,使得∠ABM=∠ABO?若存在,求出点M到y轴的距离,若不存在,请说明理由.6如图,已知抛物线y=x2+bx+c的对称轴为直线x=2,与y轴交于点C0,3,与x轴交于点A和点B.(1)求抛物线的解析式和点A、B的坐标;(2)设点P为抛物线的对称轴直线x=2上的一个动点,求使△PBC为直角三角形的点P的坐标.7如图,在平面直角坐标系xOy中,抛物线y=x2+bx-3与直线l:y=x+1交于A,B两点,点A的坐标为-1,0.(1)求抛物线的解析式及点B的坐标;(2)已知抛物线与x轴有2个交点,右侧交点为C,点P为线段AB上任意一点(不含端点),若△PBC是以点P为直角顶点的直角三角形,求点P的坐标.8如图,一次函数y=12x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=12x2+bx+c的图象与一次函数y=12x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为1,0.(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB-PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【类型三存在性之等腰直角三角形】9如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.(3)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.10如图1,在平面直角坐标系中,抛物线y=-23x2+43x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过点A作AD∥BC交抛物线于D,连接CA,CD,PC,PB,记四边形ACPB的面积为S1,△BCD的面积为S2,当S1-S2的值最大时,求P点的坐标和S1-S2的最大值;(3)如图2,将抛物线水平向右平移,使得平移后的抛物线经过点O,G为平移后的抛物线的对称轴直线l上一动点,将线段AC沿直线BC平移,平移过程中的线段记为A′C′(线段A'C'始终在直线l左侧),是否存在以A′,C′,G为顶点的等腰直角△A′C′G?若存在,请写出满足要求的所有点G的坐标并写出其中一种结果的求解过程,若不存在,请说明理由.11如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.12如图,在平面直角坐标系中,将一等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,其中A的坐标为(0,2),直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上.(1)求抛物线的解析式;(2)设抛物线的顶点为D,连结BD、CD,求△DBC的面积;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【类型四存在性之平行四边形】13在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点(-1,0),(3,0)和0,3.(1)求抛物线的表达式;(2)若直线x=m与x轴交于点N,在第一象限内与抛物线交于点M,当AN+MN有最大值时,求出抛物线上点M的坐标;(3)若点P为抛物线y=ax2+bx+c(a≠0))的对称轴上一动点,将抛物线向左平移1个单位长度后,Q为平移后抛物线上一动点,在(2)的条件下求得的点M,是否能与A,P,Q构成平行四边形?若能构成,求出Q点坐标;若不能构成,请说明理由.14如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)在直线BC的下方的抛物线上存在一点M,使得△BCM的面积最大,请求出点M的坐标(3)点F是抛物线上的动点,点D是抛物线顶点坐标,作EF∥AD交x轴于点E,是否存在点F,使得以A、D、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.15如图,在平面直角坐标系中,抛物线y=12x2+bx+c(b、c为常数)的顶点坐标为32,-258,与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,点C,点D关于x轴对称,连接AD,作直线BD.(1)求b、c的值;(2)求点A、B的坐标;(3)求证:∠ADO=∠DBO;(4)点P在抛物线y=-12x2+bx+c上,点Q在直线BD上,当以点C、D、P、Q为顶点的四边形为平行四边形时,直接写出点Q的坐标.16如图,抛物线y=ax2+2ax+c与y轴负半轴交于点C,与x轴交于A,B两点,点A在点B左侧,点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是第三象限抛物线上的动点,连接AC,当△ACD的面积为3时,求出此时点D的坐标;(3)将抛物线y=ax2+2ax+c向右平移2个单位,平移后的抛物线与原抛物线相交于点M,N在原抛物线的对称轴上,H为平移后的抛物线上一点,当以A、M、H、N为顶点的四边形是平行四边形时,请直接写出点H的坐标.【类型五存在性之菱形】17如图,抛物线y=ax2+bx+c过点A-1,0.,B3,0,C0,3(1)求抛物线的解析式;(2)设点P是直线BC上方抛物线上一点,求出△PBC的最大面积及此时点P的坐标;(3)若点M是抛物线对称轴上一动点,点N为坐标平面内一点,是否存在以BC为边,点B、C、M、N为顶点的四边形是菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.18综合与探究:如图,已知抛物线y=-38x2+94x+6与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.直线BC与抛物线的对称轴交于点E.将直线BC沿射线CO方向向下平移n个单位,平移后的直线与直线AC 交于点F,与抛物线的对称轴交于点D.(1)求出点A,B,C的坐标,并直接写出直线AC,BC的解析式;(2)当△CDB是以BC为斜边的直角三角形时,求出n的值;(3)直线BC上是否存在一点P,使以点D,E,F,P为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.19如图,直线y =mx +n m ≠0 .与抛物线y =-x 2+bx +c 交于A -1,0 ,B 2,3 两点.(1)求抛物线的解析式;(2)若点C 在抛物线上,且△ABC 的面积为3,求点C 的坐标;(3)若点P 在抛物线上,PQ ⊥OA 交直线AB 于点Q ,点M 在坐标平面内,当以B ,P ,Q ,M 为顶点的四边形是菱形时,请直接写出点M 的坐标.20如图1,在平面直角坐标系中,抛物线y=-32x2+32x+3与x轴交于点A和点B(点A在点B左侧),与y轴交于点C.(1)求直线BC的解析式;(2)点P是直线BC上方抛物线上的一动点,过点P作y轴的平行线交BC于点D,过点P作x轴的平行线交BC于点E,求PE+3PD的最大值及此时点P的坐标;(3)如图2,在(2)中PE+3PD取得最大值的条件下,将抛物线y=-32x2+32x+3沿着射线CB方向平移得到新抛物线y ,且新抛物线y 经过线段BC的中点F,新抛物线y 与y轴交于点M,点N为新抛物线y 对称轴上一点,点Q为坐标平面内一点,若以点P,Q,M,N为顶点的四边形是以PN为边的菱形,写出所有符合条件的点Q的坐标,并写出求解点Q的坐标的其中一种情况的过程.【类型六存在性之矩形】21如图①,抛物线y=ax2+x+c a≠0与x轴交于A(-2,0),B(6,0)两点,与y轴交于点C,点P是第一象限内抛物线上的一个动点,过点P作PD⊥x轴,垂足为点D,PD交直线BC于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)如图②.过点P作PF⊥CE,垂足为点F,当CF=EF时,请求出m的值;(3)如图③,连接CP,当四边形OCPD是矩形时,在抛物线的对称轴上存在点Q,使原点O关于直线CQ的对称点O 恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点Q的坐标.22已知抛物线y =ax 2+bx -4a ≠0 交x 轴于点A 4,0 和点B -2,0 ,交y 轴于点C .(1)求抛物线的解析式;(2)如图,点P 是抛物线上位于直线AC 下方的动点,过点P 分别作x 轴、y 轴的平行线,交直线AC 于点D ,交x 轴于点E ,当PD +PE 取最大值时,求点P 的坐标及PD +PE 最大值.(3)在抛物线上是否存在点M ,对于平面内任意点N ,使得以A 、C 、M 、N 为顶点且AC 为一条边的四边形为矩形,若存在,请直接写出M 、N 的坐标,不存在,请说明理由.23综合与探究如图,抛物线y=ax2-3x+c a≠0与x轴交于A(4,0),C两点,交y轴于点B(0,-4),点P为y轴右侧抛物线上的一个动点.(1)求抛物线的解析式;(2)当P在AB下方时,求△ABP面积的最大值;(3)当∠ABP=15°时,△BOP的面积为;(4)点M为抛物线对称轴上的一点,点N为平面内一点,是否存点M、点N,使得以A、B、M、N为顶点的四边形是矩形?若存在,请直接写出点M的坐标;如不存在,请说明理由.24如图,直线y=43x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2-83x+c(a≠0)经过A,C两点,交x轴的正半轴于点B,连接BC.(1)求抛物线的解析式.(2)点P在抛物线上,连接PB,当∠PBC=45°时,求点P的坐标;(3)已知点M从点B出发,以每秒1个单位长度的速度沿BA运动,同时点N从点O出发,以每秒3个单位长度的速度沿OC,CA运动.当点M,N运动到某一时刻时,在坐标平面内是否存在点D,使得以A,M,N,D为顶点的四边形是矩形?若存在,请直接写出点D的坐标;若不存在,请说明理由.【类型七存在性之正方形】25如图,抛物线y=-14x2+bx+c的对称轴与x轴交于点A1,0,与y轴交于点B0,3,C为该抛物线图象上的一个动点.(1)求抛物线的解析式;(2)如图,当点C在第一象限,且∠BAC=90°,求ACAB的值;(3)点D在抛物线上(点D在点C的左侧,不与点B重合),点P在坐标平面内,问是否存在正方形ACPD?若存在,请直接写出点P的坐标;若不存在,请说明理由.26综合与探究如图,抛物线y=ax2+bx+6与x轴交于A-2,0,B4,0两点,与y轴交于点C,直线y=23x-4与x轴交于点D,与y轴交于点E.若M为第一象限内抛物线上一点,过点M且垂直于x轴的直线交DE于点N,连接MC,MD.(1)求抛物线的函数表达式及D,E两点的坐标.(2)当CM=EN时,求点M的横坐标.(3)G为平面直角坐标系内一点,是否存在点M使四边形MDEG是正方形.若存在,请直接写出点G的坐标;若不存在,请说明理由.27如图,已知直线y=-x+4与抛物线y=ax2+bx交于点A4,0两点,点P为抛物线上和B-1,5一动点,过点P作x轴的垂线,交直线AB于Q,PN⊥AB于点N.(1)求抛物线的解析式;(2)当点P在直线AB下方时,求线段PN的最大值;(3)是否存在点P使得△ABP是直角三角形,若存在,请求出点P坐标,若不存在,请说明理由;(4)坐标轴上是否存在点M,使得以点P,N,Q,M为顶点的四边形是正方形,若存在,请直接写出点M的坐标,若不存在,请说明理由28如图,抛物线y=-12x2+bx+c与x轴交于点A和点B4,0,与y轴交于点C0,4,点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.【类型八存在性之相似三角形】29如图,在平面直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A,B,与y轴交于点C,经过点x+2交抛物线于点D,点D与点A的横坐标互为相反数,P是抛物线上一动点,连接A的直线y=-12AC.(1)求抛物线的表达式;(2)若点P在第一象限内的抛物线上,当∠PBA=2∠BAD时,求直线BP的表达式;(3)点Q在y轴上,若△DQP∽△COA,请直接写出点P的坐标.30如图,已知抛物线过三点O0,0,弧AB过线段OA的中点C,若点E为弧AB,B2,23,A8,0所在圆的圆心.(1)求该抛物线的解析式.(2)求圆心点E的坐标,并判断点E是否在这条抛物线上.(3)若弧BC的中点为P,是否在x轴上存在点M,使得△APB与△AMP相似?若存在,请求出点M的坐标,若不存在说明理由.31如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.②设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,直接写出当△CEF与△COD相似时,点P的坐标;32如图,抛物线y=12x2+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A-4,0,C0,-2.