实验四比例求和运算电路实验报告
实验四 比例求和运算电路
实验四 比例求和运算电路一、实验目的1.掌握用集成运算放大器组成比例、求和电路。
2.掌握比例、求和运算电路的特点及性能。
3.学会上述电路的测试和分析方法。
4.掌握各电路的工作原理。
二、虚拟实验仪器及器材示波器、可变电源、数字万用表等仪器、集成运算放大器LM324三、实验原理及参考电路(一)、比例运算电路 1.工作原理比例运算(反相比例运算与同相比例运算)是应用最广泛的一种基本运算电路。
a .反相比例运算,最小输入信号mini U 等条件来选择运算放大器和确定外围电路元件参数。
如下图所示。
10k Ω输入电压iU 经电阻R 1加到集成运放的反相输入端,其同相输入端经电阻R 2接地。
输出电压OU 经R F 接回到反相输入端。
通常有: R 2=R 1//R F由于虚断,有 I +=0 ,则u +=-I +R 2=0。
又因虚短,可得:u -=u +=0由于I -=0,则有i 1=i f ,可得: Fo1i R u u R u u -=---由此可求得反相比例运算电路的电压放大倍数为:⎪⎪⎩⎪⎪⎨⎧==-==1i i if 1F i o uf R i uR R R u u A反相比例运算电路的输出电阻为:R of =0输入电阻为:R if =R 1b .同相比例运算10k Ω输入电压iU 接至同相输入端,输出电压OU 通过电阻R F 仍接到反相输入端。
R 2的阻值应为R 2=R 1//R F 。
根据虚短和虚断的特点,可知I -=I +=0,则有o Fu R R R u ⋅+=-11且 u -=u +=u i ,可得:i o F u u R R R =⋅+111F i o uf R R 1u u A +==同相比例运算电路输入电阻为:∞==iiif i u R输出电阻: R of =0以上比例运算电路可以是交流运算,也可以是直流运算。
输入信号如果是直流,则需加调零电路。
如果是交流信号输入,则输入、输出端要加隔直电容,而调零电路可省略。
实验四比例求和运算电路实验报告
输入电阻为:R if =R 1
b .同相比例运算
输入电压i U 接至同相输入端;输出电压O U 通过电阻R F 仍接到反相输入端..R 2的阻值应为R 2=R 1//R F ..
根据虚短和虚断的特点;可知I -=I +=0;则有 o F
u R R R u ⋅+=
-11
且 u -=u +=u i ;可得:
i o F
u u R R R =⋅+11
同相比例运算电路输入电阻为: ∞==i
i
if i u R 输出电阻: R of =0
以上比例运算电路可以是交流运算;也可以是直流运算..输入信号如果是直流;则需加调零电路..如果是交流信号输入;则输入、输出端要加隔直电容;而调零电路可省略..
