电子元器件筛选方案的设计原则及筛选项目
浅谈电子元器件的二次筛选
浅谈电子元器件的二次筛选摘要:电子元器件作为电子产品的重要组成部分,质量直接关系到整个电子产品的质量。
而在电子元器件的生产和使用中,存在着一定程度的不良品率。
因此,对于电子元器件进行二次筛选是必要的。
本文将从二次筛选的定义、步骤、方法以及优缺点等方面对电子元器件的二次筛选进行浅谈。
关键词:电子元器件;不良品率;二次筛选;步骤;方法;优缺点正文:一、二次筛选的定义电子元器件的二次筛选,顾名思义,就是对生产厂家的一次筛选后的电子元器件进行再一次筛选,以筛选出质量更加可靠的元器件,提高电子产品的质量。
在这个过程中,可以采用各种检测手段,如物理实验、化学分析和电性能等方面进行检测,除去有缺陷的产品,保留好的产品。
二、二次筛选的步骤1. 选定目标保障标准:制定保障标准,非法黄牛货源、原厂二手机等产物,元器件等级、阻值、电容值等指标,如何进行筛选?2. 筛选方法的选择:确定所使用的检测手段和筛选方法,如哪种方法更为实用。
3. 制定筛选计划:设定筛选方案,包括时间、人员等资源的安排,保障计划最大化地发挥效益。
4. 筛选试验的设立:设置筛选试验的样本数据,可以利用实验物理实验、化学分析和电性能等方面进行检测。
5. 对筛选结果的统计和分析:将实验数据进行统计,通过分析,找出误差的原因,从而加强电子元器件检测,确保筛选效果。
三、二次筛选的方法1. 物理实验法:采用显微镜等物理实验仪器,对电子元器件进行观察和检验。
2. 化学分析法:采用表面剥蚀法、酸洗法等对电子元器件进行分析。
3. 电性能检测法:采用电性能测试仪等电子仪器检测元器件的电性能。
4. 其他方法:如 X 光检测、红外线检测等。
根据元器件的不同情况选择合适的方法进行检测。
四、二次筛选的优缺点1. 优点:提高产品质量,增强产品的可靠性和稳定性;防范原材料样品的混淆;有效防止假冒伪劣产品进入市场;有益于企业和消费者形象和信誉。
2. 缺点:增加生产成本;增加生产时间;需要设备,人力、时间和资金等的投入。
电子元器件筛选方案的制定及筛选项目介绍
电子元器件筛选方案的制定及筛选项目介绍电子元器件是电子设备中不可或缺的组成部分,其质量和性能对整个电子产品的稳定性和可靠性具有重要影响。
因此,制造商在设计和生产过程中需要制定合适的电子元器件筛选方案,以确保所选用的元器件能够满足产品的需求。
以下将介绍电子元器件筛选方案的制定及一些常见的筛选项目。
1.确定产品需求:在制定电子元器件筛选方案之前,首先需要明确产品的需求,包括性能、功能和质量等方面的要求。
这些要求将直接影响筛选项目的选择和具体的筛选指标。
2.熟悉市场情况:了解市场上常见的电子元器件品牌和型号,以及它们的性能特点和质量水平。
这有助于制定合适的筛选方案,选择可靠、耐用的元器件。
3.选择合适的供应商:供应商的信誉和服务质量对电子元器件的质量和可靠性有很大影响,因此在筛选方案中要考虑选择合适的供应商。
可以通过询价、产品质量认证和用户评价等方式来筛选供应商。
4.制定筛选流程:根据产品需求和市场情况,制定电子元器件筛选流程。
流程包括筛选项目的选择、筛选指标的制定、测试方法的确定等。
1.尺寸和封装:根据产品设计的空间限制和焊接工艺要求,筛选合适的尺寸和封装形式的元器件。
常见的封装形式有贴片封装、插入式封装等。
2.电气参数:筛选元器件的电气参数符合产品需求,如电压、电流、功率、电阻、容量等。
这些参数对产品的性能和稳定性有重要影响。
3.工作温度范围:根据产品的使用环境,筛选能够在合适温度范围内正常工作的元器件。
工作温度范围过小或过大都会影响电子元器件的可靠性。
4.寿命和可靠性:选择具有较长使用寿命和高可靠性的元器件。
可以通过了解供应商提供的质量数据和用户评价来评估元器件的寿命和可靠性。
5.成本:根据产品的成本预算,筛选具有合适价格的元器件。
需要综合考虑元器件的性能和价格,选择性价比较高的选项。
总结:电子元器件筛选方案的制定是确保电子产品质量和可靠性的重要步骤。
通过明确产品需求、熟悉市场情况、选择合适的供应商以及制定筛选流程和筛选项目,可以选择到符合产品要求的电子元器件。
电子行业电子元器件选型与电路设计原则
电子行业电子元器件选型与电路设计原则随着科技的不断发展和进步,电子行业也得到了快速的发展和壮大。
而在电子设备的开发和制造过程中,电子元器件的选型和电路设计是至关重要的环节。
本文将介绍电子行业电子元器件选型和电路设计的原则、步骤和注意事项。
一、电子元器件选型原则电子元器件是电子产品中最基本的组成部分,包括电阻、电容、电感、二极管、三极管等等。
在选择电子元器件时,应遵循以下原则:1. 了解产品需求:在选型之前,需要充分了解所需产品的功能和性能要求。
明确产品的功能、性能指标以及工作环境等因素,才能更好地选择适合的电子元器件。
2. 参考数据手册:对于每一种电子元器件,都有相应的数据手册提供各项参数和性能指标。
选型过程中,应仔细阅读和比较不同厂家的数据手册,选择性能最合适的电子元器件。
3. 可靠性和稳定性:电子元器件的可靠性和稳定性对产品的性能和寿命有直接影响。
选择具有高可靠性和稳定性的电子元器件,能够提高产品的质量和可靠性。
4. 成本和供应商可靠性:在选型过程中,需要综合考虑电子元器件的成本和供应商的可靠性。
选择价格适中且有良好信誉的供应商,能够保障电子元器件的质量和供货的稳定性。
二、电路设计原则电路设计是实现电子产品功能的关键步骤,合理的电路设计能够提高产品性能和稳定性。
以下是一些电路设计的原则和注意事项:1. 功能需求与结构划分:在设计电路之前,应明确产品的功能需求,将电路划分为各个模块,进行逻辑和结构上的合理组织。
2. 选用合适的电子元器件:根据产品的功能需求和选型原则,选择合适的电子元器件,并遵循元器件的规格和参数要求。
3. 电路拓扑和信号传输:合理的电路拓扑可以减少电路中的噪声和干扰,提高信号的传输质量。
应采用合适的布局和线路连接方式,降低电路的交叉干扰。
4. 控制和保护电路设计:在设计电路时,应考虑到产品的控制和保护功能。
合理设置电路的控制系统和保护电路,保证电路的正常工作和防止意外损坏。