(1)求抛物线和直线AC的函数解析式;(2)若点E是线段AC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,求四边形CDAF的最大面积;(3)在抛物线的对称轴上找一点P,使得以A、D、P为顶点的三角形与△OAC相似,请直接写出点P的坐标.【类型九存在性之角度问题】33如图,抛物线y=ax2+bx+2经过A-1,0为抛物线上、B4,0两点,与y轴交于点C,点D x,y 第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为4时,求点D的坐标;(3)该抛物线上是否存在点D,使得∠DCB=2∠ABC,若存在,求点D的坐标;若不存在,请说明理由.34如图,抛物线y=ax2+bx-1a≠0与x轴交于点A1,0和点B,与y轴交于点C,抛物线的对称轴交x轴于点D3,0,过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当BQPQ=57时.求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.35如图,在平面直角坐标系xoy中,顶点为M的抛物线y=ax2+bx a>0经过点A(-1,3)和x轴正半轴上的点B,AO=OB.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的度数;(3)联结AM、BM、AB,若在坐标轴上存在一点P,使∠OAP=∠ABM,求点P的坐标.36如图,在平面直角坐标系中,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A1,0两点,,B3,0与y轴交于点C,其顶点为点D,点E的坐标为0,-1,该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式.(2)一动点M从点D出发,以每秒1个单位的速度沿与y轴平行的方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?(3)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.。

专题09 二次函数中的存在性问题之正方形(18南充)(解析版)

专题09  二次函数中的存在性问题之正方形(18南充)(解析版)

专题09 二次函数中的存在性问题之正方形【典例1】(2018•南充)如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.【点拨】(1)设出抛物线顶点坐标,把C坐标代入求出即可;(2)由△BCQ与△BCP的面积相等,得到PQ与BC平行,①过P作PQ∥BC,交抛物线于点Q,如图1所示;②设G(1,2),可得PG=GH=2,过H作直线Q2Q3∥BC,交x轴于点H,分别求出Q的坐标即可;(3)存在点M,N使四边形MNED为正方形,如图2所示,过M作MF∥y轴,过N作NF∥x轴,过N作NH∥y轴,则有△MNF与△NEH都为等腰直角三角形,设M(x1,y1),N(x2,y2),设直线MN 解析式为y=﹣x+b,与二次函数解析式联立,消去y得到关于x的一元二次方程,利用根与系数关系表示出NF2,由△MNF为等腰直角三角形,得到MN2=2NF2,若四边形MNED为正方形,得到NE2=MN2,求出b的值,进而确定出MN的长,即为正方形边长.【解答】解:(1)设y=a(x﹣1)2+4(a≠0),把C(0,3)代入抛物线解析式得:a+4=3,即a=﹣1,则抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)由B(3,0),C(0,3),得到直线BC解析式为y=﹣x+3,∵S△PBC=S△QBC,∴PQ∥BC,①过P作PQ∥BC,交抛物线于点Q,如图1所示,∵P (1,4),∴直线PQ 解析式为y =﹣x +5, 联立得:{y =−x +5y =−x 2+2x +3,解得:{x =1y =4或{x =2y =3,即(1,4)与P 重合,Q 1(2,3);②∵S △BCQ =S △BCP , ∴PG =GH∵直线BC 的解析式为y =﹣x +3,P (1,4) ∴G (1,2), ∴PG =GH =2,过H 作直线Q 2Q 3∥BC ,交x 轴于点H ,则直线Q 2Q 3解析式为y =﹣x +1, 联立得:{y =−x +1y =−x 2+2x +3,解得:{x =3+√172y =−1−√172或{x =3−√172y =−1+√172, ∴Q 2(3−√172,−1+√172),Q 3(3+√172,−1−√172);(3)存在点M ,N 使四边形MNED 为正方形,如图2所示,过M 作MF ∥y 轴,过N 作NF ∥x 轴,过N 作NH ∥y 轴,则有△MNF 与△NEH 都为等腰直角三角形,设M (x 1,y 1),N (x 2,y 2),设直线MN 解析式为y =﹣x +b ,联立得:{y =−x +by =−x 2+2x +3,消去y 得:x 2﹣3x +b ﹣3=0,∴NF 2=|x 1﹣x 2|2=(x 1+x 2)2﹣4x 1x 2=21﹣4b , ∵△MNF 为等腰直角三角形, ∴MN 2=2NF 2=42﹣8b , ∵H (x 2,﹣x 2+3),∴NH 2=2=(﹣x 2+b +x 2﹣3)2=(b ﹣3)2, ∴NE 2=12(b ﹣3)2,若四边形MNED 为正方形,则有NE 2=MN 2, ∴42﹣8b =12(b 2﹣6b +9), 整理得:b 2+10b ﹣75=0, 解得:b =﹣15或b =5, ∵正方形边长为MN =√42−8b , ∴MN =9√2或√2.【点睛】此题属于二次函数综合题,涉及的知识有:待定系数法确定函数解析式,根与系数的关系,等腰直角三角形的性质,正方形的性质,勾股定理,以及一次函数与二次函数的性质,熟练掌握待定系数法是解本题的关键.【精练1】如图,抛物线y =﹣ax 2+bx +5过点(1,2)、(4,5),交y 轴于点B ,直线 AB 经过抛物线顶点A ,交x 轴于点C ,请解答下列问题: (1)求抛物线的解析式;(2)点Q 在平面内,在第一象限内是否存在点P ,使以A ,B ,P ,Q 为顶点的四边形是正方形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【点拨】(1)把已知点的坐标代入抛物线解析式即可求得a 、b 的值,可求得抛物线解析式;(2)可先求得A 、B 两点的坐标,可求得AB 长度,分别过A 、B 两点作AB 的垂线,则点P 可以在这两条直线上,且P A =AB 或PB =AB ,分别求得两垂线的解析式,设出点P 的坐标,再根据线段相等可列出方程,可求得点P 的坐标. 【解答】解:(1)∵抛物线y =﹣ax 2+bx +5过点(1,2)、(4,5), ∴{−a +b +5=2−16a +4b +5=5,解得{a =−1b =−4,∴抛物线解析式为y =x 2﹣4x +5;(2)在y =x 2﹣4x +5中,令x =0可得y =5, ∴B (0,5),∵y =x 2﹣4x +5=(x ﹣2)2+1, ∴A (2,1),∴AB =√22+(1−5)2=2√5,设直线AB 解析式为y =kx +n ,则有{2k +n =1n =5,解得{k =−2n =5,∴直线AB 解析式为y =﹣2x +5, ①当P A ⊥AB 时,如图1,可设直线P A 解析式为y =12x +m ,把A (2,1)代入可得1+m =1,解得m =0,∴直线P A 解析式为y =12x , ∴可设点P 坐标为(x ,12x ),∴P A =√(x −2)2+(12x −1)2, ∵四边形P ABQ 为正方形,∴P A =AB ,即√(x −2)2+(12x −1)2=2√5,解得x =﹣2或x =6∵点P 在第一象限内,∴x =﹣2不符合题意,舍去,故x =6,此时P 点坐标为(6,3); ②当PB ⊥AB 时,如图2,可设直线PB 解析式为y =12x +s ,把B (0,5)代入可得s =5, ∴直线PB 解析式为y =12x +5, ∴可设P 点坐标为(x ,12x +5),∴PB =√x 2+(12x +5−5)2,同理可得√x 2+(12x +5−5)2=2√5,解得x =﹣4(舍去)或x =4,此时P 点坐标为(4,7);综上可知存在满足条件的点P ,其坐标为(6,3)或(4,7).【点睛】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理、正方形的性质、方程思想及分类讨论思想等知识点.在(1)中注意待定系数法的应用步骤,在(2)中确定出P 点的位置是解题的关键,注意利用正方形的性质列方程.本题考查知识点较多,综合性较强,但难度不大. 【精练2】(曲靖)如图,在平面直角坐标系中,抛物线y =ax 2+2ax +c 交x 轴于A ,B 两点,交y 轴于点C (0,3),tan ∠OAC =34.(1)求抛物线的解析式;(2)点H 是线段AC 上任意一点,过H 作直线HN ⊥x 轴于点N ,交抛物线于点P ,求线段PH 的最大值;(3)点M 是抛物线上任意一点,连接CM ,以CM 为边作正方形CMEF ,是否存在点M 使点E 恰好落在对称轴上?若存在,请求出点M 的坐标;若不存在,请说明理由.【点拨】(1)由点C 的坐标以及tan ∠OAC =34可得出点A 的坐标,结合点A 、C 的坐标利用待定系数法即可求出抛物线的解析式;(2)设直线AC 的解析式为y =kx +b ,由点A 、C 的解析式利用待定系数法即可求出直线AC 的解析式,设N (x ,0)(﹣4<x <0),可找出H 、P 的坐标,由此即可得出PH 关于x 的解析式,利用配方法即二次函数的性质即可解决最值问题;(3)过点M 作MK ⊥y 轴于点K ,交对称轴于点G ,根据角的计算依据正方形的性质即可得出△MCK ≌△MEG (AAS ),进而得出MG =CK .设出点M 的坐标利用正方形的性质即可得出点G 、K 的坐标,由正方形的性质即可得出关于x 的含绝对值符号的一元二次方程,解方程即可求出x 值,将其代入抛物线解析式中即可求出点M 的坐标. 【解答】解:(1)∵C (0,3), ∴OC =3, ∵tan ∠OAC =34, ∴OA =4, ∴A (﹣4,0).把A (﹣4,0)、C (0,3)代入y =ax 2+2ax +c 中,得{16a −8a +c =0c =3,解得:{a =−38c =3, ∴抛物线的解析式为y =−38x 2−34x +3.(2)设直线AC 的解析式为y =kx +b , 把A (﹣4,0)、C (0,3)代入y =kx +b 中,得:{−4k +b =0b =3,解得:{k =34b =3, ∴直线AC 的解析式为y =34x +3.设N (x ,0)(﹣4<x <0),则H (x ,34x +3),P (x ,−38x 2−34x +3),∴PH =−38x 2−34x +3﹣(34x +3)=−38x 2−32x =−38(x +2)2+32,∵−38<0, ∴PH 有最大值,当x =﹣2时,PH 取最大值,最大值为32.(3)过点M 作MK ⊥y 轴于点K ,交对称轴于点G ,则∠MGE =∠MKC =90°, ∴∠MEG +∠EMG =90°, ∵四边形CMEF 是正方形, ∴EM =MC ,∠EMC =90°, ∴∠EMG +∠CMK =90°, ∴∠MEG =∠CMK .在△MCK 和△MEG 中,{∠MEG =∠CMK∠MGE =∠CKM =90°EM =MC ,∴△MCK ≌△MEG (AAS ), ∴MG =CK .由抛物线的对称轴为x =﹣1,设M (x ,−38x 2−34x +3),则G (﹣1,−38x 2−34x +3),K (0,−38x 2−34x +3),∴MG =|x +1|,CK =|−38x 2−34x +3﹣3|=|−38x 2−34x |=|38x 2+34x |,∴|x +1|=|38x 2+34x |,∴38x 2+34x =±(x +1),解得:x 1=﹣4,x 2=−23,x 3=−43,x 4=2,代入抛物线解析式得:y 1=0,y 2=103,y 3=103,y 4=0,∴点M的坐标是(﹣4,0),(−23,103),(−43,103)或(2,0).【点睛】本题考查了待定系数法求函数解析式、二次函数的性质、正方形的性质以及全等三角形的判定与性质,解题的关键是:(1)利用待定系数法求出抛物线解析式;(2)根据二次函数的性质解决最值问题;(3)根据正方形的性质得出关于x的含绝对值符号的一元二次方程.本题属于中档题,难度不大,解决该题型题目时,根据正方形的性质找出关于x的含绝对值符号的一元二次方程,解方程求出点的横坐标是关键.