二求和运算电路 1.反相求和
根据“虚短”、“虚断”的概念 当R 1=R 2=R;则 12()F o i i R u u u R
=-+
四、实验内容及步骤
1、.电压跟随电路
实验电路如图1所示..按表1内容进行实验测量并记录.. 理论计算: 得到电压放大倍数:
即
:
Ui=U+=U-=U
图1 电压跟随器
表1:电压跟随器 直流输入电压Viv
-2
-0.5
0.5
1。
实验四比例求和、微积分电路,RC正弦振荡器
1.比例求和、微积分电路
线性集成电路(简称线性组件)实际上就是一个具有高放大倍数的直流放大器,在它外部接上深度电压负反馈电路之后,便构成了运算放大器,运算放大器可对电信号进行比例、加法、积分、微分等数学运算。
图1是反相比例放大器,输出电压与输入电压为比例运算关系。即:
图2是同相输入比例放大器,输出电压与输入电压,也构成比例关系。即:
根据振荡幅值平衡条件,要使电路维持正常振荡,必须使放大器的放大倍数 ,在振荡的条件下,反馈电路的反馈系数恰好为 。如果放大倍数刚好A=3,会使工作不稳定。当由于任何原因引起放大倍数下降,将造成停振。若A>3,则因振荡幅值的增大,将使管子的动态范围延伸到特性曲线的饱和区和截止区,输出波形将产生严重的非线性失真。要改善这一点,在放大器中引进负反馈,也就是在放大器中加接由电阻 构成的负反馈支路,通过调节 ,改变反馈量的大小,使放大倍数稍大于3。采用负反馈可以进一步提高放大器的输入电阻,并提高振荡器稳定性和改善输出波形的非线性失真。
(2)分别设置Vi = -2V、-0.5V、0V、0.5V、1V,使用电压探针检测输出端电压Vo。
(3)在输出端接入RL,并将其另一端接地,重复步骤(2)。
仿真截图:
(a)Vi= -2V (b) Vi= -0.5V
(c) Vi= 0V (d) Vi= 0.5V
(e) Vi=2V
图10电压跟随器(仿真,未接入RL)
相位移为 ,构成正反馈。第二部分是由RC串并联组成的一个具有选频特性的正反馈网络,其反馈系数为:
通常取 ; ,则上式可写成:
(1)
当在某一个 时满足:
则 (2)
则此时相移 。
这个反馈网络直接把放大器的输出和输入端沟通起来,从而保证在某一特定频率上电路满足自激振荡条件,产生单一频率的正弦波。因此,选频网络就决定了振荡器的频率。
1比例求和运算电路
实验报告(1)学院:课程名称:实验项目:比例、求和运算电路专业班级:小组成员:姓名:学号:指导老师:学生实验报告一、实验目的1.掌握运算放大器组成比例求和电路的特点性能及输出电压与输入电压的函数关系。
2.学会上述电路的测试和分析方法。
二、实验仪器及设备示波器、TB型模拟电路实验仪和⑤号实验板等。
三、实验电路原理集成运算放大器是具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元件组成输入和负反馈电路时,可以实现各种特定的函数关系。
四、实验内容及步骤每个比例、求和运算电路实验,都应先进行以下两项:1.按电路图接好线后,仔细检查,确保正确无误。
将各输入端接地,接通电源,用示波器观察是否出现自激振荡。
若有自激振荡,则需更换集成运算放大电路。
2. 调零:各输入端仍接地,调节调零电位器,使输出电压为零(用示波器测量) ⑴ 反相比例放大器 实验电路如图J5-1所示图J5-1 反相比例放大器预习要求:分析图J5-1反相比例放大器的主要特点(包括反馈类型),求出表J5-1的理论估算值。
表J5-1实验内容:在5号实验模板上按图J5-1“反相比例放大器”连好线,并接上电源线,做表J5-1中的内容。