5. 散热与敏感部位处理:一些功耗较大的电子元器件会产生热量,需设计合理的散热系统,确保元器件的正常工作温度。
电子元器件筛选技术
仪表与电气系统的可靠性设计电子元器件筛选技术摘要:电子元器件是电子设备的基础,是保证电子设备高可靠性的基本资源,其可靠性直接影响设备的工作效能的充分发挥。
电子元器件是电子设备、系统的基础。
随着电子技术的发展,电子元器件在设备中应用数量逐渐增多,对电子元器件的可靠性也提出了越来越高的要求。
本文介绍电子元器件的筛选技术。
关键词:电子元器件;可靠性;筛选1、电子元器件筛选的目的和作用电子元器件筛选是设法在一批元器件中通过检验和试验剔除那些由于原材料、设备、工艺等(包括人的因素)方面潜在的不良因素所造成的有缺陷的元器件——早期失效元器件,而把具有一定特性的合格器件挑出来。
检验包括在规定环境下的目视检查、功能测量等,某些功能测试是在强应力下进行的。
电子元器件失效机理在元器件制造出来之后就已经固定。
所以,可靠性筛选不能改变其失效机理,不能改变单个元器件的固有可靠性水平。
但是,通过筛选,课剔除早期失效元器件,从而提高成批元器件总体的可靠性水平。
或者说,筛选不能提高元器件的固有可靠性,只能提高使用可靠性。
可靠性筛选对性能良好的元器件应该是一种非破坏性试验,即试验应力对好元器件的损伤要尽可能小。
反映在整批元器件特性上,就是不应影响其失效机理、失效模式和正常工作。
在此前提下,可考虑加大应力进行筛选,以提高筛选效果和缩短筛选时间。
筛选的目的是有效地剔除早期失效产品,使失效率降低到可接受的水平。
元器件筛选是提高电子元器件使用可靠性的有效手段。
元器件经过筛选可以发现并剔除在制造、工艺、材料方面的缺陷和隐患。
元器件筛选对空空导弹这样在飞行任务期间没有可能维修、可靠性指标要求又很高的产品尤为重要。
2、电子元器件筛选分类电子元器件按照筛选性质分类可以分为四大类:①检查筛选:显微镜检查筛选;红外线非破坏性检查筛选;X射线非破坏性检查筛选。
②密封性筛选:液浸检漏筛选;氦质谱检漏筛选;放射性示踪检漏筛选;湿度实验筛选。
③环境应力筛选:振动、冲击、离心加速度筛选;温度冲击筛选。
元器件设计原则指导元器件设计的关键原则和方法
元器件设计原则指导元器件设计的关键原则和方法在电子产品的制造过程中,元器件设计起着至关重要的作用。
元器件的选择和布局直接影响到电路的性能和可靠性。
为了确保电子产品的正常运行和长期稳定性,设计人员需要遵循一些关键的元器件设计原则和方法。
本文将介绍一些常用的原则和方法,旨在指导元器件设计的过程。
一、功能性选择与匹配首先,元器件的设计要考虑其所需的功能。
不同的电子产品有不同的功能要求,因此在元器件选择的过程中,设计人员需要根据产品的功能需求来选择合适的元器件。
例如,对于高频应用,需要选择具有良好高频特性的电容器和电感器;对于功率放大器,需要选择具有较大功率和低失真的放大器芯片。
此外,还需要注意元器件之间的匹配,确保元器件之间的工作参数相互匹配,以提高整体性能。
二、可靠性和稳定性设计在元器件设计中,可靠性和稳定性是至关重要的考虑因素。
设计人员需要选择具有良好可靠性和稳定性的元器件,以确保产品在长期使用中不会出现故障。
在元器件的选择上,要尽量选择经过验证的品牌和供应商,以确保元器件的质量和可靠性。
此外,还需要对元器件的工作条件进行综合考虑,如温度、湿度、振动等环境因素,以提高元器件的稳定性。
三、布局和隔离设计元器件的布局和隔离设计对电路的性能和电磁兼容性有重要影响。
在元器件布局上,设计人员需要根据电路的功能和信号传输路径来合理安排元器件的位置。
相互影响较大的元器件要尽量远离,避免互相干扰。
在电源和接地线的布局上,要注意将其与其他信号线隔离,以降低噪声干扰。
此外,还需要考虑良好的地线设计和屏蔽设计,以提高电磁兼容性。
四、功耗和热管理功耗和热管理是元器件设计中需要重视的方面。
在元器件选择的过程中,要注意选择低功耗的元器件,以降低产品的整体功耗。
同时,对于功耗较大的元器件,需要进行合理的热管理,以保证元器件工作时的温度不会超过其可承受范围。
在热管理中,可以采用散热片、风扇等方法来降低元器件的温度,以保证其长期稳定性。
电子元器件选型技术手册
电子元器件选型技术手册一、引言随着现代科技的快速发展,电子产品的普及已成为人们生活的重要组成部分。
而电子元器件,则作为电子产品中的重要核心,其选型技术成为了电子工程师必备的技能之一。
本手册将介绍电子元器件选型的基本原则、常见元器件的选型要点以及选型注意事项,帮助读者在电子元器件选型过程中获得更准确、高效的结果。
二、电子元器件选型的基本原则1. 了解产品需求:在进行电子元器件选型之前,首先要充分了解产品的功能需求、工作环境、电气特性等信息。
只有清楚了解产品需求,才能更好地找到适合的元器件。
2. 研究元器件规格:查阅元器件的规格书,了解元器件的电气参数、尺寸、频率响应等特性,并与产品需求进行对比,筛选出合适的元器件。
3. 鉴别元器件品质:元器件品质直接影响产品的可靠性和性能,因此要选择有口碑、信誉好的供应商,并注意元器件的认证标准和质量保证体系。
4. 市场价格考量:在选型过程中,除了关注元器件性能,还要考虑市场价格因素。
价格较高的元器件不一定就是最适合的选择,需要在性能与成本之间做出权衡。
5. 相关支持与服务:关注供应商提供的技术支持、售后服务等方面,尤其是在产品设计和调试阶段,供应商的专业支持可以帮助解决问题,提高工作效率。
三、常见元器件的选型要点1. 电阻器的选型要点a. 需要确认电阻值、功率、偏差等要求。
b. 根据工作环境及可靠性需求选择焊接方式和封装形式。
c. 根据电路特性选择合适的温度系数。
d. 注意电阻器的温升及功率因数等参数。
e. 考虑体积、重量以及成本等因素。
2. 电容器的选型要点a. 根据电容值、容差、工作电压等参数进行筛选。
b. 选择合适的封装形式和结构类型,如电解电容、陶瓷电容等。
c. 根据工作温度和频率范围选择合适的电容器系列。
d. 注意电容器的损耗因子、漏电流等参数。
3. 二极管的选型要点a. 根据工作电压、最大正向电流等参数选择适合的二极管类型。