【精练3】(2020•郑州模拟)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=−12x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求PDOD的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【点拨】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF ∥BO 交AB 于点F ,证△PFD ∽△OBD ,得比例线段PDOD=PF OB,则PF 取最大值时,求得PDOD的最大值;(3)(i )点F 在y 轴上时,过点P 作PH ⊥x 轴于H ,根据正方形的性质可证明△CPH ≌△FCO ,根据全等三角形对应边相等可得PH =CO =2,然后利用二次函数解析式求解即可;(ii )点E 在y 轴上时,过点PK ⊥x 轴于K ,作PS ⊥y 轴于S ,同理可证得△EPS ≌△CPK ,可得PS =PK ,则P 点的横纵坐标互为相反数,可求出P 点坐标;点E 在y 轴上时,过点PM ⊥x 轴于M ,作PN ⊥y 轴于N ,同理可证得△PEN ≌△PCM ,可得PN =PM ,则P 点的横纵坐标相等,可求出P 点坐标.由此即可解决问题. 【解答】解:(1)直线y =x +4与坐标轴交于A 、B 两点, 当x =0时,y =4,x =﹣4时,y =0, ∴A (﹣4,0),B (0,4),把A ,B 两点的坐标代入解析式得,{−4b +c =8c =4,解得,{b =−1c =4,∴抛物线的解析式为y =−12x 2−x +4; (2)如图1,作PF ∥BO 交AB 于点F , ∴△PFD ∽△OBD , ∴PD OD=PF OB,∵OB 为定值, ∴当PF 取最大值时,PD OD有最大值,设P (x ,−12x 2−x +4),其中﹣4<x <0,则F (x ,x +4), ∴PF =y P −y F =−12x 2−x +4−(x +4)=−12x 2−2x , ∵−12<0且对称轴是直线x =﹣2, ∴当x =﹣2时,PF 有最大值,此时PF=2,PDOD =PFOB=12;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,{∠HPC=∠OCF ∠PHC=∠COF PC=CF,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴−12x2−x+4=2,解得,x=−1±√5,∴P1(−1+√5,2),P2(−1−√5,2),(ii)如图3,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴−12x2−x+4=−x,解得x=2√2(舍去),x=﹣2√2,∴P3(−2√2,2√2),如图4,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴−12x2−x+4=x,解得x=−2+2√3,x=−2−2√3(舍去),∴P4(−2+2√3,−2+2√3),综合以上可得P点坐标为(−2+2√3,−2+2√3),(−2√2,2√2),(−1+√5,2),(−1−√5,2).【点睛】此题主要考查了二次函数的综合应用,全等三角形的判定与性质以及待定系数法求二次函数解析式,正方形的性质的应用,解题的关键是正确进行分类讨论.【精练4】(2019秋•秀屿区期中)已知抛物线y=ax2+bx+c(a≠0)经过原点,(1)当顶点坐标为(2,2)时,求此函数的解析式;(2)继续探究,如果b≠0,且抛物线顶点坐标为(m,m),m≠0,求此函数的解析式(用含m的式子表示)(3)现有一组过原点的抛物线,顶点A1,A2,A n在直线y=x上,横坐标依次为1,2,…,n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n∁n D n,若这组抛物线中有一条经过D n,求所有满足条件的正方形边长.【点拨】(1)顶点坐标为(2,2)时,抛物线的表达式为:y=a(x﹣2)2+2=ax2﹣4ax+4a+2,故4a+2=0,解得:a=−12,即可求解;(2)抛物线顶点坐标为(m,m),抛物线的表达式为:y=a(x﹣m)2+m=ax2﹣2max+am2+m,即:am2+m=0,解得:a=−1m,即可求解;(3)点D n所在的抛物线解析式为y=−1t x2+2x.四边形A n B n∁n D n是正方形,则点D n的坐标是(2n,n),−1t(2n)2+2•2n=n,4n=3t,即可求解.【解答】解:抛物线y=ax2+bx+c(a≠0)经过原点,则抛物线的表达式为:y=ax2+bx;(1)顶点坐标为(2,2)时,抛物线的表达式为:y=a(x﹣2)2+2=ax2﹣4ax+4a+2,故4a+2=0,解得:a=−1 2,故抛物线的表达式为:y=−12(x﹣2)2+2=−12x2+2x;(2)抛物线顶点坐标为(m,m),抛物线的表达式为:y=a(x﹣m)2+m=ax2﹣2max+am2+m,即:am2+m=0,解得:a=−1 m,故抛物线的表达式为:y=−1m(x﹣m)2+m=−1m x2+2x;(3)∵顶点A1,A2,…,A n在直线y=x上,∴可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).∴a=−1t,b=2,∴由(1)(2)可得,点D n所在的抛物线解析式为y=−1t x2+2x.∵四边形A n B n∁n D n是正方形,∴点D n的坐标是(2n,n),∴−1t(2n)2+2•2n=n,∴4n=3t.∵t、n是正整数,且t≤12,n≤12,∴n=3,6或9.∴满足条件的正方形边长是3,6或9.【点睛】本题考查的是二次函数综合运用,这种阅读型题目,通常按照题设的顺序逐次求解,计算起来比较容易.【精练5】(2019•张家界)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+12QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.【点拨】(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即可求解;(2)AM=MB=AB sin45°=√2=AD=BD,则四边形ADBM为菱形,而∠AMB=90°,即可求解;(3)S△PBC=12PH×OB,即可求解;(4)过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=12CQ,AQ+12QC最小值=AQ+HQ=AH,即可求解.【解答】解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D (2,﹣1);(2)∵OB =OC =4,∴∠OBC =∠OCB =45°,AM =MB =AB sin45°=√2=AD =BD ,则四边形ADBM 为菱形,而∠AMB =90°,∴四边形ADBM 为正方形;(3)将点B 、C 的坐标代入一次函数表达式:y =mx +n 并解得:直线BC 的表达式为:y =﹣x +3,过点P 作y 轴的平行线交BC 于点H ,设点P (x ,x 2﹣4x +3),则点H (x ,﹣x +3),则S △PBC =12PH ×OB =32(﹣x +3﹣x 2+4x ﹣3)=32(﹣x 2+3x ),∵−32<0,故S △PBC 有最大值,此时x =32,故点P (32,−34); (4)存在,理由:如上图,过点C 作与y 轴夹角为30°的直线CH ,过点A 作AH ⊥CH ,垂足为H ,则HQ =12CQ ,AQ +12QC 最小值=AQ +HQ =AH ,直线HC 所在表达式中的k 值为√3,直线HC 的表达式为:y =√3x +3…①则直线AH 所在表达式中的k 值为−√33,则直线AH 的表达式为:y =−√33x +s ,将点A 的坐标代入上式并解得:则直线AH 的表达式为:y =−√33x +√33⋯②,联立①②并解得:x =1−3√34, 故点H (1−3√34,3+√34),而点A (1,0), 则AH =3+√32, 即:AQ +12QC 的最小值为3+√32. 【点睛】本题是二次函数综合运用,涉及到一次函数、特殊四边形性质、图形的面积计算等,其中(4),过点C 作与y 轴夹角为30°的直线CH ,则HQ =12CQ ,是本题的难点.【精练6】(东营区校级期中)如图,直线y =﹣3x +3与x 轴、y 轴分别交于点A 、B ,抛物线y =a (x ﹣2)2+k 经过点A 、B ,并与X 轴交于另一点C ,其顶点为P .(1)求a ,k 的值;(2)抛物线的对称轴上有一点Q ,使△ABQ 是以AB 为底边的等腰三角形,求Q 点的坐标;(3)点M 为抛物线上任意一点,点N 为对称轴上任意一点,是否存在点M ,N 使以A ,C ,M ,N 为顶点的四边形为正方形?若存在,请求出求此正方形的边长.若不存在,请说明理由.【点拨】(1)先求出直线y =﹣3x +3与x 轴交点A ,与y 轴交点B 的坐标,再将A 、B 两点坐标代入y =a (x ﹣2)2+k ,得到关于a ,k 的二元一次方程组,解方程组即可求解;(2)设Q 点的坐标为(2,m ),对称轴x =2交x 轴于点F ,过点B 作BE 垂直于直线x =2于点E .在Rt △AQF 与Rt △BQE 中,用勾股定理分别表示出AQ 2=AF 2+QF 2=1+m 2,BQ 2=BE 2+EQ 2=4+(3﹣m )2,由AQ =BQ ,得到方程1+m 2=4+(3﹣m )2,解方程求出m =2,即可求得Q 点的坐标;(3)当点N 在对称轴上时,由NC 与AC 不垂直,得出AC 为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M 点与顶点P (2,﹣1)重合,N 点为点P 关于x 轴的对称点,此时,MF =NF =AF =CF =1,且AC ⊥MN ,则四边形AMCN 为正方形,在Rt △AFN 中根据勾股定理即可求出正方形的边长.【解答】解:(1)∵直线y =﹣3x +3与x 轴、y 轴分别交于点A 、B ,∴A (1,0),B (0,3).又∵抛物线y =a (x ﹣2)2+k 经过点A (1,0),B (0,3),∴{a +k =04a +k =3,解得{a =1k =−1, 故a ,k 的值分别为1,﹣1;(2)如图1,设Q 点的坐标为(2,m ),对称轴x =2交x 轴于点F ,过点B 作BE 垂直于直线x =2于点E . 在Rt △AQF 中,AQ 2=AF 2+QF 2=1+m 2,在Rt △BQE 中,BQ 2=BE 2+EQ 2=4+(3﹣m )2,∵AQ =BQ ,∴1+m 2=4+(3﹣m )2,∴m =2,∴Q 点的坐标为(2,2);(3)如图2,当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.∵对称轴x=2是AC的中垂线,∴M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,其坐标为(2,1).此时,MF=NF=AF=CF=1,且AC⊥MN,∴四边形AMCN为正方形.在Rt△AFN中,AN=√AF2+NF2=√2,即正方形的边长为√2.【点睛】此题是二次函数的综合题,主要考查了二元一次方程组的解法,等腰三角形的性质,勾股定理,二次函数的性质,正方形的判定与性质,综合性较强,难度适中.,解本题的关键是用勾股定理求出点Q 的坐标.。

专题8二次函数与矩形正方形存在性问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(解析版)

专题8二次函数与矩形正方形存在性问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(解析版)