将反相比例放大器的输入端接DC 信号源的输出,将DC 信号源的转换开关置于合适位置,调节电位器,使i V 分别为表J5-1中所列各值,分别测出o V 的值,填在该表中。
⑵ 同相比例放大器实验电路如图J5-2所示。
预习要求:①分析图J5-2同相比例放大器的主要特点(包括反馈类型),求出表J5-2各理论估算值。
②熟悉实验任务,自拟实验步骤,并做好实验记录准备工作。
图J5-2同相比例放大器表J5-2⑶电压跟随器实验电路如图J5-3所示预习要求:①分析图J5-3电路的特点,求出表J5-3中各理论估算值。
②熟悉实验任务,自拟实验步骤,并做好实验记录准备工作。
图J5-3电压跟随器实验步骤:在5号实验模板上,按图J5-3和表J5-3的要求连好线,分别测出表J5-3中各条件下的V值。
比例电路实验报告
一、实验目的1. 掌握比例电路的基本原理和设计方法;2. 学会使用运算放大器搭建比例电路;3. 了解比例电路在实际应用中的重要性。
二、实验原理比例电路是一种将输入信号按一定比例放大或缩小的电路。
在模拟电路中,比例电路广泛应用于信号放大、信号变换、模拟计算等领域。
本实验采用运算放大器搭建比例电路,实现输入信号与输出信号的线性关系。
三、实验仪器与设备1. 运算放大器(如LM741);2. 信号发生器;3. 数字万用表;4. 示波器;5. 电阻、电容等电子元器件;6. 实验电路板。
四、实验步骤1. 搭建反相比例放大电路(1)根据实验要求,设计反相比例放大电路,计算所需电阻、电容等元器件参数;(2)将元器件按照电路图连接到实验电路板上;(3)使用数字万用表测量电路中各节点电压,并与理论值进行比较;(4)使用示波器观察输入信号和输出信号的波形,分析电路的幅频特性和相位特性。
2. 搭建同相比例放大电路(1)根据实验要求,设计同相比例放大电路,计算所需电阻、电容等元器件参数;(2)将元器件按照电路图连接到实验电路板上;(3)使用数字万用表测量电路中各节点电压,并与理论值进行比较;(4)使用示波器观察输入信号和输出信号的波形,分析电路的幅频特性和相位特性。
3. 搭建比例求和电路(1)根据实验要求,设计比例求和电路,计算所需电阻、电容等元器件参数;(2)将元器件按照电路图连接到实验电路板上;(3)使用数字万用表测量电路中各节点电压,并与理论值进行比较;(4)使用示波器观察输入信号和输出信号的波形,分析电路的幅频特性和相位特性。
五、实验结果与分析1. 反相比例放大电路实验结果:电路的幅频特性基本符合理论值,相位特性略有差异。
在输入信号频率较高时,电路的相位特性明显偏离理论值。
分析:由于运算放大器的带宽限制,当输入信号频率较高时,电路的相位特性会受到影响。
2. 同相比例放大电路实验结果:电路的幅频特性基本符合理论值,相位特性略有差异。
《集成运算放大器应用----比例运算电路》实验报告
xxxx
姓名
xxxx
成绩
课程
名称
模拟电子技术实验
实验项目
名称
集成运算放大器应用----比例运算电路
指导教师
xxxx
教师评语
教师签名:
年月日
一、实验目的
1、掌握运算放大器组成比例、求和运算电路的结构特点。
2、掌握运算电路的输入与输出电压特性的测试方法。
二、实验原理
运算放大器是具有两个输入端和一个输出端的高增益、高输入阻抗的电压放大器。在
+1V
+2V
-1V
-2V
-4V
输出Uo(V)
理论值
0
3
6
-3
-6
-12
实测值
0
3.06
6.05
-2.98
-5.92
-9.87
计算误差
0
0.06
0.05
0.02
0.08
2.13
表2同相比例运算实验数据表
六、实验结果及分析
对比理论值和实验值,存在误差,反相比例运算电路误差值较大,同相比例运算电路误
差相对较小,可能由于为运放所提供的直流电源小于12V;同相比例运算电路中,输入电