b. 根据反向恢复时间、开关速度等参数选择合适的用途。
电子元器件的筛选与电子元器件质量控制
电子元器件的筛选与电子元器件质量控制摘要:对电子元器件进行科学地筛选,并对其品质进行有效地控制,以保证其性能的完全发挥。
焊接性能测定仪是用于电子产品生产、筛选、复检、组装之前的焊接性能检测设备。
它包括温度、润湿力、浸渍深度、浸渍速率、浸渍时间等技术指标,并根据有关标准和实践,对可焊性试验机进行了标定。
因此,我们要加强对电子元器件的筛选和品质的管理,以提高产品的筛选能力,从而提高产品的质量管理水平。
关键词:电子元器件筛选;质量控制引言由于电子元器件在电子产品生产及其质量控制中的重要作用,长期以来,针对电子元器件质量控制的研究就从未停止,国内外研究学者都针对其质量控制方法开展过一系列研究,并切实取得了一定的研究成果。
但根据本文对现有研究文献的梳理与分析发现,当前研究多从电子产品生产厂商的角度出发开展研究,却鲜有人关注到电子元器件供应商对电子元器件的筛选与审查,基于此,本文从供应商和厂商两个角度出发,对电子元器件筛选与质量控制的研究具有较高创新意义。
1电子元器件的筛选概述对电子元器件进行筛选的原因是厂家在进行筛选之后,没有满足用户对其质量上的要求,因此就要对电子元器件在厂家筛选的基础上再一次进行筛选,同时这也是对厂家筛选工作的补充和验证。
电子元器件在成产时会受很多因素的影响,比如:人为因素、原材料、设备条件的限制、工艺条件等,这些因素都会使产品无法全部满足用户要求的水平,同时这些因素也会导致部分电子元器件存在缺陷,而这些存在缺陷的产品,其使用寿命就会大大缩减,使之成为早期失效产品。
因此在对电子元器件进行筛选时就要选用不同的模式,使其通过有关的试验,进一步来提高电子元器件在使用时的可靠性。
2电子元器件筛选与质量控制的重要性在对电子元器件筛选及其质量控制开展研究之前,我们首先需要明确电子元器件筛选及其质量控制的必要性与重要性,进而明确其筛选与质量控制工作的具体工作要求,以为后续的方法研究奠定坚实基础。
具体而言,电子元器件的质量会对电子产品的质量产生直接影响,因此电子元器件的质量检测成了电子产品生产企业关注的重点之一,但电子元器件的筛选与质量控制却不是电子产品生产厂商的职责,而是电子元器件生产与加工企业的重要职责。
电子元器件筛选方案的设计原则及筛选项目
电子元器件筛选方案的设计原则及筛选项目电子元器件的固有可靠性取决于产品的可靠性设计,因此,应该在电子元器件装上整机、设备之前,就要设法把具有早期失效的元器件尽可能地加以排除,为此就要对元器件进行筛选。
那么元器件筛选都有哪些方案?原则是什么?常见的筛选项目有哪些?安排测试筛选先后次序时的两种方案:a)方案1:将不产生连环引发效果的失效模式筛选放在前面,将可以与其他失效模式产生连环引发效果的失效模式筛选放在后面。
b)方案2:将可以与其他失效模式产生连环引发效果的失效模式筛选放在前面,将不产生连环引发效果的失效模式筛选放在后面。
如果选择方案1,会发现将可以与其他失效模式产生连环引发效果的失效模式筛选放在后面时,出现本身失效模式没有被触发、其他关联的相关失效模式被触发的情况时,这种带有缺陷的元器件不能被准确地定位、剔除,因为该类失效模式的检测已经在前面做过了。
而选择方案2就可以非常有效地避免上述问题的发生,使筛选过程优质、经济和高效。
筛选方案的设计原则定义如下:筛选效率 W=剔除次品数/实际次品数筛选损耗率 L=好品损坏数/实际好品数筛选淘汰率Q=剔降次品数/进行筛选的产品总数理想的可靠性筛选应使W=1,L=0,这样才能达到可靠性筛选的目的。
Q值大小反映了这些产品在生产过程中存在问题的大小。
Q值越大,表示这批产品筛选前的可靠性越差,亦即生产过程中所存在的问题越大,产品的成品率低。
筛选项目选择越多,应力条件越严格,劣品淘汰得越彻底,其筛选效率就越高,筛选出的元器件可靠性水平也越接近于产品的固有可靠性水平。
但是要付出较高的费用、较长的周期,同时还会使不存在缺陷、性能良好的产品的可靠性降低。
故筛选条件过高就会造成不必要的浪费,条件选择过低则劣品淘汰不彻底,产品的使用可靠性得不到保证。
由此可见,筛选强度不够或筛选条件过严都对整批产品的可靠性不利。
为了有效而正确地进行可靠性筛选,必须合理地确定筛选项目和筛选应力,为此,必须了解产品的失效机理。
军用电子元器件二次筛选试验
军用电子元器件二次筛选试验当前,世界正在进行着一场新的军事变革,信息化是这场新军事变革的本质和核心,实现军事装备信息化的必要条件是高水平、高可靠的军用电子元器件。
电子元器件尤其是微电子器件在军事装备上的应用越来越广泛,电子元器件的选型和应用就日益显得重要。
本文着重就军用电子元器件选型和使用过程中的采购、筛选、破坏性物理分析以及失效分析进行探讨,列出了元器件的选择和使用准则以及全过程流程图。
电子元器件是电子系统的基础部件,是能够完成预定功能且不能再分割的电路基本单元。
由于电子元器件的数量、品种众多,因此它们的性能、可靠性等参数对整个军用电子产品的系统性能、可靠性、寿命周期等技术指标的影响极大。
所以正确有效地选择和使用电子元器件是提高军用产品可靠性水平的一项重要工作。
电子元器件的可靠性分为固有可靠性和使用可靠性固有可靠性主要由设计和制造工作来保证,这是元器件生产厂的任务。
但是国内外失效分析资料表明,有近一半的元器件失效并非由于元器件的固有可靠性不高,而是由于使用者对元器件的选择不当或使用有误造成的。
因此为了保证军用电子产品的可靠性,就必须对电子元器件的选择和应用加以严格控制。
1、电子元器件的分类顾名思义,元器件可分为元件和器件2大类。
元件中有电阻、电容、电感、继电器和开关等;器件可分为半导体分立器件、集成电路以及电真空器件等。
表1为元器件分类表。
2、电子元器件的质量等级元器件的质量等级是指元器件装机使用之前,按产品执行标准或供需双方的技术协议,在制造、检验及筛选过程中对其质量的控制等级。
质量等级越高,其可靠性等级就越高。