专题8二次函数与矩形正方形存在性问题【例1】(2021•齐齐哈尔)综合与探究如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是2;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.【分析】(1)先由题意得出A,B的坐标,再用待定系数法求出解析式即可;(2)根据两点的距离公式即可求出CD的长度;(3)先设出E的坐标,然后将△BCE的面积表示出来,求出最大值即可;(4)根据对角线的情况分三种讨论,再由矩形的性质求出点Q的坐标.【解析】(1)∵OA=1,∴A(﹣1,0),又∵对称轴为x=2,∴B(5,0),将A,B代入解析式得:,解得,∴,自变量x为全体实数;(2)由(1)得:C(0,),D(2,),∴CD=,故答案为2;(3)∵B(5,0),C(0,),∴直线BC的解析式为:,设E(x,),且0<x<5,作EF∥y轴交BC于点F,则F(x,),∴EF=﹣()=,∴,当x=时,S△BCE有最大值为;(4)设P(2,y),Q(m,n),由(1)知B(5,0),C(0,),若BC为矩形的对角线,由中点坐标公式得:,解得:,又∵∠BPC=90°,∴PC2+PB2=BC2,即:,解得y=4或y=﹣,∴n=或n=4,∴Q(3,)或Q(3,4),若BP为矩形得对角线,由中点坐标公式得,解得,又∵∠BCP=90°,BC2+CP2=BP2,即:,解得y=,∴Q(7,4),若BQ为矩形的对角线,由中点坐标公式得,解得:,又∵∠BCQ=90°,∴BC2+CQ2=BQ2,即:,解得n=,∴Q(﹣3,﹣),综上,点Q的坐标为(3,)或(3,4),或(7,4)或(﹣3,﹣).【例2】(2021•岳阳)如图,抛物线y=ax2+bx+2经过A(﹣1,0),B(4,0)两点,与y 轴交于点C,连接BC.(1)求该抛物线的函数表达式;(2)如图2,直线l:y=kx+3经过点A,点P为直线l上的一个动点,且位于x轴的上方,点Q为抛物线上的一个动点,当PQ∥y轴时,作QM⊥PQ,交抛物线于点M(点M 在点Q的右侧),以PQ,QM为邻边构造矩形PQMN,求该矩形周长的最小值;(3)如图3,设抛物线的顶点为D,在(2)的条件下,当矩形PQMN的周长取最小值时,抛物线上是否存在点F,使得∠CBF=∠DQM?若存在,请求出点F的坐标;若不存在,请说明理由.【分析】(1)用待定系数法即可求解;(2)设点Q的坐标为(x,﹣x2+x+2),则点P的坐标为(x,3x+3),设矩形周长为C,则C=2(PQ+QM)=2[3﹣2x+3x+3﹣(﹣x2+x+2)]=x2﹣x+8,即可求解;(3)过点D作DK⊥QM于点K,则DK=y D﹣y Q=﹣=,同理可得,QK=1,则tan∠DQM=,在△BOC中,tan∠CBO==,即可求解.【解析】(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2),即y=a(x+1)(x﹣4)=a(x2﹣3x﹣4)=ax2﹣3ax﹣4a,即﹣4a=2,解得a=﹣,故抛物线的表达式为y=﹣x2+x+2;(2)将点A的坐标代入直线l的表达式得:0=﹣k+3,解得k=3,故直线l的表达式为y=3x+3,设点Q的坐标为(x,﹣x2+x+2),则点P的坐标为(x,3x+3),由题意得,点Q、M关于抛物线对称轴对称,而抛物线的对称轴为直线x=,故点M的横坐标为3﹣x,则QM=3﹣x﹣x=3﹣2x,设矩形周长为C,则C=2(PQ+QM)=2[3﹣2x+3x+3﹣(﹣x2+x+2)]=x2﹣x+8,∵1>0,故C有最小值,当x=时,矩形周长最小值为;(3)当x=时,y=﹣x2+x+2=,即点Q的坐标为(,),由抛物线的表达式知,点D的坐标为(,),过点D作DK⊥QM于点K,则DK=y D﹣y Q=﹣=,同理可得,QK=1,则tan∠DQM=,∵∠CBF=∠DQM,故tan∠CBF=tan∠DQM=,在△BOC中,tan∠CBO==,故BF和BO重合,故点F和点A重合,即点F的坐标为(﹣1,0),当点F在直线BC的上方时,∵AC=,BC=2,AB=5,∴AB2=AC2+BC2,∴∠ACB=90°,则点A关于BC的对称点A′(1,4),∴直线BF的解析式为y=﹣x+,由,解得或,∴F(,),综上所述,满足条件的点F的坐标为(﹣1,0)或(,)【例3】(2020•吉林)如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+32.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.【分析】(1)利用待定系数法求解即可.(2)根据点M与点P的纵坐标相等构建方程求解即可.(3)根据PQ=MQ,构建方程求解即可.(3)当点P在直线l的左边,点M在点Q是下方下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有﹣m+32<−12m2+m+32,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中.当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中.【解答】解:(1)把点A(3,0)代入y=−12x2+bx+32,得到0=−92+3b+32,解得b=1.(2)∵抛物线的解析式为y=−12x2+x+32,∴P(m,−12m2+m+32),∵M,Q重合,∴﹣m+32=−12m2+m+32,解得m=0或4.(3)y=−12x2+x+32=−12(x﹣1)2+2,∴抛物线的顶点坐标为(1,2),由题意PQ=MQ,且抛物线的顶点在该正方形内部,∴3﹣m=﹣m+32−(−12m2+m+32)且﹣m+32>2,得m<−12解得m=1−√7或1+√7(不合题意舍弃),∴m=1−√7.(4)当点P在直线l的左边,点M在点Q下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有﹣m+32<−12m2+m+32,∴m2﹣4m<0,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中,当3<m<4时,抛物线不在矩形PQMN内部,不符合题意,当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中,综上所述,满足条件的m的值为0<m<3或m>4.【点评】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,矩形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考压轴题.【例4】(2020•锦州)在平面直角坐标系中,抛物线y=−13x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式;(2)如图,直线y=34x+94与抛物线交于A,D两点,与直线BC交于点E.若M(m,0)是线段AB上的动点,过点M作x轴的垂线,交抛物线于点F,交直线AD于点G,交直线BC于点H.①当点F在直线AD上方的抛物线上,且S△EFG=59S△OEG时,求m的值;②在平面内是否在点P,使四边形EFHP为正方形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)根据抛物线解析式中a=−13和交x轴于A(﹣3,0),B(4,0)两点,利用交点式可得抛物线的解析式;(2)①如图1,先利用待定系数法求直线BC的解析式,联立方程可得交点E的坐标,根据M (m ,0),且MH ⊥x 轴,表示点G (m ,34m +94),F (m ,−13m 2+13m +4),由S △EFG =59S △OEG ,列方程可得结论;②存在,根据正方形的性质得:FH =EF ,∠EFH =∠FHP =∠HPE =90°,同理根据M (m ,0),得H (m ,﹣m +4),F (m ,−13m 2+13m +4),分两种情况:F 在EP 的左侧,在EP 的右侧,根据EF =FH ,列方程可得结论.【解答】解:(1)∵抛物线y =−13x 2+bx +c 交x 轴于A (﹣3,0),B (4,0)两点, ∴y =−13(x +3)(x ﹣4)=−13x 2+13x +4; (2)①如图1,∵B (4,0),C (0,4),∴设BC 的解析式为:y =kx +b , 则{4k +b =0b =4,解得{k =−1b =4, ∴BC 的解析式为:y =﹣x +4, ∴﹣x +4=34x +94, 解得:x =1, ∴E (1,3),∵M (m ,0),且MH ⊥x 轴,∴G (m ,34m +94),F (m ,−13m 2+13m +4),∵S △EFG =59S △OEG , ∴12FG ×(x E −x F )=59×12×OP(x E −x G ),[(−13m 2+13m +4)﹣(34m +94)](1﹣m )=59×94(1−m), 解得:m 1=34,m 2=﹣2;②存在,由①知:E (1,3), ∵四边形EFHP 是正方形,∴FH =EF ,∠EFH =∠FHP =∠HPE =90°, ∵M (m ,0),且MH ⊥x 轴,∴H (m ,﹣m +4),F (m ,−13m 2+13m +4), 分两种情况:i )当﹣3≤m <1时,如图2,点F 在EP 的左侧,∴FH =(﹣m +4)﹣(−13m 2+13m +4)=13m 2−43m , ∵EF =FH , ∴13m 2−43m =1−m ,解得:m 1=1+√132(舍),m 2=1−√132, ∴H (1−√132,7+√132), ∴P (1,7+√132), ii )当1<m <4时,点F 在PE 的右边,如图3,同理得−13m 2+43m =m ﹣1,解得:m 1=1+√132,m 2=1−√132(舍), 同理得P (1,7−√132);综上,点P 的坐标为:(1,7+√132)或(1,7−√132). 【点评】本题考查的是二次函数综合运用,涉及到一次函数,正方形的性质,二次函数,两函数的交点,图形的面积计算等,与方程相结合,求解点的坐标,难度适中. 【例5】(2020•兰州)如图,二次函数y =14x 2+bx +c 的图象过点A (4,﹣4),B (﹣2,m ),交y 轴于点C (0,﹣4).直线BO 与抛物线相交于另一点D ,连接AB ,AD ,点E 是线段AB 上的一动点,过点E 作EF ∥BD 交AD 于点F . (1)求二次函数y =14x 2+bx +c 的表达式; (2)判断△ABD 的形状,并说明理由;(3)在点E 的运动过程中,直线BD 上存在一点G ,使得四边形AFGE 为矩形,请判断此时AG 与BD 的数量关系,并求出点E 的坐标;(4)点H 是抛物线的顶点,在(3)的条件下,点P 是平面内使得∠EPF =90°的点,在抛物线的对称轴上,是否存在点Q ,使得△HPQ 是以∠PQH 为直角的等腰直角三角形,若存在,直接写出符合条件的所有点Q 的坐标;若不存在,请说明理由.【分析】(1)把A ,C 两点坐标代入抛物线的解析式,转化为解方程组,即可解决问题. (2)求出AB ,AD ,BD ,利用勾股定理的逆定理判断即可.(3)利用矩形的性质以及平行线分线段成比例定理证明BE =AE ,BG =GD ,即可解决问题.(4)如图2中,设EF 的中点为K ,P (x ,y ),连接PK .求直线PH 的解析式,想办法构建方程求出点P 的纵坐标y 即可解决问题.【解答】解:(1)∵二次函数y =14x 2+bx +c 的图象过点A (4,﹣4),点C (0,﹣4),∴{c =−44+4b +c =−4, 解得{b =−1c =−4,∴二次函数的解析式为y =14x 2﹣x ﹣4.(2)△ABD 是直角三角形,理由: ∵B (﹣2,m )在y =14x 2﹣x ﹣4, ∴B (﹣2,﹣1),∴直线OB 的解析式为y =12x ,由{y =12x y =14x 2−x −4,解得{x =−2y =−2(即点B )或{x =8y =4, ∴D (8,4), ∵A (4,﹣4),∴AB =√62+32=3√5,AD =√42+82=4√5,BD =√102+52=5√5, ∴BD 2=AB 2+AD 2, ∴∠BAD =90°, ∴△ABD 是直角三角形.(3)结论AG =12BD .理由:如图1中,连接AG ,交EF 于H .∵四边形AEGF 是矩形,∴AH =HG ,EH =FH , ∵EF ∥BD , ∴AE EB=AH GH=1,∴AE =BE , ∴E (1,−52), ∵EH BG=AH AG=FH DG,EH =FH ,∴BG =GD , ∵∠BAD =90°, ∴AG =12BD .(4)如图2中,设EF 的中点为K ,P (x ,y ),连接PK .∵E (1,−52),F (6,0), ∴K (72,−54),EF =√52+(52)2=5√52, ∵∠EPF =90°,∴点P 在以EF 为直径的⊙K 上运动, ∵△PQH 是等腰直角三角形,∠PQH =90°, ∴∠QHP =45°,∵抛物线的顶点H (2,﹣5), ∴直线PH 的解析式为y =x ﹣7, ∵PK =12EF ,∴(x −72)2+(y +54)2=(5√54)2, (y +7−72)2+(y +54)2=(5√54)2, 解得y =﹣4或−34,∴Q (2,﹣4)或(2,−34).【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,等腰直角三角形的判定和性质,矩形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考压轴题.【题组一】1.(2020•雁塔区校级模拟)已知二次函数y =−13x 2+bx +c 的图象L 经过原点,与x 轴的另一个交点为(8,0). (1)求该二次函数的解析式;(2)作x 轴的平行线,交L 于A ,B 两点(点A 在点B 的左边),过A ,B 两点作x 轴的垂线,垂足分别为点D ,C .当以A ,B ,C ,D 为顶点的四边形是正方形时,求点A 的坐标.【分析】(1)利用待定系数法解决问题即可.(2)如图,设A (m ,−13m 2+83m ),由四边形ABCD 是正方形,推出AD =CD ,由此构建方程解决问题即可.【解答】解:(1)∵二次函数y =−13x 2+bx +c 的图象L 经过原点,与x 轴的另一个交点为(8,0),∴{c =0−643+8b =0, 解得{b =83c =0,∴抛物线的解析式为y =−13x 2+83x .(2)如图,设A (m ,−13m 2+83m ), ∵四边形ABCD 是正方形, ∴AD =CD ,∴|−13m2+83m|=2(4﹣m),解得m=2或12(舍弃)或﹣4或6(舍弃),∴A(2,4)或(﹣4,﹣16),综上所述,满足条件的等A的坐标为(2,4)或(﹣4,﹣16).【点评】本题属于二次函数综合题,考查了二次函数的性质,正方形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.2.