压越大,误差越大。
xxxxx学校
学生实验报告
实验课程名称:模拟电子技术实验
开课实验室电子技术实验室
系、部:xxxxxx年级:x专业班:xx
学生姓名xx学号xxx
开课时间2013至2014学年第二学期
总成绩
教师签名
《集成运算放大器应用----比例运算电路》实验报告
开课实验室:电子技术实验室2014年5月26日
系部
实验四比例求和运算电路实验报告
实验四比例求和运算电路实验报告
实验四比例求和运算电路实验报告是一份详细的文档,用于描述实验四比例求和运算电路的实验过程及实验结果。
它包括实验目的、原理说明、实验步骤、结果分析和结论性评价等内容。
1.实验目的:本次实验的目的主要是探究实验四中比例求和运算电路的工作原理,并通过分析实验结果来检验电路的正确性。
2.原理说明:比例求和运算电路是一种常用的电路,它的工作原理如下:将输入电压V1和V2乘以系数K1和K2(K1+K2=1),然后将两个乘积相加得到输出电压Vout,即: Vout=K1 * V1 + K2 * V2。
3.实验步骤:(1)首先,按照电路图将所有元件依次装上电路板,根据实验指导书的要求,正确接线。
(2)确认安装正确后,按照电路图将V1和V2先后依次调节至0.6V和1.4V,观察比例求和电路的输出电压Vout。
(3)将V1和V2先后依次调节至0.8V和1.2V,观察比例求和电路的输出电压Vout。
4.结果分析:从实验结果来看,当V1=0.6V,
V2=1.4V时,Vout=1.0V;当V1=0.8V,V2=1.2V时,
Vout=1.0V,说明电路电压求和运算正确。
5.结论性评价:本次实验成功地验证了比例求和运算电路的正确性,提高了对电路的深入理解。
比例及加减运算电路实验报告
竭诚为您提供优质文档/双击可除比例及加减运算电路实验报告篇一:实验四比例求和运算电路实验报告实验四比例求和运算电路一、实验目的1.掌握用集成运算放大器组成比例、求和电路的特点及性能。
2.学会上述电路的测试和分析方法。
二、实验仪器1.数字万用表2.信号发生器3.双踪示波器其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求和运算电路”模板。
三、实验原理(一)、比例运算电路1.工作原理a.反相比例运算,最小输入信号uimin等条件来选择运算放大器和确定外围电路元件参数。
如下图所示。
10kΩ输入电压ui经电阻R1加到集成运放的反相输入端,其同相输入端经电阻R2接地。
输出电压uo经RF接回到反相输入端。
通常有:R2=R1//RF由于虚断,有I+=0,则u+=-I+R2=0。
又因虚短,可得:u-=u+=0由于I-=0,则有i1=if,可得:ui?u?u??uo?R1RFuoRF?AufuR1i由此可求得反相比例运算电路的电压放大倍数为:??u?Rif?i?R1?ii?反相比例运算电路的输出电阻为:Rof=0输入电阻为:Rif=R1b.同相比例运算10kΩ输入电压ui接至同相输入端,输出电压uo通过电阻RF 仍接到反相输入端。
R2的阻值应为R2=R1//RF。
根据虚短和虚断的特点,可知I-=I+=0,则有u??且u-=u+=ui,可得:R1?uo?uiR1?RFAuf?R1?uoR1?RFuoR?1?FuiR1同相比例运算电路输入电阻为:Rif?输出电阻:Rof=0ui??ii以上比例运算电路可以是交流运算,也可以是直流运算。
输入信号如果是直流,则需加调零电路。
如果是交流信号输入,则输入、输出端要加隔直电容,而调零电路可省略。