为了保证军用元器件的质量,我国制订了一系列的元器件标准,在八十年代初期制订的“七专”8406 技术条件(以下统称“七专”条件),“七专”技术条件是建立我国军用元器件标准的基础,目前按“七专”条件或其加严条件控制生产的元器件仍是航天等部门使用的主要品种。
(注:“七专”指专人、专机、专料、专批、专检、专技、专卡)。
电子元器件的筛选与电子元器件质量控制
电子元器件的筛选与电子元器件质量控制摘要::现阶段,随着我国科学技术的不断发展,电子行业也得到了快速发展,使电子行业中电子元器件的应用也就越来越广泛,因此对于电子元器件的筛选和质量控制问题就广泛受到关注,为了让人们使用的电子产品更加安全可靠,其中的电子元器件极其重要,科学合理的筛选出符合的电子元器件,进行质量控制是真正发挥出电子元器件在实际应用中的性能和功能及稳定性的前提条件。
这项工作的实践性较强,虽然一些生产商对电子元器件进行筛选,但电子元器件仍存在不符合应用要求的问题,甚至,有的生产厂商没有进行基础的筛选。
因此,在进行一些研究项目中应用的电子元器件的筛选与质量将影响着项目研究进程及项目成果。
探索出电子元器件有效筛选和控制质量的方法途径十分必要。
本文通过对电子元器质量进行有效控制,来把控其性能参数,并使其功能得到充分的发挥,从而进一步使电子设备产品的质量得到保障。
关键词:电子元器件;筛选;质量控制一、电子元器件筛选的方法1.1 功率老化法对电子元器件的筛选工作进行模拟,同时相应的电子元器件要施加电应力,从而使存在缺陷的电子元器件能快速的显示出其性能和功能上的缺陷,然后在试验期间就将其进行剔除。
1.2 检查法对电子元器件的筛选也可以使用镜检和目检技术。
方法是使用放大镜或者显微镜对电子元器件的外观进行仔细的检查,把外观存在缺陷的电子元器件直接进行剔除,然后再对电子元器件的内部使用镜检技术进行检查,检查包括芯片焊接、引线键合、封装缺陷等,这种方法对电子元器件的筛选具有高效性的同时也相对比较简单。
1.3 环境应力法电子元器件在进行筛选时可以对其施加相应的环境应力,环境应力筛选使用于研制和生产的各个阶段,从而为发现和排除不良零件、元器件、工艺缺陷和防止出现早期失效,在环境应力下所做的一系列试验,其目的是在产品出产前,有意把环境应力施加到产品上,使产品的潜在缺陷加速发展成为早期故障,并加以排除,是剔除产品缺陷和提高产品使用可靠性的一种有效工艺手段。
电子元器件可靠性老化筛选规定
电子产品及元器件可靠性老化筛选规定1范围为了规范电子产品及元器件可靠性老化筛选符合产品设计要求特制订本企业标准。
本标准规定了电子产品高温老化试验及外购电子元器件进厂后,进行可靠性老化筛选的项目、条件及筛选后的检查、处理。
剔除早期失效的器件,提高产品的可靠性。
本标准适用于所有装有电子元器件的产品,除非产品另有规定。
2规范性引用文件下列文件中的条款通过本规范的引用而成为本规范的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范。
然而鼓励根据本规范达成协议的各方研究是否使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本规范。
GB/T 2828-87 抽样检验标准3老化筛选项目及条件3.1 半导体器件、集成电路低温贮存:非工作状态下,将器件贮存在温度-25±3℃的低温箱中,保持4h,常温下测试电参数。
高温贮存:非工作状态下,将器件贮存在温度+125±3℃的高温箱中,保持4h,常温下测试电参数。
3.2 继电器低温运行:将继电器置于温度-25±3℃的低温箱中,保持1h,通电工作后测量低温下的释放电压,然后在此低温下,触点回路中加阻性负载,以(2~5)次/s的速率动作200次后,检测每对触点的接触电压或接触电阻。
高温运行。
将继电器置于温度+70±3℃的高温箱中,保持1h,通电工作后测量高温下的释放电压,然后在此温度下触点回路中加阻性负载,以(2~5)次/s的速率动作200次后,检测每对触点的接触电压或接触电阻。
注: 以上筛选设备条件如暂时不具备时,可由工艺人员根据现有设备条件实施。
4筛选检查4.1 文件编制元器件老化筛选由工艺人员编制筛选工艺,规定老化筛选程序、使用设备、测量仪器、工艺装置及操作、检测方法和要求。
4.2 检验种类对进行老化的元器件实行全检。
4.3 检验电性能的项目4.3.1 电阻器4.3.1.1 电阻器的额定功率电阻器的额定功率系指电阻器在直流或交流电路中,当大气压力为750±30mmHg ,在产品标准中规定的温度下,长期连续负荷所允许消耗的最大功率。
电子行业电子元器件精密制造与筛选方案
电子行业电子元器件精密制造与筛选方案第1章引言 (4)1.1 背景与意义 (4)1.2 目标与内容 (4)第2章电子元器件概述 (5)2.1 常用电子元器件分类 (5)2.2 电子元器件的主要功能参数 (5)2.3 电子元器件的应用领域 (5)第3章精密制造技术 (6)3.1 制造工艺概述 (6)3.2 精密加工技术 (6)3.2.1 微细加工技术 (6)3.2.2 高精度模具设计与制造 (6)3.2.3 自动化装配技术 (6)3.3 封装技术 (6)3.3.1 表面贴装技术(SMT) (6)3.3.2 焊接技术 (6)3.3.3 三维封装技术 (7)第4章原材料选择与处理 (7)4.1 原材料分类与功能要求 (7)4.1.1 陶瓷材料 (7)4.1.2 金属导体材料 (7)4.1.3 塑料材料 (7)4.1.4 磁性材料 (8)4.1.5 特殊功能材料 (8)4.2 原材料检测与筛选 (8)4.2.1 外观检查 (8)4.2.2 尺寸测量 (8)4.2.3 功能测试 (8)4.2.4 稳定性测试 (8)4.2.5 可靠性筛选 (8)4.3 原材料表面处理技术 (8)4.3.1 电镀 (9)4.3.2 化学镀 (9)4.3.3 磁控溅射 (9)4.3.4 热喷涂 (9)4.3.5 表面改性 (9)第5章电子元器件的设计与仿真 (9)5.1 设计原理与流程 (9)5.1.1 设计原理 (9)5.1.2 设计流程 (9)5.2 仿真技术与工具 (10)5.2.2 仿真工具 (10)5.3 设计优化与验证 (10)5.3.1 设计优化 (10)5.3.2 设计验证 (10)第6章精密制造设备与工艺参数 (11)6.1 常用精密制造设备 (11)6.1.1 高精度贴片机 (11)6.1.2 精密焊机 (11)6.1.3 精密绕线机 (11)6.1.4 精密切割机 (11)6.2 设备选型与布局 (11)6.2.1 设备选型原则 (11)6.2.2 设备布局设计 (11)6.3 工艺参数优化 (11)6.3.1 贴片工艺参数 (11)6.3.2 焊接工艺参数 (11)6.3.3 绕线工艺参数 (12)6.3.4 切割工艺参数 (12)第7章电子元器件的制造过程控制 (12)7.1 制造过程监控与调整 (12)7.1.1 生产参数设置与优化 (12)7.1.2 实时监控技术 (12)7.1.3 数据采集与分析 (12)7.2 制造过程质量控制 (12)7.2.1 质量控制体系 (12)7.2.2 在线检测与离线检测 (12)7.2.3 检验数据管理与分析 (13)7.3 制造过程异常处理 (13)7.3.1 异常识别与报警 (13)7.3.2 异常处理流程 (13)7.3.3 预防措施与持续改进 (13)第8章电子元器件的筛选与测试 (13)8.1 筛选与测试方法 (13)8.1.1 元器件筛选原则 (13)8.1.2 常用筛选方法 (13)8.2 筛选与测试设备 (14)8.2.1 外观检查设备 (14)8.2.2 电功能测试设备 (14)8.2.3 功能测试设备 (14)8.2.4 环境适应性测试设备 (14)8.3 筛选与测试结果分析 (14)8.3.1 外观检查结果分析 (14)8.3.2 电功能测试结果分析 (14)8.3.4 环境适应性测试结果分析 (14)8.3.5 综合筛选与测试结果 (14)第9章质量保证与可靠性分析 (15)9.1 质量管理体系 (15)9.1.1 概述 (15)9.1.2 质量管理体系构建 (15)9.1.3 质量管理体系的实施与运行 (15)9.2 可靠性试验方法 (15)9.2.1 可靠性试验概述 (15)9.2.2 常用可靠性试验方法 (15)9.2.3 可靠性试验数据统计分析 (15)9.3 故障分析与改进措施 (15)9.3.1 故障分析概述 (15)9.3.2 常见故障分析方法 (15)9.3.3 改进措施 (16)9.3.4 持续改进与跟踪 (16)第10章电子元器件行业发展趋势与展望 (16)10.1 行业发展趋势 (16)10.1.1 产业升级与转型 (16)10.1.2 智能制造技术的融合 (16)10.1.3 绿色环保理念的深化 (16)10.1.4 国际合作与竞争态势 (16)10.2 技术创新方向 (16)10.2.1 精密制造技术发展 (16)10.2.1.1 微纳米加工技术 (16)10.2.1.2 高精度封装技术 (16)10.2.1.3 新材料应用 (16)10.2.2 高可靠性筛选技术 (16)10.2.2.1 智能检测与诊断 (16)10.2.2.2 数据分析与应用 (16)10.2.2.3 高效筛选流程优化 (16)10.2.3 信息技术与元器件融合创新 (16)10.2.3.1 物联网技术 (16)10.2.3.2 云计算与大数据 (16)10.2.3.3 人工智能技术 (16)10.3 市场前景与挑战 (16)10.3.1 市场前景 (16)10.3.1.1 新兴应用领域拓展 (16)10.3.1.2 市场规模持续扩大 (16)10.3.1.3 行业集中度提高 (17)10.3.2 市场挑战 (17)10.3.2.1 技术更新迭代压力 (17)10.3.2.2 环保法规与标准提升 (17)10.3.2.3 国际贸易摩擦与保护主义 (17)10.3.3 应对策略与建议 (17)10.3.3.1 提高技术创新能力 (17)10.3.3.2 增强产业链协同 (17)10.3.3.3 深化国内外市场拓展 (17)10.3.3.4 提升企业品牌与核心竞争力 (17)第1章引言1.1 背景与意义现代电子行业的飞速发展,电子元器件的应用日益广泛,其精度与可靠性成为影响整个电子产品功能的关键因素。
元器件筛选标准
元器件筛选的标准主要包括以下方面:1. 标准化、通用化和国产化:选择符合行业标准、具有通用性和国产化的元器件,以方便维护和更换。
2. 技术性能:元器件的技术性能应满足电路设计的要求,包括功能、性能等级、工作温度范围等。
3. 质量等级:元器件的质量等级应符合要求,以确保其可靠性、稳定性和寿命。
4. 运用条件:元器件的运用条件应满足电路设计的要求,包括电压、电流、频率、负载等。
5. 工艺质量与可制造性:元器件的工艺成熟且稳定可控,成品率应高于规定值,封装应能与设备组装工艺条件相容。
6. 稳定性:在温度、湿度、频率、老化等变化的情况下,元器件的参数变化应在允许的范围内。
7. 寿命:元器件的工作寿命或贮存寿命应不短于使用它们的设备的预计寿命。
8. 环境适应性:元器件应能良好地工作于各种使用环境,特别是如潮热、盐雾、沙尘、酸雨、霉菌、辐射、高海拔等特殊环境。
9. 失效模式:对元器件的典型失效模式和失效机理应有充分了解。
10. 可维修性:元器件的安装、拆卸、更换是否方便,以及所需要的工具和熟练等级。
11. 可用性:供货商数量超过1个,供货周期满足设备制造计划进度,能保证元器件失效时的及时更换要求等。
12. 成本:在能同时满足所要求的性能、寿命和环境制约条件下,考虑采用性价比高的元器件。
此外,对于电子元器件来说,还需要考虑以下因素:1. 额定工作温度范围:元器件的额定工作温度范围应等于或宽于所要经受的工作温度范围。
2. 制造厂的质量保证体系:选择有发展前途并有良好信誉的制造厂出产的元器件,并经实践证明品质稳定、可靠性高的标准电子元器件,不可以采用淘汰的或劣质品的电子元件。
总的来说,元器件筛选的标准是全面的,涉及到性能、质量、工艺、稳定性、环境适应性等多个方面。
在选择元器件时,需要综合考虑这些因素,以确保所选择的元器件能够满足设计要求并稳定可靠地工作。
电子元器件检测与筛选手册