(2020•钟楼区校级模拟)将抛物线C1:y=﹣x2+3沿x轴翻折,得抛物线C2.(1)请求出抛物线C2的表达式;(2)现将抛物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x 轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D、E.在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.【分析】(1)抛物线翻折前后顶点关于x轴对称,顶点的纵坐标为互为相反数;(2)连接AN,NE,EM,MA,M,N关于原点O对称可得OM=ON,A,E关于原点O对称可得OA=OE,判断四边形ANEM为平行四边形;若AM2+ME2=AE2,解得m=2√3 3,即可求解;【解答】解:(1)∵抛物线C1:y=﹣x2+3的顶点为(0,3),∴翻折后的抛物线的顶点坐标为(0,﹣3),∴抛物线C2解析式为:y=x2﹣3;(2)存在连接AN,NE,EM,MA,依题意可得:M(﹣m,3),N(m,﹣3),∴M,N关于原点O对称,∴OM=ON,原C1、C2抛物线与x轴的两个交点分别(−√3,0),(√3,0),∴A(−√3−m,0),E(√3+m,0),∴A,E关于原点O对称,∴OA=OE,∴四边形ANEM为平行四边形,∴AM2=3+9=12,ME2=(√3+m+m)2+32=4m2+4√3m+12,AE2=(√3+m+√3+m)2=4m2+8√3m+12,若AM2+ME2=AE2,∴12+4m2+4√3m+12=4m2+8√3m+12,解得m=√3,此时△AME是直角三角形,且∠AME=90°,∴当m=√3时,以点A,N,E,M为顶点的四边形是矩形.【点评】本题是二次函数综合题,考查二次函数关于x轴对称,平行四边形的判定,矩形的性质.找准二次函数图象变化后对应的点是解决翻折后函数图象的关键;能够在平面直角坐标系中,通过坐标点的特点判定平行四边形,利用勾股定理判定矩形是解决本题的关键.3.(2020•历下区模拟)如图,在平面直角坐标系中,抛物线L:y=ax2+c与x轴相交于A、B两点,顶点C(0,2).AB=2√2.点M(m,0)是x轴正半轴上一点,抛物线L关于点M对称的抛物线为L'.(1)求抛物线L的函数表达式;(2)点P是第一象限抛物线L上一点,点P到两坐标轴的距离相等,点P在抛物线L'上的对应点为P'.设E是抛物线L上的动点,E'是点E在抛物线L'上的对应点,试探究四边形PEP'E′能否成为正方形.若能,求出m的值;若不能,请说明理由.【分析】(1)由题意抛物线的顶点C(0,2),A(−√2,0),设抛物线的解析式为y=ax2+2,把A(−√2,0)代入可得a=﹣1,由此即可解决问题;(2)情形1,如图1中,四边形PEP′E′能成为正方形.作PK⊥x轴于K,EH⊥x轴于H.由题意易知P(1,1),当△PME是等腰直角三角形时,四边形PEP′E′是正方形,推出PM=ME,∠PME=90°,由△PKM≌△MHE,可得PK=MH=1,MK=HE =1﹣m,可得E(m+1,m﹣1),利用待定系数法即可解决问题;情形2,如图2中,四边形PEP′E′是正方形,同法可得E(m﹣1,1﹣m),利用待定系数法即可解决问题.【解答】解:(1)由题意抛物线的顶点C(0,2),A(−√2,0),设抛物线的解析式为y =ax2+2,把A(−√2,0)代入可得a=﹣1,∴抛物线L的函数表达式为y=﹣x2+2.(2)结论:四边形PEP′E′能成为正方形.理由:情形1,如图1中,作PK⊥x轴于K,EH⊥x轴于H.由题意易知P(1,1),当△PME是等腰直角三角形时,四边形PEP′E′是正方形,∴PM=ME,∠PME=90°,由△PKM≌△MHE,可得PK=MH=1,MK=EH=1﹣m,∴E(m+1,m﹣1),∵点E在y=﹣x2+2上,∴m﹣1=﹣(m+1)2+2,解得m=−3+√172或−3−√172(舍弃),∴m=−3+√172时,四边形PMP′N是正方形.情形2,如图2中,四边形PMP′N是正方形,同法可得M(m﹣1,1﹣m),把E(m﹣1,1﹣m)代入y=﹣x2+1中,1﹣m=﹣(m﹣1)2+2,解得m=3或0(舍弃),∴m=3时,四边形PEP′E′是正方形.综上,四边形PEP′E′能成为正方形,m=−3+√172或3.【点评】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,属于中考压轴题.4.(2020•武侯区模拟)已知抛物线y=−14x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.(1)求抛物线的函数表达式和顶点B的坐标;(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC 上的动点(点E不与A,C两点重合);(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;(ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.【分析】(1)由题意得出{−14×42+4b+c=3−b2×(−14)=2,解得{b=1c=3,得出抛物线的函数表达式为:y=−14x2+x+3=−14(x﹣2)2+4,即可得出顶点B的坐标为(2,4);(2)(i)求出C(0,3),设点E的坐标为(m,3),求出直线BE的函数表达式为:y=−1m−2x+4m−6m−2,则点M的坐标为(4m﹣6,0),由题意得出OC=3,AC=4,OM=4m﹣6,CE=m,则S矩形ACOD=12,S梯形ECOM=15m−182,分两种情况求出m的值即可;(ii)过点F作FN⊥AC于N,则NF∥CG,设点F的坐标为:(a,−14a2+a+3),则NF=3﹣(−14a2+a+3)=14a2﹣a,NC=﹣a,证△EFN≌△DGO(ASA),得出NE=OD=AC=4,则AE=NC=﹣a,证△ENF∽△DAE,得出NEAD=NFAE,求出a=−43或0,当a=0时,点E与点A重合,舍去,得出AE=NC=﹣a=43,即可得出结论.【解答】解:(1)∵抛物线y=−14x2+bx+c经过点A(4,3),对称轴是直线x=2,∴{−14×42+4b +c =3−b 2×(−14)=2, 解得:{b =1c =3, ∴抛物线的函数表达式为:y =−14x 2+x +3,∵y =−14x 2+x +3=−14(x ﹣2)2+4,∴顶点B 的坐标为(2,4);(2)(i )∵y =−14x 2+x +3,∴x =0时,y =3,则C 点的坐标为(0,3),∵A (4,3),∴AC ∥OD ,∵AD ⊥x ,∴四边形ACOD 是矩形,设点E 的坐标为(m ,3),直线BE 的函数表达式为:y =kx +n ,直线BE 交x 轴于点M ,如图1所示:则{2k +n =4mk +n =3, 解得:{k =−1m−2n =4m−6m−2, ∴直线BE 的函数表达式为:y =−1m−2x +4m−6m−2,令y =−1m−2x +4m−6m−2=0,则x =4m ﹣6, ∴点M 的坐标为(4m ﹣6,0),∵直线BE 将四边形ACOD 分成面积比为1:3的两部分,∴点M 在线段OD 上,点M 不与点O 重合,∵C (0,3),A (4,3),M (4m ﹣6,0),E (m ,3),∴OC =3,AC =4,OM =4m ﹣6,CE =m ,∴S 矩形ACOD =OC •AC =3×4=12,S 梯形ECOM =12(OM +EC )•OC =12(4m ﹣6+m )×3=15m−182, 分两种情况:①S 梯形ECOMS 矩形ACOD =14,即15m−18212=14,解得:m =85,∴点E 的坐标为:(85,3); ②S 梯形ECOMS 矩形ACOD =34,即15m−18212=34, 解得:m =125, ∴点E 的坐标为:(125,3);综上所述,点E 的坐标为:(85,3)或(125,3);(ii )存在点G 落在y 轴上的同时点F 恰好落在抛物线上;理由如下:由题意得:满足条件的矩形DEFG 在直线AC 的下方,过点F 作FN ⊥AC 于N ,则NF ∥CG ,如图2所示:设点F 的坐标为:(a ,−14a 2+a +3),则NF =3﹣(−14a 2+a +3)=14a 2﹣a ,NC =﹣a ,∵四边形DEFG 与四边形ACOD 都是矩形,∴∠DAE =∠DEF =∠N =90°,EF =DG ,EF ∥DG ,AC ∥OD ,∴∠NEF =∠ODG ,∠EMC =∠DGO ,∵NF ∥CG ,∴∠EMC =∠EFN ,∴∠EFN =∠DGO ,在△EFN 和△DGO 中,{∠NEF =∠ODGEF =DG ∠EFN =∠DGO,∴△EFN ≌△DGO (ASA ),∴NE =OD =AC =4,∴AC ﹣CE =NE ﹣CE ,即AE =NC =﹣a ,∵∠DAE =∠DEF =∠N =90°,∴∠NEF +∠EFN =90°,∠NEF +∠DEA =90°,∴∠EFN =∠DEA ,∴△ENF ∽△DAE ,∴NE AD =NF AE ,即43=14a 2−a −a ,整理得:34a 2+a =0,解得:a =−43或0,当a =0时,点E 与点A 重合,∴a =0舍去,∴AE =NC =﹣a =43,∴当点G 落在y 轴上的同时点F 恰好落在抛物线上,此时AE 的长为43.【点评】本题是二次函数综合题目,考查了二次函数解析式的求法、二次函数的性质、一次函数解析式的求法、坐标与图形性质、矩形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、梯形面积公式等知识;本题综合性强,属于中考压轴题型.【题组二】5.(2020•犍为县二模)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a <0)与x 轴交于A (﹣2,0)、B (4,0)两点,与y 轴交于点C ,且OC =2OA .(1)试求抛物线的解析式;(2)直线y =kx +1(k >0)与y 轴交于点D ,与抛物线交于点P ,与直线BC 交于点M ,记m =PM DM,试求m 的最大值及此时点P 的坐标; (3)在(2)的条件下,点Q 是x 轴上的一个动点,点N 是坐标平面内的一点,是否存在这样的点Q 、N ,使得以P 、D 、Q 、N 四点组成的四边形是矩形?如果存在,请求出点N 的坐标;如果不存在,请说明理由.【分析】(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),求出点C坐标代入求出a即可;(2)由△CMD∽△FMP,可得m=PMDM=PFDC,根据关于m关于x的二次函数,利用二次函数的性质即可解决问题;(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.分两种情形分别求解即可:①当DP是矩形的边时,有两种情形;②当DP是对角线时;【解答】解:(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=−1 2,∴y=−12(x+2)(x﹣4)或y=−12x2+x+4或y=−12(x﹣1)2+92.(2)如图1中,由题意,点P在y轴的右侧,作PE⊥x轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m=PMDM=PFDC,∵直线y =kx +1(k >0)与y 轴交于点D ,则D (0,1),∵BC 的解析式为y =﹣x +4,设P (n ,−12n 2+n +4),则F (n ,﹣n +4),∴PF =−12n 2+n +4﹣(﹣n +4)=−12(n ﹣2)2+2,∴m =PF CD =−16(n ﹣2)2+23,∵−16<0,∴当n =2时,m 有最大值,最大值为23,此时P (2,4).(3)存在这样的点Q 、N ,使得以P 、D 、Q 、N 四点组成的四边形是矩形.①当DP 是矩形的边时,有两种情形,a 、如图2﹣1中,四边形DQNP 是矩形时,有(2)可知P (2,4),代入y =kx +1中,得到k =32,∴直线DP 的解析式为y =32x +1,可得D (0,1),E (−23,0),由△DOE ∽△QOD 可得OD OQ =OE OD ,∴OD 2=OE •OQ ,∴1=23•OQ ,∴OQ =32,∴Q (32,0). 根据矩形的性质,将点P 向右平移32个单位,向下平移1个单位得到点N , ∴N (2+32,4﹣1),即N (72,3)b 、如图2﹣2中,四边形PDNQ 是矩形时,∵直线PD 的解析式为y =32x +1,PQ ⊥PD ,∴直线PQ 的解析式为y =−23x +163,∴Q (8,0),根据矩形的性质可知,将点D 向右平移6个单位,向下平移4个单位得到点N , ∴N (0+6,1﹣4),即N (6,﹣3).②当DP 是对角线时,设Q (x ,0),则QD 2=x 2+1,QP 2=(x ﹣2)2+42,PD 2=13, ∵Q 是直角顶点,∴QD 2+QP 2=PD 2,∴x 2+1+(x ﹣2)2+16=13,整理得x 2﹣2x +4=0,方程无解,此种情形不存在,综上所述,满足条件的点N 坐标为(72,3)或(6,﹣3). 