(二)求和运算电路1.反相求和根据“虚短”、“虚断”的概念RRui1ui2uouo??(Fui1?Fui2)R1R2R1R2RF当R1=R2=R,则uo??RF(ui1?ui2)R四、实验内容及步骤1、.电压跟随电路实验电路如图1所示。
求和运算电路
关于求和运算电路报告
一、实验目的:
用运算放大器等元件构成反相比例放大器、同相比例放大器、反相求和电
路、同相求和电路,通过实验测试和分析,进一步掌握它们的主要特点和性
能及输出电压与输入电压的函数关系。
二、仪器设备:
(1)SXJ—3B 型模拟学习机
(2)数字万用表
(3)示波器
三、实验内容:
每个比例求和运算电路实验,都应进行以下三项:
(1)按电路图接好后,仔细检查,确保无误。
(2)调零:各输入端接地调节调零电位器,使输出电压为零(用数字万用表200mV 档测量,输出电压绝对值不超过0.5mv )
1.反相求和电路
直流输入电压A 0.5V 1.0V 1.5V 直流输入电压B -2.0V -4.0V -6.0V
输出电压理论估计
值
1.50V 3.0V 4.5V 实测值 1.5060V 3.0060V 4.5070V 误差0.0060V 0.0060V 0.0070V
调零并按图接好电路,输入信号分别为VI1,VI2,VI3 ,测量输出电压Vo的值,并与理论值进行比较。
2.双端输入求和电路
直流输入电压A 428.525mv 785.668mv
直流输入电压B 428.525mv 785.668mv
输出电压理论估计值942.755mv 1.728v 实测值904.386mv 1.654v 误差38.396mv 0.074v。
实验四比例求和运算电路实验报告精编WORD版
同相比例运算电路输入电阻为:
输出电阻: Rof=0
以上比例运算电路可以是交流运算,也可以是直流运算。输入信号如果是直流,则需加调零电路。如果是交流信号输入,输入、输出端要加隔直电容,而调零电路可省略。
(二)求和运算电路
1.反相求和
根据“虚短”、“虚断”的概念
当R1=R2=R,则
3、同相比例放大电路
理论值:Ui/10K=(Ui-UO)/100K故UO=11Ui。
实验原理图如下:
图3:同相比例放大电路
(1)、按表4和表5内容进行实验测量并记录
直流输入电压Ui(mV)
30
100
300
1000
3000
输出电压Uo(mV)
理论估算(mV)
实测值
误差
表4:同相比例放大电路(1)
表5:同相比例放大电路(2)
(一)、比例运算电路
1.工作原理
a.反相比例运算,最小输入信号 等条件来选择运算放大器和确定外围电路元件参数。
如下图所示。
输入电压 经电阻R1加到集成运放的反相输入端,其同相输入端经电阻R2接地。输出电压 经RF接回到反相输入端。通常有: R2=R1//RF
由于虚断,有I+=0 ,则u+=-I+R2=0。又因虚短,可得:u-=u+=0
理论值(V)
输出电压V0(V)
五、实验小结及感想
1.总结本实验中5种运算电路的特点及性能。
电压跟随电路:所测得的输出电压基本上与输入电压相等,实验数据准确,误差很小。
反向比例放大器,所测数据与理论估算的误差较小,但当电压加到3V时,理论值与实际值不符,原因是运算放大器本身的构造。
电子技术实验课件-比例求和运算电路
比例求和运算电路的应用与展望
应用领域
比例求和运算电路在模拟电路、控制系统、信号处理等领域有广泛应用。例如, 在自动控制系统中的调节器、执行器等部件中,比例求和运算电路用于实现比 例、积分和微分控制。
发展趋势
随着电子技术的不断发展,比例求和运算电路将朝着更高精度、更小体积、更 低功耗的方向发展。未来,比例求和运算电路将更加集成化、智能化,能够实 现更复杂的功能和控制。
验证比例求和运算电路的输出结果