电子元器件检测与筛选手册第1章引言 (4)1.1 概述 (4)1.2 器件检测与筛选的重要性 (4)1.3 检测与筛选的基本流程 (4)第2章电子元器件基础 (5)2.1 常见元器件类型 (5)2.2 器件的主要参数 (5)2.3 器件的质量等级与标准 (6)第3章器件外观检查 (7)3.1 外观缺陷识别 (7)3.1.1 表面污染:检查器件表面是否有污渍、油脂、灰尘等污染物,这些污染物可能导致焊接不良或电气功能下降。
(7)3.1.2 外观损伤:观察器件表面是否存在裂纹、缺口、变形等损伤,此类损伤可能影响器件的结构强度和电气连接。
(7)3.1.3 焊接端缺陷:仔细检查器件的焊接端,包括焊盘、引脚等,是否存在氧化、腐蚀、短路等问题。
(7)3.1.4 标签与标识:确认器件上的标签和标识是否清晰可辨,避免因标识不清导致的误用。
(7)3.2 尺寸及标识检查 (7)3.2.1 尺寸检查:利用卡尺、微米计等工具对器件的尺寸进行测量,包括长度、宽度、高度等,保证其满足规格书上的要求。
(7)3.2.2 引脚间距和尺寸:检查器件引脚的间距和直径,以保证其与电路板上的焊盘相匹配。
(7)3.2.3 标识检查:核对器件上的型号、批次号、生产日期等标识信息,以保证信息的准确无误。
(8)3.3 包装及防护措施 (8)3.3.1 包装检查:检查元器件的包装是否完好,密封功能是否良好,防止因包装破损导致的器件污染或损坏。
(8)3.3.2 静电防护:对于静电敏感的元器件,需检查其包装是否符合静电防护要求,如使用防静电袋、防静电箱等。
(8)3.3.3 防潮措施:评估包装内的干燥剂或防潮设施是否有效,保证元器件在湿度控制的环境中存储。
(8)3.3.4 防震处理:检查包装内是否有足够的缓冲材料,以减轻运输过程中可能产生的震动和冲击,避免器件损伤。
(8)第4章电气功能测试 (8)4.1 基本测试方法 (8)4.1.1 开路测试 (8)4.1.2 短路测试 (8)4.1.3 连续性测试 (8)4.1.4 绝缘电阻测试 (8)4.2 电阻、电容和电感测试 (9)4.2.1 电阻测试 (9)4.2.2 电容测试 (9)4.2.3 电感测试 (9)4.3 半导体器件测试 (9)4.3.1 二极管测试 (9)4.3.2 晶体管测试 (9)4.3.3 集成电路测试 (9)第5章焊接功能检测 (10)5.1 焊接质量评价 (10)5.1.1 焊接质量标准 (10)5.1.2 焊接外观检测 (10)5.1.3 焊接内部缺陷检测 (10)5.1.4 焊接质量统计分析 (10)5.2 焊点可靠性测试 (10)5.2.1 焊点可靠性测试方法 (10)5.2.2 焊点可靠性评价标准 (10)5.2.3 焊点可靠性测试案例分析 (10)5.3 无铅焊接技术 (10)5.3.1 无铅焊接材料 (10)5.3.2 无铅焊接工艺 (10)5.3.3 无铅焊接质量检测 (11)5.3.4 无铅焊接的可靠性评估 (11)第6章环境适应性测试 (11)6.1 温度测试 (11)6.1.1 测试目的 (11)6.1.2 测试方法 (11)6.1.3 测试标准 (11)6.1.4 测试结果分析 (11)6.2 湿度测试 (11)6.2.1 测试目的 (11)6.2.2 测试方法 (11)6.2.3 测试标准 (12)6.2.4 测试结果分析 (12)6.3 机械应力测试 (12)6.3.1 测试目的 (12)6.3.2 测试方法 (12)6.3.3 测试标准 (12)6.3.4 测试结果分析 (12)第7章可靠性筛选 (12)7.1 高加速寿命测试(HALT) (12)7.1.1 概述 (12)7.1.2 HALT原理 (12)7.1.3 HALT实施步骤 (12)7.1.4 HALT注意事项 (13)7.2 高加速应力筛选(HASS) (13)7.2.1 概述 (13)7.2.2 HASS原理 (13)7.2.3 HASS实施步骤 (13)7.2.4 HASS注意事项 (13)7.3 筛选策略与流程 (13)7.3.1 筛选策略 (13)7.3.2 筛选流程 (14)第8章功能性检测 (14)8.1 数字电路功能测试 (14)8.1.1 测试原理 (14)8.1.2 测试向量 (14)8.1.3 测试方法 (14)8.2 模拟电路功能测试 (14)8.2.1 测试原理 (14)8.2.2 测试信号 (14)8.2.3 测试方法 (15)8.3 混合信号电路功能测试 (15)8.3.1 测试原理 (15)8.3.2 测试信号 (15)8.3.3 测试方法 (15)第9章自动化检测与筛选技术 (15)9.1 自动化检测系统概述 (15)9.1.1 自动化检测系统的基本构成 (15)9.1.2 自动化检测系统的工作原理 (15)9.1.3 自动化检测在电子元器件检测中的应用 (16)9.2 机器视觉检测技术 (16)9.2.1 机器视觉检测系统的构成 (16)9.2.2 机器视觉检测技术的原理 (16)9.2.3 机器视觉检测在电子元器件检测中的应用 (16)9.3 自动化设备与仪器 (16)9.3.1 自动测试设备(ATE) (16)9.3.2 自动分拣设备 (16)9.3.3 自动化装配设备 (16)9.3.4 在线监测与控制系统 (17)第10章数据处理与分析 (17)10.1 检测数据采集与处理 (17)10.1.1 数据采集 (17)10.1.2 数据预处理 (17)10.1.3 数据存储与管理 (17)10.2 质量控制与统计分析 (17)10.2.1 质量控制 (17)10.2.2 统计分析 (17)10.2.3 质量改进 (18)10.3 检测报告与记录管理 (18)10.3.1 检测报告 (18)10.3.2 检测记录管理 (18)10.3.3 数据安全与保密 (18)第1章引言1.1 概述电子元器件作为现代电子产品的基础,其质量和可靠性直接关系到电子设备的整体功能和稳定性。
电子元器件筛选报告模板
电子元器件筛选报告模板背景介绍在电子工程领域,元器件的性能直接影响到整个系统的性能。
因此,在进行电路系统设计之前,需要对不同的电子元器件进行筛选。
本篇报告介绍了电子元器件的筛选工作以及电子元器件的性能参数评估。
元器件筛选筛选目标元器件的选择应该根据实际需要进行,符合一定的规范和标准,检验元器件的质量、性能和可靠性,以满足产品的使用要求。