【点评】本题考查二次函数综合题、一次函数的应用、平行线的性质.相似三角形的判定和性质、矩形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.6.(2021•沙坪坝区模拟)如图,在平面直角坐标系中,抛物线y =x 2+bx +c 与x 轴交于点A (﹣1,0),B (3,0)与y 轴交于点C .(1)求该抛物线的函数表达式;(2)点P 是直线BC 下方抛物线上的任意一点,连接PB ,PC ,以PB ,PC 为邻边作平行四边形CPBD ,求四边形CPBD 面积的最大值;(3)将该抛物线沿射线CB 方向平移个单位,平移后的抛物线与y 轴交于点E ,点M 为直线BC 上的一点,在平面直角坐标系中是否存在点N ,使以点C ,E ,M ,N 为顶点的四边形为矩形,若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)将A(﹣1,0),B(3,0)代入y=x2+bx+c,列方程组求出b、c的值;(2)过点P作PH⊥x轴于点H,交直线BC于点G,设点P的横坐标为x,用含x的代数式分别表示点P、点G的坐标,进而表示线段PG的长,由S△PBC=PG•OB,得S平=PG•OB,得到S平行四边形CPBD关于x的二次函数,利用二次函数的性质求出四行四边形CPBD边形CPBD面积的最大值;(3)存在点N使以点C,E,M,N为顶点的四边形为矩形.设平移后的抛物线的顶点为R,过点R向原来抛物线的对称轴作垂线,得到与△BOC相似的三角形,根据平移的距离及相似三角形的性质求出点R的坐标,再求出平移后的抛物线的函数表达式,得到其与y轴的交点E的坐标,再根据相似三角形的性质,按CE为矩形的边或矩形的对角线两种情况分别求出点N的坐标.【解析】(1)把A(﹣1,0),B(3,0)代入y=x2+bx+c,得,解得,∴该抛物线的函数表达式为y=x2﹣x﹣2.(2)如图1,过点P作PH⊥x轴于点H,交BC于点G.∵抛物线y=x2﹣x﹣2与y轴交于点C,∴C(0,﹣2).设直线BC的函数表达式为y=kx﹣2,则3k﹣2=0,解得k=,∴y=x﹣2.设P(x,x2﹣x﹣2)(0<x<3),则G(x,x﹣2),∴PG=x﹣2﹣(x2﹣x﹣2)=﹣x2+2x,∵S△PBC=PG•OH+PG•BH=PG•OB=PG,∴S平行四边形CPBD=2S△PBC=3PG,∴S平行四边形CPBD=3(﹣x2+2x)=﹣2x2+6x=﹣2(x﹣)2+,∴当x=时,四边形CPBD的面积的值最大,最大值为.(3)存在.如图2,设抛物线y=x2﹣x﹣2的顶点为Q,其对称轴交x轴于点J,交直线BC于点K,设抛物线y=x2﹣x﹣2平移后的顶点为R,过点R作RI⊥JQ于点I.∵QR∥BC,∴∠RQI=∠BKJ=∠BCO,∵∠RIQ=∠BOC=90°,∴△RIQ∽△BOC.∵OB=3,OC=2,∴BC==,∴OC:OB:BC=2:3:,∴IQ:IR:QR=2:3:,∵QR=,∴IQ=QR=×=1,IR=QR=×=.由y=x2﹣x﹣2=y=(x﹣1)2﹣,得Q(1,﹣),∴1+=,+1=,R(,),∴平移后抛物线的函数表达式为y=(x﹣)2﹣,当x=0时,y=×()2=,∴E(0,).若以C、E、M、N为顶点的四边形是以CE为一边的矩形,则EM∥CN,EM=CN.当y=时,由x﹣2=,得x=,∴M(,),N(,﹣2);若以C、E、M、N为顶点的四边形是以CE为对角线的矩形,则EN∥CM,EN=CM.如图3,作NT⊥y轴于点T.∵EN∥BC,∴∠NET=∠ECM=∠BCO,∵∠NTE=∠EMC=∠BOC=90°,∴△NTE∽△EMC∽△BOC,∴EN=CM=CE=×(+2)=,∴TN=EN=×=,TE=EN=×=,∴OT==,∴N(,).综上所述,点N的坐标为(,﹣2)或(﹣,).7.(2021•沙坪坝区校级模拟)在平面直角坐标系中,抛物线y=x2﹣x+3与x轴交于A、B两点(点A在点B的左侧),交y轴于点C.点D是抛物线上位于直线BC下方的一点.(1)如图1,连接AD,CD,当点D的横坐标为5时,求S△ADC;(2)如图2,过点D作DE∥AC交BC于点E,求DE长度的最大值及此时点D的坐标;(3)如图3,将抛物线y=x2﹣x+3向右平移4个单位,再向下平移2个单位,得到新抛物线y'=ax2+bx+c.新抛物线与原抛物线的交点为点F,G为新抛物线的对称轴上的一点,点H是坐标平面内一点,若以C,F,G,H为顶点的四边形是矩形,请求出所有符合条件的点H坐标.【分析】(1)把D的横坐标代入抛物线解析式得纵坐标,根据解析式,当x=0时,可得C的坐标,令直线DC与x交点为E,两点确定一条直线,解析式,直线CD为y=﹣x+3,即得E坐标,当y=0时,代入抛物线解析式得A、B坐标,S△ACD=S△AEC+S△AED,通过计算可得结果;(2)由(1)知A,B,C坐标,两点确定一条直线,可得直线AC和直线BC的解析式,过D点作l平行于BC,只有当l与抛物线相切时候,DE取最大值,设l解析式为y=﹣x+b,联立直线l和抛物线的解析式得到二元一次方程组,可得x2﹣6x+6﹣2b=0,相切时即Δ=0,可得b的值和D的坐标,设直线DE的解析式为y=﹣3x+b,直线DE与抛物线的解析式联立方程组可得E的坐标,根据两点间的距离公式得DE的值;(3)根据平移的性质得到新的抛物线为y=x2﹣x+23,由对称轴公式x=﹣得对称轴,联立抛物线和新抛物线得F点坐标为(5,﹣2),两点确定一条直线的解析式,直线CF为y=﹣x+3,分情况讨论,若CFGH是矩形,当CF⊥FG时,两直线垂直,斜率积为1,HG⊥FG,HC⊥CF,可求得直线FG、直线CH、直线HG的解析式,可得H 的坐标,当CG⊥CF时,同理可得H的坐标.【解析】(1)将x=5代入y=x2﹣x+3,得y=﹣2,∴D(5,﹣2),令DC与x轴交点为E,由题可知:C(0,3),∴CD直线的表达式:y=x+3=﹣x+3,由此可知E(3,0),且如图1可知,S△ADC=S△ACE+S△ADE=•AE•OC+•AE•|y0|=×AE(OC+|y0|),将y=0代入方程,x2﹣x+3=0,可知A(1,0),B(6,0),∴AE=2,∴S△ADC=×2×(3+2)=5,∴S△ADC=5;(2)如图2,∵方程表达式没有变化,∴由(1)可知A(1,0),B(6,0),C(0,3),∴K AC=﹣3,K BC=﹣,∴AC:y=﹣3x+3,BC:y=﹣x+3,∵DE∥AC,∴K DE=K AC=﹣3,过D点作l平行于BC,只有当l与抛物线相切的时候,DE取最大值,∵l∥BC,∴令l:y=﹣x+b,,得x2﹣x+3=﹣x+b,x2﹣3x+3﹣b=0,x2﹣6x+6﹣2b=0,当两条直线相切时,Δ=0,∴b2﹣4ac=0,3b﹣4(6﹣2b)=0,12+8b=0,∴b=﹣,∴l:y=﹣x﹣,将b=﹣代入x2﹣6x+6﹣2b=0,可得x=3,∴x D=3,∴D(3,﹣3),∵K DE=﹣3,∴DE:y=﹣3(x﹣3)﹣3=﹣3x+6,∵E是CB、DE的交点,∴,得E(,),∴DE max==,D坐标为(3,﹣3);(3)y=x2﹣x+3向右平移4个单位,向下平移2个单位,∴新抛物线方程为:y=(x﹣4)2﹣(x﹣4)+3﹣2=x2﹣x+23,∴对称轴为:x=,∵F是它两交点,∴,得F(5,﹣2),∵C(0,3),∴CF:y=﹣x+3,①如果CFGH是矩形,即CF⊥FG,∴K FG•K CF=﹣1,∴K FG=1,∴PG:y=x﹣5﹣2=x﹣7,∵x G=,∴G(,),∵HG⊥FG,HC⊥CF,∴K CH=1,K HG=﹣1,∴CH:y=x+3,HG:y=﹣x+8,∴H(,),②如果CG⊥CF,如下图,CF:y=﹣x+3,∴CG:y=x+3,∴G(,),∵K GH=﹣1,K FH=1,∴GH:y=﹣x+18,FH:y=x﹣7,∴H(,),综上所述,H(,)或(,).8.(2019•铜仁市)如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由.(3)已知点P是直线y=12x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.【分析】(1)待定系数法将已知点的坐标分别代入得方程组并解方程组即可求得抛物线的表达式;(2)先求得C 1(0,1),再由待定系数法求得直线C 1B 解析式y =−12x +1,设M (t ,−12t +1),得S 矩形MFOE =OE ×OF =t (−12t +1)=−12(t ﹣1)2+12,由二次函数性质即可得到结论;(3)以C 、C 1、P 、Q 为顶点的四边形为平行四边形要分两种情况进行讨论:①C 1C 为边,②C 1C 为对角线.【解答】解:(1)将A (﹣1,0),B (2,0)分别代入抛物线y =ax 2+bx ﹣1中,得{a −b =14a +2b =1,解得:{a =12b =−12 ∴该抛物线的表达式为:y =12x 2−12x ﹣1.(2)在y =12x 2−12x ﹣1中,令x =0,y =﹣1,∴C (0,﹣1)∵点C 关于x 轴的对称点为C 1,∴C 1(0,1),设直线C 1B 解析式为y =kx +b ,将B (2,0),C 1(0,1)分别代入得{2k +b =0b =1,解得{k =−12b =1, ∴直线C 1B 解析式为y =−12x +1,设M (t ,−12t +1),则 E (t ,0),F (0,−12t +1) ∴S 矩形MFOE =OE ×OF =t (−12t +1)=−12(t ﹣1)2+12,∵−12<0,∴当t =1时,S 矩形MFOE 最大值=12,此时,M (1,12);即点M 为线段C 1B 中点时,S 矩形MFOE 最大.(3)由题意,C (0,﹣1),C 1(0,1),以C 、C 1、P 、Q 为顶点的四边形为平行四边形,分以下两种情况:①C 1C 为边,则C 1C ∥PQ ,C 1C =PQ ,设P (m ,12m +1),Q (m ,12m 2−12m ﹣1), ∴|(12m 2−12m ﹣1)﹣(12m +1)|=2,解得:m 1=4,m 2=﹣2,m 3=2,m 4=0(舍), P 1(4,3),Q 1(4,5);P 2(﹣2,0),Q 2(﹣2,2);P 3(2,2),Q 3(2,0) ②C 1C 为对角线,∵C 1C 与PQ 互相平分,C 1C 的中点为(0,0),∴PQ 的中点为(0,0),设P (m ,12m +1),则Q (﹣m ,12m 2+12m ﹣1) ∴(12m +1)+(12m 2+12m ﹣1)=0,解得:m 1=0(舍去),m 2=﹣2, ∴P 4(﹣2,0),Q 4(2,0);综上所述,点P 和点Q 的坐标为:P 1(4,3),Q 1(4,5)或P 2(﹣2,0),Q 2(﹣2,2)或P 3(2,2),Q 3(2,0)或P 4(﹣2,0),Q 4(2,0).【点评】本题属于中考压轴题类型,主要考查了待定系数法求一次函数、二次函数解析式,二次函数的最值运用,平行四边形性质等,解题关键要正确表示线段的长度,掌握分类讨论的方法.【题组三】9.如图,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3交x 轴于A 、B 两点(点A 在点B 的左侧),交y 轴于点E ,一次函数y =x +1与抛物线交于A 、D 两点,交y 轴于点C ,且D (4,5).(1)求抛物线的解析式;(2)若点P 是第四象限内抛物线上的一点,过点作PQ ⊥AD 交AD 于点Q ,求PQ 的最大值以及相应的P 点坐标;(3)将抛物线向右平移1个单位长度,再向上平移1个单位长度得到新抛物线,新抛物线与原抛物线交于点R ,M 点在原抛物线的对称轴上,在平面内是否存在点N ,使得以点A 、R 、M 、N 为顶点的四边形是矩形?若存在,请直接写出N 点的坐标;若不存在,请说明理由.【分析】(1)用待定系数法即可求解;(2)由PQ=PH sin45°=(x+1﹣x2+2x+3),即可求解;(3)当AR是边时,用图象的平移和矩形对角线相等即可求解;当AR是对角线时,用中点坐标公式和矩形对角线相等,即可求解.【解析】(1)令y=x+1=0,解得x=﹣1,故点A(﹣1,0),将点A、D的坐标代入抛物线表达式得,解得,故抛物线的表达式为y=x2﹣2x﹣3①;(2)过点P作PH∥y轴交AD于点H,设点P的坐标为(x,x2﹣2x﹣3),则点H(x,x+1),由直线AD的表达式知,∠DAB=45°=∠AHP,则PQ=PH sin45°=(x+1﹣x2+2x+3)=﹣(x2﹣3x﹣4),∵﹣<0,故PQ有最大值,。

二次函数专题训练(正方形的存在性问题)含答案(可编辑修改word版)

二次函数专题训练(正方形的存在性问题)含答案(可编辑修改word版)