学生将通过对比实际测量结果与理论计算结果,来验证比例求和运算电路的功能 是否正确实现。这将帮助他们发现并纠正实验中的错误,提高他们的实验技能和 理论水平。
02
实验设备
电源
01
02
03
电源类型
提供稳定的直流电源,通 常采用线性电源或开关电 源。
电源电压
根据电路需求选择适当的 电源电压,如±5V、 ±12V等。
电源容量
根据电路的电流消耗选择 合适的电源容量,以确保 电源的稳定性和可靠性。
电阻器
电阻类型
根据需要选择不同类型的 电阻,如碳膜电阻、金属 膜电阻等。
电阻值
根据电路需求选择适当的 电阻值,以满足比例求和 运算电路的阻抗匹配和信 号处理要求。
功率
根据电路的电流消耗选择 适当的电阻功率,以确保 电阻的可靠性和稳定性。
分析输出信号与输入信号之间的 关系,理解比例求和运算电路的
工作原理。
分析实验结果并验证理论
根据实验数据和观察结果,分析比例 求和运算电路的性能指标。
总结实验结论,指出实验中存在的问 题和改进方向。
将实验结果与理论值进行比较,验证 理论的正确性。
04
实验结果与讨论
实验数据记录
实验四比例求和运算电路实验报告定稿版
由此可求得反相比例运算电路的电压放大倍数为:
反相比例运算电路的输出电阻为:Rof=0
输入电阻为:Rif=R1
b.同相比例运算
输入电压 接至同相输入端,输出电压 通过电阻RF仍接到反相输入端。R2的阻值应为R2=R1//RF。
根据虚短和虚断的特点,可知I-=I+=0,则有
四、实验内容及步骤
1、.电压跟随电路
实验电路如图1所示。按表1内容进行实验测量并记录。
理论计算: 得到电压放大倍数:
即:Ui=U+=U-=U
图1 电压跟随器
表1:电压跟随器
直流输入电压Vi(v)
-2
-0.5
0
0.5
1
输出电压Vo(v)
Rl=∽
Rl=5.1k
从实验结果看出基本满足输入等于输出。
2、反相比例电路
2.分析理论计算与实验结果误差的原因。
在实验误差允许范围内,试验所测得的数据与理论估算的数据基本一致,仍存在一定的误差。
误差分析:
1、可能是电压调节的过程中存在着一些人为的误差因素。
2、可能是所给的电压表本身带有一定的误差。
3、实验中的导线存在一定的电阻。
4、当电压加大到某一个值时,任凭输入电压怎么增大,输出电压不会再改变了,这就是运算放大器本身的构造问题了。
(一)、比例运算电路
1.工作原理
a.反相比例运算,最小输入信号 等条件来选择运算放大器和确定外围电路元件参数。
如下图所示。
输入电压 经电阻R1加到集成运放的反相输入端,其同相输入端经电阻R2接地。输出电压 经RF接回到反相输入端。通常有: R2=R1//RF
由于虚断,有I+=0 ,则u+=-I+R2=0。又因虚短,可得:u-=u+=0
比例求和运算电路实验报告思考题
比例求和运算电路实验报告思考题
1. 比例求和运算电路的作用是什么?
比例求和运算电路是一种将多个输入信号按照一定比例加权求和的电路, 其作用可以用于信号的加权平均、滤波、调制解调等。
2. 如何实现一个比例求和运算电路?
比例求和运算电路可以用多种电路实现,如简单电阻网络、放大器电路、运放电路等。
具体实现分为两步:
(1) 将输入信号与一个比例系数相乘,得到权值,再将多个权值相加。
(2) 将多个加权和的结果相加,即得到比例求和运算的结果。
3. 如何计算比例求和运算电路中各输入信号的比例系数?
比例系数通常由电路设计者根据实际需要进行选择,可以通过计算、经验公式、仿真等方法来确定比例系数。
例如,在一个三输入信号的比例求和电路中,每个输入信号的比例系数可以分别为 1、2、3,表示第一个信号的贡献最小,而第三个信号的贡献最大。
4. 比例求和运算电路的优点和缺点是什么?