筛选方法•了解产品的使用环境,根据环境的不同,选择符合产品需求的元器件•对不同型号的同类元器件性能进行测试,以确定最佳的元器件•分别试验选定元器件并进行性能比较,选择最佳的元器件元器件性能参数评估电容器电容器主要通过电容量、精度、耐压等参数来进行评估。
•电容量:通常,电容值需要在正负20%之间,且必须达到确定值的最小值•精度:电容器的精度是指容差范围,越小越好。
常用的工业级电容器精度级别有J(±5%)、K(±10%)、M(±20%)等。
•耐压:指电容器能够承受的最大电压,必须大于电路设计的最大电压。
二极管二极管的性能由正向峰值电压、反向峰值电压、伏安特性曲线、正向电流和反向漏电流等参数来评估。
•正向峰值电压:二极管正常工作时通过正向电流的最高电压。
•反向峰值电压:大于此电压时,二极管会被击穿。
•伏安特性曲线:是指二极管正向电流与正向电压之间的关系。
•正向电流:二极管正常工作时通过正向电流的最大值。
•反向漏电流:大于反向电压时,二极管正常工作时的反向电流。
三极管三极管的性能主要取决于增益、最大耗散功率和开关特性等。
•增益:指三极管的电流放大倍数。
•最大耗散功率:三极管可承受的最大功率。
•开关特性:开关特性是指三极管有无损坏和晶体管参数是否合适,以及放大倍数是否与设计要求相符等。
结论本报告围绕电子元器件筛选展开,给出了元器件筛选的方法、电容器、二极管、三极管常用的性能参数以及如何进行评估。
无论是在元器件选择过程中还是在检验元器件性能时,均需要严格遵守评估标准和规范,以保证产品的可靠性和稳定性。
电子元器件的筛选
1 元器件筛选的必要性电子元器件的固有可靠性取决于产品的可靠性设计,在产品的制造过程中,由于人为因素或原材料、工艺条件、设备条件的波动,最终的成品不可能全部达到预期的固有可靠性。
在每一批成品中,总有一部分产品存在一些潜在的缺陷和弱点,这些潜在的缺陷和弱点,在一定的应力条件下表现为早期失效。
具有早期失效的元器件的平均寿命比正常产品要短得多。
电子设备能否可靠地工作基础是电子元器件能否可靠地工作。
如果将早期失效的元器件装上整机、设备,就会使得整机、设备的早期失效故障率大幅度增加,其可靠性不能满足要求,而且还要付出极大的代价来维修。
因此,应该在电子元器件装上整机、设备之前,就要设法把具有早期失效的元器件尽可能地加以排除,为此就要对元器件进行筛选。
根据国内外的筛选工作经验,通过有效的筛选可以使元器件的总使用失效率下降1 - v 2个数量级,因此不管是军用产品还是民用产品,筛选都是保证可靠性的重要手段。
2 筛选方案的设计原则定义如下:筛选效率W=剔除次品数/实际次品数筛选损耗率L=好品损坏数/实际好品数筛选淘汰率Q=剔降次品数/进行筛选的产品总数理想的可靠性筛选应使W=1,L=0,这样才能达到可靠性筛选的目的。
Q值大小反映了这些产品在生产过程中存在问题的大小。
0值越大,表示这批产品筛选前的可靠性越差,亦即生产过程中所存在的问题越大,产品的成品率低。
筛选项目选择越多,应力条件越严格,劣品淘汰得越彻底,其筛选效率就越高,筛选出的元器件可靠性水平也越接近于产品的固有可靠性水平。
但是要付出较高的费用、较长的周期,同时还会使不存在缺陷、性能良好的产品的可靠性降低。
故筛选条件过高就会造成不必要的浪费,条件选择过低则劣品淘汰不彻底,产品的使用可靠性得不到保证。
由此可见,筛选强度不够或筛选条件过严都对整批产品的可靠性不利。
为了有效而正确地进行可靠性筛选,必须合理地确定筛选项目和筛选应力,为此,必须了解产品的失效机理。
产品的类型不同,生产单位不同以及原材料及工艺流程不同时,其失效机理就不一定相同,因而可靠性筛选的条件也应有所不同。
电子元器件的选型与替代原则
电子元器件的选型与替代原则随着科技的不断发展,电子元器件在各个领域的应用越来越广泛。
在设计电子设备和电路时,选型与替代是非常重要的环节。
本文将详细介绍电子元器件的选型与替代原则,并分点列出步骤。
选型原则:1. 功能要求:首先明确电子元器件在设计中的功能需求,包括输入输出特性、工作电压、功率等。
根据具体要求来选择元器件。
2. 规格要求:根据设计的电路实际需求,确定元器件的具体规格,如尺寸、容量、阻值等。
需考虑元器件在整个系统中的匹配问题。
3. 性能指标:根据元器件的性能指标,如精度、稳定性、响应速度等,来选择合适的元器件。
4. 质量和可靠性:考虑元器件的质量和可靠性,选择有良好信誉的供应商和品牌,以确保系统的稳定性和长期可靠性。
选型步骤:1. 研究需求:仔细研究电子设备或电路的设计需求,包括功能、规格、性能和质量要求。
2. 查阅资料:查阅相关资料,了解市场上可用的元器件品牌、型号和性能参数。
3. 对比分析:根据需求和资料进行对比分析,筛选出符合要求的元器件。
4. 参考经验:借鉴相关领域的经验,学习其他类似设计中所使用的元器件。
5. 考虑成本:根据预算和成本要求,选择性价比最高的元器件。
6. 供应渠道:考虑元器件的供应渠道和供货周期,确保能够按时获得所需元器件。
7. 采购策略:根据选定的元器件,与供应商进行沟通,确定价格和交货条件。
替代原则:1. 尺寸替代:当原有元器件的尺寸已经停产或无法满足要求时,可以选择具有相同功能但尺寸不同的替代元器件。
2. 参数替代:当原有元器件的参数无法满足需求时,可以选择具有相似功能但参数不同的替代元器件。
需进行电路模拟和性能测试,确保替代品能够正常工作。
3. 品牌替代:当原有元器件的供应商没有货源或无法满足质量要求时,可以选择其他品牌的替代元器件。
需注意品牌的信誉和质量。
4. 功能替代:当原有元器件已停产或无法满足特殊功能要求时,可以选择具有类似功能但不同工作原理的替代元器件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子元器件的固有可靠性取决于产品的可靠性设计,因此,应该在电子元器件装上整机、设备之前,就要设法把具有早期失效的元器件尽可能地加以排除,为此就要对元器件进行筛选。
那么元器件筛选都有哪些方案?原则是什么?常见的筛选项目有哪些?