1.如图,已知抛物线y=x2+bx+c 的图象经过点A(l,0),B(﹣3,0),与y 轴交于点C,抛物线的顶点为D,对称轴与x 轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE=PC 时,求点P 的坐标.(3)在(2)的条件下,作PF⊥x 轴于F,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F,N,G,M 四点为顶点的四边形为正方形时,求点M 的坐标.2.如图,抛物线y=﹣x2+bx+c 与x 轴交于点A 和点B,与y 轴交于点C,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN∥x 轴与抛物线交于点N,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ,请写出点Q 的坐标.3.如图,已知抛物线y=ax2+bx﹣3 过点A(﹣1,0),B(3,0),点M、N 为抛物线上的动点,过点M 作MD∥y 轴,交直线BC 于点D,交x 轴于点E.过点N 作NF⊥x 轴,垂足为点 F(1)求二次函数y=ax2+bx﹣3 的表达式;(2)若M 点是抛物线上对称轴右侧的点,且四边形MNFE 为正方形,求该正方形的面积;(3)若M 点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M 的横坐标.4.(2015 贵州省毕节地区) 如图,抛物线y=x2+bx+c 与x 轴交于A(﹣1,0),B(3,0)两点,顶点M 关于x 轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB 的面积;(3)是否存在过A,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.5.(2016 辽宁省铁岭市) .如图,抛物线y=﹣x2+bx+c 与x 轴交于点A,点B,与y 轴交于点C,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN∥x 轴与抛物线交于点N,点P 在x 轴上,点Q 在平面内,以线段MN 为对角线作正方形MPNQ,请直接写出点Q 的坐标.6.(2016 广东省茂名市) .如图,抛物线y=﹣x2+bx+c 经过A(﹣1,0),B(3,0)两点,且与y 轴交于点C,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E,连接BD.(1)求经过A,B,C 三点的抛物线的函数表达式;(2)点P 是线段BD 上一点,当PE=PC 时,求点P 的坐标;(3)在(2)的条件下,过点P 作PF⊥x 轴于点F,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F、M、G 为顶点的四边形是正方形时,请求出点M 的坐标.二次函数专题训练(正方形的存在性问题)参考答案1.如图,已知抛物线y=x2+bx+c 的图象经过点A(l,0),B(﹣3,0),与y 轴交于点C,抛物线的顶点为D,对称轴与x 轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE=PC 时,求点P 的坐标.(3)在(2)的条件下,作PF⊥x 轴于F,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F,N,G,M 四点为顶点的四边形为正方形时,求点M 的坐标.【解答】解:(1)∵抛物线y=x2+bx+c 的图象经过点A(1,0),B(﹣3,0),∴,∴,∴抛物线的解析式为y=x2+2x﹣3;(2)由(1)知,抛物线的解析式为y=x2+2x﹣3;∴C(0,﹣3),抛物线的顶点D(﹣1,﹣4),∴E(﹣1,0),设直线BD 的解析式为y=mx+n,∴,∴,∴直线BD 的解析式为y=﹣2x﹣6,设点P(a,﹣2a﹣6),∵C(0,﹣3),E(﹣1,0),根据勾股定理得,PE2=(a+1)2+(﹣2a﹣6)2,PC2=a2+(﹣2a﹣6+3)2,∵PC=PE,∴(a+1)2+(﹣2a﹣6)2=a2+(﹣2a﹣6+3)2,∴a=﹣2,∴y=﹣2×(﹣2)﹣6=﹣2,∴P(﹣2,﹣2),(3)如图,作PF⊥x 轴于F,∴F(﹣2,0),设M(d,0),∴G(d,d2+2d﹣3),N(﹣2,d2+2d﹣3),∵以点F,N,G,M 四点为顶点的四边形为正方形,必有FM=MG,∴|d+2|=|d2+2d﹣3|,∴d= 或d=,∴点M 的坐标为(,0),(,0),(,0),(,0).2.如图,抛物线y=﹣x2+bx+c 与x 轴交于点A 和点B,与y 轴交于点C,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN∥x 轴与抛物线交于点N,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ,请写出点Q 的坐标.【解答】解:(1)把B、C 两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F 作FG⊥x 轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴= ,当点F 在x 轴上方时,有=,解得x=﹣1 或x=6(舍去),此时F 点的坐标为(﹣1,);当点F 在x 轴下方时,有=﹣,解得x=﹣3 或x=6(舍去),此时F 点坐标为(﹣3,﹣);综上可知F 点的坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对角线MN、PQ 交于点O′,∵点M、N 关于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点P 为抛物线对称轴与x 轴的交点,点Q 在抛物线的对称轴上,设Q(2,2n),则M 坐标为(2﹣n,n),∵点M 在抛物线y=﹣x2+2x+6 的图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+ 或n=﹣1﹣,∴满足条件的点Q 有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).3.如图,已知抛物线y=ax2+bx﹣3 过点A(﹣1,0),B(3,0),点M、N 为抛物线上的动点,过点M 作MD∥y 轴,交直线BC 于点D,交x 轴于点E.过点N 作NF⊥x 轴,垂足为点 F(1)求二次函数y=ax2+bx﹣3 的表达式;(2)若M 点是抛物线上对称轴右侧的点,且四边形MNFE 为正方形,求该正方形的面积;(3)若M 点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M 的横坐标.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx﹣3,得:,解得,故该抛物线解析式为:y=x2﹣2x﹣3;(2)由(1)知,抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该抛物线的对称轴是x=1,顶点坐标为(1,﹣4).如图,设点M 坐标为(m,m2﹣2m﹣3),其中m>1,∴ME=|﹣m2+2m+3|,∵M、N 关于x=1 对称,且点M 在对称轴右侧,∴点N 的横坐标为2﹣m,∴MN=2m﹣2,∵四边形MNFE 为正方形,∴ME=MN,∴|﹣m2+2m+3|=2m﹣2,分两种情况:①当﹣m2+2m+3=2m﹣2 时,解得:m1=、m2=﹣(不符合题意,舍去),当m=时,正方形的面积为(2﹣2)2=24﹣8 ;②当﹣m2+2m+3=2﹣2m 时,解得:m3=2+,m4=2﹣(不符合题意,舍去),当m=2+时,正方形的面积为[2(2+)﹣2]2=24+8 ;综上所述,正方形的面积为24+8或24﹣8.(3)设BC 所在直线解析式为y=px+q,把点B(3,0)、C(0,﹣3)代入表达式,得:,解得:,∴直线BC 的函数表达式为y=x﹣3,设点M 的坐标为(t,t2﹣2t﹣3),其中t<1,则点N(2﹣t,t2﹣2t﹣3),点D(t,t﹣3),∴MN=2﹣t﹣t=2﹣2t,MD=|t2﹣2t﹣3﹣t+3|=|t2﹣3t|.∵MD=MN,∴|t2﹣3t|=2﹣2t,分两种情况:①当t2﹣3t=2﹣2t 时,解得t1=﹣1,t2=2(不符合题意,舍去).②当3t﹣t2=2﹣2t 时,解得t3=,t2=(不符合题意,舍去).综上所述,点M 的横坐标为﹣1 或.4.(2015 贵州省毕节地区) 如图,抛物线y=x2+bx+c 与x 轴交于A(﹣1,0),B(3,0)两点,顶点M 关于x 轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB 的面积;(3)是否存在过A,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.分析:(1)根据待定系数法,可得函数解析式;(2)根据轴对称,可得M′的坐标,根据待定系数法,可得AM′的解析式,根据解方程组,可得B 点坐标,根据三角形的面积公式,可得答案;(3)根据正方形的性质,可得P、Q 点坐标,根据待定系数法,可得函数解析式.解答:解:(1)将A、B 点坐标代入函数解析式,得,解得,抛物线的解析式y=x2﹣2x﹣3;(2)将抛物线的解析式化为顶点式,得y=(x﹣1)2﹣4,M 点的坐标为(1,﹣4),M′点的坐标为(1,4),设AM′的解析式为y=kx+b,将A、M′点的坐标代入,得,解得,AM′的解析式为y=2x+2,联立AM′与抛物线,得,解得,C 点坐标为(5,12).S△ABC=×4×12=24;(3)存在过A,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q,使得四边形APBQ 为正方形,由ABPQ 是正方形,A(﹣1,0)B(3,0),得P(1,﹣2),Q(1,2),或P(1,2),Q(1,﹣2),①当顶点P(1,﹣2)时,设抛物线的解析式为y=a(x﹣1)2﹣2,将A 点坐标代入函数解析式,得a(﹣1﹣1)2﹣2=0,解得a= ,抛物线的解析式为y=(x﹣1)2﹣2,②当P(1,2)时,设抛物线的解析式为y=a(x﹣1)2+2,将A 点坐标代入函数解析式,得a(﹣1﹣1)2+2=0,解得a=﹣,抛物线的解析式为y=﹣(x﹣1)2+2,综上所述:y=(x﹣1)2﹣2 或y=﹣(x﹣1)2+2,使得四边形APBQ 为正方形.5.(2016 辽宁省铁岭市) .如图,抛物线y=﹣x2+bx+c 与x 轴交于点A,点B,与y 轴交于点C,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN∥x 轴与抛物线交于点N,点P 在x 轴上,点Q 在平面内,以线段MN 为对角线作正方形MPNQ,请直接写出点Q 的坐标.分析(1)由点B、C 的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变形成顶点式即可得出结论;(2)设线段BF 与y 轴交点为点F′,设点F′的坐标为(0,m),由相似三角形的判定及性质可得出点F′的坐标,根据点B、F′的坐标利用待定系数法可求出直线BF 的解析式,联立直线BF 和抛物线的解析式成方程组,解方程组即可求出点F 的坐标;(3)设对角线MN、PQ 交于点O′,如图2 所示.根据抛物线的对称性结合正方形的性质可得出点P、Q 的位置,设出点Q 的坐标为(2,2n),由正方形的性质可得出点M 的坐标为(2﹣n,n).由点M 在抛物线图象上,即可得出关于n 的一元二次方程,解方程可求出n 值,代入点Q 的坐标即可得出结论.解答解:(1)将点B(6,0)、C(0,6)代入y=﹣x2+bx+c 中,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点D 的坐标为(2,8).(2)设线段BF 与y 轴交点为点F′,设点F′的坐标为(0,m),如图1 所示.∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,∴△F′BO∽△BDE,∴.∵点B(6,0),点D(2,8),∴点E(2,0),BE=6﹣4=4,DE=8﹣0=8,OB=6,∴OF′=•OB=3,∴点F′(0,3)或(0,﹣3).设直线BF 的解析式为y=kx±3,则有0=6k+3 或0=6k﹣3,解得:k=﹣或k=,∴直线BF 的解析式为y=﹣x+3 或y=x﹣3.联立直线BF 与抛物线的解析式得:①或②,解方程组①得:或(舍去),∴点F 的坐标为(﹣1,);解方程组②得:或(舍去),∴点F 的坐标为(﹣3,﹣).综上可知:点F 的坐标为(﹣1,)或(﹣3,﹣).(3)设对角线MN、PQ 交于点O′,如图2 所示.∵点M、N 关于抛物线对称轴对称,且四边形MPNQ 为正方形,∴点P 为抛物线对称轴与x 轴的交点,点Q 在抛物线对称轴上,设点Q 的坐标为(2,2n),则点M 的坐标为(2﹣n,n).∵点M 在抛物线y=﹣x2+2x+6 的图象上,∴n=﹣+2(2﹣n)+6,即n2+2n﹣16=0,解得:n1=﹣1,n2=﹣﹣1.∴点Q 的坐标为(2,﹣1)或(2,﹣﹣1).6.(2016 广东省茂名市) 】.如图,抛物线y=﹣x2+bx+c 经过A(﹣1,0),B(3,0)两点,且与y 轴交于点C,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E,连接BD.