优点:
(1) 比例求和运算电路可以实现多个输入信号的加权平均,提高信号质量。
(2) 比例求和运算电路可以实现滤波、调制解调等功能,具有很强的实用价值。
缺点:
(1) 比例求和运算电路中需要多个加法器和乘法器,从而增加了电路的复杂度和价格。
(2) 对于比例系数的确定需要经验或计算,比较繁琐,不利于实际应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 比例求和运算电路
一、实验目的
1.掌握用集成运算放大器组成比例、求和电路的特点及性能。
2.学会上述电路的测试和分析方法。
二、实验仪器
1.数字万用表
2.信号发生器
3.双踪示波器
其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求和运算电路”模板。
三、实验原理
(一)、比例运算电路 1.工作原理
a .反相比例运算,最小输入信号min i U 等条件来选择运算放大器和确定外围电路元件参数。
如下图所示。
A
V i
V o
R 100k Ω
R 1
10k Ω
R 2
10k Ω
A B
输入电压i U 经电阻R 1加到集成运放的反相输入端,其同相输入端经电阻R 2接地。
输出电压O U 经R F 接回到反相输入端。
通常有: R 2=R 1F o 1i u u u u -=---⎪⎪⎩⎪⎪⎨⎧==-==1i i if 1F i o uf R i u R R R u u A A V i V o 100k Ω
R 1
10k Ω
R 210k ΩA
B i U O U o F u R R R u ⋅+=-11i o F u u R R R =⋅+111F i o uf R R 1u u A +==∞==i i if i u R 1212i i o
F u u u R R R +=-
1212()F F o i i R R u u u R R =-+12()F o i i R u u u R
=-+压跟随电路
实验电路如图1所示。
按表1内容进行实验测量并记录。
理论计算: 得到电压放大倍数:
即:Ui=U+=U-=U 图1 电压跟随器
直流输入电压Vi(v)-201
输出电
压Vo(v)
Rl=∽
Rl=
从实验结果看出基本满足输入等于输出。
2、反相比例电路
理论值:(Ui-U-)/10K=(U--UO)/100K且U+=U-=0故UO=-10Ui。
实验电路如图2所示:
图2:反向比例放大电路
(1)、按表2内容进行实验测量并记录.
表2:反相比例放大电路(1)
(2)、按表3进行实验测量并记录。
测试条件被测量理论估算实直流输入电压输入 Vi(mv)3010
30
10
00
30
00输出电
压 Vo(v)
理论值
实测值
误差
值
测值
R L 开路,直流输入信号V
i
由0变为800mVΔV
ΔV
AB
ΔV
R2
ΔV
R1
V
i =800mV ,R
L
由开路变为ΔV
0L
该项量值之差。
测量结果:从实验数据1得出输出与输入相差-10倍关系,基本符合理论,实验数据(2)主要验证输入端的虚断与虚短。
3、同相比例放大电路
理论值:Ui/10K=(Ui-UO)/100K故UO=11Ui。
实验原理图如下:
图3:同相比例放大电路
(1)、按表4和表5内容进行实验测量并记录
表4:同相比例放大电路(1)
测试条件被测量理论估算
值
实测值
R L 无穷,直流输入信号V
i
由0变为800mVΔV
ΔV
AB
ΔV
R2
ΔV
R1
V
i =800mV ,R
L
由开路变为ΔV
0L
直流输入电压Ui (mV)301003001000
3000
输出电压Uo (mV)
理论估算(mV)
实测值
误差
4、反相求和放大电路
理论计算:UO=-RF/R*(Ui1+Ui2)
实验原理图如下:
直流输入电压
Vi1(V)
直流输入电压
Vi2(V)
理论值(V)
输出电压V0(V)
5、双端输入求和放大电路
理论值:UO=(1+RF/R1)*R3/(R2+R3)*U2-RF/R1*U1 实验原理图如下:
1v2v
直流输入电压
Vi1(V)
直流输入电压
Vi2(V)
理论值(V)
输出电压V0(V)
五、实验小结及感想
1.总结本实验中5种运算电路的特点及性能。
电压跟随电路:所测得的输出电压基本上与输入电压相等,实验数据准确,误差很小。
反向比例放大器,所测数据与理论估算的误差较小,但当电压加到3V时,理论值与实际值不符,原因是运算放大器本身的构造。
同相比例放大运算器,所测数据与理论估算的误差较小,但当电压加到3V 时,理论值与实际值不符,原因是运算放大器本身的构造。
2.分析理论计算与实验结果误差的原因。
在实验误差允许范围内,试验所测得的数据与理论估算的数据基本一致,仍存在一定的误差。
误差分析:
1、可能是电压调节的过程中存在着一些人为的误差因素。
2、可能是所给的电压表本身带有一定的误差。
3、实验中的导线存在一定的电阻。
4、当电压加大到某一个值时,任凭输入电压怎么增大,输出电压不会再改变了,这就是运算放大器本身的构造问题了。