安排测试筛选先后次序时的两种方案:
a)方案1:将不产生连环引发效果的失效模式筛选放在前面,将可以与其他失效模式产生连环引发效果的失效模式筛选放在后面。
b)方案2:将可以与其他失效模式产生连环引发效果的失效模式筛选放在前面,将不产生连环引发效果的失效模式筛选放在后面。
如果选择方案1,会发现将可以与其他失效模式产生连环引发效果的失效模式筛选放在后面时,出现本身失效模式没有被触发、其他关联的相关失效模式被触发的情况时,这种带有缺陷的元器件不能被准确地定位、剔除,因为该类失效模式的检测已经在前面做过了。
而选择方案2就可以非常有效地避免上述问题的发生,使筛选过程优质、经济和高效。
筛选方案的设计原则
定义如下:
筛选效率W=剔除次品数/实际次品数
筛选损耗率L=好品损坏数/实际好品数
筛选淘汰率Q=剔降次品数/进行筛选的产品总数
理想的可靠性筛选应使W=1,L=0,这样才能达到可靠性筛选的目的。
Q值大小反映了这些产品在生产过程中存在问题的大小。
Q值越大,表示这批产品筛选前的可靠性越差,亦即生产过程中所存在的问题越大,产品的成品率低。
筛选项目选择越多,应力条件越严格,劣品淘汰得越彻底,其筛选效率就越高,筛
选出的元器件可靠性水平也越接近于产品的固有可靠性水平。
但是要付出较高的费用、较长的周期,同时还会使不存在缺陷、性能良好的产品的可靠性降低。
故筛选条件过高就会造成不必要的浪费,条件选择过低则劣品淘汰不彻底,产品的使用可靠性得不到保证。
由此可见,筛选强度不够或筛选条件过严都对整批产品的可靠性不利。
为了有效而正确地进行可靠性筛选,必须合理地确定筛选项目和筛选应力,为此,必须了解产品的失效机理。
产品的类型不同,生产单位不同以及原材料及工艺流程不同时,其失效机理就不一定相同,因而可靠性筛选的条件也应有所不同。
因此,必须针对各种具体产品进行大量的可靠性试验和筛选摸底试验,从而掌握产品失效机理与筛选项目间的关系。
元器件筛选方案的制订要掌握以下原则:
筛选要能有效地剔除早期失效的产品,但不应使正常产品提高失效率;
为提高筛选效率,可进行强应力筛选,但不应使产品产生新的失效模式;
合理选择能暴露失效的最佳应力顺序;
对被筛选对象可能的失效模式应有所掌握;
为制订合理有效的筛选方案,必须了解各有关元器件的特性、材料、封装及制造技术。
此外,在遵循以上五条原则的同时,应结合生产周期,合理制定筛选时间。
几种常用的筛选项目
高温贮存
电子元器件的失效大多数是由于体内和表面的各种物理化学变化所引起,它们与温度有密切的关系。
温度升高以后,化学反应速度大大加快,失效过程也得到加速。
使得
有缺陷的元器件能及时暴露,予以剔除。
高温筛选在半导体器件上被广泛采用,它能有效地剔除具有表面沽污、键合不良、氧化层有缺陷等失效机理的器件。
通常在最高结温下贮存24~168小时。
高温筛选简单易行,费用不大,在许多元器件上都可以施行。
通过高温贮存以后还可以使元器件的参数性能稳定下来,减少使用中的参数漂移。
各种元器件的热应力和筛选时间要适当选择,以免产生新的失效机理。
功率电老炼
筛选时,在热电应力的共同作用下,能很好地暴露元器件体内和表面的多种潜在缺陷,它是可靠性筛选的一个重要项目。
各种电子元器件通常在额定功率条件下老炼几小时至168小时,有些产品,如集成电路,不能随便改变条件,但可以采用高温工作方式来提高工作结温,达到高应力状态,各种元器件的电应力要适当选择,可以等于或稍高于额定条件,但不能引人新的失效机理。
功率老炼需要专门的试验设备,其费用较高,故筛选时间不宜过长。
民用产品通常为几个小时,军用高可靠产品可选择100、168小时,宇航级元器件可以选择240小时甚至更长的周期。
温度循环
电子产品在使用过程中会遇到不同的环境温度条件,在热胀冷缩的应力作用下,热匹配性能差的元器件就容易失效。
温度循环筛选利用了极端高温和极端低温间的热胀冷缩应力,能有效的剔除有热性能缺陷的产品。
元器件常用的筛选条件是-55~+125℃,循环5~10次。
离心加速度
离心加速度试验又称恒定应力加速度试验。
这项筛选通常在半导体器件上进行,把利用高速旋转产生的离心力作用于器件上,可以剔除键合强度过弱、内引线匹配不良和装架不良的器件,通常选用20000 g离心加速度持续试验一分钟。
监控振动和冲击
在对产品进行振动或冲击试验的同时进行电性能的监测常被称为监控振动或监控冲击试验。
这项试验能模拟产品使用过程中的振动、冲击环境,能有效地剔除瞬时短、断路等机械结构不良的元器件以及整机中的虚焊等故障。
在高可靠继电器、接插件以及军用电子设备中,监控振动和冲击是一项重要的筛选项目。
典型的振动条件是:频率20~2000 Hz,加速度2~20 g,扫描1~2周期,在共振点附近要多停留一段时间。
典型的冲击筛选条件是1500^-3000g,冲击3~5次,这项试验仅适用于元器件。
监控振动和冲击需要专门的试验设备,费用昂贵,在民用电子产品中一般不采用。
除以上筛选项目外,常用的还有粗细检漏、镜检、线性判别筛选、精密筛选等。