(1)求经过A,B,C 三点的抛物线的函数表达式;(2)点P 是线段BD 上一点,当PE=PC 时,求点P 的坐标;(3)在(2)的条件下,过点P 作PF⊥x 轴于点F,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F、M、G 为顶点的四边形是正方形时,请求出点M 的坐标.分析(1)利用待定系数法求出过A,B,C 三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D 的坐标,利用待定系数法求出直线BD 的解析式,设出点P 的坐标为(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x 的值,计算求出点P 的坐标;(3)设点M 的坐标为(a,0),表示出点G 的坐标,根据正方形的性质列出方程,解方程即可.解答解:(1)∵抛物线y=﹣x2+bx+c 经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C 三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1 时,y=4,∴点D 的坐标为(1,4),设直线BD 的解析式为:y=mx+n,则,解得,,∴直线BD 的解析式为y=﹣2x+6,设点P 的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P 的坐标为(2,2);(3)设点M 的坐标为(a,0),则点G 的坐标为(a,﹣a2+2a+3),∵以F、M、G 为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3 时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a= ,∴当以F M、G、为顶点的四边形是正方形时点,M 的坐标(0,)(0,)(0,)(,0).为,,,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(﹣3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P在直线BD上,当PE=PC时,求点P的坐标.(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.2.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.3.如图,已知抛物线y=ax2+bx﹣3过点A(﹣1,0),B(3,0),点M、N为抛物线上的动点,过点M 作MD∥y轴,交直线BC于点D,交x轴于点E.过点N作NF⊥x轴,垂足为点F(1)求二次函数y=ax2+bx﹣3的表达式;(2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积;(3)若M点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M的横坐标.4.(2015 贵州省毕节地区) 如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.5. (2016 辽宁省铁岭市) .如图,抛物线y=﹣x2+bx+c与x轴交于点A,点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.6. (2016 广东省茂名市) .如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.二次函数专题训练(正方形的存在性问题)参考答案1.如图,已知抛物线y=x2+bx+c的图象经过点A(l,0),B(﹣3,0),与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD.(1)求抛物线的解析式.(2)若点P在直线BD上,当PE=PC时,求点P的坐标.(3)在(2)的条件下,作PF⊥x轴于F,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标.【解答】解:(1)∵抛物线y=x2+bx+c的图象经过点A(1,0),B(﹣3,0),∴,∴,∴抛物线的解析式为y=x2+2x﹣3;(2)由(1)知,抛物线的解析式为y=x2+2x﹣3;∴C(0,﹣3),抛物线的顶点D(﹣1,﹣4),∴E(﹣1,0),设直线BD的解析式为y=mx+n,∴,∴,∴直线BD的解析式为y=﹣2x﹣6,设点P(a,﹣2a﹣6),∵C(0,﹣3),E(﹣1,0),根据勾股定理得,PE2=(a+1)2+(﹣2a﹣6)2,PC2=a2+(﹣2a﹣6+3)2,∵PC=PE,∴(a+1)2+(﹣2a﹣6)2=a2+(﹣2a﹣6+3)2,∴a=﹣2,∴y=﹣2×(﹣2)﹣6=﹣2,∴P(﹣2,﹣2),(3)如图,作PF⊥x轴于F,∴F(﹣2,0),设M(d,0),∴G(d,d2+2d﹣3),N(﹣2,d2+2d﹣3),∵以点F,N,G,M四点为顶点的四边形为正方形,必有FM=MG,∴|d+2|=|d2+2d﹣3|,∴d=或d=,∴点M的坐标为(,0),(,0),(,0),(,0).2.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F点坐标为(﹣3,﹣);综上可知F点的坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对角线MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).3.如图,已知抛物线y=ax2+bx﹣3过点A(﹣1,0),B(3,0),点M、N为抛物线上的动点,过点M 作MD∥y轴,交直线BC于点D,交x轴于点E.过点N作NF⊥x轴,垂足为点F(1)求二次函数y=ax2+bx﹣3的表达式;(2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积;(3)若M点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M的横坐标.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx﹣3,得:,解得,故该抛物线解析式为:y=x2﹣2x﹣3;(2)由(1)知,抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该抛物线的对称轴是x=1,顶点坐标为(1,﹣4).如图,设点M坐标为(m,m2﹣2m﹣3),其中m>1,∴ME=|﹣m2+2m+3|,∵M、N关于x=1对称,且点M在对称轴右侧,∴点N的横坐标为2﹣m,∴MN=2m﹣2,∵四边形MNFE为正方形,∴ME=MN,∴|﹣m2+2m+3|=2m﹣2,分两种情况:①当﹣m2+2m+3=2m﹣2时,解得:m1=、m2=﹣(不符合题意,舍去),当m=时,正方形的面积为(2﹣2)2=24﹣8;②当﹣m2+2m+3=2﹣2m时,解得:m3=2+,m4=2﹣(不符合题意,舍去),当m=2+时,正方形的面积为[2(2+)﹣2]2=24+8;综上所述,正方形的面积为24+8或24﹣8.(3)设BC所在直线解析式为y=px+q,把点B(3,0)、C(0,﹣3)代入表达式,得:,解得:,∴直线BC的函数表达式为y=x﹣3,设点M的坐标为(t,t2﹣2t﹣3),其中t<1,则点N(2﹣t,t2﹣2t﹣3),点D(t,t﹣3),∴MN=2﹣t﹣t=2﹣2t,MD=|t2﹣2t﹣3﹣t+3|=|t2﹣3t|.∵MD=MN,∴|t2﹣3t|=2﹣2t,分两种情况:①当t2﹣3t=2﹣2t时,解得t1=﹣1,t2=2(不符合题意,舍去).②当3t﹣t2=2﹣2t时,解得t3=,t2=(不符合题意,舍去).综上所述,点M的横坐标为﹣1或.4.(2015 贵州省毕节地区) 如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.分析:(1)根据待定系数法,可得函数解析式;(2)根据轴对称,可得M′的坐标,根据待定系数法,可得AM′的解析式,根据解方程组,可得B点坐标,根据三角形的面积公式,可得答案;(3)根据正方形的性质,可得P、Q点坐标,根据待定系数法,可得函数解析式.解答:解:(1)将A、B点坐标代入函数解析式,得,解得,抛物线的解析式y=x2﹣2x﹣3;(2)将抛物线的解析式化为顶点式,得y=(x﹣1)2﹣4,M点的坐标为(1,﹣4),M′点的坐标为(1,4),设AM′的解析式为y=kx+b,将A、M′点的坐标代入,得,解得,AM′的解析式为y=2x+2,联立AM′与抛物线,得,解得,C点坐标为(5,12).S△ABC=×4×12=24;(3)存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形,由ABPQ是正方形,A(﹣1,0)B(3,0),得P(1,﹣2),Q(1,2),或P(1,2),Q(1,﹣2),将A点坐标代入函数解析式,得a(﹣1﹣1)2﹣2=0,解得a=,抛物线的解析式为y=(x﹣1)2﹣2,②当P(1,2)时,设抛物线的解析式为y=a(x﹣1)2+2,将A点坐标代入函数解析式,得a(﹣1﹣1)2+2=0,解得a=﹣,抛物线的解析式为y=﹣(x﹣1)2+2,综上所述:y=(x﹣1)2﹣2或y=﹣(x﹣1)2+2,使得四边形APBQ为正方形.5. (2016 辽宁省铁岭市) .如图,抛物线y=﹣x2+bx+c与x轴交于点A,点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.分析(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变形成顶点式即可得出结论;(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),由相似三角形的判定及性质可得出点F′的坐标,根据点B、F′的坐标利用待定系数法可求出直线BF的解析式,联立直线BF和抛物线的解析式成方程组,解方程组即可求出点F的坐标;(3)设对角线MN、PQ交于点O′,如图2所示.根据抛物线的对称性结合正方形的性质可得出点P、Q 的位置,设出点Q的坐标为(2,2n),由正方形的性质可得出点M的坐标为(2﹣n,n).由点M在抛物线图象上,即可得出关于n的一元二次方程,解方程可求出n值,代入点Q的坐标即可得出结论.解答解:(1)将点B(6,0)、C(0,6)代入y=﹣x2+bx+c中,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点D的坐标为(2,8).(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),如图1所示.∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,∴△F′BO∽△BDE,∴.∵点B(6,0),点D(2,8),∴点E(2,0),BE=6﹣4=4,DE=8﹣0=8,OB=6,∴OF′=•OB=3,∴点F′(0,3)或(0,﹣3).设直线BF的解析式为y=kx±3,则有0=6k+3或0=6k﹣3,解得:k=﹣或k=,∴直线BF的解析式为y=﹣x+3或y=x﹣3.联立直线BF与抛物线的解析式得:①或②,解方程组①得:或(舍去),∴点F的坐标为(﹣1,);解方程组②得:或(舍去),∴点F的坐标为(﹣3,﹣).综上可知:点F的坐标为(﹣1,)或(﹣3,﹣).(3)设对角线MN、PQ交于点O′,如图2所示.∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线对称轴上,设点Q的坐标为(2,2n),则点M的坐标为(2﹣n,n).∵点M在抛物线y=﹣x2+2x+6的图象上,∴n=﹣+2(2﹣n)+6,即n2+2n﹣16=0,解得:n1=﹣1,n2=﹣﹣1.∴点Q的坐标为(2,﹣1)或(2,﹣﹣1).6. (2016 广东省茂名市) 】.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.分析(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P的坐标为(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x的值,计算求出点P的坐标;(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.解答解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1时,y=4,∴点D的坐标为(1,4),设直线BD的解析式为:y=mx+n,则,解得,,∴直线BD的解析式为y=﹣2x+6,设点P的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2);(3)设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、G为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).。

相关文档
最新文档